
Appendix

A Background and Notation

A.1 Notation

Datasets and contrastive pairs: Let x denotes a vector and X denotes a matrix, with right
subscript Xb denote the batch of the input samples, Xb := [x1,x2, . . . ,xB ], here B is equal to
batch size. For each sample xi in the input batch matrix Xb, x′

i means augmented view 1 of x′
i,

x′′
i means augmented view 2 of xi, the positive pairs in input data denoted as (xi, x′′

i ), negative
pairs in input data denoted as (x′

i, x
′′
j ), i ̸= j. Give a weights (θ) parametrized representation

function (artificial neural network) fθ with adjustable adjustable temperature ε, which project the
the positive pairs in latent space denoted as s+ = ⟨ε−1f̃θ(x

′
i), f̃θ(x

′′
i )⟩, and negative pairs in latent

space denoted as s− = ⟨ε−1f̃θ(x
′
i), f̃θ(x

′′
j )⟩, i ̸= j. Here, ⟨·, ·⟩ is the inner product, which means

⟨f̃θ(x′
i), f̃θ(x

′′
i )⟩ = fθ(x

′
i)

⊤fθ(x
′′
j )/∥fθ(x′

i)∥∥fθ(x′′
j )∥ is the normalized form.

Continuous settings for optimal transport X and Y are topological spaces, X × Y is the product
space, or Torus. C(X ) is the compact topological space which contains all of continuous functions on
X endowed with the sup-norm. On TorusX and Y we defineM as a compact n-dimensional manifold
in product space X × Y (X = Y := Rn/Zn) endowed with a cost function c(x, y) := dM (x, y)2/2
(Euclidean dsitance function) on Rn. Transport plan π(x, y) : X×Y → R is an element in P(X×Y).
P(X ×Y) means the collections of the joint distributions of the two marginal distributions µ ∈ P(X )
and ν ∈ P(Y). P(X ) the space of all (Borel) probability measures on X , P(Y) means the same to
Y . To find a joint distribution (or plan) π(x, y) in collections U(µ, ν) with marginals µ and ν in the
product space X × Y , we can formulate as:

min
π∈U(µ,ν)

∑
x∈X ,y∈Y

π(x, y)c(x, y) s.t.
∑
y∈Y

π(x, y) = µ(x),
∑
x∈X

π(x, y) = ν(y)

Discrete settings of optimal transport : µ and ν can be discrete probability measures
whose supports are finite sets X := {fθ(x′

i)}Ni=1, Y := {fθ(x′′
i )}Bi=1. And we define µ =∑B

i=1 δfθ(x′
i)
pi, ν =

∑B
i=1 δfθ(x′′

i )
qi, with vectors p and q in a simplex ∆B in RB defined by

∆B :=
{
v ∈ RB : vi ≥ 0,

∑B
i=1 vi = 1

}
, which we identify with P({1, . . . , B}). C is a B × B

cost matrix calculated by c(x, y), whose sampled from finite sets X and Y defined previously, and N
is the batch size. u and v are B × 1 scale factors matrix, u(t) and v(t) mean the scale factor matrix
after t iterations of sinkhorn algorithms. P is a B × B joint distribution matrix of µ and ν, which
represents the transport plan π(x, y) that corresponds to minimize the cost. P(2t−1) means we use
t iterations u(t) and v(t−1) to calculate P(t). When t = 1 means we use u(1) and v(0) to calculate
P(1), which is called half-step OT or one step Bregman projection. When t = 2 means we use u(1)

and v(1) to calculate P(2), which is called half-step OT or one step Bregman projection.

A.2 Proximal operator setup

In this section, we are going to provide the detailed illustration about the proximal operators. How
the proximal operator would convert to the projection. And how to solve the Bregman projection
with KL divergence.

A.2.1 Explanation of Definition (1)

Let h : X → [−∞,+∞] be a proper, lower semi-continuous convex function on Hilbert space
X . The proximal operator of h at point v ∈ X is defined as a unique minimizer of the function
x 7→ h(x) + 1

2∥x− v∥22 [40]. For an instance, h is convex function relative to the constraint set B,
like the indicator function hB. Given the Euclidean norm on X , we can write the proximal operator
Prox∥·∥

2

h,B (v) as the most common way:

Prox∥·∥2

h,B (v) = argmin
x∈B

{
h(x) +

1

2
∥x− v∥22

}

22



The solution to the proximal operator exists and is unique due to the strong convexity of the above
function.

A.2.2 Connection to the projection

Here, if we treat h(x) as the indicator functions of the constraint set B as:

h(x) =

{
0, if x ∈ B
∞, if x /∈ B.

Then the proximal operators problem could be understood intuitively as finding the "shortest distance"
between the point v with the constraint set B, which means the projection. And the following lemma
holds:

Lemma 1. If the constraint set B is closed and convex, then the projection of point v is unique on B.

Proof of the Lemma 1: This lemma can be proved by the strict convexity of the proximal operator.

Figure A1: Illustration of the proximal operators A. Visualization of proximal operators in R3. On the surface
defined by h(x, y) = x2 + y2 within the domain constraints −1.2 < x < 1.2 and −1.2 < y < 1.2. If
v = v1 = (0.76, 0.76, 1.16), it lies within the domain of h, represented on the surface at the exact location
matching its third coordinate with h(x, y). If v = v2 = (1.5, 1.5, 6), which is outside the feasible region defined
by h, the proximal operator projects it to the closest point within the domain, resulting in v2’s projection to
approximately (0.85, 0.85, 1.45). B. Visualization of proximal operators in R2. The blue dashed line represents
the function h(x) = x2. The orange dash-dotted line illustrates the penalty term 1

2
∥x− v∥2 with v = (2, 0),

indicating the squared distance from any x to v. The green solid line is the proximal operator 2x2 + 1
2
∥x− v∥2,

which gets close to the minimization point of h(x) from v. The red point marks the Proxh(v) in this space.

A.2.3 Connection to the Bregman divergence

First, we define dΓ as a generic Bregman divergence on some convex set B, and the proximal map of
a convex function dϕ according to this divergence is:

ProxdΓ

dϕ,B(K) := arg min
P∈B

dΓ(P∥K) + dϕ(P). (15)

Γ is a strictly convex function smooth on int(B), and ProxdΓ

dϕ
(K) ∈ int(B) is always uniquely defined

by strict convexity. (Note that this theory is general and does not need to parametrize the K and P as
models with θ). As B = dom(Γ),

∀(P,K) ∈ B × int(B), dΓ(P∥K) = Γ(P)− Γ(K)− ⟨∇Γ(K),P−K⟩,

which has its Legendre transform is also smooth and strictly convex:

Γ∗(ρ) = max
P∈B
⟨P, ρ⟩ − Γ(P)

23



The Bregman divergence for a convex function Γ between points x and y is defined as:
dΓ(x,y) = Γ(x)− Γ(y)− ⟨∇Γ(y),x− y⟩

where ∇Γ(y) is the gradient of Γ at y. Giving the squared L2 distance can be viewed as a Bregman
divergence derived from the convex function Γ(x) = ∥x∥2. For this function, the Bregman divergence
between two points x and y becomes:

dΓ(x,y) = ∥x∥2 − ∥y∥2 − 2y⊤(x− y) = ∥x− y∥2

Table A1: Examples of functions Γ and their corresponding divergences dΓ.
Γ dΓ Description
∥x∥2 ∥x− y∥2 squared Euclidean distance
x lnx y ln y

x − (y − x) Kullback–Leibler (KL) divergence
−H(p) =

∑
j pj ln pj KL(q∥p) =

∑
j qj ln

qj
pj

KL divergence between distributions p, q∑
pj =

∑
qj = 1

A.2.4 Connection to the Bregman projection

Bregman projections solve the alignment problem onto the two constraints sets that encode the
marginals along the rows and columns [3, 5, 43].

Cµ
1 := {P : P1B = µ}, Cν

2 := {P : P⊤
1B = ν} (16)

If we specify the constraint set B as some set Cµ
1 := {P : P1m = µ}, and select the hF (x) as some

indicator function of Cµ
1 , which satisfies:

hF (x) =

{
0, if x ∈ Cµ

1

∞, if x /∈ Cµ
1 .

(17)

For the first step Bregman projection ProxKL
Cµ

1
(K) onto the set Cµ1 with indicator function in Equa-

tion (17):
P(1) = ProxKL

Cµ
1
(Kθ) = arg min

P∈Cµ
1

{hF (P) + KL(P∥K)} = argmin{KL(P∥K) : P1B = µ}.

(18)
We can minimize the function in Equation (18) with Lagrange multiplier f on Cµ

1 :
εKL(P∥K)− f(P1B − µ), (19)

Then we get P(1) as the minimizer through the derivatives with respect to P, we have

ε log
(
P(1)/K

)
− f1 = 0⇒ P(1) = uK, as u = ef/ε > 0, (20)

and we can use these relationship into the constraints sets with P(0) = diag(1)K diag(1).

⟨P(1),1⟩ = µ⇒ ⟨u(1)K,1⟩ = µ,u(1) =
µ∑
i Kij

,P(1) = diag
(

µ

P(0)1B

)
P(0), (21)

If we repeat this progress for the set Cν
2 := {P : PT

1n = ν}, we will get the ProxKL
Cν

2
(P(t+1)). And

in the second step, we project onto the second constraint set Cν
2 with indicator function hG(x) defined

on Cν
2 and get:

P(2) := ProxKL
Cν

2
(P(1)) = P(1)diag

(
ν

P(1)⊤1B

)
. (22)

Iterating over these two sets of projections P(t+1) := ProxKL
Cµ

1
(P(t)) and P(t+2) := ProxKL

Cν
2
(P(t+1))

until convergence could be summarized as Sinkhorn algorithm with t via recursive form:

u(t+1) def
=

µ

Kv(t)
, v(t+1) def

=
ν

KTu(t+1)
, P(2t+2) = diag(u(t+1))Kdiag(v(t+1)). (23)

The Sinkhorn algorithm is composed with two steps Bregman projection, Similarly, we can write out
this recursive relationship as: Pt+1 can be updated with dual variables f , g and u(t) = ef

(t)/ε,v(t) =

eg
(t)/ε. The set U(µ, ν) = Cµ

1 ∩ Cν
2 , representing the feasible transport plans with given marginals.

It could be any random sets, i. e. B = C1

1 ∩ C1

2 denote the Birkhoff polytope of doubly stochastic
matrices where µ = 1 and ν = 1 are the uniform distributions with all one element.

24



A.3 Background on OT

This section defines discrete and continuous optimal transport. Since the section 2.3 lacks a discrete
OT definition, we discuss it here and show the equivalence between solving Bregman projection and
the entropy-regularized OT (EOT) problem.

To support convergence proofs later, we introduce definitions of continuous measures. Symbols µ
and ν may represent both discrete and continuous measures for intuitive consistency, with precise
definitions at the start of each subsection.

A.3.1 Background on discrete OT

In section 2.3, we provide a general definition of the discrete optimal transport. Here, we specifically
define the optimal transport on the representations space after an encoder fθ with two augmented
views (x′,x′′). As we mainly discussed the distribution on the representation space, so here we
suppose there is an encoder fθ will project the augmented views into the latent. Here we define
µ =

∑N
i=1 δfθ(x′

i)
pi, ν =

∑N
i=1 δfθ(x′′

i )
qi, with vectors p and q in a simplex ∆B in RB defined by

∆B :=
{
v ∈ RB : vi ≥ 0,

∑B
i=1 vi = 1

}
. Here, P is a B ×B joint coupling matrix of the marginal

distributions µ and ν, which describes how much mass is needed to convert one distribution to match
another. C is a B × B cost matrix calculated by the cost function c(x, y) i.e. cosine dissimilarity,
and we can write the OT problem as the constrained linear programming problem:

min
P
⟨P,C⟩ s.t. P1 = µ, P⊤

1 = ν. (24)

Even though directly solving Equation (24) is high computational complexity O(n3), we introduce a
common relaxation called entropic regularization to smooth the transport plan.

A.3.2 Entropy regularized OT and the Sinkhorn algorithm.

Solving the exact OT problem above can be very computationally intensive. In this case, we can
add the Shannon entropy H(P) = −(Pij(log(Pij)) to our objective in Equation (24) and obtain an
approximation of entropy-regularized optimal transport (EOT) plan as:

min
P∈B

⟨P,C⟩ − εH(P), where H(P) = −
∑

Pij log(Pij), (25)

where ε is a user specified parameter that controls the amount of smoothing in the transport plan. The
cost matrix C could be transformed into the Gibbs kernel matrix K on a Hilbert space with the given
formula,

Kij = exp
(
−ε−1Cij

)
(26)

To solve (25) under the kernel space induced by K, we can use the iterative Sinkhorn algorithm with
the initialization of u(0) and v(0) as all one vector divided by the batch size, and the update rules:

u(t+1) def
=

µ

Kv(t)
and v(t+1) def

=
ν

KTu(t+1)
, (27)

Then, the output of plan after t iterations is

P(t) = diag(u(t))K diag(v(t)). (28)

It also could be interpreted with dual variables f and g:

P
(t)
i,j = ef

(t)
i /εe−Ci,j/εeg

(t)
j /ε, u(t) = ef

(t)/ε,v(t) = eg
(t)/ε (29)

After convergence, the resulting P will be the optimal solution to Equation (25). The convergence
and dynamics of OT and the dual formulation have been studied extensively in [4, 43, 19, 1]. Here,
iterations converge to a stable transport plan P(∞)as the optimal solution of Equation (3), which
provides the minimum cost matching between two distributions. The convergence and dynamics of OT
and its dual formulation have been studied extensively in [4, 43, 19, 1]. Thus, these results guarantee
that the iterates will converge to the optimal solution of the EOT objective, or that P(t) → P(∞) with
t→∞.

This allows us to state the following lemma:

25



Lemma 2. Solving the entropy optimal transport in Equation (3) is consistent with iterative solving
the Bregman projection.

Proof of the Lemma 2: Giving that some points K and P, their distance could be measured by KL
divergence:

KL(P∥K) =
∑
ij

Pij log

(
Pij

Kij

)
−Pij +Kij

As Cij = −ε logKij in Sinkhorn, we can see find P to minimize the Equation (3) can be transformed
into some formula about Kij :

min
P
⟨P,C⟩ − εH(P) = min

P

∑
i,j

CijPij + ε
∑
i,j

Pij(log(Pij)) (30)

= min
P

ε
∑
i,j

(−Pij logKij +Pij log(Pij)) (31)

= min
P

εKL(P∥K) s.t. P1 = µ, P⊤
1 = ν, (32)

Consider the K is a point in Hilbert kernel space, and ε is the constant, we set the µ and ν form the
B, so here can have:

P = ProxKL
B (K) = argmin

P∈B
KL(P||K) = argmin

P
{⟨P,C⟩+εH(P) : P1 = µ, P⊤

1 = ν} (33)

A.3.3 Background on continuous optimal transport

To show the convergence of the Bregman projection, here we define the optimal transport problem
with the continuous measure. Inherit the definition of X and Y in the Appendix A.1, finding the
optimal transport between two continuous measure µ and ν could be transformed into some problems
with the minimization of Kantorovich functional.

Definition 4 (Continuous optimal transport). We redefine µ and ν be two probability measures on
latent manifoldM with Hölder continuous and strictly positive densities ef and eg, respectively:
µ = efdM, ν = egdM , where dM is the Riemannian normalized volume form on X . For each
x ∈ X and y ∈ Y:

W (µ, ν) = inf
π∈Π(µ,ν)

∫
X×Y

c(x, y) dπ(x, y). (34)

Definition 5 (Dual of continuous OT). The dual of standard OT reads:

W (µ, ν) = sup
f,g∈U(c)

∫
X
fdµ(x) +

∫
Y
dν(y) (35)

where the constraint set U(c) is defined by U(c) := {(µ, ν) ∈ C(X )×C(Y)}|f(x)+g(y) ≤ c(x, y)}.

Here, C(X ) is the space of all continuous functions on X , the functions which measured using the
supreme norm ||f ||∞, with the Legendre transform:

Definition 6 (Legendre c-transforms). For the dual variables, or so called potentials, there exists the
Legendre c-transforms:

f c(y) := sup
x∈X

(−c(x, y) + f(x)), gc(x) := sup
y∈Y

(−c(x, y) + g(y)). (36)

In which gc(x) and f c(y) are Legendre c-transforms of g(y) ∈ C(Y) and f(x) ∈ C(X ) with cost
function c(x, y).

Definition 7 (Pushforward measure). The pushforward measure of µ under the map T , denoted as
Tµ, is a measure on X defined by Tµ(B) = µ(T−1(B)) for any Borel set B in X . Tµ = ν when T is
an optimal transport map. Following the similar way we can define the push-forward measure Tµ
and Tν as:

Tµ : C(X )→ C(Y) := log

∫
e−c(x,·)+f(x)µ(x), Tν : C(Y)→ C(X ) := log

∫
e−c(·,y)+g(y)ν(y),

26



Definition 8 (φ-divergence regularized OT in continuous). Given two dual variables (also called
potentials) f ∈ Rn and g ∈ Rm for each marginal constraint, the entropy regularized optimal
transport in Equation (3) could be transformed into some problems with the Kantorovich functional:

Wφ
ε,c(µ, ν) = inf

πinΠ(µ,ν)
(

∫
X×Y

c(x, y)dπ(x, y) + ε

∫
X×Y

φ

(
dπ(x, y)

dµ(x)dν(y)

)
dµ(x)dν(y)

)
(37)

Proposition 1 (Dual of EOT). Consider OT between two probability measures µ and ν with a convex
regularizer ϕ on R+ in Equation (37)

Wφ
c,ε(µ, ν) = sup

f,g∈C(X )×C(Y)

∫
X
fdµ(x)+

∫
Y
dν(y)−ε

∫
X×Y

φ∗(
f(x) + g(y)− c(x, y)

ε
)dµ(x)dν(y)

(38)
where φ∗ is the Legendre transform of φ defined by φ∗(v) := supx xv − ϕ(x)

A good choice for φ∗ is that the φ∗(v) = ev. The entropy regularization term ensures the problem is
solvable, especially for computational schemes. If the ε → ∞, the optimal primal plan π∗ can be
retrieved using, which corresponds to the mutual information formula:

dπ∗

dµdν
(x, y) = exp

(
f∗(x) + g∗(y)− c(x, y)

ε

)
In the discrete version in Equation (3), the optimal transport plan P can often be expressed in terms
of the optimal transport map T ∗ when it exists, one can define the so-called barycentric projection
map

T ∗ : xi ∈ X 7→
1

µi

∑
j

Pi,jyj ∈ Rd,

This link provides the connection between the mutual information with the optimal mapping:

T ∗ : x ∈ X 7→
∫
Y

y
dπ(x, y)

dµ(x)dν(y)
dν(y).

Note that the joint distribution π always has a density dπ(x,y)
dµ(x)dν(y) with respect to µ⊗ν, and the mutual

information method will lead us to the optimal solution.

B Analysis of GCA

B.1 Convergence of GCA

In this section, we provide a proof of convergence in the forward pass for our GCA algorithm. To do
this, we show the general form in Algorithms 1 for all Bregman divergence (dΓ) in forward pass in
GCA algorithms could be converged through Djkstra’s projection algorithms. Finally, we show the
uniformly convergence of the transport plan P, and the convergence of its dual variables f (t) in each
iteration.

B.1.1 Convergence of GCA-INCE

Corollary 1. (Convergence of GCA-INCE [43]) Given u∗ = ef
∞

, v∗ = eg
(∞)

and a kernel space
H with the Hilbert-Birkhoff metric dH(u,u∗) := logmaxi,j

uiu
∗
j

uju∗
i
, for all positive pairs (u,u∗),

with u(t) → u∗ and v(t) → v∗, we can prove that:

∥ logP(t) − logP∗∥∞ ≤ dH(u(t),u∗) + dH(v(t),v∗), (39)

Proof for Corollary 1: First, let’s define the following Hilbert space: ∀(u,u′) ∈
(Rn

+,∗)
2, dH(u,u′) := logmaxi,j

uiu
′
j

uju′
i
. For any pairs of vectors that (v,v′) ∈ (Rm

+,∗)
2 holds:

dH(v,v′) = dH

( v

v′ ,1m

)
= dH (1m/v,1m/v

′) . (40)

27



Algorithm A1 Generalized Contrastive Alignment (GCA)

Input: Encoder fθ, projector gθ, data {xk}Nk=1, batch size B, cost function c(x, y), entropy
parameter ε, constant τ , total iterations T , marginal constraints µ and ν, relax items d1, d2 and
constant δeps, some divergence dM and dΓ (could be KL or WDM),
for sampled minibatch {xk}Bk=1 do

Generate two views (z′k, z
′′
k) using fθ, gθ with randomly sampled augmentations.

end for
u(0) = 1, v(0) = 1, f = 0, g = 0, Cij = c(z′i, z

′′
j )

d1 ← d1/(d1 + ε), d2 ← d2/(d2 + ε), K = exp(Cij/ε
−1)

for i = 1 to T do
δf ← exp−f/(ε+ d1), δg ← exp−g/(ε+ d2)
u← δf · ProxF (Kv + δeps)

fi

v← δg · ProxG(K
Tu+ δeps)

fi

if u > τ orv > τ then
f ← f + ε · log(max(u)), g ← g + ε · log(max(v))
K ← exp (f + g −C)/ε, v = 1

end if
end for
logu← f/(ε+ u), logv← g/(ε+ v)
Compute transport plan as:
P← exp(logu+ logv − C/ε)
Normalize P

(T )
u by its column sums.

Loss: LGCA = dM (µ⊗ ν,P(T )
u )

Update networks fθ and gθ to minimize LGCA

Let K ∈ Rn×m
+,∗ , then for (v,v′) ∈ (Rm

+,∗)
2 we have

dH(u(t+1),u∗) = dH

(
1n

Kv(t)
,
1n

Kv∗

)
= dH(Kv(t),Kv∗) ≤ λ(K)dH(v(t),v∗),

where

λ(K) :=

√
η(K)− 1√
η(K) + 1

< 1, η(K) := max
i,j,k,ℓ

Ki,kKj,ℓ

Kj,kKi,ℓ
. (41)

Based on the contraction mapping theory, one has (u(ℓ),v(ℓ))→ (u∗,v∗) and

dH(u(t),u∗) ≤ dH(u(t+1),u(t)) + dH(u(t+1),u∗) (42)

≤ dH
( µ

Kv(t)
,u(t)

)
+ λ(K)2dH(u(t),u∗) (43)

= dH

(
µ,u(t) ⊙ (Kv(t))

)
+ λ(K)2dH(u(t),u∗), (44)

dH(u(t),u∗) ≤ dH(P(t)
1m, µ)

1− λ(K)2
, dH(v(t),v∗) ≤ dH(P(t)⊤

1n, ν)

1− λ(K)2
, (45)

where we denoted P(t) := diag(u(t))K diag(v(t)). Last, one has

∥ log(P(t))− log(P∗)∥∞ ≤ dH(u(t),u∗) + dH(v(t),v∗), (46)

where P∗ is the unique solution of Equation (3). The above formula also shows that the t-step solution
gives a better lower bound than the 1-step solution.

B.1.2 Convergence of the Djkstra’s projection algorithms

The previous subsection proved the convergence of GCA-INCE. Here, we extend this to show the
convergence of all generalized proximal operators in Algorithm 1. Additionally, we demonstrate that
these operators can iteratively solve alignment problems in the forward pass, following Dykstra’s
projection algorithm.

28



We present a general convergence proof for Dykstra’s projection algorithm, sharing the form in
Definition (1). First, we define dΓ as a generic Bregman divergence on some convex set B, and the
proximal map of a convex function dϕ according to this divergence is:

ProxdΓ

dϕ,B(K) := arg min
P̃∈B

dΓ(P̃∥K) + dϕ(P̃). (47)

Γ is a strictly convex function smooth on int(B), and ProxdΓ

dϕ
(K) ∈ int(B) is always uniquely defined

by strict convexity. As B = dom(Γ),

∀(P,K) ∈ B × int(B), dΓ(P∥K) = Γ(P)− Γ(K)− ⟨∇Γ(K),P−K⟩,

which has its Legendre transform is also smooth and strictly convex:

Γ∗(ρ) = max
P∈B
⟨P, ρ⟩ − Γ(P)

In particular, one has that ∇Γ and ∇Γ∗ are bijective maps between int(B) and int(dom(Γ∗)) such
that∇Γ∗ = (∇Γ)−1. For Γ = || · ||2, one recovers the squared Euclidean norm dΓ = || · ||2. One has
KL = dΓ for Γ(P) = h(P) = −

∑B
i,j=1(Pij(logPij−1)). Dykstra’s algorithm starts by initializing

P(0) := K and U(0) = U(−1) := 0. One then iterative defines, for k > 0,

P(k) := ProxdΓ

dϕ[k]2

(∇Γ∗(∇Γ(P(k−1)) +U(k−2))), (48)

U(k) := U(k−2) +∇Γ(P(k−1))−∇Γ(P(k)), (49)

Proposition 2. Giving dϕ1
, dϕ2

are two proper, lower-semicontinuous convex functions defined on
B. We also assume that the following qualification constraint holds:

ri(dom(dϕ1
)) ∩ ri(dom(dϕ2

)) ∩ ri(dom(dΓ)) = ∅, (50)

where ri is the relative interior and dom(ϕ) = {π;ϕ(π) = +∞}. Then the Pt converges to the
solution of the following equation:

proxdΓ

h,B(K) = argmin
P∈B
{dΓ(P∥K) + λ1dϕ1

(P) + λ2dϕ2
(P)} (51)

Proof of the Proposition 2: Proof in [42] section 3.2.

B.1.3 Convergence of Bregman projection

This section aims to show for the continuous measure, the convergence of Bregman projection
holds [4]. Finding the optimal transport map T could be derived in minimizes some functionals
derived from the potential function f defined on X , with Legendre transform in Equation (36) defined
on Y:

J(f) :=

∫
X
fµ(x) +

∫
Y
f cν(y) = Iµ − L (52)

Lemma 3 (Uniformly convergence). [4] When t1 →∞, f (t1) converges uniformly to a fixed point
f (∞), with f (t1) ≤ f (∞).

Proof for the Lemma 3 (Uniformly convergence): We follow the procedures of methods in [4].

Giving push-forward measure Tµ and Tν and a composed operator S = Tν ◦ Tµ, which yields an
iteration on C(X ) as S : C(X )→ C(X ), f → f ◦ g ◦ f , f (m+1) = S(f (m)), and eS(f)−fµ is the
probability measure on X .

Lemma 4 (Existence and uniqueness). The following conditions are equivalent for a function f in
the space C(X), where C(X) denotes the space of continuous functions on a set X:

• f is a critical point for the functional F on C(X).

• The function exp(S(f)− f) = 0 hold almost everywhere (a.e.) with respect to (w.r.t.) µ.

Moreover, if f is a critical point, then f∗ := S(f) is a fixed point for the operator S on C(X).

29



Proof of the Lemma 1 Consider the functional L defined in Equation (52), the differential of L at an
element f ∈ C(X) is represented by the probability measure exp(S(f)− f)µ. For some iterations
f (m+1) − f (m) = S(f (m)) − f (m), when f is a critical point (derivative is zero or undefined) for
the functional J on C(X) , and f∗ := S(f) is a fixed point for the operator S on C(X), proved by
realizing for any ḟ ∈ C(X):

d

dt
L(f + tḟ)

∣∣∣∣
t=0

=

∫
X

ḟ e(S(f)−f)dµ. (53)

This follows readily from the definitions by differentiating t 7→ g[(f + tḟ)] to get an integral over
(X,µ) and then switching the order of integration. As a consequence, f is a critical point of the
functional F on C0(X) if and only if e(S(f)−f)µ = µ, i.e., if and only if e(S(f)−f) = 1 almost
everywhere with respect to µ. Finally, if this is the case, then S(f) = f almost everywhere with
respect to µ and hence S(S(f)) = S(f) (since S(f) only depends on f viewed as an element in
L1(X,µ)).

Lemma 5. Given a point x0 ∈ X , the subset Kx0 of C(X ) defined as all elements f in the image of
S satisfying f(x0) = 0 is compact in C(X ).

Proof of the Lemma 5: Based on the compactness of the product space X × Y , the continuous
function c is uniformly continuous on X . So S(C(X )) is an equicontinuous family of continuous
functions on X . By Arzelà-Ascoli theorem, it follows that the set Kx0 is compact in C(X ).
Proposition 3. The operator S has a fixed point f∗ in C(X ). Moreover, f∗ is uniquely determined
a.e. wrt µ up to an additive constant, and f∗ minimizes the functional F . More precisely, there exists
a unique fixed point in S(C(X ))/R.

Proof of the Proposition (3): Then based on the Jensen’s inequality, we have

Iµ(f
(m+1))− Iµ(f (m)) =

∫
log exp (S(f (m))− f (m))dµ ≤ log

∫
exp (S(f (m))− f (m))dµ = 0,

(54)

L(f (m))− L(f (m+1)) =

∫
log exp (S(g(m))− g(m))dν ≤ log

∫
exp (S(g(m))− g(m))dν = 0.

(55)

So we know the functionals are strictly decreasing at f (m) unless S(f∗) = f∗ for f∗ := S(f (m)).
Then based on the Lemma 5, we know for each initial data f0, the closure of its images denoted
as Kf0 in C(X )/R is compact, under the operator S. Hence, f (m) → f (∞) in C(X )/R. And J is
decreasing along the orbit but has lower bound:

J(f (∞)) = inf
K

f(0)

J.

By the condition for strict monotonicity, it must be that S(f (∞)) = f (∞) a.e. wrt µ. It then follows
from the Proposition (3) that f (∞) is uniquely determined in C(X )/R (by the initial data f (0)), i.e.
the whole sequence converges in C(X )/R. We first show that there exists a number λ ∈ R such that
limm→∞ Iµ(f

(m)) = λ. Iµ is decreasing and hence it is enough to show that Iµ(f (m)) is bounded
from below. By Iµ = J + L, and J is bounded from below (by F (f (∞))). Moreover, by the first
step L(f (m)) ≥ L(f (0)). Next, decompose

f (m) = f̃ (m) + f (m)(x0),

By the Lemma 5 the sequence (f̃ (m) is relatively compact inC(X ) and we claim that |f (m)(x0)| ≤ C
for some constant C. Indeed, if this is not the case then there is a subsequence f (mj) such that
|f (mj)| → ∞ uniformly on X . But this contradicts that Iµ(f (m)) is uniformly bounded. It follows
that the sequence (f (m)) is also relatively compact. Hence, by the previous step the whole sequence
f (m) converges to the unique minimizer f∗ of F in S(C(X )) satisfying Iµ(f∗) = λ.

30



B.2 GCA version of unbalanced optimal transport (GCA-UOT)

In this section, we are going to introduce the relaxation of the EOT plan as Unbalanced optimal
transport plan (UOT). And its relationship with the dual formula of EOT. Here we need to emphasize
that the GCA-UOT not just add constraint to the proximal operators which computes the coupling
matrix Pθ, but also add the penalty (i.e. KL-divergence) to the loss function dM . For the specific
function we used in the method of GCA-UOT in Table 2, we employed a version with the loss in
Equation (11) plus the loss in Equation (10) with a weight control parameter.

B.2.1 Explanation of the unbalanced OT

Unbalanced optimal transport (UOT) in Equation (9) seeks to generalize the OT problem in Equa-
tion (24) by allowing for the relaxation of these constraints [11], as penalization by certain divergence
measures dϕ1 and dϕ2 (e.g., Kullback-Leibler divergence). Here we provide the unbalanced OT for
the entropic regularization optimal transport in Equation (3), which ensure that the transported mass
respects the given source µ and target distributions ν:

UOT (µ, ν) = min
P
⟨P,C⟩+ λ1dϕ1

(P1||µ) + λ2dϕ2
(P⊤

1||ν) + εH(P) (56)

Here ⟨P,C⟩ represents the total transport cost. λ1 and λ2 are regularization parameters that control
the trade-off between the transport cost and the divergence penalties.

B.2.2 Connection to dual formula of EOT

Lemma 6. The entropy regularized OT problem is a special case of a structured convex optimization
problem of Equation (56) the by giving functions hF and hG , hF = ι{Cµ

1 } and hG = ι{Cν
2 }, as the

indicator function of a closed convex set Cµ
1 := {P : P1m = µ}, Cν

2 := {P : P⊤
1n = ν}.

min
P
⟨P,C⟩+ εH(P) + hF (P1m) + hG(P

⊤
1n). ιC(x) =

{
0 if x ∈ C,
+∞ otherwise,

(57)

Proof of the Lemma 6: Let’s start with the dual formula of the Equation (3) with B = Cµ
1 ∩ Cν

2 , we
can introduce the Lagrangian E(P, f, g) of Equation (3) reads:

ProxKL
B (K) := min

P∈B
⟨P,C⟩ − εH(P) = E(P, f, g) (58)

= min
P

max
f∈Rn,g∈Rm

⟨P,C⟩ − εH(P)− ⟨f,P1m − µ⟩ − ⟨g,PT
1n − ν⟩. (59)

To solve this problem, we can use the first order condition:

∂E(P, f, g)
∂Pij

= Cij + ε log(Pij)− fi − gj = 0 ⇒ logP =
1

ε
(f1Tm + 1ng

T −C) (60)

The solution to the Equation (3) is unique with scaling variabl (u,v) ∈ Rn
+ × Rm

+ in Equation (23).
And each items in the optimal transport matrix P is, and optimal (f, g) are linked to non-negative
vectors (u,v) through (u,v) = (ef/ε, eg/ε).

Pij = efi/εe−Cij/εegj/ε = uiKijvj , (f (t), g(t)) = ε(log(u(t)), log(v(t))), (61)

B.3 Equivalence of INCE objective with single step Bregman projection

In this section, we are going to discuss how to build the equivalence between minimizing the
KL-divergence dM between the P(1) and the Ptgt with respect to θ in GCA objective:

min
θ

KL
(
I||ProxKL

Cµ
1
(Kθ)),

with the INCE loss minimization in Equation (1). Here P(1) is the nearest point of Kθ on constraint
set Cµ

1 measured by the KL-divergence dΓ defined in Equation (18), through one step of proximal
operator (Bregman projection). And Kθ denote the augmentation kernel as in Definition (3) with
cosine similarity.

31



B.3.1 Proof of the Theorem 1

Suppose we had a encoder fθ with parameter θ in INCE, with f̃θ to represent its normalized form,then
we can use the following proposition to assist our proof:

Proposition 4. Given the cost matrix as Ci,j = 1 − f̃θ(x′
i)

⊤f̃θ(x
′′
j ), and Gibbs kernel Kθ =

exp(−Ci,j/ε), based on the cosine dissimilarity scores of the inner products ⟨zθi, zθj⟩, with zi =
fθ(x

′
i)

∥fθ(x′
i)∥

and zj =
fθ(x

′′
j )

∥fθ(x′′
j )∥

. Set dM and dΓ to KL-divergence, and the target transport plan Ptgt = I.
The probability matrix P after one-step Bregman iteration of entropy optimal transport problem
could be represented as:

Pij =
Kθij∑B
j=1 Kθij

=
exp

(
ε−1⟨zi, zj⟩

)∑B
j=1 exp (ε

−1⟨zi, zk⟩)
(62)

Proof of the Proposition (4): We assume that gibbs kernel Kθ is a matrix which can be expressed as:

Kθij = exp
(
−ε−1Ci,j

)
= exp

(
−ε−1|1− ⟨zi, zj⟩|

)
,

with a temperature parameter ε. µ, ν, u(0) and v(0) can be initialized as a vector of ones with the
same size as B, the batch size,

µ = 1, ν = 1 u(0) = 1,v(0) = 1.

For t iterations of the Sinkhorn algorithm, u(t) is updated as:

u(t+1) def
=

µ

Kθv(t)
, v(t+1) def

=
ν

KT
θ u

(t)
.

So we know that:

u(1) =
1∑b

j=1 Kθij

.

Thus, half-step sinkhorn iteration or one-step Bregman interation for P can be expressed as:

Pij = u
(1)
i Kθijv

(0)
j =

Kθij∑b
j=1 Kθij

=
exp

(
ε−1⟨zi, zj⟩

)∑b
j=1 exp (ε

−1⟨zi, zk⟩)

This concludes the expressions of P at half-step iteration. Reminds us the formula of the KL
divergence KL(I∥P) and the entropy H(P):

KL(I∥P)
def
=
∑
i,j

Ii,j log
Ii,j
Pi,j

− Ii,j +Pi,j , where Ii,j log
Ii,j
Pi,j

= 0, if Ii,j = 0. (63)

And after the batch normalization of P, the value of
∑

i,j Pi,j is equal to the batch size B and exactly
the same as the

∑
i,j Ii,j , we can obtain:

KL(I∥P) =
∑
i

log

(
1

Pii

)
= −

∑
i

log
exp

(
ε−1⟨zi, zi⟩

)∑b
j=1 exp (ε

−1⟨zi, zj⟩)

j represents the elements on the diagonal of the similarity matrix, which is the same structure as the
INCE loss as:

LINCE = −
∑
i

log

(
exp(fθ(x

′
i)

⊤fθ(x
′′
i ))∑b

j=1 exp(fθ(x
′
i)

⊤fθ(x′′
j ))

)

32



B.4 Proximal operator version of RINCE

In this section, we are going to discuss how to build the equivalence between minimizing the some
convex function of dM with adjustable parameters q and λ between the P(1) and the Ptgt as:

dM (I,P) = −1

q

((
diag(P

(1)
θ )

u(1)

)q

−
(
λI

u(1)

)q
)

(64)

with respect to θ in GCA objective:

Lλ,q
RINCE = min

θ
−1

q

(
diag(P

(1)
θ )

u(1)

)q

+
1

q

(
λI

u(1)

)q

, with P
(1)
θ = ProxKL

Cµ
1
(Kθ), u(1) = diag

( µ

P(0)1

)
with the RINCE loss minimization in Equation (2). Here P(1) is the nearest point of Kθ on constraint
set Cµ

1 measured by the KL-divergence dΓ defined in Equation (18), through one step of proximal
operator (Bregman projection). And Kθ denote the augmentation kernel as in Definition (3) with
cosine similarity.

Also, we are going to discuss when the q=1, RINCE loss is the symmetry loss, which provides the
robustness in the noisy view.

B.4.1 Proof of the Theorem 2

The loss function of RINCE looks like:

Lλ,q
RINCE =

1

q

(
− eqsii + λq(esii +

∑
i ̸=j

esij )q
)

(65)

For the specific parameters θ, we record the normalized latent of the ziθ+ = sii, and ziθ− = sij , j ̸= i.
The positive pairs are stored in the diagonal of the gibbs kernel Kθ, and the negative pairs are stored
in the off-diagonal elements, which means:

Kii = exp
(
−ε−1Ci,i

)
= exp

(
−ε−1|1− ⟨z′θi, z′′θi⟩|

)
= exp

(
ε−1⟨z′θi, z′′θi⟩ − ε−1

)
∝ ez

i
θ+ . (66)

Kij = exp
(
−ε−1Ci,j

)
= exp

(
ε−1⟨z′θi, z′′θj⟩ − ε−1

)
∝ ez

i
θ− , j ̸= i. (67)

By solving the ⟨u(1)K,1⟩ = µ in the Equation (21), we have the ith column elements
∑

j=1 Kθij =
µ

u
(1)
i

, in which u(1) is given in 21:

µ

u
(1)
i

=

B∑
j=1

Kθij =
1

eε−1 (e
ε−1⟨z′

θi,z
′′
θi⟩ +

B∑
j=1,j ̸=i

eε
−1⟨z′

θi,z
′′
θj⟩), i ̸= j, (68)

diag(Kθ) =
ez

i
θ+

eε−1 =
diag(P(1))

u(1)
. (69)

The diagonal of K matrix contains the positive views and the marginal distribution of the u contains
the negative view, we have:

Lλ,q
RINCE(s

i
θ) = −

eqs
i
θ+

q
+

(λ · (es
i
θ+ +

∑B
j=1,j ̸=i e

sijθ−))q

q
∝ −diag(Kθ)

q
ii

q
+

(λ · (
∑B

j=1 Kθij))
q

q
(70)

Furthermore, we have:

−E(Lλ,q
RINCE(Kθ)) =

1

q

(
diag(Kθ)

)q

− 1

q

(
λI

u(1)

)q

. (71)

where P(0) = diag(1)Kθ diag(1), P(1) = diag(u(1))Kθ diag(1), we have:

Lλ,q
RINCE(P

(1)
θ ) = −1

q
(
diag(P(1))

u(1)
)q +

1

q
(
λI

u(1)
)q. (72)

33



B.4.2 Proof of the Symmetry and robustness of RINCE

Symmetry loss is said to be noise tolerant as the classifier will keep performance with the label noise
in Empirical Risk Minimization (ERM). In many practical machine learning scenarios, we aim to
select a model or function fθ that minimizes the expected loss across all possible inputs and outputs
from a distribution D, which is typically unknown. Instead of minimizing the true risk, which is
often not feasible due to the unknown distribution D, we minimize what is called the empirical
risk R̂L(f̃θ), which is defined as the average loss over the training dataset of size B, which consists
of independently and identically distributed (iid) data points. Mathematically, it is given by the
following formula:

R̂L(fθ) =
1

B

B∑
i=1

L(f̃θ(xi),yi) (73)

Here, L(f̃θ(xi),yi) represents the loss function, which measures the discrepancy between the
predicted value f̃θ(xi) and the true value yi. The function f̃θ that minimizes this empirical risk
is chosen as the model for making predictions. This approach is based on the assumption that
minimizing the empirical risk will also approximate the minimization of the true risk, especially as
the size of the training set increases.

First we show the symmetry loss is robust to the noisy view with the following Lemma [20], which
means they will achieve the same performance in ERM with the noisy labels. Then we show RINCE
satisfy the symmetry condition when q = 1, so the lemma is:

Lemma 7. Give a loss function L(f̃θ(x),y) exhibits a certain symmetry for some positive constant
K, with respect to the labels y = 1 and y = −1:

L(f̃θ(x), 1) + L(f̃θ(x),−1) = K, ∀x,∀f, (Symmetry) (74)

Symmetry loss is noise tolerant given the label noise η < 0.5, which corresponds to the flipped labels:

PD[sign(f̃∗θ (x)) = yx] = PD[sign(f̃∗θη(x)) = yx], (Noisy tolerant) (75)

Proof of the Lemma 7 is in [20].

Second we show the RINCE loss is a symmetry loss with q → 1, so we have the Equation (2):

Lλ,q=1
RINCE = −ez

ii
θ+ + λ · (ez

ii
θ+ +

B∑
j=1,j ̸=i

ez
ij
θ−) (76)

As we know that this formula has the same structure as the exponential loss function: L(zθ,y) =
−yezθ . To check for symmetry, we define a new binary classification loss function as:

L̃x(zθ(x),y) = B + Lx(f̃θ(x),y) = B − y · ef̃θ(x) ≥ 0

where the prediction score f̃θ(x) is bounded by smax = log(B). Then we can establish that the loss
satisfies the symmetry property:

L̃(f̃θ(x), 1) + L̃(f̃θ(x),−1) = 2B (77)

So we prove that this loss function is symmetry.

B.5 Proof for RINCE is the upper bound of the 1-Wasserstein distance

In this section, we are trying to build the connection when change the dM from the KL-divergence in
Equation (10) to the 1-Wasserstein distance in Equation (12), when q=1 in the RINCE loss.

B.5.1 Proof of the Theorem 3 [12]

WDM is proposed as a replacement for the KL divergence by Wasserstein distance in Mutual
Information estimation. The Wasserstein distance between the joint distribution π on X × Y and the
product of the marginal distributions µ and ν on X and Y , respectively, is given by:

W (π, µ⊗ ν) = sup
f∈C(X×Y)

(
Eπ(x,y)[f(x, y)]− Eµ⊗ν(x,y)[f(x, y)]

)
34



where C(X × Y) denotes the set of all 1-Lipschitz functions from X × Y to R. A function f :
X × Y → R is defined to be 1-Lipschitz if, for any two points (x1, y1), (x2, y2) ∈ X × Y , the
following condition is satisfied:

|f(x1, y1)− f(x2, y2)| ≤ d((x1, y1), (x2, y2))

where d((x1, y1), (x2, y2)) denotes the metric on X × Y typically defined, for example, by the
Euclidean distance:

d((x1, y1), (x2, y2)) =
√

(x1 − x2)2 + (y1 − y2)2

Based on the Lipschitz continuity and inner product, it is easy to know for two given point (x1, y1),
(x2, y2), the following properties hold with − 1

ε ≤ s ≤
1
ε , which implies |∇se

s| ≤ e1/ε. Therefore,
by the mean value theorem, we have:

|ex
T
1 y1/ε − ex

T
2 y2/ε| ≤ e1/ε 1

ε
|⟨x1, y1⟩ − ⟨x2, y2⟩| = e1/ε

1

ε
|⟨x1 − x2, y1⟩+ ⟨x2, y1 − y2⟩|

≤ e1/ε 1
ε
(∥x1 − x2∥∥y1∥+ ∥y1 − y2∥∥x2∥) = e1/ε

1

ε
(∥x1 − x2∥+ ∥y1 − y2∥)

(78)

Consider two pairs of views, (z′θ1, z
′′
θ1) and (z′θ2, z

′′
θ2), sampled from the joint distribution π of µ and

ν. Thus, each pair (z′θi, z
′′
θi) for i = 1, 2 represents a sample from the joint distribution π, where

z′θi ∼ µ and z′′θi ∼ ν. The RINCE loss is a symmetry loss with q = 1, so we have the Equation (2):

Lλ,q=1
RINCE = −ez

ii
θ+ + λ · (ez

ii
θ+ +

B∑
j=1,j ̸=i

ez
ij
θ−),

{
ziiθ+ = ε−1f̃θ(x

′
i)

⊤f̃θ(x
′′
i ), for i = i,

zijθ− = ε−1f̃θ(x
′
i)

⊤f̃θ(x
′′
j ), for i ̸= j.

(79)

So we know that:

− E(Lλ,q=1
RINCE(zθ)) = E z′

θi∼µ

z′′
θi∼ν|µ=z′

θi

z′′
θj∼ν

(1− λ)eε−1z′T
θi z

′′
θi − λ

B−1∑
j=1

eε
−1z′T

θi z
′′
θj


= E(z′

θi,z
′′
θi)∼π

[
(1− λ)e

z′Tθi z′′θi
ε

]
− λ(B − 1)Ez′T

θi ∼µ,z′′T
θj ∼ν

[
e

z′Tθi z′′θj
ε

]
≤ (1− λ)

(
E(z′

θ,z
′′
θ )∼π

[
e

z′Tθ z′′θ
ε

]
− Ez′T

θ ∼µ,z′′
θ ∼ν

[
e

z′Tθ z′′θ
ε

])
(Giving setting λ(B − 1) > 1− λ)

If we give two couples of two views (z′θ1, z
′′
θ1) and (z′θ2, z

′′
θ2) from joint distribution π of µ and ν,

z′θ ∼ µ and z′′θ ∼ ν, which means to maximize:

|eε
−1z′T

θ1z
′′
θ1 − eε

−1z′T
θ2z

′′
θ2 |

≤ (1− λ)e 1
ε
1

ε
(∥z′θ1 − z′θ2∥∥z′′θ1∥+ ∥z′′θ1 − z′′θ2∥∥z′θ2∥) (Mean value theorem from Equation (78))

= (1− λ)e 1
ε
1

ε
(∥z′θ1 − z′θ2∥2 + ∥z′′θ1 − z′′θ2∥2)

= (1− λ)e 1
ε
1

ε
d ((z′θ1, z

′′
θ1), (z

′
θ2, z

′′
θ2))

≤ (1− λ)e1/ε 1
ε
W1(π, µ ⊗ ν).

B.6 Proof of connection with BYOL

In this section, we are going to who how the change of the augmetation kernel from the Kθ in
Definition (3) into the BYOL kernel Sθ would lead to the BYOL loss.

Proof for the Theorem 4

35



BYOL has the online network parameterized by θ and target network parameterized by ξ, where
z′θ = f̃θ(x

′) and z′′ξ = f̃ξ(x
′′) are the normalized outputs of the online and target networks,

respectively. The kernel of BYOL looks like:

Sθ(x
′
i,x

′′
j ) = exp(−⟨q̃θ(f̃θ(x′

i)), f̃ξ(x
′′
j )⟩),

The kernel here involves both the parameters θ and ξ, however, the target network has the stop
gradient. Therefore, the only θ needs to be updated, so we can rewrite the kernel as Sθ(x

′
i,x

′′
j ) as we

show in the main text. As we give in the equation, the corresponding proximal operators evolving
with dΓ is equal to L2-distance has the formula, and h(x) = 0 for all P ∈ RB×B :

Prox∥·∥2

RB×B (Sθ) = arg min
P∈RB×B

{
h(P) +

1

2
∥P− Sθ∥22

}
⇒ P = Sθ

The BYOL loss can be written as normalized L2-distance between the normalized output after online
network q̃θ(z′θ) in which q̃θ is predictor and the stop gradient results for the target network q̃θ(z′),
and the formula of BYOL object reads as LBYOL = ∥q̃θ(z′θ)− z′′ξ∥22.

In this case, there exists equivalence between

KL(I∥Sθ) = −
B∑
i

logSθii =

B∑
i

∥q̃θ(z′θ)− z′′ξ∥22 (80)

which is the BYOL loss.

B.7 Complexity Analysis for GCA

In the forward pass, iteratively running the GCA does not involve inner optimization for gradient
back-propagation. In the Sinkhorn algorithm, the transport plan Pθ is computed as:

Pθ = exp(f + g −Cθ)/ϵ,

where f and g are dual variables iteratively updated in the Sinkhorn algorithm but do not involve
gradients with respect to θ. The Sinkhorn optimization primarily entails scaling the rows and columns
of P to satisfy the marginal constraints, which can be viewed as element-wise operations (scaling
and exponentiation) on the cost matrix Cθ.

Since Pθ is computed through the fixed-point iteration of f and g that depend only on the current
values of Cθ, the gradient back-propagation process is simplified. Specifically, the gradient of the loss
with respect to the cost matrix Cθ is the key part that needs to be differentiated, rather than through
each iterative update of f and g. A typical workflow of these algorithms was shown in Figure 2
of [17], the gradient flow primarily involves differentiating through Cθ, which is done only once, and
not through each step of the Sinkhorn iterations. This approach reduces computational complexity and
avoids the need for back-propagation through every iterative update within the Sinkhorn algorithm,
which might otherwise be computationally expensive.

C Proofs that GCA methods improve the alignment and uniformity

C.1 Improving Alignment

In this section, we are going to show the GCA methods minimize the difference between the target
alignment plan with the coupling matrix on latent. The uniformity and alignment loss have been
used to exam the quality of the representation in self-supervised learning, which is defined as the
following [57]:
Definition 9 (Alignment loss). Given π as joint distribution of positive samples on the latent, (z′θi, z

′′
θi)

are the normalized positive pairs sampled from the joint distribution π with encoder parameterized
by θ, the alignment loss is:

Lalign = min
θ

E(z′
θi,z

′′
θi)∼π

[
∥z′θi − z′′θi∥22

]
= min

θ

∑
i

diag(Cii), (81)

where C is the cost matrix defined in Equation (24).

36



We can alter the constraint sets of proximal operators to provide the better alignment plans, i.e. GCA-
INCE changes the constraint sets by considering both row and column normalization in coupling
matrix Rather than just the row normalization. Such change will not affect the alignment loss in
forward pass, it will benefit the alignment loss in the backward pass through a tighter bound of
empirical risk minimization with the identity matrix.

C.1.1 Proof of the tighter bound of GCA in ERM

In this section, we provide the evidence for using the converged coupling plan P
(∞)
θ is better than the

P
(1)
θ or P(t)

θ in Equation (18) for the GCA-methods loss in table 1. This loss function will correspond
to different alignment loss on the latent. And here the ERM is the definition as we provided in
Appendix B.4.2.
Lemma 8. Denote f (t1) and g(t2) the two dual variables in their t1 and t2 iterations, respectively.
Then the objective loss in Equation (1) could be written as KL(I∥Pθ) = ε−1(diag(C) − (f (t1) +
g(t2))).

Proof of the Lemma 8:

The above Lemma 8 be derived form Equation (23). Recall that u = exp (f/ε), v =
exp (g/ε), K = exp (−C/ε)

KL(I∥Pθ) = −
∑
i

log (Pii) = −
∑
i

(log diag(u)ii + logKii + log diag(v)ii)

= −ε−1
∑
i

(fi − Cii + gi) = ε−1(diag(C)− (f + g))

Here we provide the proof of the Best Alignment in Theorem 5:

Proof of the Theorem 5

Based on the Lemma 8, to show KL(I∥P(∞)) ≤ KL(I∥P(1)). We have to show:

ε−1(diag(C)− (f (∞) + g(∞))) ≤ ε−1(diag(C)− (f (1) + g(1))).

Then give the Lemma 3, we know the f (t1) and g(t2) increase and converge weakly to their upper
bound. As the diag(C) will be unchanged in each proximal operations, we know the objective
function KL(I∥Pθ) have lower upper bound with f (t1) and g(t2) increase and finally converged.

Based on the Lemma 8, We have to show:
ε−1(diag(C)− (f (t) + g(t))) ≥ ε−1(diag(C)− (f (∞) + g(∞))).

Then give the Lemma 3, when t1 → ∞, f (t1) converge uniformly to a fixed point f (∞) with
f (t1) ≤ f (∞). So we know the f (t1) and g(t2) increase and converge weakly to their upper bound. As
the diag(C) will be unchanged in each proximal operations, we know the objective function finally
converged to f (∞) and g(∞) (Similarly, we prove g(t1) ≤ g(∞) in Appendix B.1.3).

C.1.2 Proof of the Theorem 6:

To show: Lλ,q=1,ε
GCA-RINCE(P

(t)
θ ) ≤ Lλ,q=1,ε

RINCE (P
(1)
θ ).

we know that:

Lλ,q=1,ε
GCA-RINCE(P

(t)
θ ) = −diag(P(t))

u(t)
+

λI

u(t)
, (82)

Lλ,q=1,ε
RINCE (P

(1)
θ ) = −diag(P(1))

u(1)
+

λI

u(1)
, (83)

Given that the Lemma 3, we know {u(t)} and {v(t)} are a monotonically increasing sequence where

u(1) ≤ u(t) ⇒ λI

u(1)
≥ λI

u(t)
(84)

−diag(Kθ)v
(0) ≥ −diag(Kθ)v

(t) ⇒ −diag(P(1))

u(1)
≥ −diag(P(t))

u(t)
(85)

37



Combine the above two items, we have the equation like Lλ,q=1,ε
GCA-RINCE(P

(t)
θ ) ≤ Lλ,q=1,ε

RINCE (P
(1)
θ ).

C.2 GCA methods improve the uniformity and benefit downstream classification tasks

In this section, we provide theoretical evidence that the GCA approaches could improve the perfor-
mance of downstream task, i.e. classification tasks, by providing the maximum uniformity through
solving the EOT, as Theorem (7) stated. Here, the uniformity loss is defined as [50]:

Definition 10 (Uniformity loss). Let z′θi ∼ µ and z′′θj ∼ ν in which µ and ν are two distributions on
the representation space, we define the uniformity loss as the following:

Luniform = logEz′
θi,z

′′
θj i.i.d.∼pdata [e

−ε∥z′
θi−z′′

θj∥22 ] (86)

, in which pdata(·) is the sample distribution over latent space Rn.

Here, pdata(·) should be the marginal distribution of the samples. As the z′θi and z′′θ j are normalized
latent variables, we have the right items of the uniformity loss e−ε∥z′

θi−z′′
θj∥

2
2 is the same as the

entropy-regularized kernel Kij = e−εCij with cost matrix items Cij = ∥z′θi − z′′θj∥22.

C.2.1 Proof of the Theorem 7

Here we are going to compare two different coupling plans, P(1)
θ and P

(∞)
θ , and show the converged

plan P
(∞)
θ will achieve higher the uniformity after the forward pass. The general logic is that we

show the equivalence for the solving EOT with the minimizing the uniformity loss objective. Then
we use the convergence of iterative Bregman projections to show it could achieve higher uniformity.

Based on the Entropy regularized OT defined in Definition 8, we have:

Wc,ε(µ, ν) := min
π∈Π(µ,ν)

∫
X×Y

c(x, y)dπ(x, y) + εH(π|µ⊗ ν) (87)

in which the entropy could be defined as:

H(π|µ⊗ ν) :=
∫
X×Y

(
log

(
dπ(x, y)

dµ(x)dν(y)

)
− 1

)
dπ(x, y) + 1, (88)

is the relative entropy of the transport plan π with respect to the product measure µ ⊗ ν. So the
corresponding dual problem of this EOT one is shown in the following formula:

Wc,ε(µ, ν) = max
f∈C(X ),g∈C(Y)

∫
X
f(x) dµ(x) +

∫
Y
g(y) dν(y) (89)

− ε
∫
X×Y

e
f(x)+g(y)−c(x,y)

ε dµ(x)dν(y) + ε (90)

= max
f∈C(X ),g∈C(Y)

Eµ⊗ν

[
f(x) + g(y)− e

f(x)+g(y)−c(x,y)
ε

]
+ ε (91)

The µ(x) and ν(x) are defined as the uniformly distribution with Dirac delta function we have on
the two latent supports {z′θi}Bi=1 and {z′′θi}Bi=1, so the function f(x) and g(y) could be pull out of
the expectation operators. Since the ∥z′θi − z′′θj∥22 is the element in the cost matrix Cij , which is
computed through the cost function c(x, y). As the z′θi and z′′θj are drawn independently from the

latent distribution, so the remaining item Eµ⊗ν [e
−c(x,y)

ϵ ] is equivalent to the uniformity loss. The
the above integral could be turned into the sum of the elements in matrix of dual variables of f (t1)

andg(t1) in each iteration. Meanwhile, based on the convergence provided in the Lemma 3, When
t1 →∞, f (t1) converge uniformly to a fixed point f (∞) with f (t1) ≤ f (∞), which would provided
the maximum value of the dual formula in the f (∞), which corresponding to the coupling plan the
P(∞).

38



C.2.2 GCA benefits the downstream supervised classification task

Here, we further show how the minimizing the uniformity loss is equivalent to minimize the down-
stream supervised loss in classification tasks under several assumptions [16]. Giving a labeled dataset
D = {(x̄i,yi)} ∈ X̄ × Y where Y = [1..M ] with M classes, we consider a fixed, pre-trained
encoder fθ ∈ F : X → S with its representation fθ(X ) and the input space X contains both positive
and negative views of n original samples (x̄i)i∈[1..n] ∈ X̄ , sampled from the data distribution p(x̄).
For each positive views x̄′

i in X , we sample from x̄i using x′
i ∼ A(·|x̄i), A(·|x̄i) is augmentation

distribution (e.g., by applying color jittering, flip, or crop with a given probability). For consistency,
we assume A(x̄) = p(x̄) so that the distributions A(·|x̄) and p(x̄) induce a marginal distribution
p(x) over X . Given an anchor x̄i, all views x′′ ∼ A(·|x̄j), j ̸= i from different samples x̄j are
considered as negatives.

Proof of claim 1: From assumption 1 we know that the representation ability of encoders is good
enough via the augmented samples in the Reproducing Kernel Hilbert Space (RKHS) HX̄ of the
original sample spaces X̄ . And the kernel KX̄ with any function g RKHS defined by (Hfθ ,Kθ) also
belongs to HX̄ when conditioned on the distribution A(x|·). So based on the assumption we have,
we can obtain a centroid estimator by [16]:
Definition 11 (Kernel-based centroid estimator). Let (xi, x̄i)i∈[1..n] ∼ A(x, x̄), asssuming a consis-
tent estimator of µx̄ is.

∀x̄ ∈ X̄ , µ̂x̄ =

n∑
i=1

αi(x̄)f(xi),

where αi(x̄) =
∑n

j=1[(Kn +nλIn)
−1]ijKX̄ (x̄j , x̄) and Kn = [KX̄ (x̄i, x̄j)]i,j∈[1..n]. It converges

to µx̄ with the ℓ2 norm at a rate O(n−1/4) for λ = O(n−1/2).

The above estimator allows us to use representations of images close to an anchor x̄ to estimate µx̄.
From the assumption 2, we assume that all the samples in the same class is achievable when give the
ideal augmentation or at least close to the augmented points in an ϵ region.

Consequently, if the prior is “good enough” to connect intra-class images disconnected in the
augmentation graph suggested by Assumption 1, then this estimator allows us to tightly control
the classification risk of the representation of fθ on a classification task with a linear classifier
g(x̄) =Wfθ(x̄) (with fθ fixed) that minimizes the multi-class classification loss.

First we show the cross-entropy could be transformed into centroid based distance (optimal
supervised loss): The cross-entropy (CE) to measure the difference between the true distribution
(actual labels) and the estimated probability distribution (predicted probabilities from the model),
which usually computes logits zk from the model, then apply the softmax function to obtain probabil-
ities pk. The logits zk could be defined as negative distances between f(x̄) and class centroids µk

after the representation:

zk = −∥f(x̄)− µk∥2, µk = Ep(x̄|y=k)µx̄

which encourages the model to reduce the distance to the correct class centroid while increasing
distances to others. The probability of class k in M classes given input x̄ is:

p(y = k|x̄) = ezk∑M
j=1 e

zj

, p(y|x̄) ∝ e−∥f(x̄)−µy∥2

.

If the model predictions p(y|x̄) are influenced by the distances between x̄ and the class centroids µy,
then minimizing cross-entropy indirectly affects these distances. The standard CE loss in supervised
learning for classification tasks is:

LCE(fθ) = −E(x̄,y)∼D [log p(y|x̄)] (92)

= −E(x̄,y)∼D
[
−∥f(x̄)− µy∥2 − logZ

]
= − 1

N

N∑
i=1

M∑
k=1

yi,k log(pi,k) (93)

which focuses on maximizing the likelihood ŷ = argmaxk p(y = k|x̄) of the correct class for each
individual sample x̄i, where yi,k is the true label indicator for example i and class k, pi,k is the
predicted probability for example i and class k. Therefore, we can rewrite the CE loss as optimal
supervised loss in [16], which is defined as:

39



Lemma 9 (Optimal supervised loss). Let a downstream task D with M classes. We assume that
M ≤ d+1 (i.e., a big enough representation space), that all classes are balanced and the realizability
of an encoder f∗ = argminf∈F Lsup(fθ) with

Lsup(fθ) = logEy,y′∼p(y)p(y′)

[
e−∥µy−µy′∥2

]
,

and µy = Ep(x̄|y)µx̄. Then the optimal centroids (µ∗
y)y∈Y associated to f∗ make a regular simplex

on the hypersphere Sd−1 and they are perfectly linearly separable, i.e.,

min
(wy)y∈Y∈Rd

E(x̄,y)∼D1(wy · µ∗
y < 0) = 0.

Proof of the Lemma 9 All "labeled" centroids µy = Ep(x̄|y)µx̄ are bounded by 1 (∥µy∥ ≤
Ep(x̄|y)EA(x|x′)∥f(x)∥ = 1 by Jensen’s inequality). Then, since all classes are balanced, we can
re-write the supervised loss as:

Lsup(fθ) = log
1

C2

C∑
y,y′=1

e−∥µy−µy′∥2

.

We have:

ΓY(µ) :=
∑
y,y′

∥µy−µy′∥2 =
∑
y,y′

∥µy∥2+∥µy′∥2−2µy·µy′ ≤
∑
y,y′

(2−2µy·µy′) = 2C2−2∥
∑
y

µy∥2 ≤ 2C2,

with equality if and only if
∑C

y=1 µy = 0 and ∀y ∈ [1..C], ∥µy∥ = 1. By the strict convexity of
u→ e−u, we have:∑

y ̸=y′

exp(−∥µy − µy′∥2) ≥ C(C − 1) exp

(
− ΓY (µ)

C(C − 1)

)
≥ C(C − 1) exp

(
− 2C

C − 1

)
,

with equality if and only if all pairwise distances ∥µy − µy′∥ are equal (equality case in Jensen’s
inequality for a strict convex function),

∑C
y=1 µy = 0, and ∥µy∥ = 1. Thus, all centroids must form

a regular (C − 1)-simplex inscribed on the hypersphere Sd−1 centered at 0. Furthermore, since
∥µy∥ = 1, we have equality in Jensen’s inequality:

∥µy∥ = ∥EA(x|x̄′)fθ(x)∥ ≤ EA(x|x̄′)∥fθ(x)∥ = 1,

so f must be perfectly aligned for all samples belonging to the same class: ∀x, x̄′ ∼ p(·|y), fθ(x̄) =
fθ(x̄

′).

Seond we show optimizing the uniformity loss is equivalent to the supervised loss:

As we have uniformity Loss defined in Equation (86)

Luniform(fθ) = logEz′
i,z

′′
j ∼pdata

[
e−ε∥z′

i−z′′
j ∥2
]
, (94)

where z′i = f(xi) and z′′j = f(xj). Supervised Loss:

Lsup(fθ) = logEy,y′∼p(y)p(y′)

[
e−∥µy−µy′∥2

]
,

where µy = Ep(x̄|y)µ̂x̄. Express the expectation over all pairs in terms of class labels:

Ez′
i,z

′′
j
= Ey,y′Ez′

i∼p(z|y),z′′
j ∼p(z|y′).

So the uniformity loss could be decomposed into intra-class and inter-class components:

Luniform(fθ) = log

Ey

[
Ez′

i,z
′′
j ∼p(z|y)

[
e−ε∥z′

i−z′′
j ∥2
]]

︸ ︷︷ ︸
Intra-Class Term

+Ey ̸=y′

[
Ez′

i∼p(z|y),z′′
j ∼p(z|y′)

[
e−ε∥z′

i−z′′
j ∥2
]]

︸ ︷︷ ︸
Inter-Class Term

 .

40



Based on the assumption 2, we can approximate the Intra-Class term by:∥∥z′i − z′′j
∥∥2 = ∥(µy + δi)− (µy′ + δj)∥2 = ∥µy − µy′ + δi − δj∥2 ≈ ∥µy − µy′∥2

=⇒ Ez′
i∼p(z|y),z′′

j ∼p(z|y′)

[
e−ε∥z′

i−z′′
j ∥2
]
≈ e−ε∥µy−µy′∥2

for y = y′, z′i and z′′j are close to µy∥∥z′i − z′′j
∥∥2 ≈ ∥(µy + δi)− (µy + δj)∥2 = ∥δi − δj∥2 .

Since δi and δj are small deviations:

Ez′
i,z

′′
j ∼p(z|y)

[
e−ε∥z′

i−z′′
j ∥2
]
≈ 1, e−ε∥δi−δj∥2

≈ 1.

Then with M terms for y = y′ and M(M − 1) terms of y ̸= y′, we have:

Luniform = log(
1

M
e−ε∥δi−δj∥2

+
1

M2

∑
y ̸=y′

e−ε∥µy−µy′∥2) (95)

The supervised loss is:

Lsup(fθ) = log(
1

M2

∑
y,y′

e−∥µy−µy′∥2) = log(
1

M
e−∥µy−µy∥2

+
1

M2

∑
y ̸=y′

e−∥µy−µy′∥2)

Since e−∥µy−µy∥2

= 1 (for y = y′), the difference will be mainly dependent on the inter-class term.
Therefore, a tighter (smaller) uniformity loss leads to smaller values of the supervised loss. This
supports the idea that improving uniformity in representations can benefit downstream supervised
classification tasks.

C.3 Unbalanced OT assists to alleviate the feature suppression

Although minimizing the uniformity loss can enhance downstream classification tasks, it may also
lead the model to learn shortcut features that could impair the encoder’s generalization ability. To
show this, we incorporate two propositions from previous work by Robinson et al. [48].

C.3.1 The uniformity loss causes feature suppression

For an encoder fθ : X → Sd−1 to map input data x to the surface of the unit sphere Sd−1 = {u ∈
Rd : ||u||2 = 1}. Suppose we have the latent feature spaces Z1, . . . ,Zn with a distribution pj on
each latent space Zj with j ∈ [n] to model a distinct feature. We write Z instead of Z[n] for the
product as ZS =

∏
j∈S Zj , where [n] = {1, . . . , n}. So the latent sample z could be represented as

a set of feature vectors z = (z1, z2, . . . , zn) = (zj)j∈S ∈ Z, where each zj comes from Zj . Further,
let λ denote the measure on Z induced by z and λ(·|zS) denote the conditional measure on Z for
fixed zS . For S ⊆ [n] we use zS to denote the projection of z onto ZS . Finally, an injective map
g : Z→ X produces observations x = g(z). The feature suppression is defined as:

Definition 12. Consider an encoder fθ : X → Sd−1 and features S ⊆ [n]. For each zS ∈ ZS , let
µ(·|zS) be the pushforward measure on Sd−1 by fθ ◦ g of the conditional λ(·|zS).

1. fθ suppresses S if for any pair zS , z̃S ∈ ZS , we have µ(·|zS) = µ(·|z̃S).

2. fθ distinguishes S if for any pair of distinct zS , z̃S ∈ ZS , measures µ(·|zS), µ(·|z̃S) have
disjoint support.

If one feature is uniformly distributed on the latent space, it might cause feature suppression due
to different features could both achieve the minimization of the uniformity loss as the following
propositions [48]:

41



Proposition 5 (Feature suppression). For a set S ⊆ [n] of features let

LS(fθ) = Lalign(fθ) + Ex+

[
− logEx

[
ef(x

+)⊤f(x−)
∣∣∣zS = zS

−
]]

denote the (limiting) InfoNCE conditioned on x+,x− having the same features S. Suppose that
pj is uniform on Zj = Sd−1 for all j ∈ [n]. Then the infimum inf LS is attained, and every
fθ ∈ argminf LS(f

′
θ) suppresses features S almost surely.

Proof of proposition 5 is in [48].

C.3.2 How the GCA methods and unbalanced OT and alleviates the feature suppression

Here we extended the unbalanced OT in the Equation (9) as the following:
min
θ

dM (Ptgt∥Pθ) + λ1dϕ1
(Pθ) + λ2dϕ2

(Pθ) + · · ·+ λndϕn
(Pθ) (96)

The UOT equation can be converted with finding the transport plan Pθ that minimizes the transporta-
tion cost between two probability measures µ and ν. Here we only need to show that the relaxation
or adding penalties will change the optimal transport plan Pθ, which is empirically exhibited in the
Figure A4.

Suppose we have empirical samples {z′i}ni=1 from µ and {z′′j }mj=1 from ν. We can approximate the
measures using empirical distributions:

µ ≈ 1

n

n∑
i=1

δz′
i
, ν ≈ 1

m

m∑
j=1

δz′′
j
,

where δz is the Dirac delta function at point z. The standard UOT objective can be written as:

min
P≥0

n∑
i=1

m∑
j=1

C(z′i, z
′′
j )Pij + λ1dϕ1

 m∑
j=1

Pij

∥∥∥ 1
n

+ λ2dϕ2

(
n∑

i=1

Pij

∥∥∥ 1

m

)
(97)

= min
P≥0

n∑
i=1

m∑
j=1

[
CijPij + λ1Pij

(
log

Pij

ri
− 1

)
+ λ2Pij

(
log

Pij

cj
− 1

)]
(98)

where C is the cost matrix dϕ could be any divergence (e.g., Kullback-Leibler divergence) with respect
to a convex function ϕ. P1µ and P⊤1ν are the marginal distributions. λ1, λ2 are regularization
parameters controlling the unbalancedness and ri = 1

n (source marginal mass for z′i), cj =
1
m (target

marginal mass for z′′j ). Based on the UOT, here we can choose the divergence as L:

L(P) =
∑
i,j

[
CijPij + λ1Pij

(
log

Pij

ri
− 1

)
+ λ2Pij

(
log

Pij

cj
− 1

)]
To find the minimizer, we take the partial derivative of L(P) with respect to Pij and set it to zero:

∂L
∂Pij

= Cij + λ1

(
log

Pij

ri

)
+ λ2

(
log

Pij

cj

)
= 0 (99)

=⇒ λ1 (logPij − log ri) + λ2 (logPij − log cj) = −Cij (100)
=⇒ (λ1 + λ2) logPij − λ1 log ri − λ2 log cj = −Cij (101)

=⇒ logPij =
−Cij + λ1 log ri + λ2 log cj

λ1 + λ2
(102)

=⇒ Pij = exp

(
−Cij + λ1 log ri + λ2 log cj

λ1 + λ2

)
(103)

The minimizer Pij depends on λ1 and λ2 and the weights of ri and cj , which determine the influence
of the marginals ri and cj , and through the scaling of the costCij by λ1+λ2. This explicit relationship
shows how λ1 and λ2 determine the minimizer.

42



D Details of Experiments

The following experiments involving with the GPU was set up on NVIDIA GeForce RTX 3090.

D.1 Experimental details on image classification task

In Table 2 standard settings, we used two different experimental setups. The first setup, referred to
as the C0 or standard settings, was applied specifically to the CIFAR10 and CIFAR100 tasks. The
second setup was used for the SVHN and ImageNet100 tasks, respectively. Below, we present the
settings for CIFAR10 and CIFAR100, followed by the setups for SVHN and ImageNet100. Here is
the setups for CIFAR10 and CIFAR100:

• The SSL model has 512 feature dimensions with the base model (ResNet-18), which first
convolutional changed as a layer with 3 input channels, 64 output channels, kernel size 3,
stride 1, padding 1, and no bias. We replace the max-pooling layer as the identity.

• A sequential projector comprising a linear layer mapping from feature dimension to 2048,
ReLU activation, and another linear layer mapping from 2048 to 128.

• For SSL training, an SGD optimizer is used with a learning rate of 0.6, momentum 0.9,
and a weight decay of 1.0e-6. A LambdaLR scheduler is employed with linearly decay
the learning rate to 1.0e-3 over total steps, which equals the length of the SSL training
loader times the maximum epochs. The SSL model is trained for a maximum of 500 epochs,
without loading a pre-trained model. The parameters of encoders are frozen after training.
Temperature or epsilon: 0.5.

• For supervised training, an Adam optimizer is also used with a learning rate of 0.2, mo-
mentum 0.9 and a weight decay of 0. A same LambdaLR scheduler is applied, where the
learning rate is reduced by a factor of 1.0e-3. For supervised training, the model is trained
for a maximum of 200 epochs using the specified train and test loaders.

The setups for SVHN and ImageNet100 are:

• The SSL model has number of feature dimensions equal to the fc layer incoming features of
base model (ResNet-50). We replace the max-pooling layer as the identity.

• A sequential projector comprising a linear layer mapping from feature dimension to 2048,
ReLU activation, and another linear layer mapping from 2048 to 128.

• For SSL training, an Adam optimizer is used with a learning rate of 3e-4. The SSL model
is trained for a maximum of 200 epochs for ImageNet100 and 500 epochs for the SVHN,
without loading a pre-trained model. The parameters of encoders are frozen after training.
Temperature or epsilon: 0.5.

• For supervised training, an Adam optimizer is also used with a learning rate of 3e-4. The
model is trained for a maximum of 100 epochs using the specified train and test loaders.

D.2 Settings for extreme data augmentations

There is the "extreme DA" (Ex DA) column in Table 2, which is the average of the following three
settings:

• C1: Large Erase Settings: Here, we first employed the same standard augmentation as C0 in
Appendix D.1 does, than we apply the random erase with ’p=1’ (random erasing is applied
every time), the ’scale=(0.10, 0.33)’. The large erase is applied before the normalization.

• C2: Strong Crop Setting: This involves a strong cropping operation followed by resizing,
which applied by ’transforms.RandomCrop’ and ’transforms.Resize’. The crop size varies
based on the severity level, with values ranging from 96 to 224 pixels. We selected level 3
during our experiments, than Resizes the cropped image back to 32x32 pixels.

• C3: Brightness settings: This augmentation alters the brightness of the images. We have
’severity’ determines the degree of brightness change, with predefined levels ranging from
‘.05‘ to ‘.3‘, corresponding to level 1 and level 5. And we chosse the level 5 as our C3
augmentation. The brightness is adjusted in the HSV color space, specifically altering the
value channel to change the brightness.

43



To evaluate performance on CIFAR10-C, we use a pretrained SSL model with frozen parameters.
Fine-tuning is performed by training only the linear layer with 10% of CIFAR10-C data for 50 epochs.
We compute the final score by averaging results across all corruption types and severity levels in
CIFAR10-C. And the details of each column are provided in Table A2, Table A3 and Table A4.

Table A2: Test accuracy for contrastive methods on CIFAR-10. Test accuracy for different contrastive methods
and their GCA equivalents on CIFAR-10 for ResNet-18 under extreme augmentation conditions, averaged over
5 seeds.

Conditions INCE GCA-INCE RINCE GCA-RINCE SimCLR BYOL IOT IOT-uni GCA-UOT
Standard 92.01 ± 0.40 92.36 ± 0.24 91.05±0.50 92.09±0.22 92.16 ±0.16 90.56 ± 0.59 90.99 ± 0.54 90.89 ± 0.57 92.61±0.32
Erase 88.40 ± 0.17 88.16 ± 0.89 88.80±1.01 89.21±0.59 88.44 ± 0.24 88.77 ± 0.58 87.02 ± 0.43 87.83 ± 0.30 89.84 ± 0.58
Crop 72.45 ± 0.40 72.79 ± 0.62 73.02±0.39 73.10±0.31 71.84 ± 1.02 70.78 ± 0.62 70.44 ± 0.64 70.78 ± 0.21 73.35 ± 0.41
Brightness 85.24 ± 0.41 85.60 ± 0.57 85.97±0.50 85.98 ± 0.58 85.32 ± 0.32 85.10 ± 0.29 84.31 ± 0.84 83.77 ± 0.21 86.36±0.34

Table A3: Test accuracy for contrastive methods on CIFAR-100. Test accuracy for different contrastive methods
and their GCA equivalents on CIFAR-100 using ResNet-18 under extreme augmentation conditions, averaged
over 5 seeds.

Conditions INCE GCA-INCE RINCE GCA-RINCE SimCLR BYOL IOT IOT-uni GCA-UOT
Standard 70.07 ± 0.42 70.11 ± 0.45 69.06 ± 0.64 69.72 ± 0.27 69.95 ± 0.14 69.75 ± 0.37 67.19 ± 0.21 67.03 ± 0.40 71.45 ± 0.37
Large Erase 63.50 ± 0.45 63.69 ± 0.23 64.09±0.62 64.29 ±0.35 63.97±0.15 63.70 ± 0.33 60.44 ± 0.64 60.60 ± 0.29 64.84±0.52
Strong Crop 43.83±0.25 43.72±0.52 44.00±0.50 44.52±0.37 42.69 ± 0.65 43.11 ± 0.41 42.39 ± 0.63 43.21 ± 0.34 45.10 ± 0.67
Brightness 56.78 ± 0.60 57.31 ± 0.92 58.19±0.31 58.89±0.52 56.96 ± 1.58 55.74 ± 0.63 54.38 ± 0.18 55.30 ± 0.93 58.97 ± 0.34

Table A4: Test accuracy for contrastive methods on CIFAR-10C. Test accuracy for different contrastive methods
and their GCA equivalents on CIFAR-10C for ResNet-18 under extreme augmentation conditions, averaged over
5 seeds.

Conditions INCE GCA-INCE RINCE GCA-RINCE SimCLR BYOL IOT IOT-uni GCA-UOT
Standard 87.20 ± 0.37 87.34 ± 0.34 88.62±1.33 88.76±0.72 86.98 ± 1.59 87.88±1.02 67.36 ± 1.97 69.58 ± 1.25 89.61±0.30
Large Erase 82.14 ± 0.18 84.06 ± 0.25 85.05±1.04 85.10±0.78 82.38±0.18 75.55 ± 0.70 58.74±1.93 54.11±2.38 85.26±0.66
Strong Crop 59.12±0.14 60.76±0.19 61.46±0.75 61.62±0.66 58.93 ±0.37 56.91 ±0.63 52.41±1.43 54.87±1.99 62.44±0.50
Brightness 83.25 ± 0.30 83.14±0.07 84.65 ± 0.66 84.98 ± 0.83 80.05±0.41 75.74±1.99 66.01±2.14 67.27±1.37 85.10±0.47

D.3 Experimental setting for domain generalization

This section is going to show the settings of experiments in Figure 1, which involves the domain
generalization task. Training was executed under the DomainBed framework. Each model underwent
training across multiple domains, with 5 distinct seeds (seed 71, 68, 42, 36, 15) used to ensure
reproducibility:

• For SSL model configuration, we employed a ResNet-18 architecture as the encoder, fol-
lowing with a 2048-dimensional, 3-layer projector equipped with BatchNorm1D and ReLU
activations. We improved the framework of the SelfReg algorithm in Domainbed [23] by a
self-supervised contrastive learning phase which involves the GCA-INCE, with regularized
parameters ε = 0.2.

• For SSL training hyperparameters, an Adam optimizer is used with a learning rate of 3e-4,
and a weight decay of 1.5e-6. A Cosine Annealing learning rate scheduler is employed with
a maximum number of 200 iterations equal to the length of the SSL training. The learning
rate is scheduled to decrease to a minimum value of 0. The SSL model is trained for a
maximum of 1500 epochs.

• In the self-supervised learning phase, we utilized 20% of the data from each of the four
datasets in the PACS dataset. The unsupervised holdout part employed contrastive learning
augmentations to enhance generalization capabilities. Specifically, we implemented dual
augmentation, including operations such as random resized crops, flips, color jitter, and
grayscale conversion, standardized to an input shape of 3× 224× 224.

• The supervised learning rate was set at 5× 10−5 using MSE loss, and the Adam optimizer
with no weight decay. Training involved both domain and class labels over 3000 epochs,
with checkpoints every 300 epochs to capture the model’s best performance. This approach
was supplemented by fine-tuning the model post-unsupervised training phase. Domain
labels were categorized into four types corresponding to the PACS dataset, and class labels
were divided into five categories. In domain classification, all four domains are used for

44



training, with 70% of the data held out for training and the remaining 30% used for testing.
Four domains are utilized for class classification tasks. We train supervised models on three
domains and test on the fourth.

• The domain accuracy is computed as the average of the highest domain accuracies across
five seeds, with each of the four test domains set sequentially as the test domain. The
standard deviation for domain accuracy is calculated from the results across these five seeds.

• Class label accuracy is determined by averaging the accuracies of the four test environments
for each domain. The average of highest performance across the domain is taken as the
mean accuracy. The standard deviation for each domain is computed from the five seeds,
and these values are then averaged to obtain the final class standard deviation.

Both the label classification tasks and the domain classification tasks use the Mean Squared Error
(MSE) loss.

E Additional Experiments

E.1 Complexity Analysis of GCA Algorithms

Time complexity analysis: The computational complexity of GCA including the forward pass and
backward propagation phases. The complexity varies in different variants. For GCA-INCE, the
computational complexity of forward pass is related to the speed of Sinkhorn when solving the
EOT problem as O(n2/ε3), in which ε is the regularization parameter . For GCA-UOT, the forward
complexity is the Sinkhorn algorithm solving unbalanced OT, which is characterized by

O(τ(α+ β)2/ε log(n)[log(∥C∥∞) + log(log(n)) + log(1/ε)]),

where C is the cost matrix, α and β denote the total masses of the measures, and τ is a regularization
parameter related to KL divergences in the UOT framework [44]. Notably, the gradient backpropaga-
tion speed is not seriously affected by scaling operations in the EOT as we explained in Section B.7.
Moreover, the relaxations of penalties in UOT provide a even faster speed compared with the INCE
and GCA-INCE (see Figure A2).

Figure A2: Time complexity analysis (A) Time complexity analysis of different methods. Here, we provide
the time complexity for different contrastive methods (INCE, RINCE) and GCA-based methods (GCA-INCE,
GCA-RINCE, and GCA-UOT) on CIFAR-10. (B) Time complexity for INCE (GCA-INCE-1), and GCA-INCE
with different number of iterations GCA-INCE-100 denotes GCA-INCE with 100 iterations. We ran the methods
on the CIFAR-10 as self-supervised learning task for 50 epochs, and compared their run time. (C) Performance
of the INCE (iteration=1) and GCA-INCE (iterations>1) on the CIFAR10 with different number of iterations.
The shaded blue region is the standard deviation across 5 seeds.

The complexity of the forward pass is affected by the choice of proximal operator, whereas the
complexity of the gradient backward pass is influenced by the form of dM [37]. Notably, utilizing
Sinkhorn algorithms in GCA-UOT, GCA-RINCE, and GCA-INCE, only requires updating the
coupling matrix P (B × B) without impacting the complexity of the backward pass, where B is
the batch size. OT is known to have B2 complexity and in many cases can converge very quickly in
fewer than 10 iterations. In practice, we use a simple stopping criterion for the multiple iterations
using a convergence criterion.

Upon analyzing the run time for the different methods (see Figure A2) we observe that the GCA-
based variants of the different base approaches (INCE, or RINCE) achieve very similar run time

45



as their equivalent loss, but different losses (RINCE vs INCE) exhibit more significant variability.
Specifically, we find that RINCE and GCA-RINCE have lower time complexity than INCE and
GCA-INCE. So the runnning speed is even quicker if we utillized different dM in Equation (8).

E.2 Measuring the representation quality using alignment and uniformity

We study the uniformity and alignment of the representations learned by our GCA-INCE vs. INCE
variants of GCA in Algorithms 1.We train the model through the corresponding settings (C0: standard
provided in the , C1: erase, C2: crop, C3: brightness) provided in the Appendix D.1 and Appendix D.2.
We find that in general, the GCA variants improve the representation quality evaluated by alignment
and uniformity on both CIFAR-10 and CIFAR-10C datasets.

INCE
GCA-INCE
RINCE
GCA-RINCE

INCE
GCA-INCE
RINCE
GCA-RINCE

Figure A3: Alignment and uniformity metrics on
CIFAR-10. To visualize the ability of uniformity and
alignment with different methods under different aug-
mentation settings (C0: standard, C1: erase, C2: crop,
C3: brightness). The bar above the x axis (zero line) rep-
resents the alignment loss, while the bar under the x axis
represents the uniformity loss. The shorter the color bars
i.e with lower alignment loss and higher uniformity loss,
correspond to the better performance of SSL models.

E.3 Visualizing transport plans of different methods after training

Here we compared the optimal transport (OT) plans of different methods after training for 500
epochs under standard augmentation C0 settings in Appendix D.1. Specifically, we analyzed the
− log(P) matrices of INCE, GCA-INCE, GCA-RINCE, and GCA-UOT, as shown in Figure A4. In
these matrices, darker blue regions represent higher similarity, while lighter blue areas indicate less
similarity. The matrices are rearranged based on class labels, so an effective model should display
empty diagonals and block structures aligned along the main diagonal and sub-diagonals—reflecting
high intra-class similarity and low inter-class similarity.

Figure A4(A) shows that INCE results in a matrix with only row normalization. In contrast, Fig-
ures A4(B) and (C) demonstrate that GCA-INCE and GCA-RINCE achieve both row and column
normalization, leading to more uniform distributions. Figure A4(D) reveals that GCA-UOT pro-
duces a matrix highlighting greater differences between positive and negative pairs, underscoring its
effectiveness in distinguishing them.

E.4 Hyperparameter Tuning and Sensitivity Analysis

In our hyperparameter modifying experiments, we investigate the influence of key parameters in
transport plan regularization, iteration counts, and augmentation strengths on CIFAR-10 classification
performance.

Figure A5 visualizes transport plans under varying entropic regularization (ϵ values from 0.01 to
1) across INCE and GCA-UOT models, illustrating adjustments after five iterations using the same
ResNet-18 weights. Figure A6 examines the impact of iteration number and entropic regularization
on compactness—measured by the average L2 distance to class centers—and accuracy, with 20
pre-training epochs followed by fine-tuning. Figure A7 highlights the sensitivity of GCA-RINCE
to the hyperparameters q and λ, testing classification accuracy for different settings under strong
augmentation conditions; this includes a comparison against INCE with large erase augmentation
after substantial pre-training and evaluation epochs.

46



(A)  INCE

(C)  GCA-RINCE

(B)  GCA-INCE

(D)  GCA-UOT

Figure A4: Comparison of the
− log(P) matrix across different
methods. (A) The INCE matrix
with row normalization. (B) The
− log(P) matrix of GCA-INCE
with five iterations in forward
pass, both row and column nor-
malization. (C) The − log(P)
matrix of GCA-RINCE with five
iterations in forward pass. (D)
The − log(P) matrix of GCA-
UOT with five iterations in for-
ward pass

Figure A5: Visualization transport plan P for different amounts of entropic regularization. (Top) The transport
plans for ϵ from 0.01 to 1 for INCE and (Bottom) GCA-UOT after 5 iterations. To compute each plan, we took a
mini-batch on CIFAR-10 with 1024 samples, and loaded the same weights of Resnet-18 for each subfigure.

(A) (B)

Figure A6: Hyperparameter sensitivity
study. The compactness and accuracy as a
function of the (A) number of iterations and
the (B) entropic regularization parameter. In
our experiments, we use the same weights
and perform 20 pre-training epochs for each
point, then evaluate their performance by
fine-tuning linear classifiers for 20 epochs.
Here the compactness is the average L2 dis-
tance of each point to their corresponding
class center on the representation space after
the encoder.

47



Figure A7: Hyperparameter sensitivity for
q and λ in GCA-RINCE. Both experiments
are tested on the CIFAR-10 dataset with a
ResNet-18 encoder and involve strong aug-
mentation with large erase. (Left) Given
q = 0.98, we change λ from 0 to 1. (Right)
Given λ = 0.01, we change q from 0 to
1. The red threshold line is the INCE per-
formance with the large erase augmentation.
Each point represents the CIFAR-10 classi-
fication accuracy of the ResNet-18 model
pre-trained for 400 epochs and evaluated af-
ter 300 epochs.

48


	Introduction
	Background
	Contrastive learning
	Proximal Operators and Projections
	Solving Optimal Transport Through Proximal Point Methods
	Wasserstein Dependency Measure
	Optimal Transport and Alignment in Representation Learning

	Generalized Contrastive Alignment (GCA)
	Problem Formulation
	A Proximal Point Algorithm for GCA 
	GCA-UOT Method
	Modifying the Target Transport Plan to Encode Matching Constraints
	Computational Complexity

	Building Connections to Different CL Objectives
	Connection to INCE
	Connection to RINCE
	Connection to BYOL

	Theoretical Analysis
	Improved alignment with GCA
	Improved Uniformity of Representations Through GCA
	Impacts of GCA on a downstream classification task

	Experiments
	Comparison with CL Baselines
	Block Diagonal Transport in Domain Generalization

	Conclusion
	Appendix
	Background and Notation
	Notation
	Proximal operator setup
	Explanation of Definition (1)
	Connection to the projection
	Connection to the Bregman divergence
	Connection to the Bregman projection

	Background on OT
	Background on discrete OT
	Entropy regularized OT and the Sinkhorn algorithm.
	Background on continuous optimal transport


	Analysis of GCA
	Convergence of GCA
	Convergence of GCA-INCE
	Convergence of the Djkstra's projection algorithms
	Convergence of Bregman projection

	GCA version of unbalanced optimal transport (GCA-UOT)
	Explanation of the unbalanced OT
	Connection to dual formula of EOT

	Equivalence of INCE objective with single step Bregman projection
	Proof of the Theorem 1

	Proximal operator version of RINCE
	Proof of the Theorem 2
	Proof of the Symmetry and robustness of RINCE

	Proof for RINCE is the upper bound of the 1-Wasserstein distance
	Proof of the Theorem 3 chuang2022robust

	Proof of connection with BYOL
	Complexity Analysis for GCA

	Proofs that GCA methods improve the alignment and uniformity
	Improving Alignment
	Proof of the tighter bound of GCA in ERM
	Proof of the Theorem 6:

	GCA methods improve the uniformity and benefit downstream classification tasks
	Proof of the Theorem 7
	GCA benefits the downstream supervised classification task

	Unbalanced OT assists to alleviate the feature suppression
	The uniformity loss causes feature suppression
	How the GCA methods and unbalanced OT and alleviates the feature suppression


	Details of Experiments
	Experimental details on image classification task
	Settings for extreme data augmentations
	Experimental setting for domain generalization

	Additional Experiments
	Complexity Analysis of GCA Algorithms
	Measuring the representation quality using alignment and uniformity
	Visualizing transport plans of different methods after training
	Hyperparameter Tuning and Sensitivity Analysis




