
Appendix788

A Proof for Lemma 3789

1. The statement follows readily from the following facts. Smoothness implies that if α+ ≤ δ
Lf

,790

Algorithm 2 terminates. Therefore, it must be α+ ≥ δ
Lf

.791

2. The lower bound in (8) follows readily from the established inequality α+ ≥ δ
Lf

and α+ ≤ γα.
Furthermore, it follows from the strong convexity of f that

f(x+) ≥ f(x) +
〈
∇f(x), x+ − x

〉
+

µ

2
∥x+ − x∥2.

Therefore, α+ cannot exceed δ
µ , which together with α+ ≤ γα proves the upper bound in (8).792

3.Let us introduce the function fd(x) = f(x) + ⟨d, x⟩. Notice that fd inherits the same smoothness
and (strong) convexity property of f . The termination condition in Algorithm 2 can be rewritten in
terms of fd(x) as following:

fd(x
+) ≤ fd(x) +

〈
∇fd(x), x+ − x

〉
+

δ

2α
∥x+ − x∥2.

Using x+ − x = d, the condition above reads793

fd(x− α+d) ≤ fd(x)− α+

(
1− δ

2

)
∥d∥2. (13)

Because of convexity of fd, if (13) holds for some α+, then it holds for any α ∈ [0, α+]. □794

B Proof of Theorem 4795

We establish the proof under the weaker requirements on fi than what stated in Assumption 1 and796

postulated in the theorem, namely each fi is assumed locally smooth and strongly convex.797

Our first result determines the relationship between the values of the merit function (11) in two798

consecutive iterations. We have the following.799

Lemma 7. The update (Dk,Xk)→ (Dk+1,Xk+1) satisfies800

V k+1 =
∥∥Xk −X⋆

∥∥2 + (αk)2∥Dk −D⋆∥2M
− ∥Xk −Xk+1∥2 − (αk)2∥Dk −Dk+1∥2M
+ 2αk

〈
∇F (Xk+1/2)−∇F (X⋆),X⋆ −Xk+1

〉
.

(14)

Proof. See Appendix C.1.801

We proceed to bound the inner-product above in terms the X-sequence. Invoking the properties of802

the backtracking (Lemma 8) and local strong convexity, we obtain the following.803

Lemma 8. The following holds:804 〈
∇F (Xk+1/2)−∇F (X⋆),X⋆ −Xk+1

〉
≤ δ

2αk
∥Xk+1 −Xk+1/2∥2 − µk

2
∥Xk+1/2

k −X⋆∥2,

where µk is the local strong convexity constant of fi along the segment [Xk+1/2,X⋆].805

Proof. See Appendix C.2.806

Combining Lemma 7 and Lemma 8, we obtain the following.807
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Lemma 9. For any c ≤ 1/2 and {γk ≥ 1}, it holds:808

V k+1 ≤
∥∥Xk −X⋆

∥∥2 + (αk)2∥Dk −D⋆∥2M
− µkαk∥Xk+1/2

k −X⋆∥2

−
〈
Xk, c(I − W̃ )Xk

〉
− (αk)2

∥∥∥c(I − W̃ )
(
∇F (Xk+1/2) +Dk

)∥∥∥2
M

.

(15)

Proof. See Appendix C.3.809

To achieve contraction in (15) we split the aiding term−µkαk∥Xk+1/2
k −X⋆∥2 = −µkαk

2 ∥X
k+1/2
k −810

X⋆∥2 − µkαk

2 ∥X
k+1/2
k −X⋆∥2 and use each to control primal and dual errors, as detailed next.811

Define A := c(I − W̃ ) for notational convenience. Using the definitions of rk and gk as given in812

(10) and (9), respectively, the following lemma allows one to control the last two terms in (15) via813

µkαk

2 ∥X
k+1/2
k −X⋆∥2.814

Lemma 10. For any c < 1/2 and {γk ≥ 1}, it holds:815

− µkαk

2
∥Xk+1/2 −X⋆∥2 − ⟨Xk, AXk⟩ − (αk)2

∥∥∥A(∇F (Xk+1/2) +Dk
)∥∥∥2

M

≤−max

(
(rk)2,

µkαk(gk[1− rk]+)
2

2

)
c2(1− λ2(W̃ ))2(αk)2∥(Dk −D⋆)∥2M .

(16)

Proof. See Appendix C.4.816

It remains to control
∥∥Xk −X⋆

∥∥2 using µkαk

2 ∥X
k+1/2
k −X⋆∥2. Noting

Xk+1/2 = (I −A)Xk and X⋆ = (I −A)X⋆,

the term ∥Xk+1/2 −X⋆∥2 can be lower bounded as817

∥Xk+1/2 −X⋆∥2 ≥ (1− c(1− λm(W̃ )))2∥Xk −X⋆∥2. (17)

Using in (9) the bounds derived in Lemma 10 and (17) yields818

V k+1

≤.

(
1− µkαk (1− c(1− λn(W̃ )))2

2

)∥∥Xk −X⋆
∥∥2
I−c(I−W̃ )

+

(
1−max

(
(rk)2,

µkαk(gk[1− rk]+)
2

2

)
c2(1− λ2(W̃ ))2

)
(αk)2∥Dk −D⋆∥2M

≤

(
1−min

[
µkαk (1− c(1− λn(W̃ )))2

2
,max

(
(rk)2,

µkαk(gk[1− rk]+)
2

2

)
c2(1− λ2(W̃ ))2

])

×max

[
1,

(
αk

αk−1

)2
]
× V k.

(18)
This proves (12).819

Since fi’s are assumed to be only locally smooth and strongly convex, it remains to show that the820

sequence generated by the algorithm is bounded. This is proved below under the condition rk > r,821

for some r. Notice that if the fi are globally smooth and strongly convex, boundedness of the iterates822

is granted with no extra conditions.823

Lemma 11. In the setting above, further assume that rk ≥ r, for some r > 0. Then, sequence824

{Xk,Dk} generated by Algorithm 1 is bounded.825

Proof. See Appendix D.826

This completes the proof of 4. □827
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C Proof of the Intermediate Results in Appendix B828

C.1 Proof of Lemma 7829

From the update of Xk+1 and the facts Dk+1 −D⋆ ∈ span(I − W̃ ) and X⋆ ∈ null(I − W̃ ), we830

have:831 〈
Dk+1 −D⋆,Xk+1 −X⋆

〉
=
〈
Dk+1 −D⋆,Xk − αk∇F (Xk+1/2)− αkDk+1 −X⋆

〉
=

〈
Dk+1 −D⋆, αkc−1

(
I − W̃

)†
(Dk+1 −Dk) + αkDk − αkDk+1

〉
=αk

〈
Dk+1 −D⋆,Dk+1 −Dk

〉
M

.

(19)

Using the equality above, we can write832

αk
〈
Xk −X⋆,∇F (Xk+1/2)−∇F (X⋆)

〉
=αk

〈
Xk −X⋆,

1

αk

(
Xk −Xk+1

)
−Dk+1 +D⋆

〉
=
〈
Xk −X⋆,Xk −Xk+1

〉
− αk

〈
Dk+1 −D⋆,Xk −X⋆

〉
=
〈
Xk −X⋆,Xk −Xk+1

〉
+ αk

〈
Dk+1 −D⋆,Xk+1 −Xk

〉
− αk

〈
Dk+1 −D⋆,Xk+1 −X⋆

〉
=
〈
Xk −X⋆,Xk −Xk+1

〉
+ αk

〈
Dk+1 −D⋆,Xk+1 −Xk

〉
− (αk)2

〈
Dk+1 −D⋆,Dk+1 −Dk

〉
M

=
〈
(Xk − αkDk+1)−X⋆ + αkD⋆,Xk −Xk+1

〉
− (αk)2

〈
Dk+1 −D⋆,Dk+1 −Dk

〉
M

=
〈
Xk+1 −X⋆ + αk∇F (Xk+1/2)− αk∇F (X⋆),Xk −Xk+1

〉
− (αk)2

〈
Dk+1 −D⋆,Dk+1 −Dk

〉
M

=
〈
Xk+1 −X⋆,Xk −Xk+1

〉
+ αk

〈
∇F (Xk+1/2)−∇F (X⋆),Xk −Xk+1

〉
− (αk)2

〈
Dk+1 −D⋆,Dk+1 −Dk

〉
M

,

where the first and fifth equations follow from the update of Xk+1 while in the third equation we833

used (19).834

Finally, rearranging the terms above, yields835

− 2αk
〈
∇F (Xk+1/2)−∇F (X⋆),X⋆ −Xk+1

〉
= 2

〈
Xk+1 −X⋆,Xk −Xk+1

〉
− 2(αk)2

〈
Dk+1 −D⋆,Dk+1 −Dk

〉
M

.
(20)

The final result (14) follows from (20) and 2 ⟨a,b⟩ = ∥a+ b∥2 − ∥a∥2 − ∥b∥2. □836

C.2 Proof for Lemma 8837

Define838

D(X) = F (X) + ⟨D⋆,X⟩, (21)

where (D⋆,X⋆) is a fixed-point of Algorithm 1,839
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Using the definition of D(X) and the fact that∇F (X⋆)+D⋆ = 0, ⟨∇F (Xk+1/2)−∇F (X⋆),X⋆−840

Xk+1⟩ can be bounded as841

〈
∇F (Xk+1/2)−∇F (X⋆),X⋆ −Xk+1

〉
=
〈
∇D(Xk+1/2),X⋆ −Xk+1

〉
=
〈
∇D(Xk+1/2),X⋆ −Xk+1/2

〉
−
〈
∇D(Xk+1/2),Xk+1 −Xk+1/2

〉
≤D(X⋆)−D(Xk+1/2)−

〈
∇D(Xk+1/2),Xk+1 −Xk+1/2

〉
− µk

2
∥Xk+1/2

k −X⋆∥2

≤D(Xk+1)−D(Xk+1/2)−
〈
∇D(Xk+1/2),Xk+1 −Xk+1/2

〉
− µk

2
∥Xk+1/2

k −X⋆∥2

=D(Xk+1)−
(
D(Xk+1/2) +

〈
∇D(Xk+1/2),Xk+1 −Xk+1/2

〉
+

1

2αk
∥Xk+1 −Xk+1/2∥2

)
+

δ

2αk
∥Xk+1 −Xk+1/2∥2 − µ

2
∥Xk+1/2

k −X⋆∥2

=F (Xk+1)−
(
F (Xk+1/2) +

〈
∇F (Xk+1/2),Xk+1 −Xk+1/2

〉
+

δ

2αk
∥Xk+1 −Xk+1/2∥2

)
+

δ

2αk
∥Xk+1 −Xk+1/2∥2 − µk

2
∥Xk+1/2

k −X⋆∥2

≤ δ

2αk
∥Xk+1 −Xk+1/2∥2 − µk

2
∥Xk+1/2

k −X⋆∥2,

where the first inequality follow from the the strong convexity of D(X) on the segment [Xk+1/2,X⋆];842

and in the last inequality we used the algorithm update. □843

C.3 Proof for Lemma 9844

Uniting Lemma 7 and Lemma 8, we can write845

V k+1 ≤
∥∥Xk −X⋆

∥∥2 + (αk)2∥Dk −D⋆∥2M
− µkαk∥Xk+1/2

k −X⋆∥2

− (1− δ)
(
∥Xk −Xk+1∥2 + (αk)2∥Dk −Dk+1∥2M

)
+ δ

(
∥Xk+1 −Xk+1/2∥2 − ∥Xk −Xk+1∥2 − (αk)2∥Dk −Dk+1∥2M

)
.

(22)

Consider the first and second term:846

∥Xk+1 −Xk+1/2∥2 − ∥Xk −Xk+1∥2

=(αk)2
(
∥Dk+1/2∥2 − ∥Dk+1/2 +

c

αk
(I − W̃ )Xk∥2

)
=− ∥c(I − W̃ )Xk∥2 − αk

〈
∇Dk+1/2, c(I − W̃ )Xk

〉
=− ∥c(I − W̃ )Xk∥2 − αk

〈
∇Dk+1/2, c(I − W̃ )Xk

〉
=− ∥c(I − W̃ )Xk∥2 + αk

〈(
c(I − W̃ )− I

)(
∇F (Xk+1/2) +Dk

)
, c(I − W̃ )Xk

〉
.

(23)
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Proceeding with ∥Dk −Dk+1∥2M , we have847

− (αk)2∥Dk −Dk+1∥2M
=− (αk)2∥ − c(I − W̃ )

(
∇F (Xk+1/2) +Dk

)
+

c

αk
(I − W̃ )Xk∥2M

=− ∥c(I − W̃ )Xk∥2M
+ αk⟨Mc(I − W̃ )

(
∇F (Xk+1/2) +Dk

)
, c(I − W̃ )Xk⟩

− (αk)2∥c(I − W̃ )
(
∇∇F (Xk+1/2) +Dk

)
∥2M

=−
∥∥∥c(I − W̃ )Xk

∥∥∥2
M

+ αk
〈(

I − c(I − W̃ )
)(
∇F (Xk+1/2) +Dk

)
, c(I − W̃ )Xk

〉
− (αk)2

∥∥∥c(I − W̃ )
(
∇F (Xk+1/2) +Dk

)∥∥∥2
M

=
∥∥∥c(I − W̃ )Xk

∥∥∥2 − c
〈
Xk,

(
I − W̃

)
Xk
〉

+ αk
〈(

I − c(I − W̃ )
)(

F∇(Xk+1/2) +Dk
)
, c(I − W̃ )Xk

〉
− (αk)2

∥∥∥c(I − W̃ )
(
∇F (Xk+1/2) +Dk

)∥∥∥2
M

,

(24)

where last two equalities follow from the definition of M = c−1(I − W̃ )† − I.848

Summing (23) and (24), we obtain849

∥Xk+1 −Xk+1/2∥2 − ∥Xk −Xk+1∥2 − (αk)2∥Dk −Dk+1∥2M

=− c
〈
Xk,

(
I − W̃

)
Xk
〉
− (αk)2

∥∥∥c(I − W̃ )
(
∇F (Xk+1/2) +Dk

)∥∥∥2
M

.

The proof follows readily from the above equality, (22), and setting δ = 1. □850

C.4 Proof for Lemma 10851

To obtain decrease for dual variable, we should consider two estimates.852

1. Firstly, using the definition of rk, we can bound the last two terms in (15) as853 〈
Xk, AXk

〉
+ (αk)2

∥∥∥A(∇F (Xk+1/2) +Dk
)∥∥∥2

M
≥ (αk)2 (rk)2 ∥A(Dk −D⋆)∥M .

(25)

2. Using again the definition of rk and the reverse triangle inequality we have854

rk∥A(Dk −D⋆)∥M ≥
∥∥∥A(∇F (Xk+1/2) +Dk

)∥∥∥
M

≥ ∥A(Dk −D⋆)∥M −
∥∥∥A(∇F (Xk+1/2)− F (X⋆)

)∥∥∥
M

.

Therefore,855 ∥∥∥A(∇F (Xk+1/2)− F (X⋆)
)∥∥∥

M
≥ [1− rk]+∥A(Dk −D⋆)∥M

≥ ([1− rk]+) c(1− λ2(W̃ ) ∥Dk −D⋆∥M .

Using the definition of gk yields856

∥Xk+1/2 −X⋆∥2 ≥ (gk[1− rk]+)
2(αk)2∥A(Dk −D⋆)∥2M . (26)

The desired expression (16) follows combining (25) and (26).857
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D Proof of Lemma 11858

According to Lemma 9, we have the following inequality:859

V k+1 ≤
∥∥Xk −X⋆

∥∥2 + (αk)2∥Dk −D⋆∥2M

−
〈
Xk, c(I − W̃ )Xk

〉
− (αk)2

∥∥∥c(I − W̃ )
(
∇F (Xk+1/2) +Dk

)∥∥∥2
M

.
(27)

Using definition of rk, (27) can be written in the following form:

V k+1 ≤
∥∥Xk −X⋆

∥∥2 + (αk)2(1− rkc
2(1− λ2(W̃ ))2)∥Dk −D⋆∥2M .

Further, using rk ≥ r and the definition of γk, we have

V k+1 ≤ max

(
1,

(
k + β1

k + 1

)2β2

(1− rc2(1− λ2(W̃ ))2)

)
V k.

Starting from some iteration k∗, telescoping the above inequality to k0, yields

V k+1 ≤
k∗∏
j=0

((
k + β1

k + 1

)2β2

(1− rc2(1− λ2(W̃ ))2)

)
V 0 = R <∞.

Using the definition of V k+1, we have that ∥Xk+1 −X∗∥ ≤ R. It means that αk is bounded below860

by the inverse local Lipschitz constant. So, ∥Dk+1 −D∗∥ is bounded too.861

This completes the proof. □862

E Proof for Corollary 4.1863

Let us consider the value ρk from Theorem 4:

ρk := min

(
µαk (1− c(1− λn(W̃ )))2

2
,max

(
(rk)2, µ αk (gk [1− rk]+)

2

2

)
c2(1− λ2(W̃ ))2

)
.

If we prove that ρk ≥ ρ > 0 then we can obtain an estimate for number of iterations to approach
quality ε. Using the result of Theorem 4 and condition for γk, we have the following inequality:

(1− ρ)k
k∏

j=0

(
k + β1

k + 1

)β2

V 0 ≤ ε

Note, for any β1, β2 and enough big k we have that (1−ρ)k
∏k

j=0

(
k+β1

k+1

)β2

V 0 ≤ (1−ρ/2)kV 0 ≤864

exp(−kρ/2)V 0. It means, that to approach quality ε it is enough to perform865

N = O(
1

ρ
log(V 0/ε) (28)

steps of Algorithm 1.866

Furher, we consider different cases from Corollary 4.1 to obtain estimate for this value.867

Firstly, note that according to Lemma 3 we have that αk ≥ 1/(2L).868

1. If rk ≥ 1
2 than we have that max

(
(rk)2, µ αk (gk [1−rk]+)2

2

)
≥ 1

4 and

1

ρ
≤ O

(
max

(
κ

(1− c(1− λm(W̃ )))2
,

1

c2(1− λ2(W̃ ))2

))

2. If rk ≥ (1/4)
√
κ, then we have

1

ρ
≤ O

 κ

min
(
c(1− λ2(W̃ )), (1− c(1− λm(W̃ )))

)2
 .
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On the other hand, if gk ≥ 1
2 we have the same result because µαk ≥ (1/2)κ.869

3. Finally, note that

µαk(gk)2 ≥ µ

αk

1

L2
≥ κ2,

where the first inequality holds because of smoothness and definition of gk. The second because of
upper bound on step size in Lemma 3. It immediately gives us

1

ρ
≤ O


 κ

min
(
c, (1− c(1− λm(W̃ )))

)
· (1− λ2(W̃ ))

2


These three cases and estimation (28) complete the proof.870

F Proof of Theorem 5871

Similarly to the proof of Theorem 4, we prove Theorem 5 under the weaker assumption that each fi872

is locally smooth. Throughout the proof, we denote by L the smooth contant of fi’s over the convex873

hull of the set {Xj}k+1
j=0 .874

Define

qk = max

(
1,

α2
k

α2
k−1

)
.

According to Lemma 9, under µ = 0, we have

V k+1 ≤ V k − (1− δ)
(
∥Xk −Xk+1∥2 + α2

k∥Dk −Dk+1∥2M
)
.

Applying recursively the above inequality, yields

V k+1 ≤

 k∏
j=0

qj

V 0 − (1− δ)

k∑
j=0

 k∏
i=j+1

qj

(∥Xj −Xj+1∥2 + α2
j∥Dj −Dj+1∥2M

)
.

Therefore,

min
j∈[k]

V j ≤
∏k

j=0 qj

1 +
k∑

j=1

(∏k
i=j qj

) V 0

1− δ
.

Note, that

1 ≤ qj ≤
(
k + 1 + β1

k + 1

)2β2

.

Define β1 := ⌈β1⌉, and recalling875

min
j∈[k]

V j ≤ 1

k + 1

(∏k
j=1(j + β1 + 1)

(k + 1)!

)2β2

V 0

1− δ

≤ 1

k + 1

(∏k
j=1(j + β1 + 1)

(k + 1)!(β1 + 1)!

)2β2

V 0

1− δ

=
1

k + 1

∏k+β1+1
j=k+1 (j + β1)

(β1 + 1)!

2β2

V 0

1− δ

≤ 1

k + 1

(
(k + β1 + 1)β1

(β1 + 1)!

)2β2

V 0

1− δ

≤ c

(k + 1)1−2β2β1

V 0.

The statement of the theorem follows using αk ≥ δ/2L, due to Lemma 3, where L is local smoothness876

constant.877
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