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A Preliminary Knowledge550

Definition 5. For a convex function h : Rdq ! R whose domain is Q ✓ Rdq , the Legendre conjugate551

of h⇤ : Q⇤
! R is defined as:552

h
⇤(y) := sup

q02Q
{hq

0
, qi � h(q0)} = � inf

q02Q
{�hq

0
, qi+ h(q0)},

8q 2 Q
⇤ := {q 2 Rdq : sup

q02Q
{hq

0
, qi � g(q0)} < 1}.

Remark 1. When h is strongly convex in Rdq , it is lower bounded and therefore Q
⇤ = Rdy .553

Definition 6. The function h : Rdq ! R is called closed if its epigraph on its domain Q is closed.554

Lemma 4. Suppose h : Rdy ! R is lh,1-smooth and ↵h-strongly convex and its domain Q ✓ Rdq is555

convex, closed and non-empty.556

1. If additionally Q = Rdq , the gradient mappings rh and rh
⇤ are inverse of each other557

([53]); and h
⇤ : Rdq ! R is 1

↵h
-smooth and 1

lh,1
-strongly convex (Proposition 2.6 [3]).558

2. If Q ⇢ Rdq , h⇤ is 1
↵h

-smooth ([34]) and and convex (Theorem 4.43 [30]).559

Lemma 5. Suppose h : Rdq ! R is strongly convex on domain convex, closed and non-empty Q,560

h
c : Rdq ! Rdc is convex in q and dc is finite, and {q 2 Q : hc(q)  0} is non-empty.561

1. The problem minq2{q2Q:hc(q)0} h(q) has a unique feasible solution.562
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2. When linear independence constraint qualification (LICQ) condition additionally563

holds for g
c, the corresponding Lagrange multiplier, i.e. solution to the problem564

maxµ2Rdc
+

minq2Q h(y) + hµ, h
c(q)i is unique [65].565

Lemma 6 (Lemma 3.1 in [8]; Lemma 2.11 in [54]). Suppose Q ✓ Rdq is convex, closed, and566

nonempty. For any q1 2 Rdq and any q2 2 Q,567

hProjQ(q1)� q2,ProjQ(q1)� q1i  0. (20)

In this way, take q1 = q3 � ⌘g for any q3 2 Q, and denote q
+
3 = ProjQ(q3 � ⌘g),568

hg, q
+
3 � q2i  �

1

⌘
hq

+
3 � q2, q

+
3 � q3i. (21)

Lemma 7 (Theorem 3.10 [8]). Suppose a differentiable function h is lh,1-smooth and ↵h2 -strongly569

convex. Consider the constrained problem minq2Q h(q) where Q is non-empty, closed and convex.570

Projected Gradient Descent with ⌘ 
1

lh,1
converges linearly to the unique q

⇤ = argminq2Q h(q):571

kProjQ(q
t
� ⌘rh(qt))� q

⇤
k  (1� ↵⌘)1/2kqt � q

⇤
k  (1� ↵⌘/2)kqt � q

⇤
k. (22)

B Analysis of the Penalty-Based Lagrangian Reformulation572

B.1 Proof of Lemma 1573

Proof. According to Lemma 5, for any fixed x, there exist a unique µ
⇤
g(x) such that the primal574

problem is g(x, y) + hµ
⇤
g(x), g

c(x, y)i. This problem is ↵g-strongly convex with respect to y. This575

↵g is independent from x and therefore the quadratic growth in statement 1 can be concluded576

following Theorem 2 in [35].577

As g is strongly convex and continuous, and Y(x) is a closed set, there exists a unique solution y
⇤
g(x)578

such that g(x, y⇤g(x)) = v(x). If y 6= y
⇤
g(x) and y 2 Y(x), g(x, y) > v(x), which completes the579

proof of statement 2.580

B.2 Proof of Theorem 1581

Proof. We know from Lemma 1 that g(x, y)� v(x) � ky� y
⇤
g(x)k

2 and g(x, y) = v(x) if and only582

if y = y
⇤
g(x). This is a squared-distance bound following Definition 1 in [57]. Under Lipschitzness583

of f(x, y) with respect to y, the ✏-approximate problem is equivalent to its penalty reformulation584

min
(x,y)2{X⇥Y:gc(x,y)0}

f(x, y) + �(g(x, y)� v(x)) (23)

with � = o(✏�0.5) following Theorems 1 and 2 in [57]. This is in equivalence to585

min
x2X

min
y2Y(x)

f(x, y) + �(g(x, y)� v(x)). (24)

Suppose (x0, y0) 2 {X ⇥ Y : gc(x, y)  0} being a solution to (23). Suppose for any x 2 X ,586

y
⇤
F (x) 2 argminy2Y(x) f(x, y) + �(g(x, y)� v(x)). We know that for any x 2 X , y 2 Y(x),587

f(x0, y0) + �(g(x0, y0)� v(x0)) f(x, y⇤F (x)) + �(g(x, y⇤F (x))� v(x))

f(x, y) + �(g(x, y)� v(x)).

This means any solution to (23) is a solution to (24). On the other hand, suppose x0 2 X , y⇤F (x0) 2588

Y(x0) is a solution to (24). We know that for any (x, y) 2 {X ⇥ Y : gc(x, y)  0},589

f(x0, y
⇤
F (x0)) + �(g(x0, y

⇤
F (x0))� v(x0)) f(x, y⇤F (x)) + �(g(x, y⇤F (x))� v(x))

 f(x, y) + �(g(x, y)� v(x)).

This means any solution to (24) is a solution to (23).590

Besides, we know f(x, y) is lf,1-smooth, g(x, y) is ↵g-strongly convex in y, by the definitions, we591

know f(x, y) + �(g(x, y)� v(x)) is (�↵g � lf,1)-strongly convex in y as592

f(x, y1) + �(g(x, y1)� v(x))� f(x, y2) + �(g(x, y2)� v(x))
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=f(x, y1)� f(x, y2) + �(g(x, y1)� g(x, y2))

�hryf(x, y2), y1 � y2i �
lf,1

2
ky1 � y2k

2 + �hryg(x, y2), y1 � y2i+ �
↵g

2
ky1 � y2k

2

=hryf(x, y2) + �ryg(x, y2), y1 � y2i+
�↵g � lf,1

2
ky1 � y2k

2
. (25)

Moreover, according to Assumption 2 the constraint gc(x, y) is convex in y, and miny2Y(x) f(x, y)+593

�(g(x, y)� v(x)) is equivalent to its equivalent Lagrangian Dual Form594

max
µ2Rdc

+

min
y2Y

f(x, y) + �(g(x, y)� v(x)) + hµ, g
c(x, y)i (26)

according to the Lagrangian Duality theory, as in Chapter 4 in [54]. Therefore, (23) can be recovered595

to (2a) and this completes the proof.596

C Analysis of the Differentiability of Value Functions597

Lemma 8 (Theorem 2.16 in [30]). Suppose h(x, y) is strongly convex in y and is Lipschitz with598

respect to x, hc(x, y) is convex in y and is Lipschitz with respect to x, and both Y and {y 2 Y :599

h
c(x, y)  0} are non-empty, closed, and convex. For the problem miny2{y2Y:hc(x,y)0} h(x, y),600

the unique solution y
⇤
h(x) and unique Lagrange multiplier µ⇤

h(x), defined as601

(y⇤h(x), µ
⇤
h(x)) := arg max

µ2Rdx
+

min
y2Y

h(x, y) + hµ, h
c(x, y)i, (27)

is Lipschitz in x. In other words, there exist Lh � 0 that, for all x1, x2 2 X ,602

k(y⇤h(x1);µ
⇤
h(x1))� (y⇤h(x2);µ

⇤
h(x2))k  Lhkx1 � x2k.

Remark 2. This also implies the Lh-continuity of both y
⇤(x) and µ

⇤(x).603

Remark 3. When h(x, y) = g(y), and h
c(x, y) = A

>
y � x, the Lipschitzness of both y

⇤(x) and604

µ
⇤(x) in x holds automatically.605

Lemma 9 (Theorem 4.24 in [6]). Consider the value function for the constrained problem606

vh(x) = min
y2Y

h0(x, y) s.t. hi(x, y)  0, i = 1, . . . , I, (Px)

where Y is convex, closed, and non-empty. Denote (S(x),⇤(x)) as the solution sets for y and the607

Lagrange multipliers (µ1, . . . , µI):608

(S(x),⇤(x)) := argmin
y

max
(µ1,...,µI)�0

h0(x, y) +
IX

i=1

µihi(x, y).

If the following conditions hold:609

1. h0(x, ·) is convex and the solution set S(x) is non-empty.610

2. The directional regularity condition in a direction d, holds for all y 2 S(x).611

3. For a sequence tn ! 0, define the sequence xn := x+ tnd+O(tn). If (Pxn ) is attained by612

an O(tn)-optimal solution sequence yn with a limit point (in the strong topology) y 2 S(x).613

Then vh(x) is Hadamard directionally differentiable at x in the direction d, and the directional614

derivative can be written as615

v
0
h(x, d) = inf

y2S(x)
sup

(µ1,...,µI)2⇤(x)
rx

 
h0(x, y) +

IX

i=1

µihi(x, y)

!
.

Remark 4. When y
⇤
h, µ

⇤
h = (µ⇤

h,1, . . . , µ
⇤
h,I) are unique in S(x) and ⇤(x), we have:616

v
0
h(x, d) = rx

 
h0(x, y

⇤) +
IX

i=1

µ
⇤
i hi(x, y

⇤)

!
.
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Before proving Lemma 2 and 3, we would like to introduce a more general form.617

Lemma 10. Suppose Y and {y 2 Y : hc(x, y)  0} are both non-empty, closed and convex, h(x, y)618

is jointly smooth and strongly convex in y, hc(x, y) is convex in y, and both h(x, y) and h
c(x, y) are619

Lipschitz with respect to x.620

vh(x) = min
y2Y

h(x, y) s.t. h
c(x, y)  0

is differentiable with621

rvh(x) = rxh(x, y
⇤
h(x)) + hµ

⇤
h(x), h

c(x, y⇤h(x))i,

where (y⇤h(x), µ
⇤
h(x)) defined in (27) are unique.622

Proof. As h(x, y) being strongly convex in y, condition 1 in Lemma 9 is satisfied and the solution623

sets are of singleton value (y⇤h(x), µ
⇤
h(x)) according to Lemma 5. Moreover, the smoothness of624

f(x, y) guarantees Robinson’s constraint qualification [2], which implies the directional regularity625

condition for any direction d (Theorem 4.9. (ii) in [6]). Additionally, under the Lipschitzness of626

h(x, y) and h
c(x, y) with respect to x, y⇤h(x), µ

⇤
h(x) are Lipschitz according to Lemma 8. This627

guarantees Condition 2 in Lemma 9 can be satisfied for all directions d. Condition 3 is a direct628

outcome from Lemma 8. This completes the proof.629

C.1 Proof of Lemma 2630

Proof. The problem miny2Y g(x, y) s.t. gc(x, y)  0 fits in the setting of Lemma 10 by taking631

h(x, y) = g(x, y) and h
c(x, y) = g

c(x, y). Therefore the derivative (8) can be obtained accordingly.632

Moreover, for any x1, x2 2 X ,633

krv(x1)�rv(x2)k

=krxg(x1, y
⇤
g(x1)) + hµ

⇤
g(x1),rxg

c(x1, y
⇤
g(x1))i � rxg(x2, y

⇤
g(x2))

� hµ
⇤
g(x2),rxg

c(x2, y
⇤
g(x2))ik

(a)
krxg(x1, y

⇤
g(x1))�rxg(x2, y

⇤
g(x2))k

+ khµ
⇤
g(x1),rxg

c(x1, y
⇤
g(x1))i � hµ

⇤
g(x1),rxg

c(x2, y
⇤
g(x2))ik

+ khµ
⇤
g(x1),rxg

c(x2, y
⇤
g(x2))i � hµ

⇤
g(x2),rxg

c(x2, y
⇤
g(x2))ik

(b)
(lg,1 +Bglgc,1)(kx1 � x2k+ ky

⇤
g(x1)� y

⇤
g(x2)k) + lgc,0kµ

⇤
g(x1)� µ

⇤
g(x2)k

(c)
((lg,1 +Bglgc,1)(1 + Lg) + lgc,0Lg)kx1 � x2k,

where (a) follows triangle inequality; (b) leverage on the Lipschitzness of rg, gc and rg
c, and634

the upper bound for kµ⇤
g(x)k; and (c) uses the Lipschitzness of y⇤g(x) and µ

⇤
g(x). As the bound635

is loose due to the use of triangle inequality, we can conclude that v(x) is lv,1-smooth where636

lv,1  ((1 +Bg)(1 + Lg)lgc,1 + lgc,0Lg).637

C.2 Proof of Lemma 3638

Proof. As � >
lf,1
↵g

, we know f(x, y) + �(g(x, y)� v(x)) is (�↵g � lf,1)-strongly convex by (25).639

By strong duality,640

F�(x) = min
y2Y

f(x, y) + �(g(x, y)� v(x))

s.t. gc(x, y)  0.

Considering the smoothness of v(x) as presented in Lemma 2, all assumptions in Lemma 10 are641

satisfied. Therefore the derivative (9) can be obtained. For any x1, x2 2 X ,642

krF (x1)�rF (x2)k

=krxf(x1, y
⇤
F (x1)) + � (rxg(x1, y

⇤
F (x1))�rv(x1)) + hµ

⇤
F (x1),rxg

c(x1, y
⇤
F (x1))i

� rxf(x2, y
⇤
F (x2))� � (rxg(x2, y

⇤
F (x2))�rv(x2))� hµ

⇤
F (x2),rxg

c(x2, y
⇤
F (x2))ik

17



(a)
krxf(x1, y

⇤
F (x1))�rxf(x2, y

⇤
F (x2))k+ �krxg(x1, y

⇤
F (x1))�rxg(x2, y

⇤
F (x2))k

+ �krv(x1)�rv(x2)k+ khµ
⇤
F (x1),rxg

c(x1, y
⇤
F (x1))i � hµ

⇤
F (x1),rxg

c(x2, y
⇤
F (x2))ik

+ khµ
⇤
F (x1),rxg

c(x2, y
⇤
F (x2))i � hµ

⇤
F (x2),rxg

c(x2, y
⇤
F (x2))ik

(b)
(lf,1 + �lg,1 +BF lgc,1)(kx1 � x2k+ ky

⇤
F (x1)� y

⇤
F (x2)k) + �lv,1kx1 � x2k

+ lgc,0kµ
⇤
F (x1)� µ

⇤
F (x2)k

(c)
((lf,1 + �lg,1 +BF lgc,1)(1 + LF ) + �lv,1 + lfc,0LF )kx1 � x2k,

where (a) follows triangle inequality; (b) leverage on the Lipschitzness of rf , rg, gc and rg
c,643

and the upper bound for kµ⇤
F (x)k; and (c) uses the Lipschitzness of y⇤F (x) and µ

⇤
F (x). As the644

bound is loose due to the use of triangle equality, we can conclude that F (x) is lF,1-smooth where645

lF,1  (lf,1 + �lg,1 +BF lgc,1)(1 + LF ) + �lv,1 + lfc,0LF .646

D Convergence Analysis of the Main Result647

D.1 Proof of Theorem 12648

Define the bias term b(xt) as649

b(xt) :=rF (xt)� gt

=
�
rxf(xt, y

⇤
F (xt)) + � (rxg(x, y

⇤
F (xt)) +rv(xt)) + hµ

⇤
F (xt),rxg

c(xt, y
⇤
F (xt))i

�

�

✓
rxf(xt, y

TF
F,t) + �

⇣
rxg(xt, y

TF
F,t)�rxg(xt, y

Tg

g,t) + µ
Tg

g,t

⌘
+ hµ

TF
F ,rxg

c(xt, y
TF
F,t)i

◆
.

In this way,650

kb(xt)k
(a)
krxf(xt, y

TF
F,t)�rxf(xt, y

⇤
F (xt))k

+ �

✓
krxg(xt, y

TF
F,t)�rxg(xt, y

⇤
F (xt))k+ krxg(xt, y

Tg

g,t)�rxg(xt, y
⇤
g(xt))k+ kµ

Tg

t,2 � µ
⇤
g(xt)k

◆

+ khµ
TF
F ,rxg

c(xt, y
TF
F,t)i � hµ

⇤
F (xt),rxg

c(xt, y
TF
F,t)ik

+ khµ
⇤
F (xt),rxg

c(xt, y
TF
F,t)i � hµ

⇤
F (xt),rxg

c(xt, y
⇤
F (xt))ik

(b)
 lf,1ky

TF
F,t � y

⇤
F (xt)k+ �(lg,1ky

TF
F,t � y

⇤
F (xt)k+ lg,1ky

Tg

g,t � y
⇤
g(xt)k+ kµ

Tg

g,t � µ
⇤
g(xt)k)

+ lgc,0kµ
TF
F,t � µ

⇤
F (xt)k+BF lgc,1ky

TF
F,t � y

⇤
F (xt)k

(c)
=(lf,1 + �lg,1 +BF lgc,0)ky

TF
F,t � y

⇤
F (xt)k+ lgc,0kµ

TF
F,t � µ

⇤
F (xt)k

+ �

⇣
lg,1ky

Tg

g,t � y
⇤
g(xt)k+ kµ

Tg

g,t � µ
⇤
g(xt)k

⌘
,

where (a) uses triangle inequality, (b) relies on Assumption 2 and Cauchy-Schwartz inequality, and651

(c) is by rearrangement. Furthermore, according to Young’s inequality,652

kb(xt)k
2
2
⇣
(lf,1 + �lg,1 +BF lgc,0)ky

TF
F,t � y

⇤
F,tk+ lgc,0kµ

TF
F,t � µ

⇤
F,tk

⌘2

+ 2�2
⇣
lg,1ky

Tg

g,t � y
⇤
g,tk+ kµ

Tg

g,t � µ
⇤
g,tk

⌘2

=O(�2
✏F + �

2
✏g).

According to Lemma 3, F�(x) is lF,1-smooth in X . The projection guarantees that xt+1 and xt are653

in X . In this way,654

F (xt+1) F (xt) + hrF (xt), xt+1 � xti+
lF,1

2
kxt+1 � xtk

2

F (xt) + hgt, xt+1 � xti+
1

2⌘
kxt+1 � xtk

2 + hb(xt), xt+1 � xti, (28)
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where the second inequality is by ⌘ 
1

lF,1
.655

Following lemma 6, we know that656

hgt, xt+1 � xti  �
1

⌘
kxt+1 � xtk

2
.

Plugging this back to (28),657

F (xt+1) F (xt)�
1

2⌘
kxt+1 � xtk

2 + hb(xt), xt+1 � xti

F (xt)�
1

2⌘
kxt+1 � xtk

2 + ⌘kb(xt)k
2 +

1

4⌘
kxt+1 � xtk

2

=F (xt)�
1

4⌘
kxt+1 � xtk

2 + ⌘kb(xt)k
2
,

where the second inequality is from Young’s inequality. Telescoping therefore gives658

1

T

T�1X

t=0

kG⌘(xt)k
2


4

⌘T
(F (x0)� F (xT )) +

4

T

T�1X

t=0

kb(xt)k
2

=O(⌘�1
T

�1) +O(�2
✏F + �

2
✏g)

=O(�T�1 + �
2
✏F + �

2
✏g)

where last equality comes from ⌘ = O(��1). This completes the proof.659

D.2 Proof of Theorem 3660

In Algorithm 2, with Ty being sufficiently large, we are implementing an accelerated projected661

gradient descent on �D(µ). The following lemma presents the convergence analysis of such an662

accelerated method on smooth and convex functions.663

Lemma 11. Suppose h(·) is lh,1-smooth, and there exist a unique q
⇤ = argminq2Q h(q). Consider664

the constrained problem minq2Q h(q) where Q is non-empty, closed and convex. Accelerated665

projected gradient descent algorithm as in (29) and (30) with step size ⌘ 
1

lh,1
, initial value666

q0 = q�1,667

qt+ 1
2
=qt +

t� 1

t+ 2
(qt � qt�1) (29)

qt+1 =ProjQ(qt+ 1
2
� ⌘rh(qt+ 1

2
)) (30)

for t = 0, . . . , T � 1 will lead to668

h(qT )� h(q⇤) <
2

⌘(T + 1)2
kq0 � q

⇤
k
2
.

Proof. Denote ✓t =
2

t+1 , and669

ut = qt�1 +
1

✓t
(qt � qt�1).

(29) can be reformulated as670

qt+ 1
2
= (1� ✓t+1)qt + ✓t+1ut.

In this way, we have671

h(qt+1)� h(q⇤)� (1� ✓t+1)(h(qt)� h(q⇤))

=h(qt+1)� (✓t+1h(q
⇤) + (1� ✓t+1)h(qt))

(a)
h(qt+1)� h(✓t+1q

⇤ + (1� ✓t+1)qt)

=h(qt+1)� h(qt+ 1
2
) + h(qt+ 1

2
)� h(✓t+1q

⇤ + (1� ✓t+1)qt)
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(b)
hrh(qt+ 1

2
), qt+1 � qt+ 1

2
i+

1

2⌘
kqt+1 � qt+ 1

2
k
2 + hrh(qt+ 1

2
), qt+ 1

2
� (✓t+1q

⇤ + (1� ✓t+1)qt)i

=hrh(qt+ 1
2
), qt+1 � (✓t+1q

⇤ + (1� ✓t+1)qt)i+
1

2⌘
kqt+1 � qt+ 1

2
k
2

(c)
 �

1

⌘
hqt+1 � (✓t+1q

⇤ + (1� ✓t+1)qt, qt+1 � qt+ 1
2
i+

1

2⌘
kqt+1 � qt+ 1

2
k
2

=�
1

⌘
h✓t+1ut+1 � ✓t+1µ

⇤
, ✓t+1ut+1 � ✓t+1uti+

1

2⌘
k✓t+1ut+1 � ✓t+1utk

2

=
✓
2
t+1

2⌘

�
kut � q

⇤
k
2
� kut+1 � q

⇤
k
2
�
,

where (a) follows the convexity of h; (b) is by the smoothness of h and ⌘ 
1

lh,1
, and the convexity672

of h; and (c) follows from Lemma 6 as ✓t+1q
⇤ + (1� ✓t+1)qt is a linear combination of qt, q⇤ 2 Q673

and is in Q.674

Rearranging gives675

⌘

✓2t+1

(h(qt+1)� h(q⇤)) +
1

2
kut+1 � q

⇤
k
2
(1� ✓t+1)

⌘

✓2t+1

(h(qt)� h(q⇤)) +
1

2
kut � q

⇤
k
2

(d)


⌘

✓2t

(h(qt)� h(q⇤)) +
1

2
kut � q

⇤
k
2

(e)


⌘

✓21

(h(q1)� h(q⇤))t +
1

2
ku1 � q

⇤
k
2

(f)


(1� ✓1)⌘

✓21

(h(q0)� h(q⇤)) +
1

2
ku0 � q

⇤
k
2 = ku0 � q

⇤
k
2

where (d) is from 1�✓t+1

✓2
t+1


1
✓t

, (e) is the outcome of iteration, and (f) again uses the first inequality.676

Additionally, as u0 = q0, rearranging gives677

h(qT )� h(q⇤) <
2

⌘(T + 1)2
kq0 � q

⇤
k
2
. (31)

This completes the proof.678

In this way, we are ready to proceed to the proof of Theorem 3.679

Proof. To restate, for a fixed x, define680

Lg(µ, y) =g(x, y) + hµ, g
c(x, y)i,

LF (µ, y) =f(x, y) + �(g(x, y)� v(x)) + hµ, g
c(x, y)i,

and681

Dg(µ) :=min
y2Y

Lg(µ, y),

DF (µ) :=min
y2Y

LF (µ, y).

Dg and DF are concave in µ according to Lemma 2.58 in [54]. Moreover, Lg(µ, y) is ↵g-strongly682

convex and (lg,1+ lgc,1)-smooth in y and LF (µ, y) is (�↵g� lf,1)-strongly convex and (lf,1+�lg,1+683

lgc,1)-smooth in y. Therefore,684

y
⇤
g(µ;x) := argmin

y2Y
Lg(µ, y),

y
⇤
F (µ;x) := argmin

y2Y
LF (µ, y)
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are respectively 1
↵g

and 1
�↵g�lf,1

-Lipschitz to µ (Theorem F.10 in [16]; Theorem 4.47 in [30]). In685

this way, following Lemma 9, we have686

rDg(µ) =rµLg(µ, y
⇤
g(µ;x)) = g

c(x, y⇤g(µ;x)),

rDF (µ) =rµLF (µ, y
⇤
F (µ;x)) = g

c(x, y⇤F (µ;x)).

Additionally, gc is lgc,0-Lipschitz by Assumption 1, in this way, for any µ1, µ2 2 Rdc
+ :687

krDg(µ1)�rDg(µ2)k =kg
c(x, y⇤g(µ1;x))� g

c(x, y⇤g(µ2;x))k

lgc,0ky
⇤
g(µ1;x)� y

⇤
g(µ2;x)k 

lgc,0

↵g
kµ1 � µ2k. (32)

and688

krDF (µ1)�rDF (µ2)k =kg
c(x, y⇤F (µ1;x))� g

c(x, y⇤F (µ2;x))k

lgc,0ky
⇤
F (µ1;x)� y

⇤
F (µ2;x)k 

lgc,0

�↵g � lf,1
kµ1 � µ2k. (33)

We can conclude that Dg and DF are respectively lgc,0
↵g

and lgc,0
�↵g�lf,1

-smooth.689

Fixing µt+ 1
2

, steps 4-7 are Ty-step projected gradient descent on y with step size ⌘g,1 
1

lg,1+lgc,1
690

and ⌘F,1 
1

lf,1+�lg,1+lgc,1
respectively for the two problems to have linear convergence according691

to Lemma 7. For Ty = O(log
�
✏
�1
g

�
), we know kyt+1 � y

⇤
g(µt+ 1

2
;x)k = O(✏g) to solve (7). For692

Ty = O(log
�
✏
�1
F

�
), we know kyt+1 � y

⇤
F (µt+ 1

2
;x)k = O(✏F ) to solve (5).693

The algorithm is, therefore, an accelerated projected gradient descent method on �Dg(µ) and694

�DF (µ), both of which are convex and smooth. By Lemma 11, we can conclude the complexity is695

Õ(✏�0.5
g ) for conducting on (7) to achieve696

Dg(µ
⇤
g(x))�Dg(µTg ) < ✏g, (34)

and similarly, the complexity is Õ(✏�0.5
F ) for conducting on (5) to achieve697

DF (µ
⇤
F (x))�DF (µTF ) < ✏F . (35)

Moreover, the problems698

max
µ2Rdc

+

Dg(µ) and max
µ2Rdc

+

DF (µ)

are respectively equivalent to the respective unconstrained problems with the Lagrange multipliers699

max
µ2Rdc

D̃g(µ) := Dg(µ) + �
>
g µ and max

µ2Rdc
D̃F (µ) := DF (µ) + �

>
Fµ

for some �g,�F being non-negative and finite in all dimension, i.e. 0  �g < 1, 0  �F < 1, and700

�
>
g µ

⇤
g(x) = 0 and �

>
Fµ

⇤
F (x) = 0, (36)

as Dg(µ) and DF (µ) are both concave in µ and µ 2 Rdc
+ is equivalent to µ � 0. These properties701

are well-known, see details in Chapter 4 in [54]. The first-order stationary condition requires702

rD̃g(µ⇤
g(x)) = rDg(µ⇤

g(x)) + �g = 0 and rD̃F (µ⇤
F (x)) = rDF (µ⇤

F (x)) + �F = 0 and703

therefore704

rDg(µ
⇤
g(x)) = ��g and rDF (µ

⇤
F (x)) = ��F . (37)

In this way, for all µ 2 B(µ⇤
g(x); �g) \ Rdc

+ .705

Dg(µ
⇤
g(x))�Dg(µ) =

Z 1

⌧=0
hrDg(µ+ ⌧(µ⇤

g(x)� µ)), µ⇤
g(x)� µid⌧

=

Z 1

⌧=0

1

⌧
hrDg(µ

⇤
g(x))�Dg(µ+ ⌧(µ⇤

g(x)� µ)), ⌧(µ� µ
⇤
g(x))id⌧

21



� hrDg(µ
⇤
g(x)), µ� µ

⇤
g(x)i

(a)
�

Z 1

0
C�gkµ� µ

⇤
g(x)k

2
⌧d⌧ � hrDg(µ

⇤
g(x)), µ� µ

⇤
g(x)i

(b)
=
C�g

2
kµ� µ

⇤
g(x)k

2 + h�g, µ� µ
⇤
g(x)i

(c)
�
C�g

2
kµ� µ

⇤
g(x)k

2
,

where (a) uses (15) and the fact that the µ, µ⇤
g(x) 2 B(µ⇤

g(x); �g)\Rdc
+ implies µ+ ⌧(µ⇤

g(x)�µ) 2706

B(µ⇤
g(x); �g) \ Rdc

+ ; (b) solves the integral and �g = �rDg(µ⇤
g(x)); and (c) follows from the fact707

that h�, µ⇤
g(x)i = 0 by the nature of the Lagrangian reformulated objective (Chapter 4 in [54]) and708

µ,�g � 0.709

Analogously, for all µ 2 B(µ⇤
F (x); �F ) \ Rdc

+ ,710

DF (µ
⇤
F (x))�DF (µ) �

C�F

2
kµ� µ

⇤
F (x)k

2
.

In this way, for all ✏g <
C�g

2 �g , when it achieves (34) with complexity Õ(✏�0.5
g ) to solve (7),711

kµTg � µ
⇤
g(x)k

2 = O(✏g),

and kyTg � y
⇤
g(x)k

2
kyTg � y

⇤
g(µTg ;x)k

2 + kµTg � µ
⇤
g(x)k

2

(1/↵g + 1)kµTg � µ
⇤
g(x)k

2 = O(✏g).

Similarly, for (5), for all ✏g <
C�g

2 �g , the complexity to achieve (35) and712

kµTF � µ
⇤
F (x)k

2 = O(✏F ),

and kyTF � y
⇤
F (x)k

2
kyTF � y

⇤
F (µTF ;x)k

2 + kµTF � µ
⇤
F (x)k

2

(1/↵F + 1)kµTF � µ
⇤
F (x)k

2 = O(✏F )

is Õ(✏�0.5
F ). This completes the proof.713

D.3 Proof of Theorem 4714

In this section, we consider715

g
c(x, y) = g

c
1(x)

>
y � g

c
2(x) (38)

being affine in y, and Y = Rdy .716

Therefore, for fixed x, take (7) and (5) as L(µ, y) both fit into a special case of strongly-convex-717

concave saddle point problems in the following form:718

max
µ2Rdc

+

min
y2Rdy

�h1(µ) + y
>
Aµ+ h2(y). (39)

For (7), A = g
c
1(x), h1(µ) = g

c
2(x)

>
µ is convex (linear) in µ, and h2(y) = g(x, y) is ↵g-strongly719

convex in y. For (5), A = g
c
1(x), h1(µ) = g

c
2(x)

>
µ is convex (linear) in µ, h2(y) = g(x, y) is720

�↵g � lf,1-strongly convex in y.721

In this way, we would like to show the effectiveness of the single-loop algorithm, Algorithm 2 without722

acceleration and Ty = 1, on the problems in (39), which is a general form to 7 and (5). In other723

words, we are going to prove Theorem 7, which is a more general theorem to Theorem 4.724

Theorem 7. Suppose L(µ, y) is in the form of (39) where A is full rank in column, h1 is concave and725

lh1,1-smooth, h2 is ↵h2 -strongly convex and lh2,1-smooth satisfying lh1,1 = O(1), lh2,1, l↵2 � O(1),726

and lh2,1

↵h2
= O(1). Conduct Algorithm 2 without acceleration, Ty = 1, ⌘1 = O( 1

lh2,1
)  1

lh2,1
, ⌘2 =727

O(✏) 
1

lh1,1+�2
max(A)/↵h2

for arbitrary small positive ✏ 

⇣
4lh2,1�max(A)

↵h2�
2
min(A)

(lh1,1 +
�2
max(A)
↵h2

)
⌘�1

,728

yields output (µT , yT ) such that729

kµt � µ
⇤
k
2
< ✏, and kyt � y

⇤
k
2
< ✏

with complexity O(log
�
✏
�1
�
). Here, (µ⇤

, y
⇤) = argmaxµ2Rdc miny2Rdy L(µ, y).730
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Remark 5. It emphasizes on lh1,1 = O(1), lh2,1, l↵2 � O(1), and lh2,1

↵h2
= O(1) as lh2,1, l↵2 / �731

when taking (5) as L(µ, y).732

Before proceeding, we would first look at D(µ) as (18) and conclude its smoothness and strong733

concavity as in the following Lemma.734

Lemma 12. Suppose h1 is concave and lh1,1-smooth, h2 is ↵h2-strongly convex and lh2,1-smooth,735

and A is full column rank. In this way, D(µ) defined in (18) equals736

D(µ) = �h1(µ)� h
⇤
2(�Aµ),

and is �2
min(A)
lh2,1

-strongly concave and (lh1,1 +
�2
max(A)
↵h2

)-smooth with respect to µ.737

Proof. Following Definition 5, we have738

D(µ) = �h1(µ)� h
⇤
2(�Aµ)

where h
⇤
2 is 1

lh2,1
-strongly convex and 1

↵h2
-smooth according to Lemma 4.739

For all µ1, µ2,740

�D(µ1)� (�D(µ2)) =h
⇤
2(�Aµ1)� h

⇤
2(�Aµ2) + h1(µ1)� h1(µ2)

�h
@h

⇤
2(�Aµ2)

@ �Aµ2
,�Aµ1 +Aµ2i+

1/lh2,1

2
kAµ1 �Aµ2k

2 + hrh1(µ2), µ1 � µ2ii

�hrD(µ2), µ1 � µ2i+

�2
min(A)
lh2,1

2
kµ1 � µ2k

2
.

where the first inequality follows the strong convexity of h⇤
2 and the fact that �h1 is convex as h1 is741

concave. and the second inequality follows the chain rule to formulate rD(µ2). Therefore, �D(µ)742

is �2
min(A)
lh2,1

-strongly convex, and D(µ) is �2
min(A)
lh2,1

-strongly concave.743

Moreover D(µ) is (lh1,1 +
�2
max(A)
↵h2

)-smooth as744

D(µ1)�D(µ2) =� h
⇤
2(�Aµ1)� (�h

⇤
2(�Aµ2))� h1(µ1) + h1(µ2)

h
@ � h

⇤
2(�Aµ2)

@ �Aµ2
,�Aµ1 � (�Aµ2)i+

1/↵h2

2
k �Aµ1 � (�Aµ2)k

2

+ h�rh1(µ2), µ1 � µ2ii+
lh1,1

2
kµ1 � µ2k

2

hrD(µ2), µ1 � µ2i+
lh1,1 +

�2
max(A)
↵h2

2
kµ1 � µ2k

2
.

The first inequality holds as both h
⇤
2 and h1 are smooth. The second follows the chain rule.745

Note �max(A) � �min(A) > 0 as A is full column rank. This completes the proof.746

In this way, we are ready to proceed with the general convergence analysis to solve (39) as L(µ, y)747

using Algorithm 2 without acceleration and Ty = 1, which is a single-loop algorithm.748

Proof of Theorem 7. We first look into the update of kyt �rh
⇤
2(�Aµt)k.749

Fixing µ, define y
⇤
µ := argminy L(µ, y). The first-order stationary optimality condition requires750

ryL(µ, y⇤µ) = 0, i.e. rh2(y⇤µ) = �Aµt. This implies y⇤µ = rh
⇤
2(�Aµt) because the mapping rh2751

and rh
⇤
2 are the inverse of each other according to Lemma 4.752

For a fixed µt, the update rule yt+1 = yt � ⌘1ryL(µt, yt) is a gradient descent step for the objective753

function L(µt, y), which is also ↵h2-strongly convex and lh2,1-smooth to y. Following Lemma 7,754

take ⌘1 
1

lh2,1
, we have755

kyt+1 �rh
⇤
2(�Aµt)k  (1� ⌘1↵h2/2)kyt �rh

⇤
2(�Aµt)k (40)
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Following triangle inequality, we also have756

kyt+1 �rh
⇤
2(�Aµt+1)k

kyt+1 �rh
⇤
2(�Aµt)k+ krh

⇤
2(�Aµt)�rh

⇤
2(�Aµt+1)k

(1� ⌘1↵h2/2)kyt �rh
⇤
2(�Aµt)k+

�max(A)

↵h2

kµt+1 � µtk (41)

where the second term in the last inequality comes from the smoothness of the conjugate function757

according to Lemma 4.758

We then look into the update of kµt+1 � µtk. According to Lemma 12,759

D(µ) := min
y2Rdy

�h1(µ) + y
>
Aµ+ h2(y) = �h1(µ)� h

⇤
2(�Aµ)

is �2
min(A)
lh2,1

-strongly concave and (lh1,1 +
�2
max(A)
↵h2

)-smooth with respect to µ. Moreover, the problem760

max
µ2Rdc

+

D(µ),

is equivalent to the unconstrained problem with the Lagrange multiplier761

max
µ2Rdc

D̃(µ) := D(µ) + �
>
µ

where unique � is non-negative and finite in all dimension, i.e. 0  � < 1, as D(µ) is strongly762

convex and µ 2 Rdc
+ is equivalent to µ � 0. We know that D̃(µ) is smooth and strongly concave763

with the same modulus as D(µ). The first-order stationary condition requires764

rD̃(µ⇤) = rD(µ⇤) + � = 0. (42)

In this way,765

1

⌘2
kµt+1 � µtk =

1

⌘2
k[µt + ⌘2(�rh1(µt) +A

>
yt+1)]Rdc

+
� µtk

(a)
k �rh1(µt) +A

>
yt+1k

=k � rh1(µt) +A
>
rh

⇤
2(�Aµt) + �+A

>
yt+1 �A

>
rh

⇤
2(�Aµt)� �k

(b)
krD̃(µt)k+ �max(A)kyt+1 �rh

⇤
2(�Aµt)k+ k�k

(c)
krD̃(µt)�rD̃(µ⇤)k+ �max(A)(1� ⌘1↵h2/2)kyt �rh

⇤
2(�Aµt)k+ k�k

(d)
 (lh1,1 +

�
2
max(A)

↵h2

)kµt � µ
⇤
k+ �max(A)(1� ⌘1↵h2/2)kyt �rh

⇤
2(�Aµt)k+ k�k (43)

Inequality (a) comes from the non-expansiveness (1-Lipschitzness) of the projection operation, (b)766

follows triangle inequality, (c) uses (42) and (40), and (d) comes from the smoothness of D̃(µ).767

Now we are ready to find the bound of the update of kµt � µ
⇤
k.768

Define an auxiliary update as769

µ̃t+1 := [µt + ⌘2rD(µt)]Rdc
+

= [µt + ⌘2(�rh1(µt) +A
>
rh

⇤
2(�Aµt))]Rdc

+
. (44)

This is a projected gradient descent on strongly convex �D(µ). As Rdc
+ is closed and convex,770

following Lemma 7, for ⌘2 
1

(lh1,1+
�2
max(A)

↵h2
)
, we have771

kµ̃t+1 � µ
⇤
k 

✓
1� ⌘2

�
2
min(A)

2lh2,1

◆
kµt � µ

⇤
k.

As the real update is µt+1 =
⇥
µt + ⌘2(�rh1(µt) +A

>
yt)
⇤
Rdc

+
, by the non-expansiveness (1-772

Lipschitzness) of projection operation, we have773

kµ̃t+1 � µt+1k k⌘2A
>(yt+1 �rh

⇤
2(�Aµt))k  ⌘2�max(A)kyt+1 �rh

⇤
2(�Aµt)k
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By triangle inequality and (40), we have774

kµt+1 � µ
⇤
k 

✓
1� ⌘2

�
2
min(A)

2lh2,1

◆
kµt � µ

⇤
k+ ⌘2�max(A)kyt+1 �rh

⇤
2(�Aµt)k



✓
1� ⌘2

�
2
min(A)

2lh2,1

◆
kµt � µ

⇤
k+ ⌘2�max(A)(1� ⌘1↵h2/2)kyt �rh

⇤
2(�Aµt)k. (45)

For some positive ⇢ > 0, denote775

Pt := ⇢kµt � µ
⇤
k+ kyt �rh

⇤
2(�Aµt)k. (46)

We know from (41), (43), and (45) that776

Pt+1 = ⇢kµt+1 � µ
⇤
k+ kyt+1 �rh

⇤
2(�Aµt+1)k

⇢

✓✓
1� ⌘2

�
2
min(A)

2lh2,1

◆
kµt � µ

⇤
k+ ⌘2�max(A)(1� ⌘1↵h2/2)kyt �rh

⇤
2(�Aµt)k

◆

+ (1� ⌘1↵h2/2)kyt �rh
⇤
2(�Aµt)k

+
�max(A)

↵h2

⌘2

✓
(lh1,1 +

�
2
max(A)

↵h2

)kµt � µ
⇤
k+ �max(A)(1� ⌘1↵h2/2)kyt �rh

⇤
2(�Aµt)k+ k�k

◆



✓
1� ⌘2

�
2
min(A)

2lh2,1
+

1

⇢

�max(A)

↵h2

⌘2(lh1,1 +
�
2
max(A)

↵h2

)

◆
⇢kµt � µ

⇤
k

+ (1� ⌘1↵h2/2)

✓
1 + ⇢⌘2�max(A) +

�
2
max(A)

↵h2

⌘2

◆
kyt �rh

⇤
2(�Aµt)k+

�max(A)

↵h2

⌘2k�k.

To construct Pt+1  (1 � c)Pt +
�max(A)

↵h2
⌘2k�k for some 0 < c < 1, it is sufficient to find777

⌘1 
1

lh2,1
, ⌘2 

1

(lh1,1+
�2
max(A)

↵h2
)
, and ⇢ > 0 such that778

8
<

:
0 <

⇣
1� ⌘2

�2
min(A)
2lh2,1

+ 1
⇢
�max(A)

↵h2
⌘2(lh1,1 +

�2
max(A)
↵h2

)
⌘
 1� ⌘2

�2
min(A)
4lh2,1

< 1

0 < (1� ⌘1↵h2/2)
⇣
1 + ⇢⌘2�max(A) + �2

max(A)
↵h2

⌘2

⌘
 (1� ⌘1↵h2/2)(1 + ⌘1↵h2/2) < 1

This can be obtained when779
8
><

>:

⇢ �
4lh2,1�max(A)

↵h2�
2
min(A)

(lh1,1 +
�2
max(A)
↵h2

)

⌘2 
⌘1↵h2

2

✓
⇢�max(A)+

�2
max(A)

↵h2

◆ (47)

(47) can be obtained when ✏ > 0 is sufficiently such that ⇢ = ✏
�1

�
4lh2,1�max(A)

↵h2�
2
min(A)

(lh1,1 +
�2
max(A)
↵h2

),780

⌘1 = O( 1
lh2,1

) and ⌘2 = O(
↵h2
lh2,1

⇢
�1) = O(✏�1). In this way,781

Pt+1 (1� c)Pt +O(↵�1
h2

✏)

where c > 0 is of the order O(✏). Iteration gives782

Pt (1� c)tP0 +O(↵�1
h2

). (48)

Notice P0 = O(✏�1) as ⇢ = ✏
�1. In this way, there exist T1 = O(log

�
✏
�1
�
) such that for all t > T ,783

(1� c)tP0 = O(1) and accordingly784

Pt = O(1), 8t > T1. (49)

Moreover, as Pt = ✏
�1

kµt � µ
⇤
k+ kyt �rh

⇤
2(�Aµt)k,785

kµt � µ
⇤
k  ✏Pt = O(✏), 8t > T1. (50)

Furthermore, choose ⌘1 = O( 1
lh2,1

) satisfying ⌘1 
1

lh2,1
, for t > T1,786

kyt �rh
⇤
2(�Aµt)k (1� ⌘1↵h2/2)

t�T1kyT1 �rh
⇤
2(�AµT1)k+O(✏). (51)
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Here ⌘1↵h2/2 = O(
↵h2
lh2,1

) = O(1). In this way, for another T2 = O(log
�
✏
�1
�
) steps, we have:787

kyt �rh
⇤
2(�Aµt)k = O(✏), (52)

and kyt � y
⇤
k  kyt �rh

⇤
2(�Aµt)k+ krh

⇤
2(�Aµt)�rh

⇤
2(�Aµ

⇤)k (53)

 kyt �rh
⇤
2(�Aµt)k+

�
2
max(A)

↵h2

kµt � µ
⇤
k (54)

= O
�
✏+ ↵

�1
h2

✏
�
= O (✏) (55)

we can see that the algorithm converges linearly with complexity O(T1 + T2) = O(log
�
✏
�1
�
). In788

this way, obtaining789

kyT � y
⇤
k
2
< ✏ and kµT � µ

⇤
k
2
< ✏, (56)

requires complexity T = O(log
�
(
p
✏)�1

�
) = O(log

�
✏
�1
�
). This completes the proof.790

E Applications to SVM model training791

In this section, we provide further details about the SVM model training experiment for the linear792

SVM model, including the problem formulation, and detailed results analysis.793

E.1 Problem introduction794

The SVM is a supervised machine learning model used for classification and regression tasks. It works795

by finding the optimal hyperplane that separates data points of different classes with the maximum796

margin. For the hard-margin SVM, misclassification is not tolerated. For the soft-margin SVM, the797

violation of classification, ⇠, is penalized to the training objective to consider misclassification. To798

train an efficient soft-margin linear SVM, we are interested in the following constraint BLO problem799

min
c

LDval(w
⇤
, b

⇤) =
X

(zval,i,lval,i)2Dval

exp
�
1� lval,i

�
z
>
val,iw

⇤ + b
⇤�� (57a)

with w
⇤
, b

⇤
, ⇠

⇤ = arg min
w,b,⇠

1

2
kwk

2 +
1

2
kck

2 (57b)

s.t. ltr,i(z
>
tr,iw + b) � 1� ⇠i 8 i 2 {1, . . . , |Dtr|} (57c)

⇠i  ci 8 i 2 {1, . . . , |Dtr|}. (57d)

The upper-level objective is a validation loss, and the lower level is to train SVM on the training800

set Dtr := {(ztr,i, ltr,i)}
|Dtr|
i=1 with the soft margin upper bounded by c. The lower-level objective801

function considers both maximizing the margin (minimizing kwk
2) and allowing violations to802

the separating hyperplane ⇠, controlled by the hyperparameter (and upper-level variable) c. The803

idea behind the BLO formulation is to use the validation loss (upper-level objective) to tune the804

hyperparameter c, while the model parameters (lower-level variables) should be optimal in the training805

dataset.806

E.2 Additional Experiments807

In this section, we present the detailed experimental results for the SVM model training experiment808

using our BLOCC algorithm in comparison with two baselines, LV-HBA [69] and GAM [67], both809

are tailored for BLO problems with inequality coupled constraints.810

We evaluate the proposed algorithms in two different datasets: diabetes [18] and fourclass [27]. The811

detailed results are illustrated in Figure 4, where we represent validation metrics in the left column812

and test metrics in the right column. The metrics include both loss and accuracy, for both the diabetes813

and fourclass datasets. Our algorithm is able to converge faster both in terms of accuracy and loss,814

and it achieves a lower loss value than the alternatives for both datasets in both validation and test.815

VT: Simply to showcase different things. They can be unified if we consider so.816
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(a) Validation loss for the diabetes dataset. (b) Test loss for the diabetes dataset.

(c) Validation accuracy for the diabetes dataset. (d) Test accuracy for the diabetes dataset.

(e) Validation loss for the fourclass dataset. (f) Test loss for the fourclass dataset.

Figure 4: Results of the hyperparameter optimization experiment with an SVM model.

F Applications to Transportation Network Planning817

This section delves into applying the proposed algorithm to tackle a practical BLO problem in818

transportation science.819

F.1 Problem introduction820

In this transportation network planning problem, we are to design a capacitated transportation network821

connecting a set S of stations [9]. The network is designed to carry out passengers from a given822
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origin o 2 S to a given destination d 2 S . For all the potential (o, d)-markets, we know the estimated823

demand of passengers, who can choose rationally among N networks including our designed network824

and the ones of our competitors’, considering their trip (dis)utility function that depends on factors825

such as the price or the trip time [9].826

Our goal is to maximize the operator’s benefit modeled by a utility function (upper-level objective)827

knowing the passengers make the rational decisions on choosing the best route (lower-level objective)828

considering the available options (coupled constraints). Specifically, the network designer must829

determine the capacity for each link (i, j) 2 A, where A denotes the proposed network topology830

(A ✓ S ⇥ S). The set K defines the markets between various origins o and destinations d, such that831

(o, d) 2 K and K ✓ S ⇥ S. The problem entails the joint optimization of construction and flow832

variables, which are described below.833

• xij 2 R+: capacity constructed for the link (i, j) 2 A.834

• y
od

2 [0, 1]: proportion of passengers from market (o, d) 2 K choosing the new network835

for their travel. As we just consider 2 networks, the proportion of passengers choosing the836

incumbent network is 1� y
od.837

• y
od
ij 2 [0, 1]: proportion of passengers from market (o, d) 2 K using link (i, j) 2 A for838

their travel.839

To be consistent with the rest of the manuscript, we use x to denote a tuple collecting all the840

construction variables so that x represents the set of variables in the upper-level (associated with841

the decisions of the operator). The feasible domain for x is X = R+|A|. Analogously, we use y to842

denote a tuple collecting all the flow variables. Tuple y represents the variables for the lower-level843

(associated with the passengers’ decisions). The feasible domain for y is Y = [0, 1]|A|
⇥ [0, 1]|A||K|.844

In addition to the optimization variables, our objective and constraints involve other state variables845

and parameters:846

• w
od: total estimated demand (number of passengers) between nodes (o, d) 2 K.847

• m
od: revenue obtained by the operator from a passenger in the market (o, d) 2 K.848

• cij : construction cost per passenger associated with link (i, j) 2 A.849

• tij : travel time for the link (i, j) 2 A.850

• t
od
ext: travel time on the alternative network for passengers in the market (o, d) 2 K.851

• !t: coefficient associated with the travel time on passengers’ utility function.852

Now we are ready to introduce the objectives of our BLO problem. The network operator aims at853

maximizing profits and minimizing costs. As a result we have that the objective to minimize is854

min
x,y

f(x, y) := �

0

@
X

8(o,d)2K

m
od
y
od⇤(x)�

X

8(i,j)2A

cijxij

1

A , (58)

where y
od⇤(x) are the passenger flows associated with the network design x. Regarding the lower855

level, for each transportation alternative and market, passengers aim to minimize the function856

min
x,y

g(x, y) := w
od
y
od(log

�
y
od
�
� 1) +

X

(i,j)2A

w
od
!ttijy

od
ij (59)

The second term represents the passenger’s disutility. The role of the negative entropy in the first857

term is to ensure that decisions are made according to the so-called logit model [4]-[10]. This model858

states that the probability that a passenger selects network n 2 N for market (o, d) is determined by859

the logit distribution:860

P (n|(o, d)) =
e
�uod

n

P
n02N e

�uod
n0
, (60)

where u
od
n represents the disutility of the best available path within network n 2 N for market861

(o, d) 2 K. For this study, we assume a scenario where: i) the disutility is given by the multiplication862
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of the sensitivity parameter !t and the travel time and ii) only one incumbent network exists, thus863

N consists of this incumbent network and the network under construction. Interestingly, it can be864

rigorously shown that the Karush-Kuhn-Tucker (KKT) conditions associated with of (59) lead to the865

expression in (60); see a formal proof of this result in [51].866

With these considerations in mind, we are ready to formulate our constrained BLO problem867

min
x2X

�

X

8(o,d)2K

m
od
y
od⇤ +

X

8(i,j)2A

cijxij (61a)

s.t.

(yod⇤, yod⇤ij ) = argmin
y2Y

X

(o,d)2K

w
od
y
od(log

�
y
od
�
� 1) (61b)

+
X

(o,d)2K

w
od(1� y

od)(log
�
1� y

od
�
� 1)

+
X

(o,d)2K

X

(i,j)2A

w
od
!ttijy

od
ij +

X

(o,d)2K

w
od
!tt

od
ext(1� y

od)

s.t.
X

8(o,d)2K

w
od
y
od
ij  xij 8(i, j) 2 A (61c)

X

8j|(i,j)2A

y
od
ij �

X

8j|(j,i)2A

y
od
ji =

8
<

:

y
od if i = o

�y
od if i = d

0 otherwise
8i, (o, d) 2 S ⇥K,

(61d)

where (61a) is the (operator’s) upper-level objective and (61b) is the (passengers’) lower-level868

objective. Note that for the lower-level objective, we aggregated the terms in (59) for all markets in K869

and the new and the alternative network, with the latter absorbing a fraction (1� y
od) of the demand.870

We shift now attention to the constraints. The capacity constraint in (61c) is critical for our approach871

since it relates to the upper and lower-level variables. Notice that we have one constraint per link872

and, in each of them |K| lower-level variables are involved. This implies that, even for medium-size873

networks (with tens or hundreds of nodes), thousands of coupled constraints, each with thousands874

of variables, will be present. In addition, (61d) represents flow conservation constraints: for every875

market (o, d) 2 K, these constraints ensure that the total flow departing from the origin o equals the876

total flow for that market. Similarly, the total flow entering destination d matches the flow leaving the877

origin. For nodes that are neither the origin nor the destination of the market, the flow conservation878

must be zero. The number of these constraints, which only involve lower-level variables, is |S||K|,879

scaling as a third-order polynomial with the number of nodes.880

F.2 Experiment roadmap881

In order to provide numerical results illustrating the behavior of our algorithm, we solve this opti-882

mization problem in three scenarios:883

1. the design of a 3-node simple synthetic network;884

2. the design of a 9-node synthetic network that has been previously analyzed in the transporta-885

tion literature; and,886

3. the design of a (real-world) subway network for the city of Seville, Spain, with 24 nodes.887

In the case of the 3-node network, we will conduct a comparative analysis against other algorithms to888

evaluate the efficacy of our approach. Moving on to the 9-node and Seville networks, we will provide889

insights into the performance and behavior of our algorithm under varying parameters, shedding light890

on the versatility and adaptability of our approach to real-world transportation networks.891

While one of the goals of these experiments was to compare our BLOCC algorithm against LV-HBA892

[69] and GAM [67], for the scenario at hand, the GAM algorithm cannot be implemented, since the893
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Figure 5: Negative upper-level objective
�f(xt, yt) evolution over time for a 3-node net-
work design problem for 10 random initializations
of the upper-level variables. The solid lines rep-
resent the mean value of �f(xt, y

Tg

g,t) of the 10
realizations, and the shaded region is the ± stan-
dard deviation. The dashed lines represent the
mean value of �f(xt, y

TF
F,t) of the 10 realizations,

and the shaded region is the ± standard deviation.
Three different � values (red, purple, blue) are
represented in our algorithm, and fixed stepsize
⌘ = 1.6e�4. The orange color represents the evo-
lution of �f(xt, yt) for the LV-HBA algorithm.

Figure 6: Loss of optimality on the lower-level
optimization problem over time for a 3-node net-
work design problem g(xt, yt)�g(xt, y

⇤
t ), for 10

random initializations of the upper-level variables.
The solid lines represent the mean value of the
10 realizations, the dashed lines represent perfor-
mance of g(xt, y

TF
F,t)� g(xt, y

⇤
t ), and the shaded

region is the ± standard deviation. Three different
� values (red, purple, blue) are represented in our
algorithm, and fixed stepsize ⌘ = 1.6e� 4. The
orange color represents the loss of optimality on
the lower-level problem g(xt, yt)� g(xt, y

⇤
t ) for

the LV-HBA algorithm.

inverse of a matrix at each iteration for the problem in (61) is not tractable. In this way, we only894

conducted the experiments using our BLOCC and LV-HBA.895

Moreover, besides the fact that Theorem 1 and Theorem 2 guarantees that (xT , y
TF
F,T ) can be the896

solution to the ✏-approximation problem, using y
Tg

g,T as output can better attain the lower-level897

minimum y
⇤
g(xT ) as it solves (7). In this way, we will presents both output using y

TF
F,T and y

Tg

g,T .898

F.3 A 3-node network experiment899

In this section, we solve the problem formulated in (61) using a network with 3 nodes, 6 potential900

links, and 6 markets. The state variable values for the simulation scenarios are available in the code901

repository. Figure 5 illustrates the performance of both algorithms, showing computation time on902

the horizontal axis and the upper-level objective value �f(xt, yt) on the vertical axis for 10 random903

initializations. We analyze three instances of BLOCC with � 2 2, 3, 4 and a stepsize of ⌘ = 1.6e� 4.904

The upper-level objective values are computed using �f(xt, y
Tg

g,t) and �f(xt, y
TF
F,t).905

Our algorithm converges to the local optimum faster than LV-HBA, which fails to reach this optimum906

within the given time limit, resulting in a solution that does not satisfy the lower-level optimality907

constraint (61b).908

To better understand the results, we compare the main differences between BLOCC and LV-HBA:909

1. In BLOCC, either using output yTg

g,T or yTF
F,T has a guarantee of attaining optimality at the910

lower level, whereas in LV-HBA, the lower-level optimality can not be guaranteed, as shown911

in Figure 6912

2. As already mentioned, the LV-HBA algorithm requires a joint projection into {X ⇥ Y :913

g
c(x, y)  0} at each iteration, so when there are a large number of upper variables (99 in914

the presented scenario) and also a large number of constraints (24 in this simplified scenario),915

the computational time required for this projection increases considerably. In contrast, in916

BLOCC, it is only necessary to project onto X at each iteration, which simply represents917

box constraints and projection is straightforward.918
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Figure 7: Negative upper-level objective
�f(xt, yt) evolution over time for a 9-node net-
work design problem for 10 random initializations
of the upper-level variables. The solid lines rep-
resent the mean value of �f(xt, y

Tg

g,t) of the 10
realizations, and the shaded region is the ± stan-
dard deviation. The dashed lines represent the
mean value of �f(xt, y

TF
F,t) of the 10 realizations,

and the shaded region is the ± standard deviation.
Three different � values (red, purple, blue) are
represented in our algorithm, and fixed stepsize
⌘ = 1.6e� 4.

Figure 8: Negative upper-level objective
�f(xt, yt) evolution over time for a metro net-
work design problem in the city of Seville, Spain,
for 2 different random initializations of the upper-
level variables. The solid lines represent the mean
value of �f(xt, y

Tg

g,t) of the 2 realizations, and
the shaded region is the ± standard deviation.
The dashed lines represent the mean value of
�f(xt, y

TF
F,t) of the 2 realizations, and the shaded

region is the ± standard deviation. Three different
� values (red, purple, blue) are represented in our
algorithm, and fixed stepsize ⌘ = 1.6e� 4.

F.4 A 9-node network experiment919

In this case, we consider a network with |S| = 9 nodes and |A| = 72 potential links, as well as920

|K| = 72 markets. Figure 7 presents the obtained results for three different values of parameter921

� 2 {2, 3, 4}, and stepsize ⌘ = 1.6e� 4. It depicts computational time on the horizontal axis, while922

the evolution of �f(xt, y
Tg

g,t) is provided on the vertical axis for 10 different random initializations of923

the upper-level variables. As in the previous network, BLOCC algorithm is able to converge, with924

different � values leading to different optimums.925

As mentioned in the main paper (reference main paper section), this parameter influences on the926

accuracy achieved regarding optimality at the lower-level for the variable yF . For higher values of927

�, the optimality condition at the lower-level when solving the problem associated with (reference928

algorithm 2) becomes more important in the objective function. Thus, the difference between y
Tg

g,t929

and y
TF
F,t decreases for higher values of �. Additionally, it can be seen how the best objective value930

�f(xt, y
Tg

g,T (x)) is achieved for the highest value of �, as well as the accuracy on the optimality of931

the lower-level problem for the solution of yTF
F,t increases.932

F.5 Seville network experiment933

In this section, we aim to demonstrate the validity of BLOCC by applying it to a real transportation934

network design problem. Specifically, we address the design of a potential metro network in the city935

of Seville. This network consists of |S| = 24 nodes and 552 possible links. However, we filter the set936

of possible links according to two criteria:937

1. The link between nodes (i, j) 2 S ⇥ S can only exist if node j is one of the 3 closest938

neighbors to i, or vice versa, in terms of travel time.939

2. The link between nodes (i, j) 2 S ⇥ S can only exist if the travel time tij is less than 7940

minutes.941

Thus, the set of possible links is reduced to |A| = 88 possible links. The proposed topology for the942

network is shown in Figure 9. We consider all possible markets between nodes, so |K| = 552.943
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Figure 9: Topology of the Seville network.

Following the narrative in Sections F.3 and F.4,944

Figure 8 presents the evolution of the upper-945

level objective function with time for values of946

the parameter � 2 {2, 3, 4} for 2 different real-947

izations. As it can be observed, higher values of948

�f(xT , y
Tg

T,g) are obtained for higher values of949

�, as well as smaller gaps between f(xT , y
Tg

T,g)950

and �f(xT , y
TF
T,F ). In summary, it is demon-951

strated that the algorithm formulated in this doc-952

ument is able to solve problems with a large953

number of variables, which can have practical954

value in real-world applications, such as the one955

studied in this section.956
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in1024

the paper, properly credited and are the license and terms of use explicitly mentioned and1025

properly respected?1026

Answer: [NA]1027

Justification: the paper does not use existing assets.1028

13. New Assets1029

Question: Are new assets introduced in the paper well documented and is the documentation1030

provided alongside the assets?1031

Answer: [NA]1032

Justification: the paper does not release new assets.1033

14. Crowdsourcing and Research with Human Subjects1034

Question: For crowdsourcing experiments and research with human subjects, does the paper1035

include the full text of instructions given to participants and screenshots, if applicable, as1036

well as details about compensation (if any)?1037

Answer: [NA]1038

Justification: the paper does not involve crowdsourcing nor research with human subjects.1039
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15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human1040

Subjects1041

Question: Does the paper describe potential risks incurred by study participants, whether1042

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1043

approvals (or an equivalent approval/review based on the requirements of your country or1044

institution) were obtained?1045

Answer: [NA] .1046

Justification: the paper does not involve crowdsourcing nor research with human subjects.1047
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