
MonkeySee: Space-time-resolved reconstructions of
natural images from macaque multi-unit activity

Lynn Le1, Paolo Papale 2, Katja Seeliger3, Antonio Lozano2, Thirza Dado1,
Feng Wang 2, Pieter Roelfsema 2,4,5,6, Marcel van Gerven1, Yağmur Güçlütürk1, Umut Güçlü†1
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Abstract

In this paper, we reconstruct naturalistic images directly from macaque brain sig-
nals using a convolutional neural network (CNN) based decoder. We investigate
the ability of this CNN-based decoding technique to differentiate among neuronal
populations from areas V1, V4, and IT, revealing distinct readout characteristics
for each. This research marks a progression from low-level to high-level brain
signals, thereby enriching the existing framework for utilizing CNN-based decoders
to decode brain activity. Our results demonstrate high-precision reconstructions
of naturalistic images, highlighting the efficiency of CNN-based decoders in ad-
vancing our knowledge of how the brain’s representations translate into pixels.
Additionally, we present a novel space-time-resolved decoding technique, demon-
strating how temporal resolution in decoding can advance our understanding of
neural representations. Moreover, we introduce a learned receptive field layer that
sheds light on the CNN-based model’s data processing during training, enhancing
understanding of its structure and interpretive capacity.

1 Introduction

Artificial neural network models designed for decoding naturalistic images from neural activity
signals significantly advance our understanding of how visual information is processed in the brain.
Decoding models aim to disentangle patterns of neural responses to different stimuli, offering insights
into how visual stimuli (e.g., a brown horse or a white t-shirt) are represented by neural populations.
Leveraging a large amount of naturalistic data facilitates the reconstruction of natural vision and
allows for comprehensive analyses of visual features. Due to the immense variety of naturalistic
visual space, reconstructing such stimuli from neural activity is considered the most challenging but
also the most intriguing problem in neural decoding.

Convolutional neural networks (CNNs) have recently become a cornerstone in neural decoding and
encoding models. Their ability to study fundamental features carried by populations of neuronal
signals has led to significant advancements in understanding the computational mechanisms of natural
scene perception. Encoding models provide valuable insights into how brain activity changes in
response to stimuli, showcasing the features of CNNs that predict neural responses within specific
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brain regions. Conversely, decoding models reveal the information content within brain areas without
making assumptions about the representation of that information.

Despite the prowess of CNNs in distinguishing between different brain signal patterns, their ef-
fectiveness in decoding shifts in neuronal activity remains limited. This limitation is crucial – a
lack of variance in reconstructed images with changing brain signals suggests a disconnect between
the models and the brain’s interpretive functions. This performance gap could stem from intrinsic
model limitations or data distribution issues. Refining these methods is essential to enhance our
understanding of how closely decoding models can approximate the complex processes underlying
visual perception.

While CNNs are engineered to handle complex, multi-dimensional data, including spatial (height and
width) and depth (color) dimensions, there remain significant distinctions between CNN processing
and human brain information processing. To address these challenges, we have developed a fully
convolutional decoding model trained from scratch using the THINGS dataset – a highly diverse
collection of naturalistic stimuli. This dataset enriches the model’s exposure to varied features, which
is crucial for interpreting brain representations accurately.

In this paper, we present the following contributions:

• Homeomorphic decoder: We propose a CNN-based decoder trained to investigate the
importance of spatial and temporal information carried in neuronal signals for high-fidelity
visual reconstructions.

• End-to-end inverse retinotopic mapping: We integrate an interpretable layer in the model,
known as the end-to-end inverse retinotopic mapping. This layer dynamically learns to
map brain signals to a 2D image during training. The adaptive mechanism of this layer,
influenced by the entire learning process, allows the decoder to organize its own input
spatially.

• Model inference and analysis: By performing model inferences with truncated brain data,
our approach dissects how the network reorganizes its weights based on spatially separated
brain regions for reconstructions. This method aligns with known neuroscientific principles,
enhancing the interpretability of decoded features.

• Temporal dynamics: Our model incorporates specific time intervals for neuronal signal
input, aligned with latency periods observed in the ventral visual pathway (V1 to IT). This
temporal aspect allows for a deeper analysis of how visual processing evolves over time.

The remainder of this paper is structured as follows. Section 2 reviews related work in neural decoding
using CNNs, highlighting advances and existing challenges. Section 3 details the materials and
methods, including data acquisition, preprocessing, and the model architecture. Section 4 presents
the results and discussion, evaluating the performance and interpretability of our model. Finally,
Section 5 concludes the paper and suggests avenues for future research.

2 Related work

Deep neural networks (DNNs) and generative adversarial networks (GANs) have recently achieved
notable success in decoding visual information from brain activity, particularly using fMRI data
[1, 2, 3, 4, 5, 6, 7, 8]. Seeliger et al. (2018) [5] utilized GANs to reconstruct grayscale images
and handwritten characters from fMRI data, demonstrating the versatility of adversarial methods.
Nishimoto et al. (2011) [1] used voxel-wise modeling to reconstruct complex video stimuli from
brain activity, focusing on capturing detailed neural responses in the visual cortex. Shen et al. (2019a)
[8] further advanced this by training end-to-end models for image reconstruction, incorporating
high-level feature losses into the GAN framework.

Reconstructing dynamic stimuli like videos presents additional challenges. Han et al. (2019) [6] used
variational auto-encoders for video reconstruction, achieving low-level property reconstructions but
struggling with finer details. This highlights the complexity of decoding dynamic visual information.

CNNs are effective for neural decoding due to their capability to process complex, multi-dimensional
data. Sarraf and Tofighi (2016) [9] treated fMRI slices as separate images, but this method was limited
by noise and did not respect neural topography. Approaches using 3D convolutions to preserve spatial
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structure [10], and geometric deep learning on cortical meshes [11, 12, 13, 14, 15], have shown
promise in capturing brain features more effectively.

Decoding naturalistic stimuli using large datasets pushes conventional model boundaries [16, 17]. Le
et al. (2022) [17] reconstructed images and videos from fMRI data by converting voxel responses into
2D representations aligned with the visual field, then applying fully convolutional networks trained
with VGG feature loss and adversarial regularizers. This method showed significant improvements
over previous techniques.

Our work uses multi-unit activity (MUA) data from Utah electrode arrays in the macaque visual
cortex (V1, V4, IT), which offers higher temporal resolution and captures fine-grained neuronal
activity compared to fMRI. Bashivan et al. (2019) [18] integrated receptive field concepts into neural
network models for better interpretability. Building on this, we incorporate an end-to-end inverse
retinotopic mapping layer within our convolutional decoder. This layer dynamically maps brain
signals to 2D images, improving spatial feature organization and providing deeper insights into neural
processing.

3 Material & methods

3.1 Data

We used images from the THINGS database [19], containing high-resolution images across various
object categories. Each image had three color channels (RGB) and was resized to 96 × 96 pixels to
meet model input requirements and reduce computational complexity. Images were presented in the
lower right quadrant, shifted 150 pixels right and down from the central fixation point.

A passive fixation task was conducted with a 7-year-old male macaque (Macaca Mulatta) across
22,348 trials (22,248 training and 100 test trials). The macaque maintained fixation on a central dot
while images, presented in a randomized sequence of four per trial, were displayed for 200 ms with a
200 ms gray screen interval. The macaque was rewarded with juice for maintaining fixation. Ethical
approval was obtained from the Royal Netherlands Academy of Arts and Sciences, adhering to the
NIH Guide for the Care and Use of Laboratory Animals, ensuring the macaque’s well-being and
minimizing stress.

MUA was recorded from 15 Utah electrode arrays implanted in V1 (7 arrays), V4 (4 arrays), and
IT (4 arrays), capturing neural activity at 1 ms resolution over 200 ms per trial. Electrodes were
selected using a self-correlation reliability score with a threshold of 0.4, reducing the original 1024
electrodes to 576 (including losses from a broken electrode). Neural responses were z-scored (mean
subtracted, divided by standard deviation). Time windows were defined as 0–125 ms for V1, 25–150
ms for V4, and 50–175 ms for IT. A 25 ms smoothing window was applied, and data were temporally
downsampled to either 8 Hz (averaged over 125 ms) or 40 Hz, ensuring consistent and normalized
data for modeling.

3.2 Models

In this section, we describe the models used for decoding the neural responses into visual stimuli.
The main model is a homeomorphic decoder, and we compare its performance against a baseline
decoder. Additionally, we employ a discriminator to facilitate adversarial training.

3.2.1 Homeomorphic decoder

The homeomorphic decoder transforms neural responses into retinal embeddings and subsequently
reconstructs the visual stimuli from these embeddings. The architecture leverages several neural
network components, including pre-trained and end-to-end trained models.

Pre-trained inverse retinotopic mapping The first variant of our homeomorphic decoder uses a
pre-trained CNN to perform inverse retinotopic mapping. The model projects neural responses onto
retinal embeddings using learned weights and subsequently reconstructs the visual image from these
embeddings. The process involves two types of embeddings: spatial embeddings and spatiotemporal
embeddings.
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For spatial embeddings, the retinal embedding E is computed directly from the neural responses at a
single timepoint:

Eaxy =
∑

e∈MEAa

reWexy

where r represents the neural responses over 576 electrodes at a single timepoint, and Wexy are the
learned spatial weights for mapping the neural responses to retinal embeddings for each microelec-
trode array (MEAa).

For spatiotemporal embeddings, the retinal embedding E is computed from the neural responses over
multiple timepoints:

Eitxy =
∑

e∈ROIi

RetWexy

where R represents the neural responses over 576 electrodes across 5 timepoints, and Wexy are the
learned weights for mapping the neural responses to retinal embeddings for each region of interest
(ROIi).

The weights W are optimized by minimizing the following objective function:

W ∗
e , α

∗
e = min

W,α
∥re − r̂e∥2 + λ1∥W∥1 + λ2(∥W∥22 + ∥α∥22) + λ3∆α

where r̂e =
∑

c αec

∑
xy Wexyf(S)cxy is the estimated neural response with f representing acti-

vations from a pre-trained Inception v1 network and ∆w is the Laplace operator. Here, W can
be considered the spatial weights of interest and α the feature weights. The specific layers of the
network used for different cortical areas are: conv2d2 for V1, mixed4a for V4, and mixed4d for IT.
These embeddings leverage the pre-trained network to efficiently map neural activity patterns to their
corresponding visual stimuli representations, forming a crucial component of our decoder.

End-to-end trained inverse retinotopic mapping This variant of our homeomorphic decoder
involves end-to-end training of the inverse retinotopic mapping from neural responses R to retinal
embeddings Ea, allowing the model to learn optimal parameters directly from data without pre-trained
CNN features.

The inverse receptive field (see Figure 6) computes E as:

Eaxy =
∑

e∈MEAa

re exp

(
−
(
(x− xe)

2

2σ2
e

+
(y − ye)

2

2σ2
e

))
where re represents the neural responses, xe and ye denote the spatial coordinates of electrode e, and
σe represents the standard deviation parameter that determines the spatial spread of the receptive field
associated with each electrode. The parameters xe, ye, and σe are learned during training.

Once Ra is mapped onto Ea, a pixel-to-pixel U-Net reconstructs the stimulus Sfake = U_Net(Ea),
where Sreal is the ground-truth stimulus. Loss components are functions of Sreal and Sfake, incorporat-
ing Ea into the objective function.

This end-to-end approach adapts to the specific characteristics of neural responses and visual stimuli,
improving reconstruction performance.

Pixel-to-pixel mapping The final component of our homeomorphic decoder employs a U-Net
architecture designed for pixel-to-pixel mapping of retinal embeddings to visual stimuli. The U-Net
model is a powerful neural network architecture commonly used for image segmentation tasks due
to its ability to capture both local and global image features through its contracting and expansive
paths connected via skip connections. We are using a standard U-Net architecture; for details refer to
Appendix A.1.

3.2.2 Baseline decoder

We employ a baseline decoder as a reference for performance evaluation. This simpler model
transforms neural responses directly into visual stimuli, without the use of intermediate retinal
embeddings. It adopts a modified U-Net architecture, retaining only the expansive path from the
homeomorphic decoder while omitting the contracting path and skip connections. The input is a

4



576×1 tensor representing neural responses from 576 electrodes at a single timepoint, and the output
is a RGB× 96× 96 visual stimulus. Despite its simplicity, the baseline serves as a crucial benchmark
for assessing more complex models like the homeomorphic decoder. This approach is inspired by [8],
which is regarded as a state-of-the-art reconstruction model [20].

3.2.3 Discriminator

The discriminator plays an integral role in the training process by differentiating between real and
fake visual stimuli, thus facilitating adversarial training. We employ a modified U-Net architecture,
using only the contracting path, to serve as our discriminator. The input to the discriminator is the
visual stimulus, S, of dimensions RGB × 96× 96. The output is a scalar probability p, indicating
the likelihood that the given image is real. Adversarial training, where the discriminator aims to
distinguish real images from reconstructed images, drives the decoder to generate more realistic
and accurate visual stimuli. The loss calculated from the discriminator’s assessments is crucial for
improving the fidelity of the decoded images.

3.3 Training

This section outlines the optimization procedures, loss functions, and strategies used to train the
decoders and the discriminator for high-fidelity reconstruction of visual stimuli from neural responses.
Source code is available on our GitHub repository1.

3.3.1 Training parameters

The dataset comprised 22,348 training samples and 100 test samples, which were exclusively used
for testing and never during training. We used the Adam optimizer with a learning rate of 0.002 and
beta coefficients of 0.5 and 0.999 to ensure convergence. The loss function included discriminator
loss (αdiscr) at 0.01, VGG feature loss (βvgg) at 0.9, and L1 pixel-wise loss (βpix) at 0.09 to balance
sensitivity. Training spanned 50 epochs on a Quadro RTX 6000 GPU, utilizing approximately 10,000
MiB of GPU memory.

3.3.2 Decoder training

The training of the decoders (both homeomorphic and baseline) involves a combination of losses
designed to ensure realism and accuracy in the reconstructed images. The adversarial loss encourages
the decoder to generate realistic images that the discriminator cannot distinguish from real images.
This loss is defined as the binary cross-entropy loss between the discriminator’s output and the true
labels (1 for real images and 0 for generated images):

Ladv = −ESreal [logD(Sreal)]− ESfake [log(1−D(Sfake))]

To further enhance the quality of the reconstructed images, we use a feature matching loss based on
the activations of a pre-trained VGG-19 network. The feature loss is the mean squared error (MSE)
between the feature representations of the real and generated images at various layers (conv1_2,
conv2_2, conv3_4, conv4_4, and conv5_4) of the VGG-19 network:

Lfeat =
∑
l

∥ϕl(Sreal)− ϕl(Sfake)∥22

where ϕl denotes the feature map at layer l of the VGG-19 network. The pixel-wise loss ensures that
the reconstructions are close to the original images in pixel space. We use the mean absolute error
(MAE) to quantify this loss:

Lpixel = ∥Sreal − Sfake∥1
The total loss for the decoder is a weighted sum of the adversarial loss, feature loss, and pixel loss:

Ldecoder = λadvLadv + λfeatLfeat + λpixelLpixel

where λadv, λfeat, and λpixel are the weights for each respective loss component.

1https://github.com/neuralcodinglab/MonkeySee
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3.3.3 Discriminator training

The discriminator is trained to distinguish between real and generated images, using the adversarial
loss defined as the binary cross-entropy loss:

Ldiscriminator = −ESreal [logD(Sreal)]− ESfake [log(1−D(Sfake))]

3.3.4 Optimization strategy

The decoder and discriminator are optimized using the Adam optimizer with default parameters
(learning rate = 0.0002, β1 = 0.5, β2 = 0.999). Early stopping is applied based on validation set
performance to prevent overfitting. An image buffer maintains a history of generated images to
stabilize adversarial training by varying the discriminator’s inputs. During training, the decoder and
discriminator are updated alternately: 1) the discriminator using adversarial loss, and 2) the decoder
using the total loss (adversarial, feature, and pixel losses). Training continues until convergence,
monitored by evaluation metrics.

3.4 Evaluation metrics

To robustly evaluate the performance of our decoding models, we employ a variety of metrics that
assess the accuracy and quality of the reconstructed visual stimuli from both a feature-wise and
perceptual quality perspective.

Feature correlation One of the primary metrics used to evaluate stimulus reconstruction is the
feature correlation between the reconstructed images and the original images. We use a pre-trained
AlexNet, extracting feature representations at various layers (conv1, conv2, conv3, conv4, conv5,
fc6, fc7, fc8). The Pearson correlation coefficient is calculated between corresponding feature
maps of the original and reconstructed images: ρϕl

= Pearson(ϕl(Sreal), ϕl(Sfake)) where ϕl denotes
the feature map at layer l of AlexNet. High correlation values indicate that the reconstructed images
capture similar feature representations as the original images. This standard metric for evaluating
reconstruction quality was also used by Le et al. (2022) [17].

Image colorfulness To evaluate the perceptual quality of the reconstructed images, we use the
Hasler and Süsstrunk colorfulness metric [21]. This metric quantifies the colorfulness of an image,
which is an important aspect of human visual perception. The metric is computed as: C = σrg +
0.3µrg where σrg and µrg are the standard deviation and mean of the color difference vector
rg = (R−G) across the image.

Occlusion analysis We performed spatial and spatiotemporal occlusion analyses to assess the
contributions of different spatial and temporal regions to reconstruction accuracy. In spatial occlusion,
parts of the input are systematically removed to identify which regions are most critical for decoding.
In spatiotemporal occlusion, specific segments of neural responses are occluded to evaluate the
importance of different timepoints and spatial regions in the reconstruction process.

4 Results and discussion

4.1 Stimulus reconstruction

The performance of different decoding models in reconstructing visual stimuli from neural responses
is evaluated across multiple dimensions, including model comparison, spatial occlusion analysis, and
spatiotemporal occlusion analysis.

4.1.1 Model comparison

We compared the reconstruction performance of three variations of our homeomorphic decoder –
spatial, spatiotemporal, and end-to-end inverse retinotopic mapping – against the baseline model,
both qualitatively and quantitatively.

Figure 1 presents qualitative results. The spatial, spatiotemporal, and end-to-end decoders consistently
outperformed the baseline, better preserving textures, shapes, and colors.
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Stimuli Spatial End-to-endSpatiotemporal Baseline

Figure 1: Sample stimuli and corresponding reconstructions from models. The "Spatial" and
"Spatiotemporal" column show results from the pre-trained inverse retinotopic mapping model,
explained in Section 3.2.1. The "End-to-end" column shows reconstructions from the space-resolved
model with a component that learns the neuron’s receptive field explained in Section 3.2.1. "Baseline"
shows the reconstructions of a model we implemented explained in Section 3.2.2.

Table 1 provides a quantitative comparison using Pearson correlations between reconstructed and
original images across different AlexNet layers (Section 3.4). The spatiotemporal decoding model
achieved the highest feature correlation across most layers, highlighting its superior ability to
capture and reconstruct the features present in the original stimuli. Specifically, the spatiotemporal
model excelled in the deeper layers (fc7 and fc8), which capture high-level feature representations,
demonstrating the model’s capability to capture both fine-grained and abstract features encoded in
the neural responses.

Table 1: Feature correlations of reconstructions with original images across AlexNet layers.

Spatial Spatiotempral End-to-end Baseline

conv1 0.358 0.372 0.348 0.267
conv2 0.320 0.334 0.303 0.221
conv3 0.429 0.443 0.407 0.326
conv4 0.385 0.401 0.369 0.316
conv5 0.292 0.318 0.282 0.203
FC6 0.344 0.377 0.325 0.235
FC7 0.534 0.579 0.541 0.434
FC8 0.579 0.610 0.543 0.446

The learned receptive field layer adapts receptive field sizes by spatial location, with larger fields in
the periphery and smaller fields centrally (Figure 7). Despite some receptive fields being smaller than
one pixel, all electrodes still contribute information, with single pixels used when needed. This effect
is likely due to the model’s limited 96 × 96 field of view, constraining pixel allocation for very small
fields.

We also ran model ablations to assess the effect of different loss functions (discriminator, pixel,
and VGG loss) on performance (Figure 11). Additionally, we trained models on region-specific
data (V1, V4, IT) to explore how brain region training affects reconstruction (Figure 12). These
experiments highlight the importance of individual brain regions and the adaptability of models
trained on occluded data.

4.1.2 Spatial occlusion analysis

Spatial occlusion analysis was conducted to identify the importance of different brain regions (V1,
V4, IT) in the reconstruction process. This analysis involved occluding specific spatial regions of the
neural response inputs and examining the effect on the quality of the reconstructed images.
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Stimuli V1+V4+IT V1 V4 IT

Figure 2: Spatial occlusion analysis of spatial model as explained in Section 4.1.2. Title above
column means included brain region.

Figure 2 provides visualizations of example stimuli and their corresponding reconstructions when
inputs from different brain regions (V1, V4, IT) were selectively occluded. The columns represent
the regions of interest, while the rows present different example stimuli. For each region, the neural
responses were set to their baseline values (pre-stimulus onset) for the occlusion procedure.

To quantify the impact of occlusion on reconstruction quality, feature correlations with the original
images were calculated using the pre-trained AlexNet, as shown in Figure 8. The bar plot depicts
feature correlations across different AlexNet layers for reconstructions derived from V1, V4, IT, and
all regions combined.

4.2 Spatiotemporal occlusion analysis

Spatiotemporal occlusion analysis evaluates how neural responses from different time windows
contribute to reconstruction quality, offering insights into the brain’s temporal processing of visual
stimuli.

Figure 3 shows example stimuli and their reconstructions when multiple time windows are occluded,
with only one time window (highlighted in yellow) being included in the model during inference.
Each column represents a different set of time windows being occluded, with the first column showing
the reconstruction using all time windows.

The colorfulness of reconstructions from V1, V4, and IT was evaluated using the Hasler and Süsstrunk
metric. Figure 4 shows the colorfulness scores for each brain region and combined data. V1-
constrained reconstructions had the highest colorfulness scores and correlated strongly with early
AlexNet layers (conv1, conv2), reflecting V1’s role in processing basic features like edges and color.
IT reconstructions, however, showed higher correlations with deeper AlexNet layers (fc7, fc8),
which capture more abstract visual features.

These results highlight the hierarchical nature of visual processing, with V1 specializing in basic
visual attributes and IT handling more complex features.

5 Conclusion

We presented a comprehensive approach to decoding naturalistic visual stimuli from neural responses
using a fully convolutional neural network trained from scratch. The use of the THINGS dataset
enriched our model’s feature set, crucial for accurately interpreting brain representations. Our
homeomorphic decoder, enhanced with an end-to-end inverse retinotopic mapping layer, effectively
integrates spatial and temporal information, leading to high-fidelity and interpretable reconstructions.
Our evaluations highlighted the spatiotemporal decoding model’s superior performance, evidenced
by high feature correlations with deep layers of pre-trained AlexNet. Spatial and spatiotemporal
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Figure 3: Spatiotemporal occlusion analysis. Yellow indicates the active time window, with others
occluded.

Figure 4: Distribution of colorfulness metrics across V1, V4, and IT-constrained reconstructions,
calculated using the Composite Colorfulness Score (CCS) based on RGB channel differences.

occlusion analyses provided insights into the contributions of different brain regions and time
windows, affirming the hierarchical nature of visual processing. The end-to-end inverse retinotopic
mapping facilitated accurate estimation of receptive fields, aligning with neurophysiological findings
and enhancing model transparency. This work advances neural decoding by offering a scalable and
interpretable framework for reconstructing high-quality images from brain signals. Future research
will explore more sophisticated architectures, further integrating temporal information and applying
this framework to other sensory modalities.

Broader impact

Neural decoding models for reconstructing naturalistic images deepen our understanding of the link
between neural activity and perception, with promising applications in visual neuroprosthetics. This
study specifically reuses data originally collected as part of an initiative aimed at restoring sight,
adhering to ethical best practices by maximizing insights from a single dataset and minimizing
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the need for additional animal studies. This approach aligns with responsible research standards,
balancing innovation with animal welfare.

However, caution is needed when applying these models to human neuroprosthetics due to the
complexity of human brain activity and behavior. Human behavior encompasses interactions with the
environment, complex motor actions, and neuroplasticity, elements that models trained exclusively
on data from static image viewing may not fully capture. For instance, visual feedback from motor
activities adds layers of complexity beyond current model capabilities. Additionally, using these
models to identify stimulation sites for neuroprosthetics may not replicate natural neural responses
precisely, highlighting the need for experiments/clinical trials with human subjects, nuanced model
development and careful interpretation of outputs.

Limitations

This study applies invasive MUA recordings in macaques, expanding on prior work with fMRI
by offering higher signal quality and detail. However, the applicability of these results to non-
invasive techniques like fMRI remains limited due to their lower signal-to-noise ratio and less
detailed recording capabilities compared to electrode arrays. This distinction is important, as invasive
neuroimaging remains rare in human research.

Additionally, transitioning this framework to human intracranial applications poses challenges,
including potential scar tissue formation, immune responses, and device rejection over long-term
recordings. Anatomical differences, such as vascular structures, may further impact device placement
and stability. Future work could explore these adaptations for broader applications, including brain-
computer interfaces (BCI) and neuroprosthetics for individuals with acquired blindness, for which,
careful regulatory guidance and additional research will be essential.
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A Appendix / Supplemental material

A.1 U-net architecture

Contracting path: The contracting path follows the typical architecture of a convolutional network.
It consists of repeated application of two 3× 3 convolutions (unpadded convolutions) followed by
a ReLU activation and a 2 × 2 max pooling operation with stride 2 for downsampling. At each
downsampling step, the number of feature channels is doubled.

Expansive path: Every step in the expansive path consists of an upsampling of the feature map
followed by a 2 × 2 convolution ("up-convolution") that halves the number of feature channels, a
concatenation with the correspondingly cropped feature map from the contracting path, and two
3× 3 convolutions, each followed by a ReLU activation. The cropping is necessary due to the loss of
border pixels during convolutions in the contracting path.

Skip connections: Skip connections are introduced between the contracting and expansive paths to
combine low-level features with high-level features, facilitating finer reconstruction of the output
image.

The input to the U-net is the retinal embedding E of dimensions 15×96×96 (15 channels and 96×96
spatial resolution) and the output is the reconstructed visual stimulus S of dimensions RGB×96×96.
The U-net architecture enables detailed reconstruction by preserving spatial information through its
symmetrical structure.

Table 2: U-NET Layers

Layer Shape Configurations
Input 96× 96× 15 -
Conv2d 1 48× 48× 64 kernel_size=4, stride=2, padding=1
LeakyReLU 1 48× 48× 64 negative_slope=0.2, inplace=True
Identity 48× 48× 512 Identity parameters: count=512, depth=512
Skip 1 (Conv2d → ConvTranspose2d) 48× 48× 512 See detailed breakdown
Skip 2 (Conv2d → ConvTranspose2d) 48× 48× 256 See detailed breakdown
Skip 3 (Conv2d → ConvTranspose2d) 48× 48× 128 See detailed breakdown
Skip 4 (Conv2d → ConvTranspose2d) 48× 48× 64 See detailed breakdown
ConvTranspose2d 96× 96× 3 kernel_size=4, stride=2, padding=1
Sigmoid 96× 96× 3 -
Output 96× 96× 3 -

Figure 5: Overview of how the main reconstruction model is trained. A. The U-NET component
is trained with a stack of 2D tensors (illustrated in grey) as input. These tensors are processed to
produce reconstructions (depicted in yellow). The difference between the reconstructions and the
target stimuli (represented in blue) are computed using the adversarial loss, feature loss, and pixel
loss. B. Concurrently, the discriminator component undergoes its training phase. It evaluates the
reconstructed outputs from the U-NET (labeled as ’fake images’) alongside the original target images
(labeled as ’real images’). This evaluation plays a critical role in calculating the Adversarial Loss,
which is instrumental in guiding the parameter updates for the U-NET. This synergistic training
approach ensures the progressive enhancement of the U-NET’s ability to generate increasingly
accurate and realistic reconstructed images.
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Figure 6: A. The inverse receptive field layer produces for each brain response r ∈ R an RF activation
map (M) (also known as the embedding layer E) by using the learnable parameters (µx, µy, σ) in
conjuction with the width (W ) and height (H) of the desired model inputs (X) with a 2D Gaussian
function. B. Let R[H×W ] be a matrix in RH×W such that each entry is r. R[H×W ] is multiplied
element-wise with its corresponding M , and then stacked based on its electrode number, resulting in
15 X in total (7 for V1, 4 for V4, and 4 for IT).

Initialized parameters Learned parameters

Figure 7: The learned 2D Gaussian parameters as spatial receptive field maps for mapping the
neuronal signals in visual space as input for the reconstruction model. The "Visual field" shows
the learned mappings in 2D space. The plot adjacent shows the variations in size of these RFs as a
function of distance from the foveal center, highlighting how the learned RFs expands with increased
eccentricity.
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Figure 8: Relative correlation analysis of roi-constrained reconstructions with AlexNet features.
This figure shows the relative correlation coefficients between features from roi-constrained recon-
structions (V1, V4, IT) and corresponding AlexNet layers, normalized per brain region for fair
comparison. Higher relative correlations are indicated by deeper colors and larger bars, marking the
roi reconstruction with the closest match to each AlexNet layer’s processing characteristics.

Figure 9: Temporal relative correlation analysis across AlexNet layers. This figure illustrates relative
correlation coefficients across multiple time windows and AlexNet layers, with color and bar size
representing the highest relative (not absolute) correlations per brain region. The x-axis is normalized,
allowing direct comparison of relative contributions across time points.
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Figure 10: Correlation of features across time and brain, where i is varying timepoints of the initial
timewindow for each ROI (V1: 0-27ms, V4: 33-60ms, IT: 66-93ms) after stimulus onset and +26 is
the 26 shift of all of the three windows.

Stimuli no ablation no VGGno L1no discr.

Model ablations

Figure 11: Training model with ablated components.
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Stimuli V1+V4+IT ITV4V1

Model trained on brain region of interest

Figure 12: Training model on various brain regions.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Figures 1, 2, 9, Table 1 and their corresponding descriptions in the main text.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This work does not include or introduce new results of purely theoretical
nature.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Section 3.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: A data manuscript for the THINGS macaque visual cortex dataset is
currently in preparation (see https://things-initiative.org). The code has been
made available 2.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Section 3.3.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars on the quantitative results in Table 1 are not reported because it
would be too computationally expensive to create them, and this statistic does not impact
the demonstrated functionality of the introduced method.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

2https://github.com/neuralcodinglab/MonkeySee
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Section 3.3.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: All the reported data collection experiments strictly adhered to the local ethical
guidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Section 5.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not pose such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The data was collected by authors of this paper. The stimulus dataset is publicly
available and properly referenced and credited. The models are original work, or properly
referenced and credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The newly created models and data in this paper are documented in all
necessary detail.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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