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Abstract

While the Transformer architecture has achieved remarkable success across various
domains, a thorough theoretical foundation explaining its optimization dynamics is
yet to be fully developed. In this study, we aim to bridge this understanding gap
by answering the following two core questions: (1) Which types of Transformer
architectures allow Gradient Descent (GD) to achieve guaranteed convergence? and
(2) Under what initial conditions and architectural specifics does the Transformer
achieve rapid convergence during training? By analyzing the loss landscape of
a single Transformer layer using Softmax and Gaussian attention kernels, our
work provides concrete answers to these questions. Our findings demonstrate
that, with appropriate weight initialization, GD can train a Transformer model
(with either kernel type) to achieve a global optimal solution, especially when
the input embedding dimension is large. Nonetheless, certain scenarios highlight
potential pitfalls: training a Transformer using the Softmax attention kernel may
sometimes lead to suboptimal local solutions. In contrast, the Gaussian attention
kernel exhibits a much favorable behavior. Our empirical study further validate the
theoretical findings.

1 Introduction

Transformer model architectures have become popular in machine learning, delivering remarkable
performance across a wide array of tasks. From natural language processing [Vaswani et al., 2017,
Beltagy et al., 2020] to computer vision [Dosovitskiy et al., 2020], these models have set new standards
in performance and efficiency. Popular models include BERT [Devlin et al., 2018], RoBERTa [Liu
et al., 2019], DeBERTa [He et al., 2020], GPT models [Radford et al., 2019, Brown et al., 2020] and
ViT [Dosovitskiy et al., 2020]. Despite their empirical success, a comprehensive understanding of
their optimization process remains elusive. As highlighted in Liu et al. [2020], the training of large
Transformers can sometimes result in deteriorated performance. It is therefore critical to develop
theoretical insights for researchers and practitioners to better understand the practical performance of
Transformers. However, the complexity of their architectures, coupled with the non-convex nature
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of the associated optimization problems, has made the theoretical analysis of these models very
challenging.

The optimization landscape can be pivotal for understanding a certain type of neural network and
providing the practical guidance [Liu et al., 2020]. Existing literature offers numerous studies on
achieving zero-loss solutions in networks with ReLU activation. These studies encompass various
network structures, including fully-connected, convolutional, and residual networks, as explored in
[Jain et al., 2017], [Jin et al., 2021], and [Danilova et al., 2022]. They delve into the analysis of
network optimization landscapes and provide assurances of rapid global convergence when using
gradient descent (GD) or stochastic gradient descent (SGD) algorithms. For instance, in Du et al.
[2019], the authors focus on fully-connected networks and ResNets with smooth activation functions,
and they have demonstrated that global convergence can be achieved using GD with a network
size proportional to O

(
poly(N)

)
, where N is the sample size. Similarly, [Allen-Zhu et al., 2019]

show that ReLU fully-connected networks with at least O
(
poly(N)

)
neurons can achieve global

convergence using GD or SGD. From a statistical perspective, [Li et al., 2023] have shown that
for two-layer ReLU neural networks (with input dimension p) that admit a sparse subnetwork
representation, a sample size of O(log4(p/δ)) can guarantee the global convergence with probability
at least δ using GD. Despite this extensive body of work on traditional architectures, it is not clear
what conditions we need (e.g. network size, optimizer, initialization) to ensure training Transformer
models to find high-quality solutions.

Compared to traditional deep learning architectures, Transformers incorporate a unique level of
intricacy through their attention kernel [Vaswani et al., 2017], which is designed to effectively handle
sequence inputs. This mechanism incorporates Softmax activation to the inner products of query and
key vectors, and this inherently non-convex operation poses considerable challenges to theoretical
analysis. Consequently, existing frameworks for analyzing the convergence of classical deep learning
models are not directly applicable to Transformers. Further, many recent works have pointed out
that the performance of Transformers depends on a number of factors such as the choice of kernel
function, initialization, choice of optimizers, and forms of token embeddings [Huang et al., 2020, Pan
and Li, 2023, Shazeer, 2020, Li et al., 2018, Tian et al., 2023]. In deep learning, these factors have
been studied in a line works. For example, Li et al. [2018] show that the good training performance
is not universal ; skip connections have the effect of smoothing the training landscape, and the
Adam algorithm tends to follow a more direct trajectory towards optimal solutions compared to SGD.
Therefore, it is imperative to understand what kind of conditions, including initialization, network
structure, data properties, and optimizer choices, will lead to high-performing Transformers.

In this work, we will delve into the intricacies of attention kernels, discussing both their advantages
and limitations in the context of model optimization. The main contributions of this work are
threefold.

• We derive the conditions that will make the one-layer Softmax attention Transformer reach
global optimality with vanilla gradient descent. The convergence guarantee is largely
attributed to the linear layer (WV ) in the attention mechanism.

• We investigate the attention kernel’s effectiveness, revealing Gaussian attention achieves
zero training loss, while Softmax can lead to non-optimal stationary points.

• Our experiments validate that Softmax attention Transformers converge slower and present
more challenging training landscapes than Gaussian counterparts, potentially leading to
more local optimal solutions.

2 Related Work

A number of research works have focused on the theoretical analysis and interpretation of Transformer
models, revealing crucial insights into their practical performance.

Liu et al. [2020] showed that heavy reliance on the residual branch in multi-layer Transformer models
can lead to training instability, which amplifies small parameter perturbations, causing significant
disturbances in the model’s output. In Bhojanapalli et al. [2020], the authors illustrated the existence
of a low-rank bottleneck in Transformer models with sufficiently large embedding and hidden size
(D = d). However, this work focuses on the representation ability of large size attention, while
falling short of analyzing Transformer models from an optimization perspective. In Noci et al. [2022],
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the authors explored rank collapse issues in token representations and their impact on training. The
authors discussed the origin of the phenomenon of rank collapse and proposed depth-dependent
scaling of residual branches as a potential solution. They specifically investigated scenarios where
token rank equals one, which can hinder Transformer training. Their findings demonstrate the
occurrence of the vanishing gradient issue, however, this work does not comprehensively characterize
the vanishing gradient problem throughout the entire training process.

A recent work Wu et al. [2024] analyzes the convergence behavior of shallow Transformer, which
builds a convergence theory of shallow Transformer with realistic structure and initialization, but
they do not provide roles for different matrices in the convergence. However, the focus of our paper
is different from Wu et al. [2024]. We not only derive the global convergence analysis (Our Theorem
2), but also investigates the role of different variables in optimization.

Some other works focus on improving the optimization of Transformers empirically. [Huang et al.,
2020] have proposed an initialization strategy such that no warm-up or layer normalization is needed
to train Transformers efficiently; in Shazeer [2020], the GLU variant of token embedding has
been showed to be better than plain embedding in the optimization of Transformer models with
Softmax attention kernel. It is worth noting that the above works all primarily focus on empirical
investigations into the training of Transformer models, lacking a comprehensive theoretical analysis
of the underlying mechanisms.

Some recent research has focused on the convergence analysis of Transformer-based models within
the in-context learning (ICL) framework. For instance, Huang et al. [2023], Zhang et al. [2023]
explores the learning dynamics of a one-layer Transformer with Softmax attention trained via gradient
descent to learn linear function classes in-context. However, this line of study primarily addresses the
general convergence performance of Transformers within the ICL setting and does not delve into the
role of individual variables. More specifically, these works analyze the convergence of in-context
training, where a prompt is constructed with all the training samples and a single test sample. The
goal of these works is to achieve the zero test loss (in expectation) by optimizing over the loss
function modeled by the prompt. On the other hand, our analysis is based on standard empirical loss
minimization, which does not involve any prompt construction.

3 Notations and Problem Description

In this section, we define the structure of the Transformer model and describe the training problem.
We consider a one-layer attention Transformer model with multiple heads and a dataset with N
samples. Each data sample consists of n discrete tokens, each with embedding dimension D. We
denote the dataset as {(Xi, yi)}Ni=1, where Xi ∈ Rn×D, and yi ∈ Rn is the label of the dataset.
The output from the Transformer model is the prediction of the label. The Transformer structure is
formulated as follows:

Attention(WQ
h ,WK

h ,WV
h ;Xi) := S(WQ

h ,WK
h ;Xi)XiW

V
h (1)

MH(WQ,WK ,WV ;Xi) := Concat (head1, . . . , headH) ·WO,

where headh := Attention(WQ
h ,WK

h ,WV
h ;Xi), h = 1, · · · , H. (2)

In the above notation, WQ
h ,W

K
h ∈ RD×d is the query weight matrix and key weight matrix,

respectively; WV
h ∈ RD×d is the value weight matrix; these matrices are the main optimization

variables throughout the paper. Further WO ∈ RHd×1 is a fixed matrix, representing the weight of
the output layer; H is the number of attention heads; S(·) is a kernel function of variables WQ,WK

and input Xi. Attention(·) is the attention head function; MH(·) represents the multi-head attention
function. For example, with the Softmax attention [Vaswani et al., 2017], S(·) can be written as:

S
(
WQ

h ,WK
h ;Xi

)
:= Softmax

(
XiW

Q
h

(
XiW

K
h

)⊤
√
d

)
(3)

where for a given n× n matrix Z, Sofmax(Z) := [Softmax(Z1), · · · ,Softmax(Zn)]. Throughout,
let us denote S(·)kj as the element of k-th row and j-th column in matrix S(·). Let Xik· ∈ RD

denote the embedding of the k-th token in data Xi, which is the k-th row of matrix Xi. The structure
of Transformer model can be found in Fig 1, where we denote Sih := S

(
WQ

h ,W
K
h ;Xi

)
.
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Based on the above Transformer model, we consider minimizing the following empirical ℓ2 loss
function for the entire data set {Xi, yi}Ni=1:

minM
1

2

N∑
i=1

∥MH(M ;Xi)− yi∥2, (4)

where M := (WQ,WK ,WV ) is the set of variables that can be optimized.

For notation simplicity, next we define the vector version of the Transformer model given in Equa-
tion (1), for the entire dataset {(Xi, yi)}Ni=1. Towards this end, let X ∈ RNn×D denote the column-
stacked matrix of each single data Xi. Similarly, define the stacked label y ∈ RNn. Then we can
define:

MH(M ;X) :=

(
S11X1 · · · S1HX1

· · · · · · · · ·
SN1XN · · · SNHXN

)
· diag(WV

1 , · · · ,WV
H ) ·WO, (5)

i = 1, 2, · · · , N, h = 1, 2, · · · , H for simplicity.

Figure 1: One head in Trans-
former architecture with Soft-
max Attention.

Let B :=

(
S11X1 · · · S1HX1

· · · · · · · · ·
SN1XN · · · SNHXN

)
, and WV :=

diag(WV
1 , · · · ,WV

H ) ∈ RHD×Hd denote the diagonalized weight
matrices that include all value weight matrices for all attention
heads. Using these definitions, We can simplify Equation (5) as

MH(M ;X) = B ·WV ·WO

Thus the empirical loss function given in Equation (4) can be
simplified as

minM
1

2
∥MH(M ;X)− y∥2. (6)

For more notations in the following sections, we will use sub-
script t to represent the variables in t-th iteration, e.g, Mt :=

{WQ
t ,W

K
t ,WV

t }. Similarly, we denote Bt as the matrix B at
t-th iteration.

It is important to note that, in the above description and throughout
the paper, we model the Transformer training problem by using
a single-layer Transformer, with a regression loss. In practice
Transformer models can exhibit greater complexity (different loss
functions, multiple layers, etc). For example, the text classification

task has an additional mean pooling layer followed by the output of the Transformer structure. Further,
they usually contain downstream MLP modules. However, we choose to use the simplified version
due to the following reasons:

First, the primary objective of this work is to understand how different attention kernels affect the
training dynamics of the Transformers, so we do not include the layer normalization in our model. In
fact, in the literature, many works that analyze popular network structures also do not consider layer
normalization. For example, in [Huang et al., 2023, Zhang et al., 2023], both analyze the convergence
performance of Transformers but normalization is not considered.

Second, we do not include the downstream MLP module in our work since we are interested in
the role of self-attention layer in convergence analysis, and the single-attention model is also the
standard model used in [Huang et al., 2023, Zhang et al., 2023]. Further, the analysis of MLP is
standard in literature [Allen-Zhu et al., 2019, Du et al., 2019, Nguyen and Mondelli, 2020]. And it is
worth noting that our choice to focus on a one-layer Transformer is consistent with other works that
similarly aim to investigate the core training dynamics of Transformers, e.g, in [Tian et al., 2023], a
single-layer Transformer is considered as a basic model.
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4 Convergence Analysis

In this section, we present our theoretical analysis for solving problem (6). We focus on the behavior
of the vanilla GD algorithm for optimizing the variable setM , whereM ⊂ {WQ,WK ,WV }. Below
we summarize our results.

Common convergence conditions with Softmax Attention: When the activation function S(·)
is either the Softmax or Gaussian function, and the embedding dimension D is at least O(Nn),
optimizing Equation (6) can achieve a global optimal solution when M = {WV } and M =
{WQ,WK ,WV }.

Different behavior between Softmax and Gaussian Kernel Attention. When S(·) is Gaussian and
the embedding dimension D is at least O(Nn), convergence to global optimal is also ensured for
M = {WQ}. Interestingly, under the same conditions of large D, convergence to global optimal is
not guaranteed when S(·) is Softmax.

In the subsequent sections, we will elaborate on these convergence results in detail, providing a
deeper understanding of the nuances in Transformer behavior under varying configurations. To set up
our analysis, we introduce λV as the smallest eigenvalue of WV

0 , λB as the smallest eigenvalue of B0,
λ̄Qh , λ̄

K
h , λ̄

V as the largest singular value of matrix WQ
h,0,W

K
h,0,W

V , respectively. We denote ∥ · ∥2
as ℓ2 norm and ∥ · ∥F as Frobenius norm. Further, we denote σmax(·) and σmin(·) as the largest and
smallest singular value of a matrix, respectively. For any vector v, let min(|v|) denote the smallest
absolute value of vector v.

4.1 Convergence to global optimal

First, we examine the role of WV in the optimization of multi-head attention network structure. Our
analysis demonstrates that with the hidden dimension HD ≥ Nn and proper initialization, the global
optimal solution of (6) can be found using a vanilla gradient descent algorithm. The initialization
requires that the matrix B0 has full rank. Our first result shows that, overparameterized Transformer
can be trained to global optimal solution.

Theorem 1. Consider problem (4) with S(·) being instantiated as the Softmax kernel given in (3).
Consider the following update for the variable M = {WV }: WV

t+1 = WV
t − η∇WV f(Mt;X),

where η > 0 is the stepsize.

Suppose WQ
0 and WK

0 are initialized such that λB > 0. Then we have:

f (Mt;X) ≤ (1− ηα)
t
f (M0;X) , (7)

where α := ∥WO∥2(λB)2 > 0; η > 0 is defined in Appendix 1.3, and chosen such as ηα < 1.

Remark 1. The aforementioned theorem focuses on the convergence behavior when only WV is
being updated. We further elaborate on the initial conditions ensuring λB > 0.

Note that λB > 0 implies that the objective function f exhibits a landscape that is nearly convex,
which is crucial for optimization. By definition, this condition implies that B0 has full rank, which
can be fulfilled by selecting appropriate WQ

0 and WK
0 , plus having large enough embedding size,

satisfying D ≥ Nn/H . We refer the readers to Appendix 1.3 for the derivation of this condition,
which can be guaranteed by random initialization with high probability.

Furthermore, it is important to note that our work aligns with existing literature on the subject of
embedding size in Transformer models. For example, in [Bhojanapalli et al., 2020], the authors
restrict their focus to the simplified case of N = 1, H = 1. They establish the necessary condition
for Softmax attention to overcome its low-rank bottleneck, which requires D ≥ n . In our analysis,
we derive a similar necessary condition on Transformer model size (D ≥ n× (N/H)) to guarantee
the global convergence when a Transformer model is trained with GD.

In Theorem 1, we have illustrated the case where only updating WV already leads to global con-
vergence. However, in practice, all parameters WV ,WQ,WK are updated. This case is more
challenging to analyze due to the non-linearity introduced by the Softmax function. Next, we show
that a similar result in Theorem 1 still holds when all the parameters are updated simultaneously.
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Theorem 2. Consider problem (4), with S(·) being instantiated as the Softmax kernel. Consider the
GD update where M = {WQ,WK ,WV }: Suppose λB > 0, and the initialization M0 satisfy

n2
√
NH∥X∥5F

H∑
h=1

(
(λ̄Q

h )
2 + (λ̄K

h )2
)
λ̄V

∥WO∥2 · (λB)2 min (λ̄Q
h , λ̄

K
h , λB)

× ∥MH(M0;X)− y∥2 ≤ ν. (8)

Then there exists stepsize η > 0, such that

f (Mt;X) ≤ (1− ηβ)
t
f (M0;X) , (9)

where β := ∥WO∥2(λB)2 > 0, and the constants η, ν are defined in Appendix 1.3.

Remark 2. In the stated theorem, we simplify our analysis by excluding the downstream MLP
module in the typical Transformer model, since it is easy to combine the model in Equation (2) with
downstream MLP layers. Further, it can be directly showed that the Transformer with MLP will
lead to the same convergence rate of the optimization problem as updating WQ,WK ,WV only. To
illustrate this, consider the following Transformer model:

G
(
WQ,WK ,WV ;Xi

)
= MH(WQ,WK ,WV ;Xi) ·W 1W 2 · · ·WL, (10)

where W l ∈ Rnl−1×nl , and n0 = dO. Based on the Transformer model defined in Equation (10),
we have the following corollary.

Corollary 1. Consider problem min
M

1
2∥G(M ;X)− y∥2, with G(·) being defined in Equation (10)

and S(·) being instantiated as the Softmax kernel. Suppose that the MLP module satisfies:

n1 ≥ n2 · · · ≥ nL.

Consider the following GD update (whereM = {WQ,WK ,WV ,W 1, · · · ,WL}): Suppose λB > 0.
Then, there exists a step size η > 0 and initialization weight M0, such that the loss function linearly
converges to 0.

Remark 3. The above theorem and corollary describe the global convergence guarantee when
WQ,WK and WV are updated. This is in line with the insights gained from Theorem 1. However,
the conditions for initialization are more stringent, and the optimization landscape becomes inherently
more complex due to the involvement of the Softmax attention through WQ and WK .

To ensure the initial condition 8, we have two options: 1) Initializing M0 such that ∥MH(M0;X)−
y∥F is small, which implies that the optimization starts in a region close to the global optimal solution
and that the initial weight is close to the global optimal solution; 2) Balancing between WO and
WV , in the sense that ∥WO∥2 is large and λ̄V is small. For a detailed account of these initialization
strategies, please refer to Appendix 1.3.

Finally, we need to point out that for Transformers with Gaussian kernel attention, we can derive
similar convergence results as long as the attention kernel maintains full rank and weights are
initialized appropriately. Here we do not include the theoretical statement since it is similar to the
result for Softmax attention.

4.2 Softmax vs Gaussian kernel: Softmax attention Transformers may exhibit slower
convergence.

In the previous section, we explored the global convergence of training Transformer models. However,
from Theorem 2, it was not clear what roles do matrices WQ and WK play in the entire convergence
process, since Theorem 1 indicates that optimizingWV alone already ensures the desired convergence.
Nevertheless, it is the matrices WK and WQ that truly represent the power of a Transformer model,
because they are used to extract token correlations.

To study how well a Transformer model can extract the token correlation, in this section, we will
study the GD dynamics for Transformer models, where only WK and WQ are optimized (while
fixing WV ). If optimizing these two parameters alone can still achieve zero training loss, then we
claim that the input token correlation can be optimally extracted by the Transformer model.
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4.2.1 Notations

To begin our study, let us define that Gaussian kernel to be an n× n matrix, where its k-th row and
j-th column of is given by:

S
(
WQ

h ,WK
h ;Xi

)
kj

= exp

(
− 1√

d

(
Xik·W

Q
h −Xij·W

K
h

)2)
(11)

Since the training dynamics/gradients of variables WQ and WK have the same property in (3) and
(11), we will only concentrate on optimizing WQ.

With some abuse of notation, define a matrix C for Softmax attention and Gaussian kernel attention,

respectively. Softmax attention: Cih :=
XiW

Q
h (XiW

K
h )

⊤

√
d

∈ Rn×n.

Gaussian kernel attention: Cih ∈ Rn×n; (Cih)kj = −∥Xik·W
Q
h −Xij·W

K
h ∥2

2
√
d

.

For both Softmax attention and Gaussian kernel attention:

Ci ∈ Rn×Hn = [Ci1, Ci2, · · · , CiH ] ; C ∈ RNn×Hn =
[
C⊤

1 , C
⊤
2 , · · · , C⊤

N

]⊤
.

Using the above notation, the activation function S(·) in (3) and (11) can be related to the matrices
C’s in the following manner:

Softmax attention : Sih = Softmax (Cih) , Gaussian attention : (Sih)kj = exp
(
(Cih)kj

)
.

Additionally, note that C is a function of variables M . Therefore we will sometimes use C(M) when
we need to emphasize the dependency of C on M .

4.2.2 Main Results

Next, we will outline the conditions under which GD can still successfully find global optimal
solutions for Transformers with Gaussian kernel attention (when only WQ is updated), while under
the same set of conditions, but with Softmax kernel attention, GD fails.

Theorem 3. Solve problem (4) with the following GD update (with M = {WQ}): WQ
t+1 =

WQ
t − η∇WQf(Mt;X). Suppose δh := σmin(

∂C(M0)

∂WQ
h

) > 0, ∀ h ∈ [1, 2, · · · , H], and the

initialization condition further satisfies

n∥X∥5F
(
λ̄Qh + λ̄Kh

)
exp

(
9
4∥X∥2F

(
(λ̄Qh )

2 + (λ̄Kh )2
))(

min(|V ′WO|)
)2 ·min(δh, λ̄

Q
h )

× λ̄V ∥WO∥2 · ∥MH (M0;X)− y∥2 ≤ ν′,

(12)

ν′ is defined in Appendix 1.5.
(1) When S(·) is a Gaussian kernel function, there exists a stepsize η and a positive constant γ, such
that

f (Mt;X) ≤ (1− ηγ)
t
f (M0;X) , (13)

where γ, η are defined in Appendix 1.5.
(2) When S(·) is a Softmax function, suppose WQ

t is bounded during the training phase, then there
exists stepsize η, such that

f (Mt;X) ≤ f (M0;X)− η′
t−1∑
r=0

∥∇WQf (Mr;X) ∥2, (14)

where η′ is defined in Appendix 1.5.
Remark 4. First, it’s important to note that the parameter size must satisfy Dd ≥ Nn2 for δ > 0
to hold. It is crucial to emphasize the fundamental distinction in convergence outcomes between
Transformers employing Gaussian kernel attention and those utilizing Softmax attention under these
conditions. With equivalent initialization conditions, training Transformers equipped with Gaussian
kernel attention achieves global convergence using gradient descent (GD). Second, it is essential to
emphasize that the dimension size Dd ≥ Nn2 is similar to the findings of works that have analyzed
the convergence performance of over-parameterized neural networks Allen-Zhu et al. [2019], Du et al.
[2019]. The total number of samples, consisting of N samples each with n tokens, can be calculated
as Nn. Meanwhile, the total feature dimension is Dd. The inequality implies that the width of the
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parameters is at least O(N), a relationship also illustrated in Nguyen and Mondelli [2020]. The
proof consists of two basic steps. The first step is to derive the closed form gradient of loss function
over variable WQ. Intuitively, the gradient of Softmax attention is much more complicated than
the Gaussian attention Transformer, which will lead to a more complicated landscape and more
local solutions. The second step is to analyze the gradient of Transformers with both kernels and the
same initialization Equation (12). For Gaussian attention Transformer, it can be iteratively shown
during the gradient descent training: 1) The variable WQ is bounded; 2) The PL condition holds (i.e,
the optimization landscape remains near-convex); 3) The loss function decreases linearly. For the
Softmax attention Transformer, there is no guarantee that the PL condition holds during iterative
gradient descent update.

In part (2), we demonstrate that the PL condition does not hold. In particular, we identify an initial
solution that satisfies all the conditions given in Theorem 3, yet fails to satisfy the PL condition.
Therefore, in this case, GD leads to vanishing gradients without being able to find a global optimal
solution. The details of this specific example are provided below.

Example: Consider Transformer with Softmax attention, and N = 1, n = 2, H = 1. Let us first
write down the close form of the gradient over WQ

1 :
∂f (M0;X1)

∂WQ
1

=
1√
d
X⊤

1
∂f (M0;X1)

∂C11
X1W

K
1,0

Next, we show there exists WO,WV , X1,W
Q
1,0,W

K
1,0 such that the loss function is non-zero with

Equation (12) satisfied, while ∂f (M0;X1)

∂C11
= 0 ∈ R2×2.

Denote L := ∂f(M0;X1)
∂MH(M0;X1)

(
WO

)⊤ (
X1W

V
0

)⊤ ∈ R2×2. ∂f(M0;X1)
∂C11

can be expressed as follows:/(
∂f (M0;X1)

∂C11

)
11

= δ · (L11 − L12),

(
∂f (M0;X1)

∂C11

)
12

= δ · (L12 − L11), δ is some constant.

Next, we will give the value of WO,WV
0 to show the case where GD leads to vanishing gradient.

Let D = d = 2, WO = ( 1a ,
1
a ), X1 =

(
1 0
0 1

)
, and WV

0 =

(
2a a
a 2a

)
, where a is a constant. It is

easy to show that there exists WQ
1 and WK

1 such that Equation (12) holds. Further, it is easy to verify
that for this scenario, the following holds:

L11 = L12, L21 = L22. (15)

Next, we can easily deduce that
(

∂f(M0;X1)
∂C11

)
11

=
(

∂f(M0;X1)
∂C11

)
12

= 0. Similarly, we can demon-

strate that
(

∂f(M0;X1)
∂C11

)
21

=
(

∂f(M0;X1)
∂C11

)
22

= 0. Consequently, we have ∂f(M0;X1)

∂WQ
1

= 0. However,

if y1 satisfies that ∂f(M0;X1)
∂MH(M0;X1)

̸= 0, it follows f(M0;X1) ̸= 0, which meansM0 is not global optimal
solution.

5 Experiment: Softmax v.s. Gaussian

Figure 2: Test performance on text classification task with
different attention kernels

In this section, we present numerical
results to illustrate the behaviors of
Transformers models with Softmax at-
tention and Gaussian kernel attention
across various tasks.

5.1 Dataset

We investigate two distinct tasks:
Text Classification using the IMDb
review dataset [Maas et al., 2011]
and Pathfinder [Linsley et al., 2018].
While both tasks involve processing
long sequences, they exhibit different characteristics. Text Classification is a well-known NLP
task that focuses on discerning relationships among token embeddings, while the Pathfinder task
prioritizes capturing spatial information within the input pixels.
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5.2 Model and Experiment Method

Figure 3: Test performance on pathfinder task with different
attention kernels

We follow the experiment setting in
[Chen et al., 2021]. For both tasks, we
employ a 2-layer Transformer model
with the following specifications: em-
bedding dimension D = 64, hidden
dimension d = 128, and number of
attention heads H = 2. To align the
model with the classification task, we
use an additional mean pooling layer
as the final layer. We determine the
batch size based on available mem-
ory constraints. Specifically, we set a
batch size of 16 for the Text Classifi-
cation task with a learning rate of 1× 10−4, and a batch size of 128 for the Pathfinder task with a
learning rate of 2× 10−4. For optimization, we use Stochastic Gradient Descent (SGD) for the Text
Classification task and Adam for the Pathfinder task. We conduct two types of experiments.

In the first experiment, we plot the test accuracy and test loss within the training steps with both
Softmax and Gaussian kernel attention on both tasks. We repeat the training for 10 times and make
the shadow plot on the test performance.

Figure 4: The loss landscapes on text classification task and Pathfinder task. For both tasks, we
use the two-stage training in Section 5.2 with the same training hyperparameters, while the only
difference is the attention structure in the second training stage. The two axes represent the two
directions d1 and d2 as defined in Section 5.2.

In our second experiment, the training process consists of two stages: In the first stage, we train
the Transformer model equipped with Softmax attention (defined in Equation (3)) for 8,000 steps.
In the second stage, we continue training from the pre-trained model for an additional 500 steps,
with the option of using either Softmax or Gaussian kernel. To explore the optimization landscape
around the trained model, we employed a technique inspired by Li et al. [2018]. We select two
parameter directions, specifically the WQ and WK matrices in the first Transformer layer. These
two directions, denoted as d1, d2, are centered at the trained model M , and represent the parameter
space of WQ,WK , respectively. We evaluate the loss function on the set {M + 0.02(r − 25)d1 +
0.02(s− 25)d2}, where r, s ∈ [1, 2, · · · , 50]. The above set is the neighborhood of the trained model
M , and we chose the evaluation stepsize as 0.02 along the two directions d1, d2, with the total steps
limit as 100. Within this parameter space, we plot a 3-D surface representing the landscape around
the trained model.

5.3 Results

5.3.1 Test Loss & Accuracy Curve comparison

To begin with, we present some observations in our first experiment. We plot the test performance of
these two tasks on Transformers with two different types of attention. From Fig 2 and Fig 3, we can
conclude that in both tasks, Transformers with Gaussian kernel attention exhibit faster convergence
and higher test accuracy than Softmax attention with the same model size and learning rate. Especially,
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training Transformers with Softmax attention in the Pathfinder task can lead to unstable performance
as indicated in Fig 3. The test accuracy has a significantly higher variance at the same training
epoch. Further, the worst test accuracy after 20, 000 epochs is around 0.58 for the Softmax attention
Transformer, compared with 0.62 for the Gaussian kernel Transformer. These observations align with
the experiment results in [Chen et al., 2021] and [Tay et al., 2020], where Transformers with different
attention kernels are trained with the same model size and learning rate, while Softmax attention
Transformers show instability in a few tasks.

5.3.2 Optimization Landscape Comparison

In Figure 4, we present a comparison of the optimization landscape between Transformers with
Softmax and Gaussian kernel attention. Notably, we observe distinct differences in the training
landscapes of these two attention types for both tasks. We follow the visualization method described
in Section 5.2. We conduct a visualization of the optimization landscape around the trained models
after a two-stage training process, with identical learning rates, network sizes, and training epochs.
Keeping all other factors consistent, the disparity in the landscape provides a direct representation of
the difference in the attention structure during the optimization procedure. With Softmax attention,
the landscape appears more complicated compared with Gaussian kernel attention. This complexity
can be interpreted as the presence of a greater number of local optima in the optimization landscape,
suggesting that Transformers utilizing Softmax attention may encounter more challenges in reaching
global optimal solutions. In contrast, the landscape with the Gaussian kernel is flatter. This observation
aligns with our earlier findings in Figure 2 and Figure 3, where Softmax attention exhibited certain
convergence issues. These observations also provide empirical evidence supporting our Theorem 3,
which reflects in a slightly different perspective the complicated optimization landscape within the
Softmax kernel.

6 Conclusion and Future Work

In conclusion, our study addresses critical gaps in our understanding of why Transformer models
perform exceptionally well in a variety of machine learning tasks. Our work also provides a
nuanced understanding of the advantages and disadvantages of using classical Softmax attention
in Transformers. We find that while shallow Softmax attention Transformers can achieve global
convergence with overparameterization, there are scenarios where this attention structure can lead to
local solutions. However, those issues can be mitigated by the Gaussian kernel-based attention. In
our work, we need strong initialization and large embedding size, i.e, HD ≥ Nn to obtain the global
convergence, which exhibits a gap towards real case. In the future work, we will investigate how to
relax the assumptions.

7 Acknowledgment

The work of B. Song was partially done while interning at Amazon Web Services. M. Hong holds
concurrent appointments as an Amazon Scholar and as a faculty at the University of Minnesota. This
paper describes their work performed at Amazon. The work of Jie Ding was supported in part by the
Army Research Office Early Career Program Award under grant number W911NF2310315.

References
Z. Allen-Zhu, Y. Li, and Z. Song. A convergence theory for deep learning via over-parameterization.

In International conference on machine learning, pages 242–252. PMLR, 2019.

I. Beltagy, M. E. Peters, and A. Cohan. Longformer: The long-document transformer. arXiv preprint
arXiv:2004.05150, 2020.

S. Bhojanapalli, C. Yun, A. S. Rawat, S. Reddi, and S. Kumar. Low-rank bottleneck in multi-head
attention models. In International conference on machine learning, pages 864–873. PMLR, 2020.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural information
processing systems, 33:1877–1901, 2020.

10



Y. Chen, Q. Zeng, H. Ji, and Y. Yang. Skyformer: Remodel self-attention with gaussian kernel and
nystr\” om method. Advances in Neural Information Processing Systems, 34:2122–2135, 2021.

M. Danilova, P. Dvurechensky, A. Gasnikov, E. Gorbunov, S. Guminov, D. Kamzolov, and I. Shibaev.
Recent theoretical advances in non-convex optimization. In High-Dimensional Optimization and
Probability: With a View Towards Data Science, pages 79–163. Springer, 2022.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transformers for image
recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

S. Du, J. Lee, H. Li, L. Wang, and X. Zhai. Gradient descent finds global minima of deep neural
networks. In International conference on machine learning, pages 1675–1685. PMLR, 2019.

P. He, X. Liu, J. Gao, and W. Chen. Deberta: Decoding-enhanced bert with disentangled attention.
arXiv preprint arXiv:2006.03654, 2020.

X. S. Huang, F. Perez, J. Ba, and M. Volkovs. Improving transformer optimization through better
initialization. In International Conference on Machine Learning, pages 4475–4483. PMLR, 2020.

Y. Huang, Y. Cheng, and Y. Liang. In-context convergence of transformers. arXiv preprint
arXiv:2310.05249, 2023.

P. Jain, P. Kar, et al. Non-convex optimization for machine learning. Foundations and Trends® in
Machine Learning, 10(3-4):142–363, 2017.

C. Jin, P. Netrapalli, R. Ge, S. M. Kakade, and M. I. Jordan. On nonconvex optimization for machine
learning: Gradients, stochasticity, and saddle points. Journal of the ACM (JACM), 68(2):1–29,
2021.

P. Langley. Crafting papers on machine learning. In P. Langley, editor, Proceedings of the 17th
International Conference on Machine Learning (ICML 2000), pages 1207–1216, Stanford, CA,
2000. Morgan Kaufmann.

G. Li, G. Wang, and J. Ding. Provable identifiability of two-layer relu neural networks via lasso
regularization. IEEE Transactions on Information Theory, 2023.

H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein. Visualizing the loss landscape of neural nets.
Advances in neural information processing systems, 31, 2018.

D. Linsley, J. Kim, V. Veerabadran, C. Windolf, and T. Serre. Learning long-range spatial dependen-
cies with horizontal gated recurrent units. Advances in neural information processing systems, 31,
2018.

L. Liu, X. Liu, J. Gao, W. Chen, and J. Han. Understanding the difficulty of training transformers.
arXiv preprint arXiv:2004.08249, 2020.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoy-
anov. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692,
2019.

A. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts. Learning word vectors for
sentiment analysis. In Proceedings of the 49th annual meeting of the association for computational
linguistics: Human language technologies, pages 142–150, 2011.

Q. N. Nguyen and M. Mondelli. Global convergence of deep networks with one wide layer followed
by pyramidal topology. Advances in Neural Information Processing Systems, 33:11961–11972,
2020.

L. Noci, S. Anagnostidis, L. Biggio, A. Orvieto, S. P. Singh, and A. Lucchi. Signal propagation
in transformers: Theoretical perspectives and the role of rank collapse. Advances in Neural
Information Processing Systems, 35:27198–27211, 2022.

11



Y. Pan and Y. Li. Toward understanding why adam converges faster than sgd for transformers. arXiv
preprint arXiv:2306.00204, 2023.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. Language models are
unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

N. Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Y. Tay, M. Dehghani, S. Abnar, Y. Shen, D. Bahri, P. Pham, J. Rao, L. Yang, S. Ruder, and D. Metzler.
Long range arena: A benchmark for efficient transformers. arXiv preprint arXiv:2011.04006,
2020.

Y. Tian, Y. Wang, B. Chen, and S. Du. Scan and snap: Understanding training dynamics and token
composition in 1-layer transformer. arXiv preprint arXiv:2305.16380, 2023.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin.
Attention is all you need. Advances in neural information processing systems, 30, 2017.

Y. Wu, F. Liu, G. Chrysos, and V. Cevher. On the convergence of encoder-only shallow transformers.
Advances in Neural Information Processing Systems, 36, 2024.

R. Zhang, S. Frei, and P. L. Bartlett. Trained transformers learn linear models in-context. arXiv
preprint arXiv:2306.09927, 2023.

12



1 Appendix

1.1 Notations

Recall that we have defined the structure of a single Transformer model in Equation (1) and Equa-
tion (5). We will further define a few notations before we introduce a few useful lemmas that are
needed in our proof.
(1) Operator: Denote vec(·) as the vectorization operator on a matrix; ⊗ as Kronecker product
operator; ⊙ as the element product. Denote Υ(·) as a matrix operator, such that for any matrix X
without zero element

Υ(Xm×n) =

 1/x11 · · · 1/x1n
...

. . .
...

1/xm1 · · · 1/xmn


m×n

(16)

(2) Matrix: Denote I as the identity matrix. Define matrix E and E as following:

E =

 E
. . .

E


Hn×Hn

, E =

 1 · · · 1
...

. . .
...

1 · · · 1


n×n

.

Define matrix Ph as following: Ph =
(
. . . , Eh

n×n, . . .
)
, h = 1, · · · , H .

(3) Matrix in Transformer: Define the following matrix C related to the attention layer
Softmax kernel:

Cih =
XiW

Q
h

(
XiW

K
h

)⊤
√
d

, Sih = Softmax(Cih) (17)

Gaussian kernel:

(Cih)kj = −

∥∥∥Xik·W
Q
h −Xij·W

K
h

∥∥∥2
2
√
d

, (Sih)kj = exp
(
(Cih)kj

)
(18)

Ci = [Ci1, · · · , CiH ], Si = [Si1, · · · , SiH ] (19)
Define matrix V ′

i for each data Xi:

V ′
i =

 XiW
V
1

. . .
XiW

V
H


Hn×d

, V = [V ⊤
1 , · · · , V ⊤

N ]⊤. (20)

Next, let us introduce several useful lemma which leads to Theorem 2:

1.2 Lemmas of Theorem 2

Lemma 1.

(1)
∂f(M ;X)

∂WV
= B⊤ (MH(M ;X)− y)

(
WO

)⊤
(21)

(2) vec

(
∂f(M ;X)

∂WV

)
=
〈
(WO)⊤ ⊗B, vec(MH(M ;X)− y)

〉
=
(
IHd ⊗B⊤) · (WO ⊗ IN

)
· (MH(M ;X)− y) (22)

(3)
∂f(M ;X)

∂WQ
h

=
1√
d
X⊤Ph

∂f(M ;X)

∂C
XWK

h =

N∑
i=1

1√
d
X⊤

i Ph
∂f(M ;Xi)

∂Ci
XiW

K
h (23)

(4)
∂f(M ;Xi)

∂Ci
=
(
(MH(M ;Xi)− yi)

(
WO

)⊤
(V ′

i )
⊤
)
⊙ Si (24)

−
(((

(MH(M ;Xi)− yi)
(
WO

)⊤
(V ′

i )
⊤
)
⊙ Si ⊙Υ

(
(expCi)E

))
E⊤
)
⊙ expCi (25)

(5)
∂f(M ;X)

∂C
= diag

(
∂f(M ;X1)

∂C1
, · · · , ∂f(M ;XN )

∂CN

)
(26)
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Remark: The above lemma derives the closed form of the gradient of objective over WV ,WQ.
Notice that we can derive the derivative of WK in the same way as WQ due to symmetry, so we do
not include the derivation here. Some of the lemmas here refers https://say-hello2y.github.io/2022-
09-07/attention-gradient
Lemma 2. Consider updating WQ,WK ,WV at iteration t. Suppose σmax(W

Q), σmax(W
K),

σmax(W
V ) are bounded during in the optimization phase, then we have the following conclusion:

(1) ∥d(Si)∥F ≤ ϕi∥d(WQ)∥F , where ϕi =
n√
d
∥Xi∥2F

√√√√ H∑
h=1

σ2
max

(
WK

h

)
(27)

(2) ∥d(Si)∥F ≤ ψi∥d(WK)∥F , where ψi =
n√
d
∥Xi∥2F

√√√√ H∑
h=1

σ2
max

(
WQ

h

)
. (28)

(3) ∥d(Si)∥F ≤
√
ϕ2i + ψ2

i · ∥d(W
Q), d(WK)∥F . (29)

(4) ∥∂f(M ;Xi)

∂WQ
∥F ≤ Qi∥MH (M ;Xi)− yi∥F ,

where Qi = n
√
H ∥Xi∥3F

∥∥WO
∥∥
2

√√√√ H∑
h=1

σ2
max

(
WK

h

)
· σmax

(
WV

)
. (30)

(5) ∥∂f(M ;Xi)

∂WK
∥F ≤ Ki∥MH (M ;Xi)− yi∥F ,

where Ki = n
√
H ∥Xi∥3F

∥∥WO
∥∥
2

√√√√ H∑
h=1

σ2
max

(
WQ

h

)
· σmax

(
WV

)
. (31)

Lemma 3. Consider updating WQ,WK ,WV at iteration t. Suppose σmax(W
Q), σmax(W

K),
σmax(W

V ) are bounded during in the optimization phase, then we have the following conclusion:

(1) ∥MH(Mt+1;X)−MH(Mt;X)∥F ≤ Z∥Mt+1 −Mt∥F ,where Z is some positive constant.
(32)

(2) ∥∇f (Mt+1;X)−∇f (Mt;X)∥2 ≤ G∥Mt+1 −Mt∥F ,where G is some positive constant.
(33)

Lemma 4. Let f : Rn → R be a second order differentiable function. Let x, y ∈ Rn be given, and
assume that ∥∇f(z)−∇f(x)∥2 ≤ C∥z − x∥2 for every z = x+ t(y − x) with t ∈ [0, 1]. Then,

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ C ′

2
∥x− y∥2.

Lemma 5. For matrix A ∈ Rk×l, B ∈ Rl×m, C ∈ Rm×n.

vec(ABC) = (In ⊗AB) vec(C) =
(
CTBT ⊗ Ik

)
vec(A)

vec(AB) = (Im ⊗A) vec(B) =
(
BT ⊗ Ik

)
vec(A)

vec(A⊙B) = vec(A)⊙ vec(B).

1.3 Proof of Theorem 2

Proof Sketch of Theorem 2:
The main idea of the proof follows from [Nguyen and Mondelli, 2020]. Let us first recall a few
notations. λ̄V := 2

3

(
1+σmax(W

V
0 )
)
, λB := σmin(B0). Using GD update rule, we aim to iteratively

show 
σmax(W

V
r ) ≤ 3

2 λ̄
V , r ∈ {0, . . . , t},

σmax(W
Q
r ) ≤ 3

2 λ̄
Q, r ∈ {0, . . . , t},

σmax(W
K
r ) ≤ 3

2 λ̄
K , r ∈ {0, . . . , t},

σmin (Br) ≥ 1
2λ

B , r ∈ {0, . . . , t},
f (Mr;X) ≤ (1− ηµ)rf (M0, X) , r ∈ {0, . . . , t}

(34)

14



Denote µ := 1
4 (λ

B)2∥WO∥22. Let us discuss about the value of µ. We know WO ∈ RHd×1,
B⊤

0 ∈ RHD×Nn. We require µ > 0, i.e, λB > 0, which implies B has full row rank. For simplicity,
let us consider the H = 1 case. Recall the definition of B:

B :=

(
S11X1

· · ·
SN1XN

)

Suppose we initialize WQ
1 ,W

K
1 such that each Si1 ∈ Rn×n is full rank, then we can easily show

that rank(Si1Xi) = n if Xi has full row rank. Suppose embedding dimension D is large, with
certain assumption on X , we can show B has full row rank. For example, if each Xi follows
standard Gaussian distribution withD >> N , then rank(B) = Nn with probability 1 if we initialize
WQ

1 ,W
K
1 such that Si1 is full rank.

Further, let us assume that
H∑

h=1

(λ̄Qh )
2 > 1,

H∑
h=1

(λ̄Kh )2 > 1, and initialization condition satisfies:

54n2
√
NH∥X∥6F λ̄V

( H∑
h=1

(λ̄Qh )
2 + (λ̄Kh )2

)
(λB)2∥WO∥2 min

(
λ̄Qh , λ̄

K
h , 1, λ

B
) ≤ 1 (35)

Remark 5. The initialization condition can be satisfied if ∥WO∥2 is large and σmax(W
V ) is small.

ν in Equation (8) is 1
54 .

It is clear that Equation (34) holds when t = 0. Suppose it holds at iteration t, we prove it holds at
iteration t+ 1.

∥∥WV
r+1 −WV

0

∥∥
F

(i)

≤
r∑

s=0

∥∥WV
r+1 −WV

r

∥∥
F
= η

r∑
s=0

∥∇WV f (Mt;X)∥F

(ii)

≤ η

r∑
s=0

∥Br∥F ∥WO∥2 ∥MH(Mr;X)− y∥2
(iii)

≤ η∥Br∥F ∥WO∥2
r∑

s=0

(1− ηµ)
s/2 ∥MH(M0;X)− y∥2 ,

where (i) uses the triangle inequality; (ii) plugs in the expression of ∇WV f (Mt;X) and uses the
Cauchy-Schwartz inequality; (iii) is because we assume the loss function f(·) linearly decreases until
t-th iteration. Let u =

√
1− ηµ. So we have

η ∥Br∥F
∥∥WO

∥∥
2

∑
s=0

(1− ηµ)s/2 ∥MH (M0;X)− y∥2

≤ 1

µ
∥Br∥F ∥WO∥1− ur+1

1− u
(1− u2) ∥MH(M0;X)− y∥2

=
1

µ
∥ [Sr,1X1, · · · , Sr,NXN ] ∥F ∥WO∥1− ur+1

1− u
(1− u2) ∥MH(M0;X)− y∥2 (36)

(i)

≤ 2n
√
HN

µ
∥X∥F ∥WO∥2∥MH(M0;X)− y∥F

(ii)

≤ 1, (37)

where (i) is because each element in Sr,i has magnitude at most 1 and ∥Sr,i∥F ≤ n
√
H , then by

Cuachy-Schwartz inequality, we have ∥B∥r ≤
√
HN∥X∥F ; (ii) is due to the initialization condition.

Then by Weyl’s inequality, there is

σmax

(
WV

r+1

)
≤ σmax(W

V
0 ) + 1 =

3

2
λ̄V .
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Similarly, let us derive the upper bound for σmax(W
Q
h,r).∥∥∥WQ

h,r+1 −WQ
h,0

∥∥∥
F

(i)

≤
r∑

s=0

∥∥∥WQ
h,r+1 −WQ

h,r

∥∥∥
F
= η

r∑
s=0

∥∥∥∇WQ
h
f (Mt;X)

∥∥∥
F

(ii)

≤ η

r∑
s=0

√√√√ N∑
i=1

Q2
i ∥MH (Mr;X)− y∥2

(iii)

≤ η

√√√√ N∑
i=1

Q2
i

r∑
s=0

(1− ηµ)s/2 ∥MH (M0;X)− y∥2

≤

√
N∑
i=1

Q2
i

µ

1− ur+1

1− u

(
1− u2

)
∥MH (M0;X)− y∥2

≤
2

√
N∑
i=1

Q2
i

µ
∥MH (M0;X)− y∥2

(iv)

≤ 1

2
λ̄Qh ,

where (i) uses triangle inequality; (ii) uses Lemma 2 (4); (iii) comes from the assumption that
loss function f(·) linearly decreases until t-th iteration; (iv) is due to the initialization condition
Equation (35). Similarly, we can show

η

√√√√ N∑
i=1

K2
i

r∑
s=0

(1− ηµ)s/2 ∥MH (M0;X)− y∥2

≤
2

√
N∑
i=1

K2
i

µ
∥MH (M0;X)− y∥2 ≤ 1

2
λ̄Kh . (38)

Then by Weyl’s inequality, there is

σmax

(
WQ

h,t+1

)
≤ σmax(W

Q
h,0) +

1

2
λ̄Qh =

3

2
λ̄Qh ; σmax

(
WK

h,t+1

)
≤ σmax(W

K
h,0) +

1

2
λ̄Kh =

3

2
λ̄Kh .

Now we aim to bound the eigenvalues of Br+1.

∥Br+1 −B0∥F ≤
r∑

s=0

∥Bs+1 −Bs∥F =

N∑
i=1

r∑
s=0

∥Si,s+1Xi − Si,sXi∥F

(i)

≤
N∑
i=1

r∑
s=0

∥Xi∥F ∥Si,s+1 − Si,s∥F
(ii)

≤
N∑
i=1

r∑
s=0

∥Xi∥F
H∑

h=1

∥Sih,s+1 − Sih,s∥F

(iii)

≤ η

N∑
i=1

r∑
s=0

∥Xi∥F ·
√
ϕ2i + ψ2

i · ∥ (∇WQf(Ms;Xi),∇WKf(Ms;Xi)) ∥F

(iv)

≤
N∑
i=1

r∑
s=0

∥Xi∥F ·
√
ϕ2i + ψ2

2 ·
√
Q2

i +K2
i · ∥MH (Ms, Xi)− yi∥F

(v)

≤ η

r∑
s=0

√√√√ N∑
i=1

∥Xi∥2F (ϕ2i + ψ2
i )(Q

2
i +K2

i )(1− ηµ)s/2 ∥MH (M0;X)− y∥2

,

where (i) and (ii) uses triangle inequality and Cauchy-Schwartz inequality; (iii) comes from Lemma 2
(5); (iv) uses Lemma 2 and Cauchy-Schwartz inequality; (v) comes from Cauchy-Schwartz inequality.
Together with our initialization condition, we have

∥Br+1 −B0∥F ≤ 1

µ

√√√√ N∑
i=1

∥Xi∥2F (ϕ2i + ψ2
i )(Q

2
i +K2

i ) ·
1− ur+1

1− u
∥MH (M0;X)− y∥2

≤ 2

µ

√√√√ N∑
i=1

∥Xi∥2F (ϕ2i + ψ2
i )(Q

2
i +K2

i ) ∥MH (M0;X)− y∥2
(i)

≤ 1

2
λB ,
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where (i) comes from the initialization condition 35. By Weyl’s inequality, we can derive the bound
for the singular values of Bt:

σmin(Br+1) ≥ σmin(B0)− ∥Br+1 −B0∥F ≥ 1

2
λB .

The final step is to show the last inequality holds. Since we have already showed
σmax(W

Q
h ), σmax(W

K
h ), σmax(W

V
h ) are bounded, by Lemma 3 (2) we can conclude that:

∥∇f (Mt+1;X)−∇f (Mt)∥2 ≤ G∥Mt+1 −Mt∥F

Thus by Lemma 4, we choose η < 1
2G , then the following hold true:

f (Mt+1;X) = f (Mt − η∇f(Mt;X);X)

(i)

≤ f (Mt;X)− η ∥∇f (Mt;X)∥2 + G

2
η2 ∥∇f (Mt;X)∥2

(ii)

≤ f (Mt;X)− 1

2
η ∥∇f (Mt;X)∥2

(iii)

≤ f (Mt;X)− 1

2
η

∥∥∥∥∂f (Mt;X)

∂WV

∥∥∥∥2
(iv)

≤ f (Mt;X)− 1

2
η∥WO ⊗B⊤

t (vec(MH(Mt;X)− y)) ∥2

(v)

≤ f (Mt;X)− 1

8
η∥WO∥22(λ

B)2 · f(Mt;X)

= (1− 1

4
∥WO∥22(λ

B)2) · f(Mt;X)

(vi)
= (1− ηµ)f(Mt;X),

where (i) uses Lemma 4; (ii) is because we set η < 1
2G ; (iii) only considers the gradient over WV ;

(iv) plugs in the closed form gradient in Lemma 1; (v) uses the property of smallest singular value
and induction assumption; (vi) comes from the definition of µ.

1.4 Lemma for Theorem 3

The following lemmas all consider the Transformers with Gaussian kernel attention 11.

Lemma 6.

(1)
∂f(M ;X)

∂WV
= B⊤ (MH(M ;X)− y)

(
WO

)⊤
(39)

(2) vec

(
∂f(M ;X)

∂WV

)
=
〈
(WO)⊤ ⊗B, vec(MH(M ;X)− y)

〉
=
(
IHd ⊗B⊤) · (WO ⊗ IN

)
· (MH(M ;X)− y) (40)

(3)
∂f(M ;X)

∂WQ
h

=
∂f(M ;X)

∂C
· ∂C

∂WQ
h

=

N∑
i=1

∂f(M ;Xi)

∂Ci
· ∂Ci

∂WQ
h

(41)

(4)
∂f(M ;Xi)

∂Ci
=
(
(MH(M ;Xi)− yi)

(
WO

)⊤
(V ′

i )
⊤
)
⊙ Si (42)

(5)
∂f(M ;X)

∂C
=

[
∂f(M ;X1)

∂C1
, · · · , ∂f(M ;XN )

∂CN

]⊤
(43)
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Lemma 7. Consider updating WQ,WK ,WV at iteration t. Suppose σmax(W
Q), σmax(W

K),
σmax(W

V ) are bounded during in the optimization phase, then we have the following conclusion:

(1)∥d(Cih)∥F ≤
√

2n

d
∥Xi∥2F

√
σ2
max

(
WQ

h

)
+ σ2

max

(
WK

h

)
∥d(WQ

h )∥F (44)

(2)

∥∥∥∥∥d
(
∂Cih

∂WQ
h

)∥∥∥∥∥
F

≤
√
n∥Xi∥2F · ∥d(WQ

h )∥F . (45)

(3)∥∂f(M ;Xi)

∂Ci
∥F ≥ min |ViWO| ·minSi · ∥MH (M ;Xi)− yi∥2, (46)

where Ri = (MH (M ;Xi)− yi)
(
WO

)⊤
(V ′′

i )
⊤
. (47)

(4)

∥∥∥∥∥∂f(M ;Xi)

∂WQ
h

∥∥∥∥∥
F

≤ Q′
i∥MH(M ;Xi)− yi∥2, (48)

Q′
i =

√
2n

d
∥Xi∥3F ∥WO∥2σmax(W

V )

√
σ2
max

(
WQ

h

)
+ σ2

max

(
WK

h

)
(49)

where min |V ′WO| is the smallest absolute value of each element in vector V ′WO; minS is the
smallest element in matrix S.

Lemma 8. Consider updating WQ,WK ,WV at iteration t. Suppose σmax(W
Q), σmax(W

K),
σmax(W

V ) are bounded during in the optimization phase, then we have the following conclusion:

∥MH(Mt+1;X)−MH(Mt;X)∥F ≤ Z ′∥Mt+1 −Mt∥F ,where Z ′ is some positive constant.
(50)

∥∇f (Mt+1;X)−∇f (Mt;X)∥2 ≤ G′∥Mt+1 −Mt∥F ,where G′ is some positive constant.
(51)

1.5 Proof Sketch of Theorem 3.

(1)Using GD update rule, we aim to iteratively show
σmax(W

Q
r ) ≤ 3

2 λ̄
Q, r ∈ {0, . . . , t},

σmin

(
∂Ch(Mr)

∂WQ
h

)
≥ 1

2δ, r ∈ {0, . . . , t},
minSr ≥ κ, r ∈ {0, . . . , t},
f (Mr;X) ≤ (1− ηγ)rf (M0, X) , r ∈ {0, . . . , t}

(52)

Denote γ := 1
2δ

2κ2
(
min

∣∣V ′WO
∣∣)2. Let us discuss about the value of γ. We knowWO ∈ RHdV ×1,

B⊤
0 ∈ RHD×Nn, where Hd > 1, HD > Nn. We require γ > 0, i.e, δ > 0, κ > 0,min

∣∣V ′WO
∣∣ >

0. It is clear that κ > 0 can hold as long as WQ
h is bounded. And it is easy to show that if Xi ̸= 0, we

can always choose WV and WO, such that min
∣∣V ′WO

∣∣ > 0. Since ∂Ch(M)

∂WQ
h

∈ RNn2×Dd, suppose

we initialize WQ
h ,W

K
h such that rank(∂Ch(M0)

∂WQ
h

) = Nn2, then we have σmin

(
∂Ch(M0)

∂WQ
h

)
≥ δ for

some positive constant δ. Further, we assume the initialization condition satisfies:

8n∥X∥5F ∥WO∥2λ̄V (λ̄Qh + λ̄Kh ) exp

(
9
4∥X∥2F

((
λ̄Qh

)2
+
(
λ̄Kh
)2))

δ2 (min (|V ′WO|))2 ·min
(
δ, λ̄Qh

) ∥MH(M0;X)− y∥2 ≤ 1

(53)

Remark 6. The initialization condition can be satisfied if ∥WO∥2 is large and σmax(W
V ) is small.

ν′ in Equation (12) is 1
8 .
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Similar to the proof of Theorem 2, we use induction to prove the theorem. Equation (52) holds when
t = 0. Suppose it holds at iteration t, we prove it holds at iteration t+ 1.∥∥∥WQ

h,r+1 −WQ
h,0

∥∥∥
F

(i)

≤
r∑

s=0

∥∥∥WQ
h,r+1 −WQ

h,r

∥∥∥
F
= η

r∑
s=0

∥∥∥∇WQ
h
f (Mt;X)

∥∥∥
F

(ii)

≤ η

r∑
s=0

√√√√ N∑
i=1

Q′
i
2 ∥MH(Mr;X)− y∥2

(iii)

≤ η

√√√√ N∑
i=1

Q′
i
2

r∑
s=0

(1− ηγ)
s/2 ∥MH(M0;X)− y∥2 ,

where (i) uses triangle inequality; (ii) comes from Lemma 7 and Cauchy-Schwartz inequality; (iii)
is from the induction assumption that loss function f(·) linearly decreases until t-th iteration. Let
u =

√
1− ηγ. So we have

∥∥∥WQ
h,r+1 −WQ

h,0

∥∥∥
F
≤ η

√√√√ N∑
i=1

Q′
i
2

r∑
s=0

(1− ηγ)s/2 ∥MH (M0;X)− y∥2 (54)

≤ 1

γ

√√√√ N∑
i=1

Q′
i
2 1− ur+1

1− u
(1− u2) ∥MH(M0;X)− y∥2

≤
2

√
N∑
i=1

Q′
i
2

γ
∥MH(M0;X)− y∥F

(i)

≤ 1

2
λ̄Qh , (55)

where (i) comes from the initialization condition. Then by Weyl’s inequality, there is

σmax

(
WQ

h,t+1

)
≤ σmax(W

Q
h,0) +

1

2
λ̄Qh =

3

2
λ̄Qh .∥∥∥∥∥∂Ch (Mr+1)

∂WQ
h

− ∂Ch (M0)

∂WQ
h

∥∥∥∥∥
F

(i)

≤
r∑

s=0

∥∥∥∥∥∂Ch (Ms+1)

∂WQ
h

− ∂Ch (Ms)

∂WQ
h

∥∥∥∥∥
F

(ii)

≤ η
√
n∥X∥2F

r∑
s=0

∥∥∥∇WQ
h
f (Ms;X)

∥∥∥
F

(iii)

≤ η
√
n∥X∥2F

r∑
s=0

√√√√ N∑
i=1

Q′
i
2 ∥MH (Ms;X)− y∥2

(iv)

≤ η
√
n∥X∥2F

√√√√ N∑
i=1

Q′
i
2

r∑
s=0

(1− ηγ)s/2 ∥MH (M0;X)− y∥2 ,

≤ 2

γ

√
n∥X∥2F

√√√√ N∑
i=1

Q′
i
2∥MH (M0;X)− y∥2

(v)

≤ 1

2
δ,

where (i) uses triangle inequality; (ii) applies Lemma 7 (2) and Cauchy-Schwartz inequality; (iii)
uses Lemma 7 (4); (iv) applies the induction assumption that the loss function f(·) linearly decreases
until t-th iteration; (v) comes from the initialization condition. Then by Weyl’s inequality, there is

σmax

(
∂Ch (Mt+1)

∂WQ
h

)
≥ σmax

(
∂Ch (M0)

∂WQ
h

)
− 1

2
δ =

1

2
δ.

For each element in Sih, we have close form

S
(
WQ

h ,W
K
h ;Xi

)
kj

= exp

(
− 1

2
√
d

∥∥∥Xik ·WQ
h −Xij ·WK

h

∥∥∥2)
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Since we have already showed that σmax

(
WQ

h,r

)
≤ 3

2 λ̄
Q
h , it follows directly each element in matrix

St is lower bounded by some constant κ for any t. Now we derive the expression of κ:

exp

(
− 1

2
√
d

∥∥∥Xik ·WQ
h,t −Xij ·WK

h

∥∥∥2)
(i)

≥ exp

(
− 1√

d

(
∥Xik ·WQ

h,t∥
2 + ∥Xij ·WK

h ∥2
))

(ii)

≥ exp

(
− 1√

d

(9
4
(λ̄Qh )

2∥Xik·∥2 + (λ̄Kh )2∥Xij·∥2
))

(iii)

≥ exp

(
−9

4
∥X∥2F

(
(λ̄Qh )

2 + (λ̄Kh )2
))

:= κ,

where (i) uses Cauchy-Schwartz inequality; (ii) applies the induction assumption σmax(W
Q
h,t) ≤

3
2 λ̄

Q
h

and property of singular value; (iii) is because d ≥ 1. Thus, we have minSt ≥ κ. Finally, we aim to
show f (Mt+1;X) ≤ (1− ηγ)f (Mt, X). By Lemma 8, since we have showed that σmax(W

Q
h ) is

bounded, we can directly derive that

∥∇f (Mt+1;X)−∇f (Mt;X)∥2
=
∥∥∥∇WQ

h
f (Mt+1;X)−∇WQ

h
f (Mt;X)

∥∥∥
2

≤ G′∥Mt+1 −Mt∥F

Finally, by Lemma 4, choose η < 1
2G′ , we have the following holds:

f (Mt+1;X) = f (Mt − η∇f(Mt;X);X)

(i)

≤ f (Mt;X)− η ∥∇WQf (Mt;X)∥2 + G′

2
η2 ∥∇WQf (Mt;X)∥2

(ii)

≤ f (Mt;X)− 1

2
η
∥∥∥∇WQ

h
f (Mt;X)

∥∥∥2
(iii)
= f (Mt;X)− 1

2
η

∥∥∥∥∥∂f(Mt;X)

∂C(Mt)
·

(
∂C(Mt)

∂WQ
h

)∥∥∥∥∥
2

F

(iv)

≤ f (Mt;X)− 1

4
ηδ2

∥∥∥∥∂f (Mt;X)

∂C (Mt)

∥∥∥∥2
F

(v)

≤ f (Mt;X)− 1

4
ηδ2

∥∥∥((MH (M ;X)− y)
(
WO

)⊤
(V ′)

⊤
)
⊙ S

∥∥∥2
F

(vi)

≤ f (Mt;X)− 1

4
ηδ2κ2 · (min |V ′WO|)2 ∥MH (M0;X)− y∥22

(vii)
= (1− ηγ)f(Mt;X),

where (i) uses Lemma 4 (2); (ii) is because we choose η < 1
2G′ ; (iii) writes down the ex-

pression of gradient according to chain rule in Lemma 6; (iv) uses the induction assumption
σmax

(
∂Ch(Mt+1)

∂WQ
h

)
≥ 1

2δ and property of singular value; (v) uses Lemma 6 (4); (vi) comes from

Lemma 7 (3); (vii) uses the definition of γ.

(2)Next, we show the convergence result for Transformer with Softmax kernel with onlyWQ updated.
Since we assume parameters are all bounded during optimization phase, by Lemma 8, we can easily
show that there exists constant G′ (see xx for details), such that∥∥∥∇WQ

h
f (Mt+1;X)−∇WQ

h
f (Mt;X)

∥∥∥
2
≤ G′ ∥Mt+1 −Mt∥F (56)
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Then by Lemma 4, choose η′ < 1
2G′ we have

f (Mt+1;X) = f (Mt − η∇f (Mt;X) ;X)

≤f (Mt;X)− η′ ∥∇f (Mt;X)∥2 + G′

2
η′2 ∥∇f (Mt;X)∥2

≤ f (Mt;X)− 1

2
η′ ∥∇f (Mt;X)∥2

1.6 Proof of Lemma in Section 1.2

Proof of Lemma 2 (1).

Proof. Step 1: When WQ,WK are updated, we aim to prove

∥d(Si)∥F ≤ n∥d(Ci)∥F .

Step 2: We aim to show ∥d(Ci)∥F ≤ n√
d
∥Xi∥2F

√
H∑

h=1

σ2
max

(
WK

h

)
·
∥∥d (WQ

)∥∥
F

. Combine the

above two steps, we can derive the bound in Equation (27).
Proof of Step 1: First, we can write down the closed form of the differential of Si:

∥d(Si)∥F = ∥Si ⊙ d(Ci)− Si ⊙Υ((expCi)E)⊙ d(exp(Ci)E))∥F (57)

We reorganize the terms on the right side of Equation (57), we have the following equation:

∥d(Si)∥F = ∥Si ⊙
(
d(Ci)−Υ((expCi)E)⊙ d((expCi)E)

)
∥F

= ∥Si ⊙
(
d(Ci)−Υ((expCi)E)⊙ ((expCi)⊙ d(Ci))E

)
∥F (58)

Since Ci = [Ci1, · · · , CiH ], we will investigate each Cih, h = 1, 2, · · · , H . We focus on the term
d(Ci)−Υ((expCi)E)⊙ (exp(Ci)⊙ d(Ci))E in Equation (58). We write down the close form of
the element in the k-th row and j-th column:

[d(Cih)−Υ(exp(Cih)E)⊙ (exp(Cih)⊙ d(Cih))E]kj (59)

(i)
=

1− exp (Cihkj)
n∑

j=1

exp (Cihkj)

 d(Cihkj)−

∑
p ̸=j

exp (Cihkp) d(Cihkp)

n∑
j=1

exp (Cihkj)
(60)

(ii)

≤

√√√√√√√
1− exp (Cihkj)

n∑
j=1

exp (Cihkj)


2

+
∑
p̸=j

 exp(Cihkp)
n∑

j=1

exp (Cihkj)


2

·

√√√√ n∑
j=1

(
d(Cihkj)

)2
(61)

(iii)

≤
√
n∥d(Cihk)∥F , (62)

where (i) is expand the closed form of Equation (59); (ii) uses the Cauchy-Schwartz inequality; (iii)
is because each element in the square root in (ii) is upper bounded by 1. With Equation (61), we can
easily show

∥d(Cih)−Υ((expCih)E)⊙ ((expCih)⊙ d(Cih))E∥F ≤
√
n

√√√√ n∑
k=1

n∑
j=1

∥d(Cihk)∥2F ≤ n∥d(Cih)∥F

(63)

Since every element in Si has magnitude less than 1, we have

∥d(Si)∥F = ∥Si ⊙ (d (Ci)−Υ((expCi)E)⊙ ((expCi)⊙ d (Ci))E)∥F (64)
≤ ∥d(Cih)−Υ((expCih)E)⊙ ((expCih)⊙ d(Cih))E∥F (65)
(i)

≤ n
√
H∥d(Ci)∥F , (66)
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where (i) is from Cauchy-Schawatz inequality.

Proof of Step 2: We aim to show ∥d (Ci)∥F ≤ n√
d
∥Xi∥2F

√∑H
h=1 σ

2
max

(
WK

h

)
·
∥∥d (WQ

)∥∥
F

. Sim-
ilarly, we investigate ∥d(Cih)∥F , h = 1, 2, · · · , H. We have

∥d(Cih)∥F =

∥∥∥∥∥Xid(W
Q
h )
(
XiW

K
h

)⊤
√
d

∥∥∥∥∥
F

≤ 1√
d
∥Xi∥2Fσmax(W

K
h )∥d(WQ

h )∥F (67)

Then plug the above inequality to Equation (63), we can derive

∥d(Sih)∥F ≤ n√
d
∥Xi∥2Fσmax

(
WK

h

) ∥∥∥d(WQ
h )
∥∥∥
F

(68)

Thus by Cauchy-Schwartz inequality, it is easy to show

∥d(Si)∥F ≤ n√
d
∥Xi∥2F

√√√√ H∑
h=1

σ2
max

(
WK

h

)
·
∥∥d (WQ

)∥∥
F
.

Proof of Lemma 2 (4).

Proof. We first write down the close form of gradient of f(·) over WQ
h by Lemma 1, and derive the

upper bound of the norm of the gradient.∥∥∥∥∥∂f(M ;Xi)

∂WQ
h

∥∥∥∥∥
F

=

∥∥∥∥ 1√
d
X⊤

i

∂f(M ;Xi)

∂Ci
P⊤
hXiW

K
h

∥∥∥∥
F

≤ ∥Xi∥2Fσmax(W
K
h )

∥∥∥∥∂f (M ;Xi)

∂Ci

∥∥∥∥
F

(69)
By Lemma 1, there is

∂f(M ;Xi)

∂Ci
=
(
(MH(M ;Xi)− yi)

(
WO

)⊤
(V ′

i )
⊤
)
⊙ Si

−
(((

(MH(M ;Xi)− yi)
(
WO

)⊤
(V ′

i )
⊤
)
⊙ Si ⊙Υ

(
(expCi)E

))
E⊤
)
⊙ expCi (70)

Denote Ri = (MH (M ;Xi)− yi)
(
WO

)⊤
(V ′

i )
⊤
, Ri = [Ri1, · · · , RiH ]. Write down the close

form of the element in the k-th row and j-th column:[
RihSih −

(
(Rih ⊙ Cih ⊙Υ((expCih)E))E⊤)⊙ (expCih)

]
kj

= RihkjSihkj −
exp(Cihkj)

n∑
j=1

RihkjSihkj

n∑
j=1

exp(Cihkj)

=

Sihkj −
(expCihkj)Sihkj

n∑
j=1

exp(Cihkj)

 ·Rihkj −
∑
p ̸=j

(expCihkp)Sihkj
n∑

j=1

exp(Cihkp)
Rihkp

(i)

≤

√√√√√√√
(
1− exp (Cihkj)∑n

j=1 exp (Cihkj)

)2

+
∑
p ̸=j

 exp (Cihkp)
n∑

j=1

exp (Cihkj)


2

· ∥Rihk∥F

(ii)

≤
√
n∥Rihk∥F
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where (1) is due to the Cauchy-Schwartz inequality; (ii) is because each element within the squre
root term in (i) has magnitude at most 1. Thus, we can further derive∥∥∥∥∂f (M ;Xi)

∂Cih

∥∥∥∥
F

=
∥∥Rih ⊙ Sih −

(
(Rih ⊙ Sih ⊙Υ((expCih)E))E⊤)⊙ expCih

∥∥
F

(i)

≤
√
n

n∑
k=1

n∑
j=1

∥Rihk∥F
(ii)

≤ n∥Rih∥F

(iii)

≤ n∥Xi∥F ∥WO∥2σmax(W
V
h )∥MH(M ;Xi)− yi∥2,

where (i) if from the bound in Equation (71); (ii) comes from Cauchy-Schwatz inwquality; (iii) uses
the property of Frobenious norm. Thus, by Cauchy-Schwartz inequality, we can derive the upper
bound for

∥∥∥∂f(M ;Xi)
∂Ci

∥∥∥
F

.∥∥∥∥∂f (M ;Xi)

∂Ci

∥∥∥∥
F

≤ n
√
H∥Xi∥F ∥WO∥2σmax(W

V )∥MH(M ;Xi)− yi∥2 (71)

So plug the above inequality into Equation (69), we can derive the upper bound for
∥∥∥∂f(M ;Xi)

∂WQ
h

∥∥∥
F

:∥∥∥∥∥∂f (M ;Xi)

∂WQ
h

∥∥∥∥∥
F

≤ ∥Xi∥2F σmax

(
WK

h

) ∥∥∥∥∂f (M ;X)

∂Ci

∥∥∥∥
F

≤ n
√
H ∥Xi∥3F

∥∥WO
∥∥
2
σmax

(
WK

h

)
σmax

(
WV

h

)
∥MH (M ;Xi)− yi∥2

≤ n
√
H ∥Xi∥3F

∥∥WO
∥∥
2

√√√√ H∑
h=1

σ2
max

(
WK

h

)
σmax

(
WV

)
∥MH (M ;Xi)− yi∥2

Proof of Lemma 3 (1). By Mean Value Theorem and Cauchy-Schwartz inequality,
|f (Mt+1;Xi)− f (Mt;Xi) |

=

〈
∂f(M ′

t ;Xi)

∂W
,Mt+1 −Mt

〉

≤

√∥∥∥∥∂f(M ′
t ;Xi)

∂WQ

∥∥∥∥2 + ∥∥∥∥∂f(M ′
t ;Xi)

∂WK

∥∥∥∥2 + ∥∥∥∥∂f(Mt;Xi)

∂WV

∥∥∥∥2∥Mt+1 −Mt∥F , (72)

where M ′
t is between Mt and Mt+1. We can derive the upper bound of the norm of ∇WV f(M ;Xi):∥∥∥∥∂f(Mt;Xi)

∂WV

∥∥∥∥
F

= ∥B⊤
i (MH(Mt;Xi)− yi)

(
WO

)⊤ ∥F

≤ ∥Bi∥F ∥MH(Mt;Xi)− yi∥F ∥WO∥2
≤ n

√
H∥Xi∥F ∥WO∥2∥MH(Mt;Xi)− yi∥F (73)

By Lemma 2, we know∥∥∥∥∂f(Mt;Xi)

∂WQ

∥∥∥∥
F

≤ Qi ∥MH (M ;Xi)− yi∥2 ;
∥∥∥∥∂f(Mt;Xi)

∂WK

∥∥∥∥
F

≤ Ki ∥MH (M ;Xi)− yi∥2 .

∥f (Mt+1;Xi)− f (Mt;Xi)∥2 ≤
√
Q2

i +K2
i + n2Hσ2

max(Xi)∥WO∥2∥Mt+1 −Mt∥F
:= Zi∥Mt+1 −Mt∥F (74)

Therefore, together with Equation (73), we have

∥f (Mt+1;X)− f (Mt;X)∥2 ≤ N
√

max
i
Q2

i +max
i
K2

i + n2Hmax
i

∥Xi∥2F ∥Mt+1 −Mt∥F

:= Z∥Mt+1 −Mt∥F (75)

Proof of Lemma 3 (2).
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Proof. By triangle inequality, we have

∥∇W f(Mt+1;X)−∇W f(Mt;X)∥F
≤ ∥∇WQf(Mt+1;X)−∇WQf(Mt+1;X)∥F + ∥∇WKf(Mt+1;X)−∇WKf(Mt+1;X)∥F
+ ∥∇WV f(Mt+1;X)−∇WV f(Mt+1;X)∥F (76)

≤
N∑
i=1

(
∥∇WQf (Mt+1;X)−∇WQf (Mt+1;X)∥F + ∥∇WKf (Mt+1;X)−∇WKf (Mt+1;X)∥F

(77)

+ ∥∇Wvf (Mt+1;X)−∇Wvf (Mt+1;X) ∥F
)

(78)

Step 1: Derive upper bound for

∥∇WQf(Mt+1;Xi))−∇WQf(Mt;Xi))∥F = ∥ vec(∇WQf(Mt+1;Xi))−vec(∇WQf(Mt;Xi))∥2.
First, we give the vectorized expression of ∇WQf (Mt;Xi). Recall we denote Ui =(
(MH (M ;Xi)− yi)

(
WO

)⊤
(V ′

i )
⊤
)
⊙ Si. By Lemma 1, we can derive the close form of

vec(∇WQf(Mt;Xi)):

vec(∇WQf(M ;Xi))
(i)
= vec(Ui)− vec

(
(Ui ⊙Υ((expCi)E))E⊤)⊙ vec(expCi)

(ii)
= vec(Ui)− (E⊗ In) vec

(
Ui ⊙Υ((expCi)E)

)
⊙ vec(expCi)

(iii)
= vec(Ui)− (E⊗ In) vec(Ui)⊙ vec

(
Υ((expCi)E)

)
⊙ vec(expCi)

(iv)
= vec(Ui)− (E⊗ In) vec(Ui)⊙ vec(Si)

(v)
= In2H vec(Ui)⊙ vec(1n1

⊤
nH)− (E⊗ In) vec(Ui)⊙ vec(Si)

(vi)
=
(
In2H − (E⊗ In)

)
vec(Ui)⊙ vec(1n1

⊤
nH − Si), (79)

where (i) uses the Lemma 1; (ii) and (iii) comes from the property of vectorization in Lemma 5; (vi)
uses the definition of Si ; (v) gives an equivalent expression of vec(Ui); (vi) reorganizies (v). Further,
it is easy to verify that:

∥Ui∥F =
∥∥∥((MH (M ;Xi)− yi)

(
WO

)⊤
(V ′

i )
⊤
)
⊙ Si

∥∥∥
F
≤ ∥Ri∥F

= (∥MH (M ;Xi) ∥2 + ∥yi∥2)∥WO∥2∥Xi∥Fσmax(W
V )

≤
(
n
√
Hσmax(W

V )∥Xi∥F ∥WO∥2 + ∥yi∥2
) ∥∥WO

∥∥
2
∥Xi∥F σmax

(
WV

)
≤
(
n
√
Hσmax

(
WV

)
∥X∥F

∥∥WO
∥∥
2
+ ∥y∥2

)∥∥WO
∥∥
2
∥X∥F σmax

(
WV

)
:= R̄ (80)

Next, let us derive upper bound for ∥∇WQf (Mt+1;Xi)−∇WQf (Mt+1;Xi)∥F .

∥∇WQf(Mt+1;Xi)−∇WQf(Mt+1;Xi)∥F
(i)
=
∥∥(In2H − (E⊗ In)

)(
vec(Ui,t+1)⊙ vec(Si,t+1)− vec(Ui,t)⊙ vec(Si,t)

)∥∥
F

=
∥∥(In2H − (E⊗ In)

)(
vec(Ui,t+1)⊙ vec(Si,t+1)− vec(Ut)⊙ vec(Si,t+1) + vec(Ui,t)⊙ vec(Si,t+1)− vec(Ui,t)⊙ vec(Si,t)

)∥∥
F

(ii)

≤ ∥In2H − (E⊗ In)∥F
(
∥ vec(Ui,t+1 − Ui,t)∥F + ∥Ui,t∥F ∥Si,t+1 − Si,t∥F

)
(iii)

≤ n
√
H
(
∥vec (Ui,t+1 − Ui,t)∥F + R̄ ∥Si,t+1 − Si,t∥F

)
(iv)
= n

√
H
(
∥Ri,t+1 ⊙ Si,t+1 −Ri,t ⊙ Si,t∥F + R̄∥Si,t+1 − Si,t∥F

)
= n

√
H
(
∥(Ri,t+1 ⊙ Si,t+1 −Ri,t ⊙ Si,t+1 +Ri,t ⊙ Si,t+1 −Ri,t ⊙ Si,t)∥F + R̄∥Si,t+1 − Si,t∥F

)
(v)

≤ n
√
H
(
∥(Ri,t+1 −Ri,t)⊙ Si,t+1∥F + ∥Ri,t ⊙ Si,t+1 −Ri,t ⊙ St)∥F + R̄∥St+1 − St∥F

)
(vi)

≤ n
√
H
(
∥Ri,t+1 −Ri,t∥F + ∥Ri,t∥F ∥Si,t+1 − Si,t∥F + R̄∥Si,t+1 − Si,t∥

)
, (81)
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where (i) plugs in the expression in Equation (79); (ii) uses the fact that each element in Si,t+1 has
magnitude at most 1, and Cauchy-Schwartz inequality; (iii) comes from the definition of I,E and R̄;
(iv) uses the definition of Ui,t; (v) is because triangle inequality; (vi) uses the fact that each element
in Si,t+1 has magnitude at most 1, and Cauchy-Schwartz inequality. Next, we aim to derive upper
bound of ∥Ri,t+1 −Ri,t∥F in Equation (81).

∥Ri,t+1 −Ri,t∥F =
∥∥(MH(Mt+1;Xi)− yi

)
WO(V ′

i,t+1)−
(
MH(Mt;Xi)− yi

)
WO(V ′

i,t)
∥∥
F

= ∥
(
MH(Mt+1;Xi)− yi

)
WO(V ′

i,t+1)−
(
MH(Mt;Xi)− yi

)
WO(V ′

i,t+1)+(
MH(Mt;Xi)− yi

)
WO(V ′

i,t+1)−
(
MH(Mt;Xi)− yi

)
WO(V ′

i,t)∥F
(i)

≤ ∥
(
MH(Mt+1;Xi)−MH(Mt;Xi)

)
(V ′

i,t+1)W
O∥F + ∥

(
MH(Mt;Xi)− yi

)
(V ′

i,t+1 − V ′
i,t)W

O∥F
(ii)

≤ Zi∥Mt+1 −Mt∥F ∥∥Xi∥Fσmax(W
V )∥WO∥2

+
(
∥MH(Mt+1;Xi)∥F + ∥yi∥2

)
∥Xi∥F ∥WV

t+1 −WV
t ∥F ∥WO∥2

(iii)

≤ Zi∥Xi

∥∥
Fσmax

(
WV

)∥∥WO∥2 ∥Mt+1 −Mt∥F
+
(
n
√
Hσmax

(
WV

)
∥Xi∥F

∥∥WO
∥∥
2
+ ∥yi∥2

)
∥Xi∥F

∥∥WV
t+1 −WV

t

∥∥
F

∥∥WO
∥∥
2

(iv)

≤
(
Zi ∥Xi∥F σmax

(
WV

) ∥∥WO
∥∥
2
+ (n

√
Hσmax

(
WV

)
∥Xi∥F

∥∥WO
∥∥
2
+ ∥yi∥2) ∥Xi∥F ∥WO∥2

)
× ∥Mt+1 −Mt∥F

:= Pi∥Mt+1 −Mt∥F , (82)

where (i) is because of the triangle inequality; (ii) uses the definition of Zi in Equation (74), Cauchy-
Schwartz inequality and triangle inequality; (iii) uses the Cauchy-Schwartz inequality; (iv) reorganizes
the terms in (iii). Plug Equation (82) into Equation (81), we can finally derive the bound for
∥∇WQf (Mt+1;Xi)−∇WQf (Mt+1;Xi)∥F .

∥∇WQf(Mt+1;Xi)−∇WQf(Mt+1;Xi)∥F
(i)

≤ n
√
H
(
∥Ri,t+1 −Ri,t∥F + ∥Ri,t∥F ∥Si,t+1 − Si,t∥F + R̄ ∥Si,t+1 − Si,t∥

)
(ii)

≤ n
√
HPi∥Mt+1 −Mt∥F + 2R̄n

√
H∥Si,t+1 − Si,t∥F

(iii)

≤ n
√
HPi∥Mt+1 −Mt∥F + 2R̄n

√
H
√
ϕ2i + ψ2

i ∥Mt+1 −Mt∥F

:= LQ
i ∥Mt+1 −Mt∥F ,

where (i) is from Equation (81); (ii) uses the definition of R̄ in Equation (80); (iii) comes from
Lemma 3 (3). Since WQ and WK are symmetric in the Transormer structure, similarly, we can
derive LK

i .
Step 2: In this step, we aim to derive bound for ∥∇Wvf (Mt+1;Xi)−∇Wvf (Mt;Xi)∥F .
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∥∇WV f(Mt+1;Xi)−∇WV f(Mt;Xi)∥F
(i)
=
∥∥∥B⊤

i,t+1 (MH (Mt+1;Xi)− y)
(
WO

)⊤ −B⊤
i,t (MH (Mt;Xi)− yi)

(
WO

)⊤∥∥∥
F

(ii)

≤
∥∥∥B⊤

i,t+1 (MH (Mt+1;Xi)− yi)
(
WO

)⊤ −B⊤
i,t+1 (MH (Mt;Xi)− yi)

(
WO

)⊤∥∥∥
F

+
∥∥∥B⊤

i,t+1 (MH (Mt;Xi)− yi)
(
WO

)⊤ −B⊤
i,t (MH (Mt;Xi)− yi)

(
WO

)⊤∥∥∥
F

(iii)

≤ ∥Bi,t+1∥F ∥ ∥MH (Mt+1;Xi)−MH (Mt;Xi)∥F ∥WO∥2 + ∥Bi,t+1 −Bi,t∥F ∥MH (Mt;Xi)− yi∥F ∥WO∥2
(iv)

≤ n
√
H∥Xi∥F ∥WO∥2Zi∥Mt+1 −Mt∥F + ∥Si,t+1 − Si,t∥F ∥Xi∥F ∥WO∥2 (∥MH (Mt+1;Xi)∥F + ∥yi∥2)

(v)

≤
√
ϕ2i + ψ2

i ∥Xi∥F
∥∥WO

∥∥
2

(
n
√
Hσmax

(
WV

)
∥Xi∥F

∥∥WO
∥∥
2
+ ∥yi∥2

)
∥Mt+1 −Mt∥F

+ n
√
H
∥∥WO

∥∥
2
∥Xi∥FZi ∥Mt+1 −Mt∥F

(vi)

≤
(√

ϕ2i + ψ2
i ∥Xi∥F

∥∥WO
∥∥
2

(
n
√
Hσmax

(
WV

)
∥Xi∥F

∥∥WO
∥∥
2
+ ∥yi∥2

)
+ n

√
H
∥∥WO

∥∥
2
Zi

)
∥Mt+1 −Mt∥F

:= LV
i ∥Mt+1 −Mt∥F

where (i) is from Lemma 1 (1); (ii) uses triangle inequality; (iii) uses Cauchy-Schwartz inequality;
(iv) comes from the definition of Bi,t,, Zi(in Equation (74)), Cauchy-Schwartz inequality and triangle
inequality; (v) comes from Lemma 2 (3) and Cauchy-Schwartz inequality; (vi) reorganizes (v).

Now we combine the result in Step 1 and Step 2, and plug into Equation (78), we can finally derive

∥∇W f (Mt+1;X)−∇W f (Mt;X)∥F ≤
N∑
i=1

(LQ
i + LK

i + LV
i )∥Mt+1 −Mt∥F

≤ N(max
i
LQ
i +max

i
LK
i +max

i
LV
i )∥Mt+1 −Mt∥F (83)

:= G∥Mt+1 −Mt∥F . (84)

1.7 Proof of Lemma in Section 1.4

Proof. Proof of Lemma 6 (1): We consider the differential of the element in the k-th row and j-th
column. First, let us write down the closed form of each element:

(Cih)kj = −∥Xik·W
Q
h −Xij·W

K
h ∥2/2

√
d

Next, we consider the differential of each element over WQ
h :

d (Cih)kj = − 1

2
√
d

(∥∥∥Xik·
(
WQ

h + d(WQ
h )
)
−Xij·W

K
h

∥∥∥2 − ∥∥∥Xik·(W
Q
h )−Xij·W

K
h

∥∥∥2)
= − 1√

d
⟨Xik·d(W

Q
h ), Xik·W

Q
h −Xij·W

K
h ⟩+ o

(
d(WQ

h )
)
,

where o(d(WQ
h )) denotes the higher order of d(WQ

h ). Leave out the higher order differential term,
we derive

∥d (Cih)kj ∥F ≤ 1√
d

(
∥Xik·∥2∥d(WQ

h )∥F · σmax(W
Q
h )∥Xik·∥2 + ∥d(WQ

h )∥F · σmax(W
K
h )∥Xik·∥2∥Xij·∥2

)
≤ 1√

d
∥Xik·∥2∥d(WQ

h )∥F (σmax(W
Q
h )∥Xik·∥2 + σmax(W

K
h )∥Xij·∥2)

≤ 1√
d
∥Xik·∥2

√
σ2
max(W

Q
h ) + σ2

max(W
K
h ) ·

√
∥Xik·∥22 + ∥Xij·∥22∥d(W

Q
h )∥F
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∥d (Cih)∥F =

n∑
k=1

n∑
j=1

∥d(Cih)kj∥2F

≤ 1√
d

n∑
k=1

n∑
j=1

∥Xik·∥2

√
σ2
max

(
WQ

h

)
+ σ2

max

(
WK

h

)
·
√
∥Xik·∥22 + ∥Xij·∥22∥d(W

Q
h )∥F

≤ 1√
d

√
σ2
max

(
WQ

h

)
+ σ2

max

(
WK

h

) n∑
k=1

∥Xik·∥

√√√√n∥Xik·∥22 +
n∑

j=1

∥Xij·∥2F ∥d(W
Q
h )∥F

≤ 1√
d

√
σ2
max

(
WQ

h

)
+ σ2

max

(
WK

h

)
·

√√√√ n∑
k=1

∥Xik·∥2F ·

√√√√ n∑
k=1

(n∥Xik·∥22 +
n∑

j=1

∥Xij·∥2F )∥d(W
Q
h )∥F

=
1√
d

√
σ2
max

(
WQ

h

)
+ σ2

max

(
WK

h

)
· ∥Xi∥F ·

√
2n∥Xi∥F ∥d(WQ

h )∥F

=

√
2n

d
∥Xi∥2F

√
σ2
max

(
WQ

h

)
+ σ2

max

(
WK

h

)
∥d(WQ

h )∥F

Proof. Proof of Lemma 7 (2): First, let us write down the closed form of ∂(Cih)kj

∂WQ
h

. We have

∂(Cih)kj

∂WQ
h

= −(Xik·W
Q
h −Xij·W

K
h )Id ⊗Xik· (85)

Thus, we can derive upper bound for
∥∥∥d(∂(Cih)kj

∂WQ
h

)∥∥∥
F

:∥∥∥∥∥d
(
∂ (Cih)kj

∂WQ
h

)∥∥∥∥∥
F

=
∥∥∥−(Xik·(W

Q
h + d(WQ

h ))−Xij·W
K
h

)
Id ⊗Xik +

(
Xik·W

Q
h −Xij·W

K
h

)
Id ⊗Xik·

∥∥∥
F
/
√
d

= ∥Xik·d(W
Q
h )Id ⊗Xik·∥F /

√
d

≤ ∥Xik·∥22∥Id∥F ∥d(W
Q
h )∥F /

√
d

= ∥Xik·∥22∥d(W
Q
h )∥F (86)

Thus, we have the following:∥∥∥∥∥d
(
∂ (Cih)

∂WQ
h

)∥∥∥∥∥
F

≤
n∑

k=1

n∑
j=1

∥∥∥∥∥d
(
∂ (Cih)kj

∂WQ
h

)∥∥∥∥∥
F

≤ ∥d(WQ
h )∥F

n∑
k=1

n∑
j=1

∥Xik·∥22

≤ n∥Xi∥2F ∥d(W
Q
h )∥F

Proof. Proof of Lemma 7 (3):∥∥∥∥∂f (M ;Xi)

∂Ci

∥∥∥∥
F

=
∥∥∥((MH (M ;Xi)− yi)

(
WO

)⊤
(V ′

i )
⊤
)
⊙ Si

∥∥∥
F

≥
∥∥∥((MH (M ;Xi)− yi)

(
WO

)⊤
(V ′

i )
⊤
)∥∥∥

F
·min |Si|

≥ min |V ′
iW

O| ·min |Si| · ∥MH (M ;Xi)− yi∥2.
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Proof. Proof of Lemma 7 (4):∥∥∥∥∥∂f(M ;Xi)

∂WQ
h

∥∥∥∥∥
F

=

∥∥∥∥∥vec
(
∂f(M ;Xi)

∂WQ
h

)∥∥∥∥∥
2

=

∥∥∥∥∥vec
(
∂f(M ;Xi)

∂Ci

)
· ∂Ci

∂WQ
h

∥∥∥∥∥
2

≤
∥∥∥∥∂f(M ;Xi)

∂Ci

∥∥∥∥
F

·

∥∥∥∥∥ ∂Ci

∂WQ
h

∥∥∥∥∥
2

=
∥∥∥((MH (M ;Xi)− yi)

(
WO

)⊤
(V ′

i )
⊤
)
⊙ Si

∥∥∥
F
·
√

2n

d
∥Xi∥2F

√
σ2
max

(
WQ

h

)
+ σ2

max

(
WK

h

)
≤
√

2n

d
∥Xi∥3F ∥WO∥2σmax(W

V )

√
σ2
max

(
WQ

h

)
+ σ2

max

(
WK

h

)
∥MH (M ;Xi)− yi∥2

Proof. Proof of Lemma 8 (1): The proof is similar to the proof of Lemma 3 (1). So we do not
include the details here. We can similarly derive

∥f (Mt+1;X)− f (Mt;X)∥2 ≤ N

√
max

i
Q′2

i +max
i
K ′2

i + n2Hmax
i

∥Xi∥2F ∥WO∥22 ∥Mt+1 −Mt∥F

:= Z ′ ∥Mt+1 −Mt∥F
(87)

Proof. Proof of Lemma 8 (2): By triangle inequality, we have

∥∇W f(Mt+1;X)−∇W f(Mt;X)∥F
≤ ∥∇WQf(Mt+1;X)−∇WQf(Mt+1;X)∥F + ∥∇WKf(Mt+1;X)−∇WKf(Mt+1;X)∥F
+ ∥∇WV f(Mt+1;X)−∇WV f(Mt+1;X)∥F

≤
N∑
i=1

(
∥∇WQf (Mt+1;X)−∇WQf (Mt+1;X)∥F + ∥∇WKf (Mt+1;X)−∇WKf (Mt+1;X)∥F

+ ∥∇Wvf (Mt+1;X)−∇Wvf (Mt+1;X) ∥F
)

(88)

Step 1: Derive upper bound for

∥∇WQf(Mt+1;Xi))−∇WQf(Mt;Xi))∥F = ∥ vec(∇WQf(Mt+1;Xi))−vec(∇WQf(Mt;Xi))∥2.

First, we give the vectorized expression of ∇WQf (Mt;Xi). Recall we denote Ui =(
(MH (M ;Xi)− yi)

(
WO

)⊤
(V ′

i )
⊤
)
⊙ Si. By Lemma 6, we can derive the close form of

vec(∇WQf(Mt;Xi)):

vec(∇WQf(M ;Xi))
(i)
= vec(Ui) · vec

(
∂Ci

∂WQ
h

)
(89)

Further, recall we have defined R̄ and the following inequality holds:

∥Ui∥F ≤ R̄ (90)
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Next, let us derive upper bound for ∥∇WQf (Mt+1;Xi)−∇WQf (Mt+1;Xi)∥F .

∥∇WQf(Mt+1;Xi)−∇WQf(Mt+1;Xi)∥F
(i)
=

∥∥∥∥∥vec(Ui,t+1) ·

(
∂Ci(Mt+1)

∂WQ
h

)
− vec(Ui,t) ·

(
∂Ci(Mt)

∂WQ
h

)∥∥∥∥∥
F

=

∥∥∥∥∥ vec(Ui,t+1) ·

(
∂Ci(Mt+1)

∂WQ
h

)
− vec(Ui,t+1) ·

(
∂Ci(Mt)

∂WQ
h

)
(91)

+ vec(Ui,t+1) ·

(
∂Ci(Mt)

∂WQ
h

)
− vec(Ui,t) ·

(
∂Ci(Mt)

∂WQ
h

)∥∥∥∥∥
F

(ii)

≤ ∥ vec(Ui,t+1)∥2

∥∥∥∥∥∂Ci (Mt+1)

∂WQ
h

− ∂Ci (Mt)

∂WQ
h

∥∥∥∥∥
2

+ ∥ vec(Ui,t+1 − Ui,t)∥2

∥∥∥∥∥∂Ci (Mt)

∂WQ
h

∥∥∥∥∥
2

(iii)

≤ R̄
√
n ∥Xi∥2F ·

∥∥∥d(WQ
h

)∥∥∥
F
+ ∥vec (Ui,t+1 − Ui,t)∥F ·

√
n ∥Xi∥2F ·

(
σmax

(
WQ

h

)
+ σmax

(
WK

h

))
≤ R̄

√
n ∥Xi∥2F ·

∥∥∥d(WQ
h

)∥∥∥
F
+
√
n ∥Xi∥2F ·

(
σmax

(
WQ

h

)
+ σmax

(
WK

h

))
∥Ri,t+1 ⊙ Si,t+1 −Ri,t ⊙ Si,t∥F

≤ R̄
√
n ∥Xi∥2F ·

∥∥∥d(WQ
h

)∥∥∥
F
+
√
n ∥Xi∥2F ·

(
σmax

(
WQ

h

)
+ σmax

(
WK

h

))
×
(
∥(Ri,t+1 −Ri,t)⊙ Si,t+1∥F + ∥Ri,t ⊙ Si,t+1 −Ri,t ⊙ St

)
∥F
)

≤ R̄
√
n ∥Xi∥2F ·

∥∥∥d(WQ
h

)∥∥∥
F
+
√
n ∥Xi∥2F ·

(
σmax

(
WQ

h

)
+ σmax

(
WK

h

))
× (∥Ri,t+1 −Ri,t∥F + ∥Ri,t∥F ∥Si,t+1 − Si,t∥F ) (92)

Next, we aim to derive upper bound of ∥Ri,t+1 −Ri,t∥F in Equation (92). Similar to the derivation
in Equation (81), we can derive

∥Ri,t+1 −Ri,t∥F
(iv)

≤
(
Z ′
i ∥Xi∥F σmax

(
WV

) ∥∥WO
∥∥
2
+ (n

√
Hσmax

(
WV

)
∥Xi∥F

∥∥WO
∥∥
2
+ ∥yi∥2) ∥Xi∥F ∥WO∥2

)
× ∥Mt+1 −Mt∥F

:= P ′
i∥Mt+1 −Mt∥F , (93)

Plug Equation (82) into Equation (92), we can finally derive the bound for
∥∇WQf (Mt+1;Xi)−∇WQf (Mt+1;Xi)∥F .

∥∇WQf(Mt+1;Xi)−∇WQf(Mt+1;Xi)∥F
≤ R̄

√
n ∥Xi∥2F ·

∥∥∥d(WQ
h

)∥∥∥
F
+
√
n ∥Xi∥2F ·

(
σmax

(
WQ

h

)
+ σmax

(
WK

h

))
× (∥Ri,t+1 −Ri,t∥F + ∥Ri,t∥F ∥Si,t+1 − Si,t∥F )

≤ R̄
√
n ∥Xi∥2F · ∥Mt+1 −Mt∥F +

√
n ∥Xi∥2F ·

(
σmax

(
WQ

h

)
+ σmax

(
WK

h

))
×
(
P ′
i∥Mt+1 −Mt∥F +

√
nR̄ ∥Xi∥2F ·

(
σmax

(
WQ

h

)
+ σmax

(
WK

h

))
∥Mt+1 −Mt∥F

)
:= LQ′

i ∥Mt+1 −Mt∥F ,

and plug into Equation (78), we can finally derive

∥∇W f (Mt+1;X)−∇W f (Mt;X)∥F ≤
N∑
i=1

(LQ
i + LK

i + LV
i )∥Mt+1 −Mt∥F

≤ N(max
i
LQ
i +max

i
LK
i +max

i
LV
i )∥Mt+1 −Mt∥F (94)

:= G∥Mt+1 −Mt∥F . (95)
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2 NeurIPS paper checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer:[Yes]

Justification: See Theorem 1,2,3

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Please see our conclusion 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: See Appendix, which provides proof for each Theorem.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See experiment setting in Section 5.2
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: We do not include the open access to code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Section 5.2 for experiment setting.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Please see Fig 2 and Fig 3. We have a 1-σ error bar.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: We do not include the compute resources detail.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper has no harm in the research process or negative social impact. The
paper is anonymous.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:[NA]

Justification: There is no societal impact

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the code framework we use Chen et al. [2021].

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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