
Neural Collapse Inspired Feature Alignment for
Out-of-Distribution Generalization

Zhikang Chen1 Min Zhang2 Sen Cui5 Haoxuan Li† 3 Gang Niu4

Mingming Gong6,8 Changshui Zhang5 Kun Zhang7,8

1 Tsinghua University 2 East China Normal University 3 Peking University 4 RIKEN
5 Institute for Artificial Intelligence, Tsinghua University (THUAI)

Beijing National Research Center for Information Science and Technology (BNRist)
Department of Automation, Tsinghua University

6 The University of Melbourne 7 Carnegie Mellon University
8 Mohamed bin Zayed University of Artificial Intelligence (MBZUAI)

Abstract

The spurious correlation between the background features of the image and its
label arises due to that the samples labeled with the same class in the training
set often co-occurs with a specific background, which will cause the encoder to
extract non-semantic features for classification, resulting in poor out-of-distribution
generalization performance. Although many studies have been proposed to address
this challenge, the semantic and spurious features are still difficult to accurately
decouple from the original image and fail to achieve high performance with deep
learning models. This paper proposes a novel perspective inspired by neural col-
lapse to solve the spurious correlation problem through the alternate execution of
environment partitioning and learning semantic masks. Specifically, we propose
to assign an environment to each sample by learning a local model for each envi-
ronment and using maximum likelihood probability. At the same time, we require
that the learned semantic mask neurally collapses to the same simplex equiangular
tight frame (ETF) in each environment after being applied to the original input. We
conduct extensive experiments on four datasets, and the results demonstrate that
our method significantly improves out-of-distribution performance.

1 Introduction

The out-of-distribution (OOD) problem refers to the fact that the training dataset and the test dataset
have different distributions in different environments, after the training process is completed, what
we want is to have correlation between semantic features and label, however, the presence of spurious
feature(environmental information) can make false correlation between environmental information
and labels. The semantic feature in an image refers to the object of the class, while the spurious feature
in an image refers to the background or the environment. As shown in Figure 1, the background color
for digits 0 and 2 is predominantly orange, while the background color for digit 1 is predominantly
green. In this figure, the semantic feature includes digits 0, 1 and 2, whereas the spurious feature
includes orange and green backgrounds.

Recently, many OOD methods have been proposed to learn invariant representations for different
environments by introducing various regularization methods [Ajakan et al., 2014, Arjovsky et al.,
2019, Ahmed et al., 2020, Ahuja et al., 2021, Krueger et al., 2021, Liu et al., 2021, Tong et al.,
2023, Zhu et al., 2023a]. Although these methods achieve good OOD performance on test data with
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environment variations from the training dataset, on the one hand, they require a well-partitioned
environment in advance, but real datasets usually do not have environment labels; on the other hand,
under cross-environment conditions, these methods do not align feature prototypes well between the
test environments and the training environments. In this paper, we equate semantic features with
invariant features and spurious features with variable features.

We first explored the limitations of previous OOD learning methods from a new perspective and
conducted a toy example experiment, as shown in Figure 1. The digits 0 and 2 are associated with
orange background, and the digit 1 is associated with green background. The phenomenon of neural
collapse, which means that after sufficient training, the categories will collapse to a simplex ETF
such that the angles between the feature prototypes of two neighboring categories are equidistant,
Thus, in Figure 1, after the training is completed, the feature prototypes of the digits 0, 1 and 2
occur in three equal parts. Here, to measure the extent of neural collapse, we propose to compute the
Frobenius norm (F-norm) of the difference between the feature prototypes and the standard simplex
ETF. A smaller F-norm indicates a closer proximity to the standard simplex ETF. The ERM approach
[Vapnik et al., 1998] that leads to the failure of OOD generalization is due to the endogenous nature
of the class features not being able to align the class prototypes after training is complete in different
environments. Although IRM-based methods [Arjovsky et al., 2019] theoretically learn a feature
representation such that the last layer of the feature extractor is similar across environments, we
empirically found that IRM-based methods are not aligned very well, which motivates using neural
collapse to align feature for OOD generation.

In this paper, in order to bridge this gap, we believe that a feature extractor for OOD generalization
across environments should ensure that semantic features are aligned to the same simplex ETF,
and we have verified from our experiments that better alignment can significantly improve OOD
performance. Specifically, our method can be applied both with and without environment labels.
In the absence of environment labels, we can automatically partition the environments and assign
local models to different environments. By predicting the variable components of the input, we take
the logits corresponding to the label (one-hot encoding) from the predictions of the local models in
different environments, form a vector, and select the maximum value of the vector. The corresponding
environment of this maximum value is assigned as the new environment for the input. When the new
environment shows minimal changes compared to the old environment, we consider the environment
partitioning to be complete. In Figure 3, we provide a detailed example to illustrate our environment
partitioning method. When environment labels are available, we learn masks to extract semantic
components, we firstly fix a simplex ETF classifier, and in different environments, for semantic
features, we pull them all to the corresponding position of the same class prototypes, thus realizing
the alignment operation.

The main contributions of this paper are summarized as follows:
• We explore the OOD problem from a new perspective, namely the use of neural collapse to

guide feature alignment for OOD generalization.
• We explore the separation of semantic features and spurious features under conditions

without environment labels, as well as with given environment labels.
• We conduct extensive experiments on four publicly available datasets to validate the effec-

tiveness of the proposed methods.

2 Related Work

Out-of-Distribution Generalization. Out-of-distribution (OOD) generalization has been a topic of
significant interest in the field of machine learning and computer vision. Researchers have explored
various approaches and techniques to improve the robustness and generalization capabilities of
models on unseen target domains. These OOD methods use different strategies to update the model,
mainly including metalearning [Li et al., 2018a, Zhang et al., 2023], domain alignment [Ajakan
et al., 2014, Li et al., 2018b], regularized training [Zhang et al., 2021, Krueger et al., 2021, Shi et al.,
2021, Xu and Jaakkola, 2021], causal learning [Ahuja et al., 2021, Krueger et al., 2021, Koyama and
Yamaguchi, 2020], etc. For example, IRM [Arjovsky et al., 2019], a representative OOD method,
learns invariant representations with a classifier optimal to domain changes as a regularization term.
SANDMask [Shahtalebi et al., 2021] regularizes model training by updating the parameters in the
direction where the gradient components have consistent signs across domains. Although these
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Figure 1: Left Figure: A comparison between our approach and previous methods(conclude ERM
and IRM-based methods). (a): The comparison of our method, the ERM method, and the IRM
method based on the F-norm metric. (b): The comparison of our method, the ERM method, and the
IRM method in terms of OOD accuracy (%).

OOD methods have theoretically and experimentally demonstrated their effectiveness in learning
domain-invariant features, most of them require the use of environment labels, which does not meet
the requirements of real-world applications. Furthermore, we empirically found that the information
extracted by the last layer of the feature extractor based on the IRM-based method in different
environments cannot be well-aligned. In this paper, taking a step forward, we propose a novel method
that aligns the semantic features extracted by the OOD feature extractor to the same simplex ETF
under neural collapse. Note that our method can be applied both with and without environment labels.

Neural Collapse. The phenomenon known as neural collapse, first identified by [Papyan et al.,
2020], refers to the observation that when the number of training samples across different classes is
balanced, both the feature vectors in the final layer and the classifier vectors tend to converge to the
simplex ETF upon the completion of training. Recently, several studies [Ji et al., 2021, Zhu et al.,
2021, Tirer and Bruna, 2022, Zhu et al., 2023b, Li et al., 2023, Xie et al., 2023, Yang et al., 2023,
Beaglehole et al., 2024, Fisher et al., 2024, Guo et al., 2024, Kothapalli et al., 2024, Súkenı́k et al.,
2024] have utilized this phenomenon to guide the training process in imbalanced data sets. Among
them, Yang et al. [2023] involves pre-allocating a fixed number of classes in a simplex ETF for
continual learning, guiding the learning of minority classes in subsequent incremental steps, thereby
ensuring convergence of intra-class features to specified positions and maximizing and uniformly
separating inter-class features. Xie et al. [2023] addresses class imbalance by designing a novel
loss function, namely the attraction-rejection balanced loss. Li et al. [2023] apples neural collapse
into federated learning scenarios. Under distributed conditions, neural collapse is used to guide the
alignment direction of each client, and the personality of each client model is maintained through
fine-tuning. The aforementioned methods only consider collapsing the same class onto a single point
in a fixed simplex ETF without accounting for the impact of intra-class spurious correlations. We
are the first to utilize the concept of neural collapse to address spurious correlations within classes,
thereby enhancing out-of-distribution (OOD) performance.

3 Preliminaries

3.1 Out-of-Distribution Generalization

In the given dataset D := (X,Y) = {(xi,yi)}Ni=1, typically, during the training process, the data
set D is divided into a training set Dtr and a test set Dte, where Dtr is sampled from the training
distribution Ptr(X,Y), and Dte is sampled from the test distribution Pte(X,Y). There is a model
that can be divided into a feature extractor f(·;ωf ) and a classifier g(·;ωg). For out-of-distribution
(OOD) scenarios, the training distribution is not observable, and the training distribution differs from
the test distribution, i.e., Ptr(X,Y) ̸= Pte(X,Y). Specifically, according to previous work, we have
multiple environments in the training set, that is, E = {e1, e2, ..., eE}. In different environments, for
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Figure 2: The overall framework of our method. Left Figure: Input information, including figure,
label and environment. Middle Figure: In the scenario of unknown environments, the process of
partitioning the environment. Right Figure: Utilizing neural collapse to guide learning of masks for
extracting invariant components.

X in the training set, we can divide it into semantic parts and spurious parts, the correlation between
these two is unstable, thus it is prone to generating spurious correlations.

3.2 Neural Collapse

Neural collapse refers to a phenomenon observed during the final stages of training on balanced data
(post-zero training error) [Papyan et al., 2020]. It reveals a simplex ETF structure formed by the
last-layer features and the classifier, which can be defined as:

Definition 1 (Simplex Equiangular Tight Frame). A simplex Equiangular Tight Frame (ETF) refers
to a matrix that is composed of K vectors vi ∈Rd, d ≥ K − 1 and satisfies:

V =

√
K

K − 1
U

(
IK −

1

K
1K1T

K

)
, (1)

where V = [v1,v2, ...,vK ] ∈ Rd×K , U ∈ Rd×K allows a rotation and satisfies UTU = IK , IK
represents identity matrix, and 1K stands for all one matrix.

For any vi ∈ V, i ∈ [1,K] and satisfies:

vT
i vj =

K

K − 1
δi,j −

1

K − 1
, ∀i, j ∈ [1,K], (2)

where δi,j equals to 1 when i = j, otherwise it is equal to 0, for all vi ∈ V, i = [1,K], there is the
same L2 norm, and the inner product between any two vectors is − 1

K−1 .

Neural Collapse. The phenomenon of neural collapse is guaranteed by the following four findings:
variability collapse (NC1), convergence to the simplex equiangular tight frame (NC2), convergence
to self-duality (NC3), and simplification to the nearest class center (NC4).

NC1: During the final stages of model training, the final layer feature vectors of the same class will
collapse to the class mean, i.e., for all k,

∑k
W → 0. Σk

W = 1
nk

∑nk

i=1 (fk,i − fk) (fk,i − fk)
T , where

nk represents the number of samples in class k, fk,i denotes the feature obtained from the i-th sample
of class k, fk represents the mean feature of class k.

NC2: The class means of all classes will converge to the vertices of a simplex ETF centered on the
global mean, as defined in Definition 1, f̂k = (fk − fG) / ∥fk − fG∥, where fG =

∑K
k=1

∑Nk

i=1 fk,i
represents the global mean of the feature.

NC3: The feature prototypes centered on the global mean will align with the corresponding classifier
weights, which means that the classifier weights converge to the same simplex ETF, i.e, f̂k =
vk/ ∥vk∥, where vk represents the classifier weight for class k.

NC4: Through the above points, it can be ensured that the network classifier converges to the
nearest class center, i.e, argmaxk ⟨f ,vk⟩ = argmink ∥f − fk∥, where f represents the features of
the sample.

4



4 Methodology

In this section, we delve into a comprehensive discussion of our proposed method, NCFAL, along
with its specific implementation. Section 4.1 outlines the framework of the proposed method for
out-of-distribution based on neural collapse. We use a fixed ETF classifier to guide the alignment
of invariant features across different environments, facilitating better learning of masks to separate
invariant and variable features. In Section 4.2, we provide a detailed explanation of how environments
are partitioned. In Section 4.3, we elaborate on how a fixed ETF classifier is used to guide mask
learning. In Section 4.4, after obtaining invariant features using the trained mask, we input them into
the neural network for subsequent training until convergence.

4.1 The framework of proposed method

Neural collapse reveals the optimal geometric structure of the classifier and feature prototypes after
sufficient training (i.e., the simplex ETF). It inspires us to use a simplex ETF as a fixed classifier
from the beginning, guiding the alignment of invariant components across different environments.
Therefore, we propose a novel algorithm for the OOD generation inspired by neural collapse, NCFAL.
Specifically, as described in Section 4.2, in real-world scenarios, environment information is often
unknown. Hence, we need to automatically partition environments, and when certain conditions are
satisfied, we consider the environment to be sufficiently well-partitioned. As described in Section 4.3,
to improve model generalization, after obtaining environment information, we guide the alignment of
invariant components across environments using a fixed ETF classifier. Given that class imbalance
is likely across different environments, we employ a loss function to mitigate the impact of this
imbalance. We alternate between Section 4.2 and Section 4.3, enabling the model to learn improved
masks for partitioning invariant components. In Section 4.4, after learning the mask, we obtain
semantic features for subsequent training of the predictive model.

Specifically, as shown in Figure 2, our methodological framework is illustrated. Initially, when x is
input, it passes through 1 −m for the separation of variable components, allowing for prediction
using corresponding models in different environments. Subsequently, an environment selection
process assigns the input to a designated environment, yielding a new environment label. When the
difference between the new environment label and the previous one is less than a given threshold or a
specified number of partitioning iterations is reached, the mask learning process begins. In this phase,
x from different environments is input. Since invariant features are extracted, they should collapse
onto the same simplex ETF in any environment. This approach guides the alignment of invariant
features across variable environments.

4.2 The implementation of environment partitioning

This chapter focuses on environment partitioning in scenarios where environment labels are unknown.
The partitioning process relies on the intermediate module depicted in Figure 2, which takes the input
information and outputs a new set of environments E , where each environment reflects a type of
spurious correlation present in the input. We divide the input x into semantic and spurious features,
using the invariant mask m to distinguish between them, resulting in semantic features Φ(x) and
spurious features Ψ(x): Φ(x) = m⊙ x, Ψ(x) = (1−m)⊙ x. Subsequently, the variable features
Ψ(x) are input into local models, which are associated with the environments, for identification. We
designed a two-stage partitioning method to iterative partition environments until convergence.

Environment Local Model Learning Stage: Let Xtr
e be the interaction set in environment e. We

aim to use local model to represent the environment e. Intuitively, the primary distinction between
different environments lies in their interpretation of spurious correlations. Therefore, we model
environments based on these spurious correlations. Specifically, for the interactions in environment
e, we predict using a variable representation learning model Γ(e). In other words, to describe
environment e, we learn the predictive model as follows:

argmin
ωe

L(Γ(e)(x,Ψ|ωe)|Xtr
e ), (3)

where Xtr
e represents the training data X corresponding to environment e, ωe represents model

parameters corresponding to environment e.
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Figure 3: A comprehensive elucidation of Figure 2 is provided herein. Middle Figure: An illustrative
example is presented to demonstrate the process of environment partitioning. Right Figure: An
in-depth exposition of the process of learning invariant masks is provided.

Environment Partitioning Stage: In this stage, we have already developed environment models that
can be used to assess the spurious correlations in different environments. Consequently, interactions
should be separated based on these spurious correlations. To distinguish environments and the
interactions within the input, we employ the following formula, which determines that an interaction
belongs to the environment with the highest probability of identifying it. Note that predictions are
based on the variable component Ψ(x), which represents spurious information. The maximum value
of this tensor is selected, indicating that the variable features of the input are more distinguishable in
the environment corresponding to the maximum value. Thus, the input is assigned to that environment.

e(x) = argmax
e∈E

Γ(e)(x,Ψ|ωe), (4)

where for any environment e ∈ E , we select the one with the maximum logit as the corresponding
environment for input x.

We illustrate this environment selection process with an example in Figure 3. Considering a logit 0
with orange background, when it is inputted into different environment models, the corresponding
predictions are [0.5, 0.3, 0.2] in environment 1 and [0.4, 0.5, 0.1] in environment 2. By extracting
the logits at the positions corresponding to the labels(one hot encoding), we obtain vectors [0.5, 0.4].
Taking the maximum value, we can determine the corresponding environment as environment 1.

4.3 The implementation of learning masks

This chapter primarily addresses OOD generalization by learning masks to separate invariant repre-
sentations when environment labels are known. Our approach is guided by the perspective of neural
collapse to align invariant representations across environments to a pre-fixed simplex ETF. As shown
in Figure 3, once a suitable environment partitioning mask is learned, we apply it to the input x to
obtain the invariant components. Thus, in different environments, for the semantic features Φ(x) in
all ei, ej ∈ supp(E), we have: Pei(Y|Φ(x)) = Pej (Y|Φ(x)).
In different environments, we use corresponding models to align the invariant features. First, we
fix a standard simplex ETF as the alignment direction. Given the potential issue of the number of
different classes imbalance across different environments, we use a balanced loss to assign weights
proportional to the quantity of each class for the training process:

Lmask = − log
nγ
e,y exp(β · vT

y f)∑
k n

γ
e,k exp(β · vT

k f)
, k ∈ K, e ∈ E , (5)

f = v̂/∥v̂∥, v̂ = P (h, ωp),h = f(Φ(x), ωf ),

where ne,k represents the number of samples of class k in environment e, vk ∈ V represents the fea-
ture vector corresponding to class k on the fixed simplex ETF V, f represents the normalized feature
v̂ obtained after projection mapping the original feature h, β represents the learnable temperature, γ
represents the sample balancing parameter, ωf represents the parameters of the feature extraction
module in the model, ωp represents the parameters of the mapping layer in the model. When learning
the mask, we add some random noise to initialize the mask:

mi = max{0,min{1,mi + ϵ}}, ϵ ∼ N(0, σ2),mi ∈m.
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After completing the above training steps Eq.(5), we perform a clipping operation on the mask to fix
the range of mi:

mi = max{0,min{1,mi + ϵ}},mi ∈m.

4.4 The implementation of learning predictive model

In this chapter, we apply the environment partitioning and mask learning in Sections 4.2 and 4.3
respectively to the input data to extract semantic features. These features are then fed into the
predictive neural network for training until the network converges:

argmin
ω∗
L(Γ∗(x,Φ|ω∗)|Xtr), (6)

where ω∗ represents the parameters of the final predictive model.

Summarily, the overall training process is presented in Algorithm 1. The two steps in the Splitting
environments process correspond to Section 4.2, while the Learning mask process corresponds to
Section 4.3. After convergence, semantic features are used to train the predictive model, corresponding
to Section 4.4, thereby achieving better OOD generalization.

Algorithm 1 The overall training process.
Data: Xtr for splitting environments, learning mask and training process.
Result: Predictive Model Γ∗ (x | ω∗,Φ) for the final predictive process.
for i← 1 to T do

/* Splitting environments */
if E is unknown then

do
for e ∈ E do

Optimize Γ(e) via the local model training process on Xtr
e in Eq. (3);

end
for e ∈ E do

Compute Xtr
e via the highest probability of identification as Eq. (4);

end
while Converged;

end
/* Learning mask */
do

Learn m via aligning feature prototypes to the fixed simplex ETF in Eq. (5);
while Converged;

end
/* Training process */
Optimize Γ∗ (x | ω∗,Φ) with semantic components Φ(x) via Eq. (6);

5 Experiments

5.1 Experiment Setup

Datasets. Following the work [Gulrajani and Lopez-Paz, 2020], we evaluate our method with
baselines on benchmark datasets, using four datasets, namely ColoredMNIST, ColoredCOCO, CO-
COPlaces and NICO. ColoredMNIST is colorized on the MNIST dataset. The image dimensions
were set to [2, 28, 28], the digits [0, 1, 2, 3, 4] are designated as category 0, while the digits [5, 6,
7, 8, 9] are designated as category 1. ColoredCOCO dataset is derived from the COCO dataset,
which includes a selection of ten categories. Background color alterations were applied using ten
different colors. All images are configured with dimensions of (3, 64, 64). COCOPlaces employs
the same classes and settings as ColoredCOCO, with the distinction that we sample images from
Places as spurious information. NICO dataset is a real-world dataset, including 10 subclasses for
animals and 9 subclasses for vehicles. In total, our split consists of 4,080 samples of dimension (3,
224, 224) and 2 classes of the classification task. More details can be found in Appendix A.1. For
each dataset, we partition it into two subsets, d1 and d2, based on the environment, with the ratio of
sample quantities between d1 and d2 being 9:1. Subset d1 from the training environment is used for
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model training, while d2 is employed for testing the models within the training environment. In the
testing environment, d1 is utilized to assess the out-of-distribution (OOD) performance of the models,
while d2 is utilized according to DomainBed standards for selecting the best model.

Architecture. On ColorMNIST, training is conducted using a 4-layer convolutional neural network.
For the ColoredCOCO and COCOPlaces datasets, we adhere to the setup outlined in Ahmed et al.
[2020], Gulrajani and Lopez-Paz [2020], employing ResNet8 for training. On the NICO dataset,
training is performed using ResNet18.

Baselines. In order to demonstrate the advantages and effectiveness of our approach, we conduct
comparative tests against different OOD learning methods. including (1) IID learning: ERM [Vapnik
et al., 1998] (2) OOD learning ( sixteen methods): IRM [Arjovsky et al., 2019], VREx [Krueger et al.,
2021], ARM [Zhang et al., 2021], GroupDRO [Sagawa et al., 2020], MLDG [Li et al., 2018a], MMD
[Li et al., 2018b], IGA [Koyama and Yamaguchi, 2020], SANDMask [Shahtalebi et al., 2021], Fish
[Shi et al., 2021], CDANN [Li et al., 2018c], TRM [Xu and Jaakkola, 2021], IB ERM [Ahuja et al.,
2021], IB IRM [Ahuja et al., 2021], CondCAD [Ruan et al., 2021], CausIRL CORAL [Chevalley
et al., 2022], MAP [Zhang et al., 2023].

5.2 The comparison of OOD accuracy (%) between our method and other approaches.

Table 1 presents a comparison between our method, the ERM algorithm, and 16 other OOD algorithms.
It is evident that our approach outperforms all methods under the given environmental conditions.
Moreover, in situations where the environment is unknown, our method demonstrates adaptive
capabilities in partitioning the environment, achieving superior OOD performance. The reason
behind this phenomenon, we believe, lies that sometimes manually partitioning the environment
may not be optimal for neural networks to identify and discern spurious correlations, however,
Utilizing neural networks to partition the environment based on predictions might be more adapt at
separating semantic and spurious features. Particularly for COCOPlaces, due to the complexity of
backgrounds, manual partitioning may not always achieve appropriate segmentation. Therefore, from
the results, when the environment is known, the OOD accuracy is 33.3%; however, using our method
for environment partitioning yields a result of 36.7%.

Table 1: Average accuracy (%) of OOD on three toy and one real datasets using different methods.
ColoredMNIST ColoredCOCO COCOPlaces NICO

ERM [Vapnik et al., 1998] 51.5± 0.1 45.4± 0.9 20.1± 0.7 73.6± 1.9
IRM [Arjovsky et al., 2019] 60.3± 2.8 49.2± 0.3 27.1± 0.9 75.8± 2.0
VREx [Krueger et al., 2021] 52.9± 1.2 48.8± 0.7 26.2± 0.7 76.9± 0.7
GroupDRO [Sagawa et al., 2020] 38.5± 1.5 49.1± 0.6 26.9± 0.6 74.6± 2.4
MLDG [Li et al., 2018a] 29.4± 0.6 11.9± 0.8 14.6± 0.5 68.4± 2.7
MMD [Li et al., 2018b] 50.6± 0.1 50.4± 0.8 26.3± 1.7 78.2± 1.2
IGA [Koyama and Yamaguchi, 2020] 50.5± 0.1 11.0± 0.6 10.8± 0.3 48.1± 1.3
SANDMask [Shahtalebi et al., 2021] 58.6± 6.5 49.2± 1.2 25.9± 1.4 72.8± 1.5
Fish [Shi et al., 2021] 28.0± 1.5 41.7± 0.5 19.3± 2.1 77.0± 1.2
CDANN [Li et al., 2018c] 41.7± 3.5 38.4± 1.5 19.4± 1.0 72.8± 1.8
TRM [Xu and Jaakkola, 2021] 44.2± 5.0 47.5± 0.6 24.8± 1.1 73.0± 0.9
IB ERM [Ahuja et al., 2021] 50.2± 0.2 45.4± 1.1 20.2± 1.0 77.7± 1.9
CausIRL CORAL [Chevalley et al., 2022] 28.7± 1.3 51.5± 1.1 26.1± 1.1 75.7± 0.9
CondCAD [Ruan et al., 2021] 49.2± 0.5 41.2± 0.7 20.8± 0.3 73.9± 1.4
IB IRM [Ahuja et al., 2021] 53.8± 1.8 33.9± 0.6 14.8± 2.3 70.2± 2.2
ARM [Zhang et al., 2021] 28.1± 0.0 33.0± 0.6 25.1± 0.2 76.4± 1.6
MAP [Zhang et al., 2023] 52.6± 0.5 50.9± 1.3 26.9± 1.0 76.8± 1.4
Ours 66.4 ± 0.2 58.0 ± 0.2 33.3 ± 1.7 85.4 ± 0.6
Ours (w/o env) 66.9± 2.4 56.9± 1.1 36.7 ± 0.9 85.9± 0.2

5.3 Ablation Studies

The comparison between other methods employing masking techniques and our method. Table
2 presents the effectiveness of our proposed method for learning masks, we conducted comparisons
with the IRM and REx methods, which incorporate regularization to facilitate learning of the mask
through the gradient or variance. In contrast, our approach leverages the phenomenon of neural
collapse to guide the optimization direction for semantic feature enhancement instead of regularization.
Simultaneously, we compared our method with the ERM approach, confirming the superiority of
using masks to acquire the invariant parts.
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Table 2: The OOD accuracy (%) of our method and other regularization methods on three datasets.
ColoredMNIST ColoredCOCO COCOPlaces

Ours 66.4 ± 0.2 58.0 ± 0.2 33.3 ± 1.7
Ours (w/o env) 66.9± 2.4 56.9± 1.1 36.5 ± 0.8
REx 61.3± 3.0 56.0± 0.2 27.4 ± 1.3
REx (w/o env) 57.9± 2.0 52.9± 1.1 28.2 ± 1.7
IRM 64.4± 0.2 51.8± 0.8 32.2 ± 0.8
IRM (w/o env) 65.2± 0.4 52.8± 0.4 30.7 ± 1.7
ERM 51.5± 0.1 45.4± 0.9 20.1± 0.7

The comparison between mask is applied at the pixel level and the feature level. To validate
the generality of our method, we conducted comparative experiments at both the pixel level and
the feature level in Table 3. It was observed that sometimes extracting invariant features at the
feature level could yield better results. In particular, improved performance was observed on the
ColoredCOCO and COCOPlaces datasets. This phenomenon primarily stems from the fact that
feature-level information is high-dimensional, capturing relationships that are difficult to discern.

Table 3: The OOD accuracy (%) of our method based on pixel and feature level on three datasets.
ColoredMNIST ColoredCOCO COCOPlaces

Ours 66.4 ± 0.2 58.0 ± 0.2 33.3 ± 1.7
Ours (w/o env) 66.9± 2.4 56.9± 1.1 36.5 ± 0.8
Feature 58.7± 2.8 63.9± 0.5 43.7 ± 0.7
Feature (w/o env) 54.0± 0.3 62.7± 1.8 44.1 ± 0.1

The comparison between randomly and using maximum likelihood probability method to split
environments. Compared with random environment splits in Figure 4(a), our method, which involves
assigning different models to distinct environments and selecting maximum likelihood probabilities
outputted by the models, was found to effectively partition environments.
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Figure 4: Comparative experiments for randomly and the different number of divided environments.

The comparison between different number of environment divisions. Compared with different
number of environment splits in Figure 4(b), we can find that when the number of divided environ-
ments is closer to the actual number of given environments, better performance is achieved, thereby
validating the effectiveness of our environment division method.

6 Conclusion

We explore a new perspective to understand the inherent limitations of ERM and IRM-based methods,
which fail due to the inability to align semantic features across environments, resulting in reduced
generalization performance. By leveraging the phenomenon of neural collapse to guide the alignment
of semantic features across environments. Compared to other OOD methods, we have significantly
improved OOD performance. Moreover, in real-world scenarios where environment labels are
unknown, our method addresses this by training local models to different environments, automatically
achieving environment partitioning. This method greatly reducing the cost of manual annotation
and expanding the applicability of our method. Additionally, we will investigate and improve more
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effective and efficient environment partitioning techniques in future work. We can also explore
applying this method in other domains, such as segmentation or few-shot spurious correlation issues.
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A Implementation Details

A.1 Datasets

ColoredMNIST, introduced by IRM for assessing spurious correlations in out-of-distribution (OOD)
problems, follows the configuration outlined in [Zhang et al., 2023]. In accordance with this setup,
we colorized the MNIST dataset with red and green hues to establish a strong correlation between
digits and colors. The image dimensions were set to [2, 28, 28], and the correlation coefficients for
two training sets and one test set were specified as (0.9, 0.8, 0.1), indicating the proportion of red and
green within category 0. The digits [0, 1, 2, 3, 4] are designated as category 0, while the digits [5, 6,
7, 8, 9] are designated as category 1.

ColoredCOCO dataset is derived from the COCO dataset, which includes a selection of ten categories:
airplane, bird, boat, bus, dog, horse, motorcycle, train, truck, and zebra. Background color alterations
were applied using ten different colors. Their RGB values are [0, 100, 0], [188, 143, 143], [255,
0, 0], [255, 215, 0], [0, 255, 0], [65, 105, 225], [0, 225, 225], [0, 0, 255], [255, 20, 147] and [160,
160, 160]. The number of samples for each training environment is 400 for each class but the testing
environment is 200 for each class. All images are configured with dimensions of (3, 64, 64).

COCOPlaces employs the same classes and settings as ColoredCOCO, with the distinction that we
sample images from Places as spurious information [Liu et al., 2021], such as b/beach, c/canyon,
b/building facade, s/staircase, d/desert/sand, c/crevasse, b/bamboo forest, f/forest/broadleaf, b/ball pit
and o/oast house. Moreover, some random places are also used, i.e., k/kasbah, l/lighthouse, p/pagoda,
r/rock arch, w/water tower, w/waterfall, z/zen garden.

NICO dataset is a real-world dataset including photos of animals and vehicles captured in a wide
range of contexts (or backgrounds). There are 10 subclasses for animals and 9 subclasses for vehicles,
with each subclass having 9 or 10 different contexts. Following [Lin et al., 2022], we select a subset
of this dataset to simulate the spurious correlation of different contexts and classes (animal or vehicle),
which is similar to the setting of ColoredMNIST. More specifically, we make use of both classes that
appear in four overlapped contexts: “on snow”, “in forest”, “on beach” and “on grass” to construct
two training environments and one testing environment. In total, our split consists of 4,080 samples
of dimension (3, 224, 224) and 2 classes of the classiffcation task.

(a) ColoredMNIST (b) ColoredCOCO (c) COCOPlaces (d) NICO

Figure 5: Illustration of the ColoredMNIST, ColoredCOCO, COCOPlaces, and NICO datasets.

A.2 Impact Statements

We propose a new perspective for addressing the OOD generation problem by using neural collapse
to align semantic features across different environments. Our method can be applied both when
environments are given and when they are unknown, as it can autonomously partition environments.
This approach enables the model to independently learn semantic features, thereby achieving better
generalization in future practical applications.

A.3 Devices

In our experiments, we conduct all methods on a local Linux server that has two physical CPU
chips (Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz) and 32 logical kernels. All methods are
implemented using Pytorch framework and all models are trained on GeForce RTX 2080 Ti GPUs.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have done this work.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have discussed the limitations of our work in conclusion part.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Our work studies the algorithm for Out-of-Distribution Generation, and
provides empirical evidences.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have done this work in our manuscript.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We have strictly adhered to the anonymity guidelines when uploading the
code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided the training and test details in main text.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have done this work in our paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided computer resources in appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We are make sure to preserve anonymity.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed in boarder impact in appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This work focuses on addressing the OOD generation, which is not related to
the misuse risk.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: We use public datasets in our experiments.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We don’t publish new data assets in this work.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We conduce experiments on existing benckmark datasets.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work is not related to human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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