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Abstract
This paper addresses the minimization of (locally strongly) convex, locally smooth1

functions over a network of agents without a centralized server. Existing decen-2

tralized algorithms require knowledge of problem and network parameters, such3

as the Lipschitz constant of the global gradient and/or network connectivity, for4

hyperparameter tuning. Agents usually cannot access this information, leading5

to conservative selections and slow convergence or divergence. This paper intro-6

duces a decentralized algorithm that eliminates the need for specific parameter7

tuning. Our approach employs an operator splitting technique with a novel variable8

metric, enabling a local backtracking line-search to adaptively select the stepsize9

without global information or extensive communications. This results in favorable10

convergence guarantees and dependence on optimization and network parameters11

compared to existing nonadaptive methods. Notably, our method is the first adap-12

tive decentralized algorithm that achieves linear convergence for (locally) strongly13

convex (locally) smooth functions. Numerical experiments on machine learning14

problems demonstrate superior performance in convergence speed and scalability.15

1 Introduction16

We study optimization across a network of m > 1 agents, modeled as an undirected, static graph,17

possibly with no centralized server. The agents cooperatively solve the following problem:18

min
x∈Rd

m∑
i=1

fi(x), (P)

where fi : Rd → R is the loss function of agent i, assumed to be (locally strongly) convex and locally19

smooth (i.e., with gradient being locally Lipschitz continuous), and accessible only to agent i.20

This formulation applies to various fields, particularly emphasizing decentralized machine learning21

problems where datasets are produced and collected at different locations. Traditionally, statistical22

and computational methods in this domain have relied on a centralized paradigm, aggregating23

computational resources at a single, central location. However, this approach is increasingly unsuitable24

for modern applications with many machines, leading to server congestion, inefficient communication,25

and high energy consumption [25, 21]. This has motivated the surge of learning algorithms that target26

decentralized networks with no servers, a.k.a. mesh networks, which is the setting of this paper.27

Decentralized convex optimization has a long history, with numerous proposals applicable to Problem28

(P), particularly when the loss functions are globally smooth. Recent tutorials include [31, 38, 7, 30,29

42]. Lack of adaptivity: While these methods are different in their updates, they share the hurdle30

of relying sensibly on the tuning of hyperparameters, such as the stepsize (a.k.a. learning rate), for31

both theoretical and practical convergence. Existing theories ensure convergence under generally32

conservative bounds on the stepsize, which depend on parameters like the Lipschitz constant of33

the global gradient, the spectral gap of the graph adjacency matrix, or other topological properties.34

Acquiring such information is challenging in practice, due to physical or privacy limitations and35
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computational/communication constraints. This often leads to manual tuning, which is not only36

tedious but also results in less predictable, problem-dependent, and non-reproducible performance.37

Parameter-free centralized methods: On the the hand, significant progress has been made in the38

centralized setting to automate the selection of the stepsize across various optimization and learning39

problem classes. (i) Traditional approaches in optimization–such as line-search methods [33], Barzilai-40

Borwein’s stepsize [3], and Polyak’s stepsize [34]–have been supplemented by recent adaptive stepsize41

rules based on estimates of local curvature [27] and subsequent techniques [28, 17, 18, 20, 46]. (ii)42

In the ML community, adaptive gradient methods such as AdaGrad [12], Adam [16], AMSGrad [37],43

NSGD-M [10], and variants [23, 41, 26] have gained significant attention for training large-scale44

learning models. These methods apply to stochastic, nonconvex optimization problems. (iii) Further45

advancements extend adaptivity to stochastic/online convex optimization problems, e.g., [5, 13].46

Distributed adaptive methods: While variant of these centralized algorithms have been adapted to47

federated architectures (server-client systems), e.g., in [36, 22, 9], their application to mesh networks48

is not feasible. In federated learning, a central server aggregates local model updates, a process integral49

to its hierarchical structure. However, mesh networks, which lack a centralized coordinating node, do50

not support such a direct aggregation of large-scale vectors. Recent attempts to implement some form51

of stepsize adaptivity for stochastic (non)convex/online optimization problems over mesh networks52

are [29, 8, 19]. These methods generally achieve adaptivity by properly normalizing agents’ gradients53

using past information. However, with the exception of [19], they rely on the strong assumption that54

the (population) losses are globally Lipschitz continuous (i.e., their gradients are bounded). In fact,55

Lipschitz continuity in convex optimization readily unlocks parameter-free convergence by using56

stepsize tuning of O(1/
√
k) (here, k is the iteration index). Moreover, [29, 8] still require knowledge57

of some optimization parameters for the stepsize tuning, to guarantee convergence.58

Open questions and challenges: To our knowledge, no deterministic, parameter-free decentralized59

algorithms exist that solve Problem (P) over mesh networks, particularly achieving linear convergence60

when agents’ functions are (locally) strongly convex and smooth. The current decentralized adaptive61

stochastic methods [29, 8, 19] discussed earlier do not adequately bridge this gap. Tailored for62

stochastic environments, these methods merely ensure that cumulative consensus errors along the63

iterations remain bounded, not necessarily decreasing. This typically involves either diminishing64

stepsizes or adjustments based on the final horizon to manage the bias-variance trade-off. These65

strategies fall short in deterministic scenarios like Problem (P), failing to ensure convergence to exact66

solutions, and achieve faster O(1/k) convergence rates in convex cases or linear rates in strongly67

convex scenarios. Furthermore, none of these methods effectively handle losses that are locally68

(rather than globally) smooth and strongly convex.69

Major contributions: This paper addresses this open problem. Our contributions are the following:70

1. A new parameter-free decentralized algorithm: We propose a decentralized algorithm that71

eliminates the need for specific tuning of the step size. Our approach leverages a Forward-Backward72

operator splitting technique combined with a novel variable metric, enabling a local backtracking73

line-search procedure to adaptively select the step size at each iteration without requiring global74

information on optimization and network parameters or extensive communications. We are not aware75

of any other decentralized line-search methods over mesh networks.76

Designing decentralized line-search procedures that are well-defined (terminating in a finite number77

of steps), locally implementable, and ensure algorithm convergence through satisfactory descent on an78

appropriate merit function presents significant challenges. A major issue is that line-search procedures79

merely based on the local curvature of agents’ functions often fail to ensure convergence, producing80

excessively large, heterogeneous stepsizes that, e.g., poorly connected networks cannot support. This81

necessitates the identification of line-search directions and surrogate functions that encapsulate both82

optimization and network influences, aspects that have not yet formalized. Our design guidelines (cf.,83

Sec. 3) are of independent interest; hopefully they will provide valuable insights for the development84

of other decentralized adaptive schemes, such as those based on alternative operator splittings.85

2. Convergence guarantees: We have established convergence for the proposed decentralized86

adaptive method. (i) For agents’ losses that are strongly convex, linear convergence rates are achieved,87

while typical O(1/k) sublinear rates are confirmed for the convex (non-strongly convex) setting.88

Our analysis crucially identifies key quantities capturing the interplay between optimization and89

network conditions and governing the rate expressions. Specifically, (a) In relatively “well-connected”90

networks, the convergence rate is influenced primarily by the optimization parameters, showing a91
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linear dependence on the condition number of the local losses; (b) in contrast, in poorly connected92

networks, the rates suffer from network degradation terms and exhibit quadratic (instead of linear)93

dependence on the condition number, indicative of expected performance degradation. (ii) Unlike94

most existing results in distributed optimization, the optimization parameters in our rate expressions,95

such as the smooth and strong convexity constants, are localized to the convex hull of the traveled96

iterates. This results from the stepsize tuning based on the line-search procedure that adapts to local97

geometries, leading to more favorable dependencies on optimization parameters and thus enhanced98

convergence guarantees. (iii) Our analysis also extends to functions that are only locally smooth (and99

strongly convex), significantly broadening the class of functions to which the proposed algorithm can100

be applied to. This advancement distinguishes our work from the existing literature on decentralized101

(including nonadaptive) optimization algorithms, which generally focus on globally smooth functions102

(when differentiable). (iv) Numerical experiments demonstrate superior performance of the proposed103

adaptive algorithm in convergence speed and scalability compared to existing non-adaptive methods.104

1.1 Notation and paper organization105

Capital letters denote matrices. Bold capital letters represent matrices where each row is an agent’s106

variable, e.g., X = [x1, . . . , xm]⊤. For such matrices, the i-th row is denoted by the corresponding107

lowercase letter with the subscript i; e.g., for X, we write xi (as column vector). Let Sm, Sm+ , and108

Sm++ be the set of m×m (real) symmetric, symmetric positive semidefinite, and symmetric positive109

definite matrices, respectively; A† denotes the Moore-Penrose pseudoinverse of A. The eigenvalues110

of W ∈ Sm are ordered in nonincreasing order, and denoted by λ1(W ) ≥ · · · ≥ λm(W ). For two111

operators A and B of appropriate size, (A◦B)(•) stands for A(B(•)). We denote: [m] = {1, . . . ,m};112

[x]+:= max(x, 0), x ∈ R; 1m ∈ Rm is the vector of all ones; Im (resp. 0m) is the m×m identity113

(resp. the m×m zero) matrix; null(A) (resp. span(A)) is the nullspace (resp. range space) of the114

matrix A. Let ⟨X,Y ⟩ := tr(X⊤Y ), for any X and Y of suitable size (tr(•)) is the trace operator;115

and ∥X∥M := ⟨MX,X⟩, for any symmetric, positive definite M and X of suitable dimensions. We116

still use ∥X∥M when M is positive semidefinite and X ∈ span(M). We set 1/0 =∞.117

2 Problem Setup118

We investigate Problem (P) over a network of [m] agents, modeled as an undirected, static, connected119

graph G = ([m], E), where (i, j) ∈ E if there is communication link (edge) between i and j. We120

consider either convex or strongly convex instances of (P), as stated below.121

Assumption 1. (i) Each function fi in (P) is L-smooth and µ-strong convex on Rd, for some122

L ∈ (0,∞) and µ ∈ [0,∞). When µ > 0, we define κ := L/µ. When µ = 0, (P) is assumed to have123

a solution. Furthermore, (ii) each agent i has access only to its own function fi.124

Note that the case µi = 0 merely corresponds to convexity. For readability, our convergence results125

are presented under Assumption 1, while the proofs in the appendix tackle the more general case of126

local smoothness (and strong convexity). We refer to the appendix for these more general statements.127

The following matrices are commonly utilized in the design of gossip-based algorithms.128

Definition 2 (Gossip matrices). Let WG denote the set of matrices W̃ = [W̃ij ]
m
i,j=1 that satisfy129

the following properties: (i) (compliance with G) W̃ij > 0 if (i, j) ∈ E; otherwise W̃ij = 0.130

Furthermore, W̃ii > 0, for all i ∈ [m]; and (ii) (doubly stochastic) W̃ ∈ Sm and W̃1m = 1m.131

These matrices are standard in the literature on decentralized optimization algorithms, and several132

instances have been employed in practice; see [31, 38, 30] for some representative examples. Notice133

that for any W̃ ∈ WG (assuming G connected) it hold: (i) (null space condition) null(Im −W ) =134

span(1m); and (ii) (eigen-spectrum distribution) 2I ⪰ W̃ + I ≻ 0m.135

3 Algorithm Design136

Our approach to solving Problem (P) involves a saddle-point reformulation tackled via a variable137

metric operator splitting, implementable across the graph G. The innovative aspect of the proposed138

method lies in the selection of the variable metric that, coupled with a Forward Backward Splitting139

(FBS), enable adaptive stepsize selections through a decentralized line-search procedures.140

Introducing local copies xi ∈ Rd of the shared variable x (the i-th one is controlled by agent i), and141

the stack matrix X := [x1, . . . , xm]⊤ ∈ Rm×d, let us consider the following auxiliary problem:142
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min
x,y∈Rm×d

[
F (X) :=

m∑
i=1

fi([KX]i)

]
, s.t. ŁX = 0. (P′)

Here, Ł and K are m×m matrices that meet the following criteria: (c1) Ł ∈ Sm and null(Ł) =143

span(1m); (c2) K ∈ Sm++ and null(I −K) = span(1m); and (c3) Ł and K commute. Conditions144

(c1) and (c2) ensure that (P) and (P′) are equivalent. Specifically, any solution X⋆ of (P′) has the145

form of X⋆ = 1m(x⋆)⊤, where x⋆ solves (P), and vice versa. While not essential, condition (c3) is146

postulated to simplify the algorithm derivation.147

Primal-dual optimality for (P′) reads, with Y being the dual-variable associated with the constraints,148

(A+B)

([
X⋆

Y⋆

])
= 0, where A :=

[
K ◦ ∇F ◦K 0

0 0

]
and B :=

[
0 Ł
−Ł 0

]
.

Given Xk,Yk at iteration k, the update Xk+1,Yk+1 via FBS with metric C ∈ S2m++ reads [4]149

(C +B)

([
Xk+1

Yk+1

])
= (C −A)

([
Xk

Yk

])
. (1)

Monotone operator theory [4] ensures convergence of (1) under the following conditions:150

(c4) B is a monotone operator, C ∈ S2m++, and (c5) I − C−1/2AC−1/2 is an averaged operator.151

Condition (c4) is satisfied by construction; (c5) can be enforced through a suitable selection of
C ∈ S2m++ while leveraging the co-coercivity of A (implied by Assumption 1). Denoting by α > 0
the stepsize employed in the algorithm, we seek for C with the following structure:

C =

[
α−1C1 0

0 C2

]
, with C1, C2 ∈ Sm++

to be determined. We proceed solving (1). Taking (C +B)−1, we have152

Xk+1 = (I) (Xk)− α
(
(II) (Xk) + (III) (Yk)

)
,

Yk+1 = (IV ) (Yk) + (V ) (Xk),
(2)

where153
(I) := Im − α · C−1

1 Ł
(
C2 + α · ŁC−1

1 Ł
)−1

Ł,

(II) := (I)C−1
1 K∇F ◦K,

(III) := C−1
1 Ł

(
C2 + α · ŁC−1

1 Ł
)−1

C2,

(IV ) :=
(
C2 + α · ŁC−1 Ł

)−1
C2,

(V ) :=
(
C2 + α · ŁC−1

1 Ł
)−1

Ł
(
I − α · C−1

1 K∇F ◦K
)
.

(3)

In addition to satisfying (c5), C1, C2 ∈ Sm++ must be strategically chosen to facilitate the design of a154

decentralized line-search procedure for α. We propose the following guiding principles:155

(c6) The range of admissible stepsize values α ensuring convergence–hence satisfying (c5)–should156

be independent of the network parameters; and157

(c7) the operators (I), (II), and (III) in (2) should be independent of α.158

At a high level, (c6) aims to decouple the line-search mechanism from network-dependent constraints.159

By doing so, it ensures that performing the line-search from the agents’ sides requires no mid-160

process communications during backtracking, relying solely on local computations. Meanwhile, (c7)161

facilitates the identification of −((II)(Xk) + (III)(Yk)) as a potential direction for the line-search.162

This direction must be paired with an appropriate surrogate function, which we will define shortly.163

Among several potential selections, in this paper, we consider the following for C1 and C2:164

C1 = K and C2 = αK−1
(
c−1 I − Ł2

)
, with c < 1/2, (4)

which satisfy all the specified requirements. Using (4) and (c3), the operators in (3) simplify to165

(I) = Im−c·Ł2, (II) = (I)∇F◦K, (III) = (I)Ł2K−1, (IV ) = (I), (V ) =
c

α
·K Ł (I−∇F◦K).
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Notice that (I), (II), and (III) are independent of the stepsize. Substituting the above expressions166

in (2) and introducing Dk := K−1ŁYk, the algorithm can be rewritten as167

Xk+1 = (I − cŁ2)Xk − α · (I − cŁ2)
(
Dk +∇F (KXk)

)
,

Dk+1 = (I − cŁ2)Dk +
c

α
· Ł2

(
Xk − α∇F (KXk)

)
.

To make the above updates compliant with the graph G while satisfying (c1)-(c3), we set Ł2 =168

(I − W̃ ), with W̃ ∈ WG , and K = I − cŁ2, where c ∈ (0, 1/2) is a free universal constant.169

Introducing W := (1− c)Im + cW̃ ∈ WG , the final decentralized algorithm can be rewritten as170

Xk+1/2 = W Xk, Dk+1/2 = W
(
Dk +∇F (Xk+1/2)

)
,

Xk+1 = Xk+1/2 − α ·Dk+1/2,

Dk+1 = Dk+1/2 +
1

α
·
(
Xk −Xk+1 − α∇F (Xk+1/2)

)
.

(5)

Finally, it can be verified that (c6) is met if (
√
αK−1/2) ◦∇F ◦ (

√
αK−1/2) is nonexpansive, which171

holds if α < 1/L, being independent on the network parameters. Next, we introduce a line-search172

procedure that enables the use of an adaptive stepsize α rather than a more conservative constant one.173

Decentralized backtracking: It is not difficult to check that (i) −Dk+1/2 is a descent direction of174

F k(X) := F (X) + ⟨Dk,X⟩ at Xk+1/2, and (ii) F k and F share the same smooth constant. These175

suggest the following backtracking procedure for α: at iteration k, find the largest αk > 0 such that176

F k(Xk+1) ≤ F k(Xk+1/2)+
〈
∇F k(Xk+1/2),Xk+1 −Xk+1/2

〉
+

δ

2αk
∥Xk+1−Xk+1/2∥2, (6)

where δ ∈ (0, 1] is a tuning parameter. However, this condition would require a communication177

round for each backtracking step. To reduce the communication burden, we introduce a local stepsize178

for each agent i, denoted by αk
i , determined by a backtracking line-search on the local function179

fk
i (x) := fi(x) + ⟨dki , x⟩. Specifically, each αk

i is the largest positive value satisfying180

fk
i (x

k+1
i ) ≤ fk

i (x
k+1/2
i ) +

〈
∇fk

i (x
k+1/2
i ), xk+1

i − x
k+1/2
i

〉
+

δ

2αk
i

∥xk+1
i − x

k+1/2
i ∥2. (7)

The proposed decentralized algorithm is summarized in Algorithm 1, with the backtracking line-181

search procedure detailed in Algorithm 2.182

3.1 Discussion183

Several comments are in order.184

On the proposed algorithm: We emphasize that selecting K ̸= Im in (P′) marks a significant185

departure from the commonly used saddle-point reformulations of Problem (P), where K = Im, e.g.,186

[43, 31, 30, 1]. Choosing K ̸= Im, in conjunction with the novel variable metric C in the FBS as187

specified in (4), is critical to obtain a valid line-search procedure that is also implementable across the188

network. For instance, popular decentralized algorithms such as EXTRA [39] and NIDS [24] can be189

interpreted as FBS with suitable metrics associated with the primal-dual reformulation of (P) as (P′)190

but with K = Im. However, these schemes do not facilitate any suitable line-search, as no stepsize-191

independent descent direction can be identified in their updates. Hopefully, our approach will provide192

principled guidelines for the design of other parameter-free decentralized algorithms, stemming from193

alternative decentralized formulations of (P) and their corresponding operator splittings.194

On the backtracking: The following lemma shows that the line-search procedure in Algorithm 2 is195

well-defined, as long as the function f is locally smooth (the proof can be found in the appendix).196

Lemma 3. Let f in Algorithm 2 be any Lf -smooth and µf -strongly convex function on the segment197

[x, x+ γαd], with Lf ∈ (0,∞), µf ∈ [0,∞), and γ ∈ [1,∞). The following hold for Algorithm 2:198

1. The backtracking procedure terminates in no more than max
(
1, ⌈log2

2Liγα
δ ⌉

)
steps;199

2. The returned α+ satisfies200

min

(
γα,

δ

2Lf

)
≤ α+ ≤ min

(
γα,

δ

µf

)
≤ ∞; (8)

201

3. For any α+ returned by Algorithm 2, ᾱ+∈ (0, α+] satisfies the backtracking condition as well.202
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Algorithm 1
Data: (i) Initialization X0 ∈ Rm×d and D0 = 0; (ii) initial value α−1 ∈ (0,∞); (iii) Backtracking
parameters δ > 0; (iv) nondecreasing sequence {γk}k ⊆ [1,∞) (v) Gossip matrix W := (1−c)Im+

cW̃ , with W̃ ∈ WG , and c ∈ (0, 1/2). Set the iteration index k = 0.

1: (S.1) Communication step: Agents updates primal and dual variables via gossiping:

Xk+1/2 = W Xk and Dk+1/2 = W
(
Dk +∇F (Xk+1/2)

)
;

2: (S.2) Decentralized line-search: Each agent updates αk
i according to

αk
i = Backtracking

(
αk−1, fi, x

k+1/2
i , d

k+1/2
i , γk, δ

)
;

3: (S.3) Min-consensus:
αk = min

i∈[m]
αk
i ;

4: (S.4) Local updates of the primal and dual variables:

Xk+1 = Xk+1/2 − αk ·Dk+1/2,

Dk+1 = Dk+1/2 +
1

αk
·
(
Xk −Xk+1 − αk∇F (Xk+1/2)

)
.

5: (S.5) If a termination criterion is not met, k ← k + 1 and go to step (S.1).

Algorithm 2 Backtracking(α, f , x, d, γ, δ)

1: α+ ← γα;
2: x+ := x− α+ d;
3: while f(x+) > f(x) + ⟨∇f(x), x+ − x⟩+ δ

2α+ ∥x+ − x∥2 do
4: α+ ← (1/2)α+;
5: x+ := x− α+d;

return α+.

Notice that the last statement of the lemma guarantees that the each αk = mini∈[m] α
k
i satisfies the203

descent property (6) on the global loss F k, as each αk
i meets the local condition (7).204

The sequence {γk}∞k=1 used in line 1 of the backtracking algorithm, with each γk ≥ 1, is introduced205

to favor nonmonotone, and thus potentially larger, stepsize values between two consecutive line-206

search calls. Any sequence satisfying γk ↓ 1 and
∏∞

k=1 γk =∞, is advisable. In our experiments,207

we found the following rule quite effective: γk=
(
(k+β1)/(k+1)

)β2 , for some β2 > 0 and β1 ≥ 1.208

One can opt for γk = 1, for all k, thus eliminating this extra parameter, if simplicity is desired.209

On the min-consensus: Step (S.3) involves a min-consensus across the network to establish a210

common stepsize, αk = mini∈[m] α
k
i , among the agents. This procedure is easily implemented in211

federated systems, where a server node facilitates information exchange between clients. Interestingly,212

this min-consensus protocol is also well-suited to current wireless mesh network technologies.213

Modern networks support multi-interface communications, including WiFi and LoRa (Low-Range)214

[15, 2, 14]. WiFi allows high-speed, short-range communications, supporting a mesh topology where215

nodes transmit large data volumes to immediate neighbors. Conversely, LoRa facilitates long-range216

but low-rate communications, ideal for communication flooding that reaches all network nodes in a217

single hop but transmits minimal information. Therefore, in multi-interface networks, the proposed218

algorithm operates by transmitting vector variables in Steps (S.1) via WiFi, while LoRa is used for219

the min-consensus in Step (S.3). Furthermore, the values αk
i ’s can be quantized to their nearest220

lower values using a few bits before transmission. Based on Lemma 3(3), this quantization ensures221

that the descent condition (6) is still met with the resultant min quantized stepsize. This approach222

renders the extra communication cost for implementing the min-consensus step negligible.223
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4 Convergence Results224

The strongly convex case: We begin stating convergence under strong convexity of fi’s.225

We begin introducing two quantities that help to identify different convergence regimes of the226

proposed algorithm. Let (X⋆,D⋆) be a fixed point of Algorithm 1 (whose existence is ensured by227

Assumption 1). Define the quantities of interest along the iterates {(Xk,Dk)} of the algorithm as228

gk :=
1

αk

∥Xk+1/2 −X⋆∥
∥c(I − W̃ )

(
∇F (Xk+1/2)−∇F (X⋆)

)
∥

(9)

and229

rk :=
max

(
(αk)−1∥Xk∥

c(I−W̃ )
, ∥c(I − W̃ )(∇F (Xk+1/2)−∇F (X⋆))∥M

)
∥c(I − W̃ )(Dk −D⋆)∥M

. (10)

where M := c−1(I − W̃ )† − I . Here, gk assesses the quality of the selected stepsize αk in230

approximating the inverse of the Lipschitz constant of (I− W̃ )∇F along the direction Xk+1/2−X⋆.231

It captures network and optimization quantities. It follows from Lemma 3 that gk ≥ 1/κ (when δ = 1).232

The quantity rk reflects the convergence progress of the dual variables Dk. Rewriting the update for233

these variables as Dk+1 = Dk + c
αk (I − W̃ )Xk − c(I − W̃ )

(
∇F (Xk+1/2) +Dk

)
, we claim that234

small values of ∥ c
αk (I − W̃ )Xk − c(I − W̃ )

(
∇F (Xk+1/2) +Dk

)
∥ compared to ∥Dk −D⋆∥ (i.e.,235

small rk values), indicate slow improvements of the dual variables towards convergence. Conversely,236

large values of rk suggest rapid dual convergence. This is made formal in Lemma 9 in the appendix.237

We remark that neither gk nor rk need to be known by the agents; they are instrumental only for238

analysis and posterior assessment of algorithm convergence.239

Linear convergence is established below via contraction of the following merit function along the240

iterates {(Xk,Dk)} of the algorithm241

V k :=
∥∥Xk −X⋆

∥∥2 + (αk−1)2∥Dk −D⋆∥2M . (11)

Notice that (i) Dk,D⋆ ∈ span(I− W̃ ), for all k; hence, ∥Dk−D⋆∥M = 0 if and only if Dk = D⋆;242

and (ii) under Assumption 1, it must be X⋆ = 1(x⋆)⊤, where x⋆ is the solution of Problem (P).243

Theorem 4. Consider Problem (P) under Assumption 1, with µ > 0. Let {(Xk,Dk)} be the sequence244

generated by Algorithm 1, with parameters: δ = 1, c≤ 1/2, {γk ≥ 1} being arbitrary, and W̃ ∈ WG .245

Then, the following holds:246

V k+1 ≤
(
1− ρk

)
max

(
1, (αk/αk−1)2

)
V k, (12)

where

ρk := min

(
µαk (1− c(1− λn(W̃ )))2

2
,max

(
(rk)2, µ αk (gk [1− rk]+)

2

2

)
c2(1− λ2(W̃ ))2

)
.

The theorem establishes linear convergence of Algorithm 1. As max(1, (αk/αk−1)2) is bounded247

away from zero and uniformly upper bounded (with value depending on the sequence {γk})–see248

Lemma 3–the convergence rate is predominantly determined by ρk. Within the setting of the theorem,249

ρk ∈ (0, 1). Intriguingly, ρk is, in particular, affected by the values of rk and gk, which implies that250

the algorithm may exhibit different operational regimes based on the range of values these parameters251

take along the trajectory of the algorithm. The following result highlights this distinctive aspect.252

Corollary 4.1. Instate Theorem 4, with {γk} being chosen such that γk ≤
(
(k + β1)/(k + 1)

)β2 ,253

for all k and some β1 ≥ 1, β2 > 0. Then
∥∥XN+1 −X⋆

∥∥2 + 1
4L2 ∥DN+1 −D⋆∥2M ≤ ε, with the254

number of iterations N bounded as follows:255

1. If rk ≥ 1/2 for all k, then N = O
(
max

(
κ

(1−c(1−λm(W̃ )))2
, 1

c2(1−λ2(W̃ ))2

)
log(V 0/ε)

)
;256

2. If rk ≥ (1/4)
√
κ or gk ≥ 1/2, for all k, then

N = O

 κ

min
(
c(1− λ2(W̃ )), (1− c(1− λm(W̃ )))

)2 log(V 0/ε)

 ;
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3. Otherwise, N = O

((
κ

min(c,(1−c(1−λm(W̃ ))))·(1−λ2(W̃ ))

)2

log(V 0/ε)

)
.257

Corollary 4.1 identifies different operational regimes of the algorithm, each resulting in difference258

performance based upon the network connectivity and optimization condition number. Specifically,259

(1) Strong connectivity regime: when rk ≥ 1/2 for all k, a fact that numerically has been260

consistently observed for ‘relatively good’ network connectivity, the convergence rate exhibits a261

separation in the dependence on the network and optimization parameters. Noticing 1 − c(1 −262

λm(W̃ )) > 1− 2c, when c(1− λ2(W̃ )) ≥ (1− 2c)/
√
κ, the rate of the algorithm reduced to O(κ),263

matching that of the centralized gradient algorithm. This suggests scenarios where the optimization264

problem is harder than a consensus problem over the network, resulting in the bottleneck between265

the two. Conversely, the rate is dominated by the consensus algorithm’s rate–O((1− λ2(W̃ ))−2)–266

when the condition number κ is large relative to the network connectivity 1 − λ2(W̃ ). Quite267

interestingly, this rate separation property mirrors the convergence behaviour of certain nonadaptive268

primal-dual decentralized schemes including NEXT [11], AugDGM [44], Exact Diffusion [45] (with269

rate improved in [43]), NIDS [24], and ABC [43].270

(2) Intermediate connectivity regime: In networks with ‘moderate’ connectivity and effective271

stepsize adaptivity (gk ≥ 1/2), generally the algorithm achieves convergence rates of the order272

O(κ/(1 − λ2(W̃ ))2), where optimization and network parameters are now mixed. This rate273

aligns with those of nonadaptive decentralized gradient-tracking schemes, such as DGing [32],274

SONATA [40] (subject to sufficiently small network connectivity), and [35].275

(3) Worst-case regime: This regime reflects the algorithm’s worst-case performance, with a quadratic276

scaling of the rate with the condition number κ, typically registered in poorly connected networks.277

Such performance degradation aligns with the worst-case rates proved in schemes like SONATA [40].278

In summary, the proposed algorithm achieves convergence rates of the same order of those of most279

non-accelerated decentralized algorithms, importantly, without requiring knowledge of network and280

optimization parameters or the specific values of rk and gk. To the best of our knowledge this is the281

first decentralized algorithm of its kind to combine such desirable properties.282

Weakly convex functions: We complete the characterization of the proposed algorithm considering283

weakly convex functions. The main result is summarized next.284

Theorem 5. Consider Problem (P) under Assumption 1, with µ = 0. Let {(Xk,Dk)} be the sequence285

generated by Algorithm 1, with parameters: δ < 1 and γk ≤
(
(k + β1)/(k + 1)

)β2 , for all k and286

some β1 ≥ 1, β2 > 0 such that r := 2β2⌈β1⌉ < 1, c≤ 1/2, and W̃ ∈ GW . Then, the following287

holds:288

min
j∈[k]

(
∥Xj −Xj+1∥2 + δ

2L
∥Dj −Dj+1∥2M

)
≤ c′V 0

(k + 1)1−r
, with c′ =

1

1− δ

(
⌈β1⌉⌈β1⌉

(⌈β1⌉+ 1)!

)2β2

.

Furthermore, one can check that if the sequence {γk} is chosen such that
∏

k γ ≤ ln k, the merit289

function above decays at the rate of (ln k)/(k + 1). This rates are inline with those obtained by290

certain decentralized primal-dual methods applied to convex optimization problems.291

Remark 6. It is important to note that although the above results are presented under Assumption 1,292

the same conclusions drawn in Theorem 4 and Theorem 5 also hold under the significantly weaker293

condition that each fi is locally smooth (and locally strongly convex)–see the appendix for details.294

Specifically, in the rate expressions mentioned earlier, the global condition number κ and the global295

smooth constant L are replaced by are replaced by their local counterparts, which are generally296

much smaller and defined on the convex hull of the set {X⋆, {Xk,Xk+1/2}Nk=0}. This adjustment297

highlights the algorithm’s capability to adapt to the local geometry of the optimization problem. Such298

a nuanced approach offers more favorable rate dependencies compared to those found in the existing299

decentralized optimization literature.300

5 Numerical Results301

In this section, we present some preliminary numerical results. We compare Algorithm 1 with EXTRA302

[39] and NIDS [24] on a ridge regression problem using synthetic data, and logistic regression on303

real data from the a3a dataset [6].304
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Ridge regression: This strongly convex instance of (P) is defined for each agent i by the function305

fi(x) = ∥Aixi − bi∥2 + σ∥xi∥22, where Ai ∈ R20×300, bi ∈ R20, and σ > 0 is the regularization306

parameter. The elements of Ai, bi were independently sampled from the standard normal distribution;307

the regularization is set to σ = 0.1. We simulated a network of m = 20 agents, and the following308

three different graph topologies, reflecting varying connectivity levels:: (i) G1: Graph-path with309

m − 1 edges and diameter m − 1, i.e., G = {[m], {(i, i + 1)}m−1
i=1 }; (ii) G2: Erdős–Rényi graph,310

sparsely connected; and (iii) G3: Erdős–Rényi graph, well-connected. These setups help to evaluate311

the performance of the algorithm under low, moderate, and high network connectivity.312

The comparison of the three algorithms is summarized in Fig. 1 and Fig. 2. For EXTRA and NIDS313

we use the nominal stepsize tuning as recommended in their respectively papers, which requires full314

knowledge of the optimization parameters L, µ and eigen-spectrum of the gossip matrix. Algorithm 1315

is simulated under the following choice of the line-search parameters: γk = (k + 2)/(k + 1), and316

β1 = β2 = 1. For all the algorithm we used the Metropolis-Hastings weight matrix W ∈ GW [31].

Figure 1: Ridge regression (κ = 2×103) over G1 (left panel), G2 (mid panel), and G3 (right panel): optimization
error ∥Xk −X⋆∥ versus iterations k.

317

Figure 2: Ridge regression over G1 (left panel), G2 (mid panel), and G3 (right panel): number of iterations N
for ∥XN −X⋆∥ ≤ 10−5 versus the condition number κ.

The figures clearly demonstrate that the proposed method consistently outperforms both EXTRA318

and NIDS; the gap becomes quite significant as the condition number κ grows. This performance is319

particularly noteworthy given that Algorithm 1 operates effectively without requiring tedious tuning320

or global knowledge of the optimization and network parameters.321

Logistic regression: This is an instance of (P), where fi(x) = (1/m)
∑m

j=1 log(1 +322

exp(−yi,j⟨fi,j , x⟩)). Here, yij ∈ {0, 1}, fij ∈ R200 are data problem, taken from the dataset323

a3a [6]. We distribute data across m = 20 nodes, each owning n = 159 samples. We simulated324

the same three network topologies, G1, G2, and G3, as for the ridge regression problem. Results are325

summarized in Fig. 3. The tuning of the algorithms is as discussed above for the ridge regression326

problem. The figures show that our method compare favorably with EXTRA and NIDS also on this327

class of problems and on real data. All experiments above are run on Acer Swift 5 SF514-55TA-56B6328

with processor Intel(R) Core(TM) i5-8250U @ CPU 1.60GHz, 1800 MHz.

Figure 3: Logistic regression over G1 (left panel), G2 (mid panel), and G3 (right panel): optimization error
∥Xk −X⋆∥ versus iteration k.

329
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NeurIPS Paper Checklist443

The checklist is designed to encourage best practices for responsible machine learning research,444

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove445

the checklist: The papers not including the checklist will be desk rejected. The checklist should446

follow the references and precede the (optional) supplemental material. The checklist does NOT447

count towards the page limit.448

Please read the checklist guidelines carefully for information on how to answer these questions. For449

each question in the checklist:450

• You should answer [Yes] , [No] , or [NA] .451

• [NA] means either that the question is Not Applicable for that particular paper or the452

relevant information is Not Available.453

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).454

The checklist answers are an integral part of your paper submission. They are visible to the455

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it456

(after eventual revisions) with the final version of your paper, and its final version will be published457

with the paper.458

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.459

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a460

proper justification is given (e.g., "error bars are not reported because it would be too computationally461

expensive" or "we were unable to find the license for the dataset we used"). In general, answering462

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we463

acknowledge that the true answer is often more nuanced, so please just use your best judgment and464

write a justification to elaborate. All supporting evidence can appear either in the main paper or the465

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification466

please point to the section(s) where related material for the question can be found.467

IMPORTANT, please:468

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",469

• Keep the checklist subsection headings, questions/answers and guidelines below.470

• Do not modify the questions and only use the provided macros for your answers.471

1. Claims472

Question: Do the main claims made in the abstract and introduction accurately reflect the473

paper’s contributions and scope?474

Answer: [Yes]475

Justification: Abstract gives accurate presentation of our result. Part Major contributions of476

Introduction contains full description of our work.477

Guidelines:478

• The answer NA means that the abstract and introduction do not include the claims479

made in the paper.480

• The abstract and/or introduction should clearly state the claims made, including the481

contributions made in the paper and important assumptions and limitations. A No or482

NA answer to this question will not be perceived well by the reviewers.483

• The claims made should match theoretical and experimental results, and reflect how484

much the results can be expected to generalize to other settings.485

• It is fine to include aspirational goals as motivation as long as it is clear that these goals486

are not attained by the paper.487

2. Limitations488

Question: Does the paper discuss the limitations of the work performed by the authors?489

Answer:[Yes]490
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Justification: The main limitaion of proposed procedure is min-consensus. The technology491

for its implementation is carefully discribed in part 3.1.492

Guidelines:493

• The answer NA means that the paper has no limitation while the answer No means that494

the paper has limitations, but those are not discussed in the paper.495

• The authors are encouraged to create a separate "Limitations" section in their paper.496

• The paper should point out any strong assumptions and how robust the results are to497

violations of these assumptions (e.g., independence assumptions, noiseless settings,498

model well-specification, asymptotic approximations only holding locally). The authors499

should reflect on how these assumptions might be violated in practice and what the500

implications would be.501

• The authors should reflect on the scope of the claims made, e.g., if the approach was502

only tested on a few datasets or with a few runs. In general, empirical results often503

depend on implicit assumptions, which should be articulated.504

• The authors should reflect on the factors that influence the performance of the approach.505

For example, a facial recognition algorithm may perform poorly when image resolution506

is low or images are taken in low lighting. Or a speech-to-text system might not be507

used reliably to provide closed captions for online lectures because it fails to handle508

technical jargon.509

• The authors should discuss the computational efficiency of the proposed algorithms510

and how they scale with dataset size.511

• If applicable, the authors should discuss possible limitations of their approach to512

address problems of privacy and fairness.513

• While the authors might fear that complete honesty about limitations might be used by514

reviewers as grounds for rejection, a worse outcome might be that reviewers discover515

limitations that aren’t acknowledged in the paper. The authors should use their best516

judgment and recognize that individual actions in favor of transparency play an impor-517

tant role in developing norms that preserve the integrity of the community. Reviewers518

will be specifically instructed to not penalize honesty concerning limitations.519

3. Theory Assumptions and Proofs520

Question: For each theoretical result, does the paper provide the full set of assumptions and521

a complete (and correct) proof?522

Answer: [Yes]523

Justification: Main assumptions and definitions are presented in Section 2. All main524

theoretical results presented in Section 4 with all required assumptions. Proofs are placed in525

Appendix A-F because of their large size.526

Guidelines:527

• The answer NA means that the paper does not include theoretical results.528

• All the theorems, formulas, and proofs in the paper should be numbered and cross-529

referenced.530

• All assumptions should be clearly stated or referenced in the statement of any theorems.531

• The proofs can either appear in the main paper or the supplemental material, but if532

they appear in the supplemental material, the authors are encouraged to provide a short533

proof sketch to provide intuition.534

• Inversely, any informal proof provided in the core of the paper should be complemented535

by formal proofs provided in appendix or supplemental material.536

• Theorems and Lemmas that the proof relies upon should be properly referenced.537

4. Experimental Result Reproducibility538

Question: Does the paper fully disclose all the information needed to reproduce the main ex-539

perimental results of the paper to the extent that it affects the main claims and/or conclusions540

of the paper (regardless of whether the code and data are provided or not)?541

Answer: [Yes]542
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Justification: All setup for numerical experiments are described in Section 5. It is enough to543

reproduce all experiments.544

Guidelines:545

• The answer NA means that the paper does not include experiments.546

• If the paper includes experiments, a No answer to this question will not be perceived547

well by the reviewers: Making the paper reproducible is important, regardless of548

whether the code and data are provided or not.549

• If the contribution is a dataset and/or model, the authors should describe the steps taken550

to make their results reproducible or verifiable.551

• Depending on the contribution, reproducibility can be accomplished in various ways.552

For example, if the contribution is a novel architecture, describing the architecture fully553

might suffice, or if the contribution is a specific model and empirical evaluation, it may554

be necessary to either make it possible for others to replicate the model with the same555

dataset, or provide access to the model. In general. releasing code and data is often556

one good way to accomplish this, but reproducibility can also be provided via detailed557

instructions for how to replicate the results, access to a hosted model (e.g., in the case558

of a large language model), releasing of a model checkpoint, or other means that are559

appropriate to the research performed.560

• While NeurIPS does not require releasing code, the conference does require all submis-561

sions to provide some reasonable avenue for reproducibility, which may depend on the562

nature of the contribution. For example563

(a) If the contribution is primarily a new algorithm, the paper should make it clear how564

to reproduce that algorithm.565

(b) If the contribution is primarily a new model architecture, the paper should describe566

the architecture clearly and fully.567

(c) If the contribution is a new model (e.g., a large language model), then there should568

either be a way to access this model for reproducing the results or a way to reproduce569

the model (e.g., with an open-source dataset or instructions for how to construct570

the dataset).571

(d) We recognize that reproducibility may be tricky in some cases, in which case572

authors are welcome to describe the particular way they provide for reproducibility.573

In the case of closed-source models, it may be that access to the model is limited in574

some way (e.g., to registered users), but it should be possible for other researchers575

to have some path to reproducing or verifying the results.576

5. Open access to data and code577

Question: Does the paper provide open access to the data and code, with sufficient instruc-578

tions to faithfully reproduce the main experimental results, as described in supplemental579

material?580

Answer: [Yes]581

Justification: code in the form of an attached archive.582

Guidelines:583

• The answer NA means that paper does not include experiments requiring code.584

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/585

public/guides/CodeSubmissionPolicy) for more details.586

• While we encourage the release of code and data, we understand that this might not be587

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not588

including code, unless this is central to the contribution (e.g., for a new open-source589

benchmark).590

• The instructions should contain the exact command and environment needed to run to591

reproduce the results. See the NeurIPS code and data submission guidelines (https:592

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.593

• The authors should provide instructions on data access and preparation, including how594

to access the raw data, preprocessed data, intermediate data, and generated data, etc.595
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• The authors should provide scripts to reproduce all experimental results for the new596

proposed method and baselines. If only a subset of experiments are reproducible, they597

should state which ones are omitted from the script and why.598

• At submission time, to preserve anonymity, the authors should release anonymized599

versions (if applicable).600

• Providing as much information as possible in supplemental material (appended to the601

paper) is recommended, but including URLs to data and code is permitted.602

6. Experimental Setting/Details603

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-604

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the605

results?606

Answer: [Yes]607

Justification: Our paper demonstrates performance of optimization algorithm. Because of608

that, we do not need test some models. But Section 5 contains full information about our609

experiments.610

Guidelines:611

• The answer NA means that the paper does not include experiments.612

• The experimental setting should be presented in the core of the paper to a level of detail613

that is necessary to appreciate the results and make sense of them.614

• The full details can be provided either with the code, in appendix, or as supplemental615

material.616

7. Experiment Statistical Significance617

Question: Does the paper report error bars suitably and correctly defined or other appropriate618

information about the statistical significance of the experiments?619

Answer: [No]620

Justification: Numerical experiments demonstrate performance of optimization algorithm621

on a given problems. Besides, our algorithm is deterministic.622

Guidelines:623

• The answer NA means that the paper does not include experiments.624

• The authors should answer "Yes" if the results are accompanied by error bars, confi-625

dence intervals, or statistical significance tests, at least for the experiments that support626

the main claims of the paper.627

• The factors of variability that the error bars are capturing should be clearly stated (for628

example, train/test split, initialization, random drawing of some parameter, or overall629

run with given experimental conditions).630

• The method for calculating the error bars should be explained (closed form formula,631

call to a library function, bootstrap, etc.)632

• The assumptions made should be given (e.g., Normally distributed errors).633

• It should be clear whether the error bar is the standard deviation or the standard error634

of the mean.635

• It is OK to report 1-sigma error bars, but one should state it. The authors should636

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis637

of Normality of errors is not verified.638

• For asymmetric distributions, the authors should be careful not to show in tables or639

figures symmetric error bars that would yield results that are out of range (e.g. negative640

error rates).641

• If error bars are reported in tables or plots, The authors should explain in the text how642

they were calculated and reference the corresponding figures or tables in the text.643

8. Experiments Compute Resources644

Question: For each experiment, does the paper provide sufficient information on the com-645

puter resources (type of compute workers, memory, time of execution) needed to reproduce646

the experiments?647
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Answer: [Yes]648

Justification: Information is given at the end of Section 5.649

Guidelines:650

• The answer NA means that the paper does not include experiments.651

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,652

or cloud provider, including relevant memory and storage.653

• The paper should provide the amount of compute required for each of the individual654

experimental runs as well as estimate the total compute.655

• The paper should disclose whether the full research project required more compute656

than the experiments reported in the paper (e.g., preliminary or failed experiments that657

didn’t make it into the paper).658

9. Code Of Ethics659

Question: Does the research conducted in the paper conform, in every respect, with the660

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?661

Answer: [Yes]662

Justification: Authors are familiar with NeurIPS Code of Ethics and paper conform it.663

Guidelines:664

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.665

• If the authors answer No, they should explain the special circumstances that require a666

deviation from the Code of Ethics.667

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-668

eration due to laws or regulations in their jurisdiction).669

10. Broader Impacts670

Question: Does the paper discuss both potential positive societal impacts and negative671

societal impacts of the work performed?672

Answer: [NA]673

Justification: There are different methods of distributed optimization. The paper propose674

new method of distributed optimization that has no additional societal impact as the authors675

think.676

Guidelines:677

• The answer NA means that there is no societal impact of the work performed.678

• If the authors answer NA or No, they should explain why their work has no societal679

impact or why the paper does not address societal impact.680

• Examples of negative societal impacts include potential malicious or unintended uses681

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations682

(e.g., deployment of technologies that could make decisions that unfairly impact specific683

groups), privacy considerations, and security considerations.684

• The conference expects that many papers will be foundational research and not tied685

to particular applications, let alone deployments. However, if there is a direct path to686

any negative applications, the authors should point it out. For example, it is legitimate687

to point out that an improvement in the quality of generative models could be used to688

generate deepfakes for disinformation. On the other hand, it is not needed to point out689

that a generic algorithm for optimizing neural networks could enable people to train690

models that generate Deepfakes faster.691

• The authors should consider possible harms that could arise when the technology is692

being used as intended and functioning correctly, harms that could arise when the693

technology is being used as intended but gives incorrect results, and harms following694

from (intentional or unintentional) misuse of the technology.695

• If there are negative societal impacts, the authors could also discuss possible mitigation696

strategies (e.g., gated release of models, providing defenses in addition to attacks,697

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from698

feedback over time, improving the efficiency and accessibility of ML).699
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11. Safeguards700

Question: Does the paper describe safeguards that have been put in place for responsible701

release of data or models that have a high risk for misuse (e.g., pretrained language models,702

image generators, or scraped datasets)?703

Answer: [NA]704

Justification: The proposed method does not require safeguard.705

Guidelines:706

• The answer NA means that the paper poses no such risks.707

• Released models that have a high risk for misuse or dual-use should be released with708

necessary safeguards to allow for controlled use of the model, for example by requiring709

that users adhere to usage guidelines or restrictions to access the model or implementing710

safety filters.711

• Datasets that have been scraped from the Internet could pose safety risks. The authors712

should describe how they avoided releasing unsafe images.713

• We recognize that providing effective safeguards is challenging, and many papers do714

not require this, but we encourage authors to take this into account and make a best715

faith effort.716

12. Licenses for existing assets717

Question: Are the creators or original owners of assets (e.g., code, data, models), used in718

the paper, properly credited and are the license and terms of use explicitly mentioned and719

properly respected?720

Answer: [Yes]721

Justification: Numerical experiments use one of datasets from LIBSVM. Authors cite722

corresponding work of owners (see reference [6] in Section 5 and References)723

Guidelines:724

• The answer NA means that the paper does not use existing assets.725

• The authors should cite the original paper that produced the code package or dataset.726

• The authors should state which version of the asset is used and, if possible, include a727

URL.728

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.729

• For scraped data from a particular source (e.g., website), the copyright and terms of730

service of that source should be provided.731

• If assets are released, the license, copyright information, and terms of use in the732

package should be provided. For popular datasets, paperswithcode.com/datasets733

has curated licenses for some datasets. Their licensing guide can help determine the734

license of a dataset.735

• For existing datasets that are re-packaged, both the original license and the license of736

the derived asset (if it has changed) should be provided.737

• If this information is not available online, the authors are encouraged to reach out to738

the asset’s creators.739

13. New Assets740

Question: Are new assets introduced in the paper well documented and is the documentation741

provided alongside the assets?742

Answer: [Yes]743

Justification:contains contains README file with sufficient description.744

Guidelines:745

• The answer NA means that the paper does not release new assets.746

• Researchers should communicate the details of the dataset/code/model as part of their747

submissions via structured templates. This includes details about training, license,748

limitations, etc.749
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• The paper should discuss whether and how consent was obtained from people whose750

asset is used.751

• At submission time, remember to anonymize your assets (if applicable). You can either752

create an anonymized URL or include an anonymized zip file.753

14. Crowdsourcing and Research with Human Subjects754

Question: For crowdsourcing experiments and research with human subjects, does the paper755

include the full text of instructions given to participants and screenshots, if applicable, as756

well as details about compensation (if any)?757

Answer: [NA]758

Justification: Paper does not involve crowdsourcing nor research with human subjects.759

Guidelines:760

• The answer NA means that the paper does not involve crowdsourcing nor research with761

human subjects.762

• Including this information in the supplemental material is fine, but if the main contribu-763

tion of the paper involves human subjects, then as much detail as possible should be764

included in the main paper.765

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,766

or other labor should be paid at least the minimum wage in the country of the data767

collector.768

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human769

Subjects770

Question: Does the paper describe potential risks incurred by study participants, whether771

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)772

approvals (or an equivalent approval/review based on the requirements of your country or773

institution) were obtained?774

Answer: [NA]775

Justification: Paper does not involve crowdsourcing nor research with human subjects776

Guidelines:777

• The answer NA means that the paper does not involve crowdsourcing nor research with778

human subjects.779

• Depending on the country in which research is conducted, IRB approval (or equivalent)780

may be required for any human subjects research. If you obtained IRB approval, you781

should clearly state this in the paper.782

• We recognize that the procedures for this may vary significantly between institutions783

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the784

guidelines for their institution.785

• For initial submissions, do not include any information that would break anonymity (if786

applicable), such as the institution conducting the review.787
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