A Appendix / Supplemental Material

A.1 Datasets

All datasets provide video recordings with a resolution of 640 x 480, and frame rate of 30 FPS. Below
we provide data-specific details.

iBVP [29]: The iBVP dataset consists of 124 synchronized RGB and thermal infrared videos from
31 subjects, acquired under controlled conditions. Each video is 3 minutes in duration, and the ground
truth BVP signals were acquired from the ear using PhysioKit [30]. Data were acquired under 4
different conditions that include controlled breathing, math tasks, and head movements. BVP signals
are marked with the signal quality, enabling the use of the video frames only where the quality of
ground-truth BVP signal is high. In this work, we use only RGB frames to train the models.

PURE [55]: This data set comprises video recordings from 10 subjects, with the ground-truth BVP
and SpO2 signals acquired from the subject’s finger. For each participant, six recordings are acquired
under varied motion conditions, offering a range of data reflecting different physical states.

UBFC-rPPG |2]: This data set contains video recordings of 43 subjects acquired under indoor
conditions with a combination of natural sunlight and artificial illumination.

SCAMPS [42]: This dataset comprises 2800 videos of synthetic avatars that were generated through
high-fidelity, quasi-photorealistic renderings. Although the videos introduce various conditions such
as head motions, facial expressions, and changes in ambient illumination, they are often used as a
training set rather than a validation or test set.

A.2 Implementation Overview

The preprocessing steps for video frames include face detection using the YOLOS5Face [49] face
detector at an interval of 30 frames and using the detected facial bounding box to crop 30 subsequent
frames, prior to performing the next face detection. The cropped facial frames are resized to a
resolution of 72 x 72, which has been shown to be sufficient to estimate the rPPG. Additionally, to
ensure uniform input data for all models, we add Diff layer to the PhysNet [83] and PhysFormer
[777] architectures, as implemented by EfficientPhys [37] and the proposed FactorizePhys models,
and train all the models from scratch using uniformly preprocessed video frames.

The number of frames in a video chunk is maintained as 161, which after the Diff layer becomes
160, making the spatial-temporal input data size 160 x 72 x 72. Ground-truth BVP signals are
also uniformly standardized for training all models. This is different from some of the recent work
[37] that applies Diff in addition to standardization. We empirically found that all models perform
significantly better when trained with the standardized BVP signals, although when the Diff is
applied to the video frames.

All models were trained with 10 epochs on, following a recent work [79], as a higher number of
epochs, e.g. 30 epochs as used in rPPG-Toolbox |38] resulted in poor generalization for all models.
However, we used only one epoch for all models to train on the SCAMPS [42] dataset, since this
dataset is a synthesized dataset with generated BVP signals that are easier for models to learn, unlike
real-world datasets. Training beyond one epoch resulted in poorer cross-dataset performance for all
the models. The batch size of 4 was used consistently throughout the training and the maximum
learning rate was setto 1 X 1073 with 1 cycle learning rate scheduler [50] for all CNN models.

In addition, CNN models were optimized using negative Pearson correlation as a loss function. The
learning rate for PhysFormer [77] was set to 1 x 10~* and it was optimized using a dynamic loss
composed of several hyperparameters, a negative Pearson loss, a frequency cross-entropy loss and
a label distribution loss as used by the authors and implemented in the rPPG-Toolbox [38]]. Before
computing HR for performance evaluation, both ground truth and estimated BVP signals were filtered
using a bandpass filter (low cutoff = 0.60 Hz, high cutoff = 3.30 Hz) to accommodate HR ranges
of 36 to 198 BPM. HR was then computed using the FFT-peaks-based approach as implemented in
rPPG-Toolbox [38].
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A.3 Ablation Studies for FactorizePhys

‘We conduct ablation studies to evaluate optimal architectural choices and hyperparameters for the pro-
posed FactorizePhys and FSAM. In table we compare base FactorizePhys without FSAM and with
FSAM and observe consistent performance gains with FSAM. Evaluation with and without residual
connection indicates performance gains when residual connection around FSAM is implemented.

Table 3: Ablation study to assess residual connection to FSAM Module, and to compare the models
trained with FSAM, for their inferences without FSAM

Training Testing

Training Inference MAE (HR)| RMSE (HR) | MAPE (HR)| Corr (HR)T SNR (BVP)T MACC (BVP)1
Dataset Dataset
Base Base 137£102 797284 255+207 0942004 13742081 0774002
Base + FSAM Base + FSAM 0714039 305102 120£076 099002 1378£081 077002
PURE Base 0715039 3.051.02 1205076 099£002 1378081 077002
Base + FSAM + Res _BASCHFSAM +Res 0484007 1394035 0724028 1004001 14164083 078+0.02
UBFCAPPG Base 0484017  139%035  072+028 100001 1416083  0.78+0.02
Base Base 1994042 482+1.03 289069  087£005 5883057 054001
Base 4 FSAM Base + FSAM 190£034  399+076  266+050 091004 5824057  054+001
iBVP Base 1854033 3.89%0.75  259+049 091004 580057 0.54001
Base + FSAM + Res _BiSCHFSAM +Res 1734039 438+106 240057 090004 6614058 056001
Base 1742039 439+106 2424057 090£004 6594057  0.560.01

Retention of performance gains despite FSAM being skipped during inference, for FactorizePhys
trained with FSAM offers insight into the mechanics of how FSAM functions. This can be interpreted
as follows: Optimization of a network having FSAM implemented as an attention mechanism
influences the network to increase the saliency of the most relevant features, so that a factorized
approximation of embeddings retains these features, while discarding the less important features.
Due to the increased saliency of relevant features and the presence of residual connection, FSAM can
be skipped during inference, significantly reducing computational overhead.

Table 4: Performance Evaluation of Models on PURE Dataset [55], Trained with UBFC-rPPG Dataset
[2], using Different Ranks and Optimization Steps for Factorization

Optimization Steps Rank MAE (HR) | RMSE (HR) | MAPE (HR)] Corr (HR) T SNR (dB,BVP)T MACC (BVP) 1

for Matrix Factorization Mean SE  Mean SE Mean SE  Mean SE Mean SE Mean SE
Base 1.37 1.02 797 2.84 2.55 2.07 094 004 13.74 0.81 0.77 0.02

1 048 0.17 1.39 0.35 0.72 0.28 1.00 0.01 14.16 0.83 0.78 0.02

2 1.40 1.02 798 2.84 2.59 2.07 094 004 13.71 0.81 0.77 0.02

4 4 225 130 1023  3.09 436 266 091 0.05 1350 0.82 0.77 0.02
8 1.44 1.02 798 2.84 2.64 2.07 094 004 13.70 0.83 0.77 0.02

16 2.20 1.30  10.22 3.09 4.26 2.66 0.91 0.05 13.55 0.82 0.77 0.02

1 0.80 0.39 3.11 1.03 1.33 0.77 0.99 0.02 13.60 0.81 0.77 0.02

2 131 084 655 2.30 2.45 172096 0.04 1342 0.81 0.76 0.02

6 4 1.53 090 7.10 2.32 291 1.86 096 0.04 13.54 0.82 0.77 0.02
8 2.22 1.30  10.23 3.09 4.29 2.66 0.91 0.05 13.75 0.82 0.77 0.02

16 1.43 .02 798 2.84 2.65 2.07 0.94 0.04 13.62 0.81 0.77 0.02

1 0.73 039  3.06 1.02 1.24 0.77 0.99 002 13.67 0.81 0.77 0.02

2 1.44 1.02 798 2.84 2.64 2.07 094 004 1335 0.82 0.77 0.02

8 4 0.78  0.39 3.10 1.03 1.30 0.77 099 002 13.77 0.80 0.77 0.02

8 073 039  3.06 1.02 1.24  0.77 099 0.02 13.50 0.82 0.77 0.02

16 073 039  3.06 1.02 124 077 099 0.02 13.55 0.83 0.77 0.02
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In table|4]| we present results to compare the performance obtained for different ranks L, as well as
the optimization steps used to solve factorization. For all experiments, FactorizePhys is trained with
the UBFC-rPPG dataset |2] and the performance is presented for the PURE dataset [S5]. We can
observe that the best performance was achieved for rank L = 1 for the different steps used to solve
the factorization. For higher ranks, performance remains on par with that of the network without
the FSAM, indicating that for the rPPG estimation task, the rank-1 factorization offers the optimal
spatial-temporal attention. These results align with the expected single source of the underlying BVP
signals in different facial regions.

A.4 Statistical Significance of the Main Results

We performed repeated experiments with 10 different random seed values between 1 and 1000 to
compare the proposed FactorizePhys trained with FSAM with the best performing SOTA rPPG
method. For the cross-dataset generalization results reported in table EfficientPhys with SASN
[37] was found to perform the best among the existing SOTA methods.

Table 5: Performance Evaluation of Models on PURE Dataset, Trained with UBFC-rPPG Dataset,
using Different Random Seed Values

MAE (HR) | RMSE(HR)| MAPE (HR)] Corr (HR)1 SNR (dB,BVP){ MACC (BVP)1

Model Random Seed Value
Mean SE Mean SE  Mean SE  Mean SE Mean SE Mean SE

10 375 162 1297 3.53 5.69 2.52 0.84 0.07 8.60 0.99 0.65 0.02

38 446 174 14.09 3.59 7.18 2.88 0.81 0.08 8.69 1.01 0.66 0.02

55 4.67 179 1455 3.65 7.50 297 0.80 0.08 8.69 1.01 0.66 0.02

100 471 1.79  14.52 3.65 7.63 2.97 0.80 0.08 8.77 1.00 0.66 0.02

128 474 1.79 1452 3.65 7.68 297 0.80 0.08 8.84 0.99 0.66 0.02

EfficientPhys with
138 436 179 1441 3.65 7.01 297 0.80 0.08 8.81 0.99 0.66 0.02
SASN Attention Module

212 452 1.78 1442 3.65 7.37 2.96 0.80 0.08 8.64 0.99 0.66 0.02

308 470 179 1452 3.65 7.61 297 0.80 0.08 8.84 1.03 0.66 0.02

319 470 1.79 14.55 3.65 7.55 2.97 0.80 0.08 8.96 1.00 0.66 0.02

900 463  1.79 1451 3.65 7.48 297 0.80 0.08 8.65 0.99 0.66 0.02

Average 452 1.77 1431 3.63 7.27 2.92 0.81 0.08 8.75 1.00 0.66 0.02

10 1.38 098 7.64 2.71 2.52 1.98 095 0.04 13.40 0.82 0.75 0.02

38 431 1.86 1493 3.79 7.11 3.18 079 0.08 12.52 0.84 0.75 0.02

55 2,17 130 10.22 3.09 4.22 2.66 091 005 1371 0.83 0.77 0.02

100 048 0.17 1.39 0.35 072  0.28 1.00  0.01 14.16 0.83 0.78 0.02

128 0.78  0.39 3.08 1.03 1.31 0.77 0.99 0.02 13.23 0.81 0.76 0.02

Proposed FactorizePhys
138 052 0.19 1.56 0.40 072  0.27 1.00  0.01 13.03 0.80 0.76 0.02
with FSAM Attention Module

212 215 1.22 9.63 2.88 4.19 2.50 092 0.05 13.58 0.81 0.77 0.02

308 1.50 098 7.70 2.71 2.79 1.99 095 0.04 13.39 0.82 0.77 0.02

319 138  0.84 6.61 2.30 2.60 1.73 096 0.04 13.54 0.81 0.77 0.02

900 334 170 13.46 3.69 5.21 2.78 0.83 0.07 12.76 0.83 0.76 0.02

Average 1.80  0.96 7.62 2.30 3.14 1.81 093 0.04 1333 0.82 0.76 0.02

Paired T Test 0.0001 0.0014 0.0001 0.0004 0.0000 0.0000

For each random seed value, we trained the proposed FactorizePhys with FSAM and EfficientPhys
with SASN [37] on the UBFC-rPPG [2] dataset and evaluated them on the PURE dataset [55]. Paired
T tests for each reported evaluation metrics suggest that the performance gains achieved with the
proposed method are statistically significant compared against the best performing SOTA rPPG
method, highlighting its effectiveness and thereby highlighting contributions of this work in the
research field of end-to-end rPPG estimation from video frames.

A.5 Within Dataset Performance

In this work, we primarily focus on comparing rPPG methods for their cross-dataset generalization,
which offers more critical evaluation and reliable estimates of how models perform on unseen or
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out-of-distribution data. Within-dataset performance signifies an representation ability of model
to fit the data, derived from the same distribution, serving as an essential criteria. Therefore, for
completeness, in table@ we report within-dataset evaluation on iBVP [29], [55], and UBFC-rPPG
[2] datasets, where we observe at-par performance of FactorizePhys as compared with the SOTA
rPPG methods.

Table 6: Within Dataset Performance Evaluation

Model Attention  \/\p (HR)| RMSE(HR)| MAPE(HR)| Corr (HR)? SNR(dB,BVP)T MACC (BVP)1
Module
Performance Evaluation on iBVP Dataset, Subject-wise Split: Training (0.0 - 0.7), Test (0.7 - 1.0)
PhysNet - 1.18 £0.29 2.10 +0.51 1.64 +0.42 0.98 + 0.03 10.63 + 1.05 0.68 + 0.02
PhysFormer TD-MHSA* 1.96 + 0.63 4.22 +£1.47 249 +0.72 0.91 +0.07 10.72 + 1.04 0.66 + 0.03
EfficientPhys SASN 2.74 £0.96 6.28 +2.14 3.56+1.13 0.81 +0.10 7.01 £1.03 0.58 £0.03
EfficientPhys FSAM (Ours)  1.30+0.33 2.34 +0.60 1.75 + 0.46 0.98 + 0.04 7.83 £0.96 0.59 +0.02
FactorizePhys (Ours) FSAM (Ours)  1.13 +0.36 242+0.77 1.52 +0.50 0.97 +0.04 9.75 + 1.05 0.65 +0.02
Performance Evaluation on PURE Dataset, Subject-wise Split: Training (0.0 - 0.7), Test (0.7 - 1.0)
PhysNet - 0.59 £0.27 1.28 +0.46 0.92 +£0.44 1.00 + 0.02 19.66 + 1.18 0.90 + 0.01
PhysFormer TD-MHSA* 0.68 +0.26 1.31 £0.46 1.08 +£0.43 1.00 + 0.02 19.05 + 1.07 0.87 £0.01
EfficientPhys SASN 0.49 +0.26 1.21 + 0.46 0.73 + 0.42 1.00 +0.02 1525 +1.20 0.80 + 0.02
EfficientPhys FSAM (Ours) 0.59 £0.27 1.28 +0.46 0.92 +£0.44 1.00 + 0.02 1542 +1.25 0.80 +0.02
FactorizePhys (Ours) FSAM (Ours) 0.49 + 0.26 1.21 +0.46 0.73 £ 0.42 1.00 + 0.02 19.63 +1.40 0.86 +0.01
Performance Evaluation on UBFC-rPPG Dataset, Subject-wise Split: Training (0.0 - 0.7), Test (0.7 - 1.0)
PhysNet - 1.62 +0.73 3.08 +1.16 1.46 + 0.68 0.98 + 0.06 521197 0.90 + 0.01
PhysFormer TD-MHSA* 1.76 £0.79 3.36+1.30 1.60 +0.74 0.96 + 0.08 6.10 £ 1.86 0.90 +£0.01
EfficientPhys SASN 230+ 1.40 5.54+2.53 228+ 1.44 0.90 +0.13 6.75+1.76 0.87 £0.01
EfficientPhys FSAM (Ours) 291 +£1.42 5.88 +2.52 2.79 +1.45 0.88 +0.14 6.79 +1.82 0.87 £0.01
FactorizePhys (Ours) FSAM (Ours)  2.84 +1.42 5.87+2.52 273+ 1.46 0.88 +0.14 6.33£2.00 0.91 + 0.01

TD-MHSA*: Temporal Difference Multi-Head Self-Attention |77];

SASN: Self-Attention Shifted Network |37]; FSAM: Proposed Factorized Self-Attention Module

A.6 Scalability Assessment of FSAM

We further investigate FSAM for its scalability to higher spatial-temporal resolution. For this, we
perform within-dataset evaluation on the UBFC-rPPG dataset [2], which is pre-processed with the
regular input dimension of 160 x 72 x 72 as well as with a higher spatial and temporal dimension of
240 x 128 x 128. Repeatable experiments are conducted with 10 different random seeds between 1
and 1000 to compare the performance of FactorizePhys with FSAM for each spatial-temporal input
dimension.

Comparable performance, as observed in table for both spatial-temporal input dimensions, suggests
that FSAM can be easily deployed for different spatial-temporal scales. It should also be noted that the
higher spatial dimension of video frames (i.e., 128 x 128) does not produce improved performance,
indicating that the spatial dimension of 72 x 72 is sufficient to extract rPPG signals with end-to-end
methods.
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Table 7: Scalability Assessment of FSAM for Higher Spatial and Temporal Dimensions

Input Random MAE(HR)| RMSE(HR)| MAPE(HR), Corr(HR)T SNR(dB,BVP)T MACC (BVP)1
Di i Seed Value Mean SE  Mean SE Mean SE Mean SE  Mean SE Mean SE

10 284 143 587 252 273 145 088 0.4 649 2035 090 001

38 284 143 587 252 273 145 088 0.14 668 200 091 001

55 207 141 589 252 284 144 088 014 652 198 091 001

100 284 143 587 252 273 145 088 014 632 200 091 001

128 297 141 580 252 284 144 088 0.14 642 199 091 001

160x72x72 138 284 143 587 252 273 145 088 0.4 648 196 091 001

212 201 142 588 252 279 145 088 0.14 640 199 091 001

308 284 143 587 252 273 145 088 014 651 198 091 001

319 201 142 5838 252 279 145 088 0.14 644 203 091 001

900 201 142 588 252 279 145 088 0.4 655 200 091 001

Mean 289 142 588 252 277 145 088 0.4 648 200 091 001

10 304 192 756 364 322 218 083 017 668 193 090 001

38 201 193 754 364 310 219 084 016 686 193 090 001

55 297 192 754 364 316 213 084 016 663 191 091 001

100 291 193 754 364 310 219 084 016 687 191 090 00l

128 311 191 756 364 328 217 084 017 671 187 090 001

240x128x128 138 201 193 754 364 310 219 084 016 663 195 091 001

212 304 192 756 364 322 218 083 017 68l 193 090 001

308 201 193 754 364 310 219 084 016 671 192 090 001

319 304 192 756 364 322 218 083 017 683 193 091 001

900 304 192 756 364 322 218 083 017 669 191 090 001

Mean 200 192 755 364 317 218 084 017 674 192 09 001

A.7 Multimodal rPPG Extraction

As iBVP dataset offers synchronized RGB and thermal infrared video frames, we conducted a
brief experiment using FactorizePhys with FSAM to investigate whether combining both modalities
can result in performance gains for the estimation of rPPG. For this, we also individually trained
FactorizePhys on RGB and thermal frames keeping the identical data split of 70%-30%. Results

Table 8: Performance Evaluation on iBVP Dataset, Subject-wise Split: Train (70%), Test (30%)
Modality of MAE (HR) | RMSE (HR)| MAPE (HR), Corr (HR)1 SNR(dB,BVP)T MACC (BVP)?

Input Frames Mean SE  Mean SE Mean SE Mean SE Mean SE Mean SE
T 640 097 858 2.11 8.66 126 084 0.09 -327 0.40 020 0.01
RGB 1.13 036 242 0.77 152 050 097 004 975 1.05 0.65 0.02
RGBT 1.10 036 242 0.77 149 050 097 004 9.65 1.04 0.64 0.02

in table@suggest weaker presence of rPPG signal in thermal infrared frames, leading to poorer
performance when FactorizePhys is trained only on thermal frames, while not showing significant
performance gains when jointly trained with RGB and thermal frames.

A.8 Visual Overview of Cross-Dataset Generalization and Latency

Figureoffers a quick visual summary of the cross-dataset generalization performance on different
evaluation metrics, their respective standard error, and latency for the proposed and existing SOTA
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methods. The performance reported on Y-axis of each plot is cumulative cross-dataset performance
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Figure 5: Cross-dataset performance comparison between SOTA and the proposed method reported
with cumulative evaluation metrics, their standard error (SE) and latency

for respective models, averaged over different training and testing datasets. The proposed method
outperforms existing state-of-the-art methods in all evaluation metrics by a significant margin, while
achieving at-par latency.

A.9 Computational Cost and Latency

Table [9|compares model parameters, latency on GPU and CPU, and model size of the proposed
FactorizePhys with FSAM with that of the existing SOTA rPPG methods. Considering the identical
inference time performance of the base FactorizePhys, when trained using the proposed FSAM,
the proposed method uses an order of magnitude fewer parameters and achieves a par latency on
both CPU and GPU systems. Relatively higher latency compared to the EfficientPhys model,
despite the fewer model parameters, is due to the difference in the number of floating point operations
(FLOPS). FactorizePhys, being a 3D-CNN architecture, requires more FLOPS to compute 3D features
at each layer compared to the fewer FLOPS for EfficientPhys [37] which implements the 2D-CNN
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architecture. It should be noted that the FLOPS are also dependent on the input dimension, which
is kept consistent for all the models. For resource critical deployment, FLOPS can be significantly
reduced by decreasing the spatial dimension of input from 72 x 72 to 8 x 8 as found optimal for
RTrPPG [3] or to 9 x 9 as used in the small branch of the Bigsmall model [44] for rPPG estimation.

Table 9: Comparison of FactorizePhys based on Model Parameters, Latency and Model Size

Model Model Inference Time Inference Time Model
Parameters on CPU (ms)} on GPU (ms)f  Size (MB)

PhysFormer 7380871 450.47 26.86 29.80
PhysNet 768583 272.89 1.36 3.10
EfficientPhys with SASN 2163081 371.08 1.31 8.70
EfficientPhys with FSAM (ours) 140655 82.19 5.62 0.57
FactorizePhys Base (ours) 51840 96.80 1.94 0.22
FactorizePhys with FSAM (ours) 52168 95.75 8.97 0.22

+TCPU Specs: Intel® Core™ i7-10870H CPU @ 2.20GHz x 16 GB RAM.
+GPU Specs: NVIDIA GeForce RTX 3070 Laptop GPU (CUDA cores = 5120).

A.10 Visualization of Learned Attention

In fig.[6] we present additional samples of learned spatial-temporal features. For FactorizePhys
trained with FSAM, we can observe superior cosine similarity and more relevant spatial distribution
specifically under challenging scenarios with occlusions such as arising from hairs, eye-glasses and
beard.

A.11 Qualitative Comparison with Estimated rPPG Signals

Qualitative comparison of the estimated rPPG signals between the proposed method and the best
performing SOTA method (i.e., EfficientPhys [37] is presented for different test datasets - iBVP [29]
(ﬁg. , PURE [55] (ﬁg., and UBFC-rPPG [2] (ﬁg.@.

A.12 Safeguards

We intend to release our rPPG estimation code only for academic purposes, with Responsible Al
license (RAIL). Research areas that will benefit directly from this work include human-computer
interaction and contactless health tracking or vital signs monitoring. Although the methods presented
in this work may potentially benefit certain clinical scenarios, thorough validation studies, with
appropriate ethics approval, are required to critically assess performance in such settings.

In addition, in some recent work, rPPG methods have been indicated as effective in detecting deep-
fake videos. In this context, we would like to caution such a use, considering the main results
presented for the models trained using the SCAMPS [42] dataset, consisting of synthesized avatars.
We argue that the rPPG signal can be embedded in the synthesized (or deep-fake) videos, with a
similar approach as used for generating the SCAMPS [42] dataset. In such scenarios, in spite of
high accuracy in estimating rPPG signals, such methods can be fooled by the synthesized videos that
embed BVP signals. Therefore, we highlight that it is necessary to use the rPPG signal estimation
methods in this context with great caution.
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Figure 6: Visualization of Learned Spatial-Temporal Features
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Figure 7: Comparison of Estimated rPPG Signals on iBVP Dataset for Models Trained with PURE,
SCAMPS and UBFC-rPPG Datasets
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Figure 8: Comparison of Estimated rPPG Signals on PURE Dataset for Models Trained with iBVP,
SCAMPS and UBFC-rPPG Datasets
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Figure 9: Comparison of Estimated rPPG Signals on UBFC-rPPG Dataset for Models Trained with
iBVP, PURE and SCAMPS Datasets
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