Physics-Constrained Comprehensive Optical Neural
Networks

—Supplemental Material—

A Training Details

The training process diagram, as shown in Fig[T] To provide a comprehensive overview of the training
process, the following aspects were considered and meticulously detailed:
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Figure 1: Training process of physics-prior-based error compensation network

Data Preprocessing: Using the MNIST dataset as an example, the entire training set is used to
train the parameters of the ideal 4f transform depicted in Fig[l] A random subset of 1000 images
is selected from the training set to train the Deep Neural Networks(DNN) shown in Fig[I] Finally,
another random subset of 1000 images is selected from the test set for a blind test to evaluate the
classification accuracy after deploying the trained parameters in the experiment.

Model Architecture: The model comprises an ideal 4f transformation and a DNN. The input and
output of the ideal 4f transformation adhere to the transformation relationship described by Eq[I}
where £ and £~ denote the Fourier transform and its inverse, respectively. The process involves
performing a Fourier transform on the input image, modulating its phase in the frequency domain
using a phase matrix m, and then applying an inverse Fourier transform to return to the time domain,
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thereby completing the convolution operation on the input image. In Eq[T} m represents the phase
matrix to be deployed on the spatial light modulator(SLM), and it is the primary optimization target
of our focus.

Output = £71 [£ (Input) x m] )

In the initial stages of this work, we experimented with various DNN architectures, including U-
Net, convolutional, and deconvolutional networks. However, as our research progressed and we
incorporated physical constraints, we discovered that a highly lightweight fully connected architecture
could achieve satisfactory results. The structure of the DNN is as follows:(1)The first layer is a
linear transformation that projects the input from a 10-dimensional feature space to a 32-dimensional
feature space. This transformation is followed by a ReLU(Rectified Linear Unit) activation function to
introduce non-linearity.(2)The second layer takes the 32-dimensional output from the previous layer
and projects it into a 64-dimensional space, followed by another ReLU activation function.(3)The
third layer reduces the dimensionality from 64 back to 32, with a subsequent ReL.U activation
function.(4)The fourth and final layer maps the 32-dimensional features back to a 10-dimensional
output space, matching the original input dimensionality. Notably, there is no activation function
applied after this layer, meaning the output is in a linear form.

Experimental Setup: The setup utilized a laser with a wavelength of 532 nm, coupled with a
beam expander to produce a homogeneous, parallel beam. Due to the polarization sensitivity of the
setup’s SLM[1H3], a polarizer was employed to modulate the light polarization. The DMD, equipped
with a Texas Instruments DLPC900 chip, featured a resolution of 1920 x 1080 pixels, a pixel size
of 7.56 um, and a 92% fill factor. Two lenses, each with a focal length of 20 cm, were arranged
to constitute a 4f system. The SLM, a Holoeye LETO model with a resolution of 1920 x 1200, a
pixel size of 8 um, a 95% fill factor, and a phase modulation range of 0 — 27 (equivalent to 0 — 255
in digital steps), was utilized to upload the phase map. Captured two-dimensional light intensity
images were obtained using a Daheng Imaging MER-130-30-UM CCD camera, with a resolution of
4096 x 3000.
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Figure 2: Experimental setup of an optical Fourier convolutional neural network with error compen-
sation network. DMD: digital micromirror device; SLM: spatial light modulator; PBS: polarization
beam splitter.

We first load the input image and the trained phase matrix monto the DMD and SLM, respectively,
and then proceed with the experiment. The laser, after collimation and beam expansion, illuminates
the DMD. The reflected laser from the DMD carries the input image information and performs a



Fourier transform at the first lens. The beam then passes through a beamsplitter and impinges on
the SLM. After phase modulation by the SLM, it undergoes another Fourier transform through a
second lens and is finally captured by the camera. The beamsplitter does not modulate the laser; it
simply ensures that the laser can vertically incident on the SLM and reflects the modulated light by
90 degrees. The actual experimental setup is illustrated in Fig. [2]

Training Procedure: First, we disregard various experimental errors and train a phase matrix my
that can classify the MNIST dataset into ten categories using the ideal 4f transformation. This matrix
is loaded onto the SLM. Simultaneously, we randomly select 1000 images from the training set,
sequentially load them onto the DMD, and use a camera to capture the experimental output images of
these 1000 input images.

Similarly, we input these 1000 images into the ideal 4f transformation and run a forward pass to
obtain the computer-generated output images with the phase matrix set to mq . For both sets of
images, we select ten regions of interest as shown in Fig[I]and calculate their mean values, resulting
in two datasets with shapes of (1000, 10) for the experimental and simulated data.

The simulated data is used as the input for the DNN, and the experimental data is used as the ground
truth to train the DNN. The DNN is trained(n — n1) to fit the simulated data to the experimental
data. The loss function for this training stage is shown in Eq[2]

Loss = MSE (Out, — Outy) )

After completing the training of the DNN, we fix the parameters n; of the DNN and use the phase
matrix my as the initial parameter for the ideal 4f transformation. The DNN is then connected after
the ideal 4f transformation, forming the Optical Deep Neural Network (Optical-DNN). We optimize
the parameter mg to m; to enhance the classification accuracy of the Optical-DNN for input images.
The loss function for this optimization stage is shown in Eq [3] This process is iterated continuously
until the Optical-DNN converges.

N

Loss = ReLu{Wgap — [Imaz — I2rdmaz|} + Z Yilog(y:) )
i=1

Here, the W, denotes the light intensity gap, IV denotes the total number of classes, y represents
a one-hot encoded vector that indicates the true class labels, with y; being the i-th element of the
vector y. The term g corresponds to the network’s output probabilities, which are typically derived
through the application of a softmax function, with ¢; representing the probability that the model
assigns to the likelihood that the sample pertains to class .

Hardware and Software: For our model training, we utilized the NVIDIA RTX 4090 GPU, which
features 24GB of GDDR6X memory, a 384-bit memory interface width, and a memory bandwidth of
1008 GB/s. The GPU is powered by the AD102-300-AlI core, comprising 16,384 CUDA cores, 512
Tensor cores, and 128 RT cores, delivering a Tensor FP16 performance of 330 TFLOPS and a Tensor
FP32 performance of 83 TFLOPS, with a power consumption of 450W. This powerful hardware
setup allowed for efficient handling of large datasets and complex neural network architectures,
significantly accelerating both the training and inference processes.

On the software side, we employed the PyTorch deep learning framework, known for its dynamic
computation graph and user-friendly interface. The training process was optimized using the Adam
optimizer (optim.Adam), which is well-suited for deep neural networks due to its adaptive learning
rate, enhancing both convergence speed and stability. This combination of advanced hardware and
sophisticated software tools provided a robust and efficient environment for our computational tasks,
ensuring optimal performance throughout the training process.

B convergence rate

Due to the inclusion of prior physical information in the Optical-DNN and the lightweight nature
of the network, our convergence rate is very fast. For both the MNIST and Quickdraw16 datasets,



the model converges within 5 epochs

. This demonstrates the importance of incorporating physical
information into the Optical-DNN.
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Figure 3: convergence curve of MNIST and Quickdraw16 dataset

C Additional Experimental Results

For the MNIST dataset, Quickdraw 16, and FMNIST datasets, we present additional recognition
results for input images, as well as the output images after error compensation. These results
demonstrate that the error compensation network, which leverages physical priors, consistently
narrows the gap between simulated output images and experimental output images. This improvement
is evident across different types of input images. By effectively compensating for discrepancies

between simulations and real-world experiments, our approach significantly enhances the recognition
accuracy of the all-optical neural network.
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Figure 4: The result of MNIST dataset
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Figure 5: The result of MNIST dataset

[ Without Compensation DNN \

w©
©
Simulation
° o 2 4 6 8 10 12 1 16
ooy
120
100
¢ o]
g
Experiment
ategory

Figure 6:

Compensation
DNN

With Physical Information
With Compensation DNN

score

Simulation
.

o 2 4 0 12 1

s s
category

Experiment

ge e = — — e
o 2 4 6 8
category

The result of Quickdraw 16 dataset



Input

Input

f Without Compensation DNN \

*1 Simulation

w0
o
“1 Experiment
.
ctegory
Figure 7:

f Without Compensation DNN \

»{ Simulation

0 2

3
category

score.

Experiment

o 2 a 5 s
K category

/

Compensation

Compensation

With Physical Information
With Compensation DNN

N

JSimulation

score

” Experiment

ol T T
°o 2z 4 & &
category

The result of Quickdraw 16 dataset

With Physical Information
With Compensation DNN

“|simulation

) 2

3
category

3
category

Figure 8: The result of FMNIST dataset
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