
Approximately Equivariant Neural Processes

Matthew Ashman∗

University of Cambridge
mca39@cam.ac.uk

Cristiana Diaconu∗

University of Cambridge
cdd43@cam.ac.uk

Adrian Weller
University of Cambridge
The Alan Turing Institute

aw665@cam.ac.uk

Wessel Bruinsma
Microsoft Research AI for Science
wessel.p.bruinsma@gmail.com

Richard E. Turner
University of Cambridge

Microsoft Research AI for Science
The Alan Turing Institute

ret23@cam.ac.uk

Abstract

Equivariant deep learning architectures exploit symmetries in learning problems to
improve the sample efficiency of neural-network-based models and their ability to
generalise. However, when modelling real-world data, learning problems are often
not exactly equivariant, but only approximately. For example, when estimating the
global temperature field from weather station observations, local topographical
features like mountains break translation equivariance. In these scenarios, it is
desirable to construct architectures that can flexibly depart from exact equivariance
in a data-driven way. Current approaches to achieving this cannot usually be applied
out-of-the-box to any architecture and symmetry group. In this paper, we develop
a general approach to achieving this using existing equivariant architectures. Our
approach is agnostic to both the choice of symmetry group and model architecture,
making it widely applicable. We consider the use of approximately equivariant
architectures in neural processes (NPs), a popular family of meta-learning models.
We demonstrate the effectiveness of our approach on a number of synthetic and real-
world regression experiments, showing that approximately equivariant NP models
can outperform both their non-equivariant and strictly equivariant counterparts.

1 Introduction

The development of equivariant deep learning architectures has spearheaded many advancements in
machine learning, including CNNs [LeCun et al., 1989], group equivariant CNNs [Cohen and Welling,
2016a, Finzi et al., 2020], transformers [Vaswani et al., 2017], DeepSets [Zaheer et al., 2017], and
GNNs [Scarselli et al., 2008]. When appropriate, equivariances provide useful inductive biases that
can drastically improve sample complexity [Mei et al., 2021] and generalisation capabilities [Elesedy
and Zaidi, 2021, Bulusu et al., 2021, Petrache and Trivedi, 2023] by exploiting symmetries present in
the data. Yet, real-world data are seldom strictly equivariant. As an example, consider modelling daily
precipitation across space and time. Such data may be close to translation equivariant—and therefore
translation equivariance serves as a useful inductive bias—however, it is clear that it is not strictly
translation equivariant due to geographical and seasonal variations. More generally, whilst there are
aspects of modelling problems which are universal and exhibit symmetries such as equivariance (e.g.
atmospheric physics) there are often unknown local factors (e.g. precise local topography) which
break these symmetries and which the models do not have access to. It is thus desirable for the

∗Equal contribution.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

model to be able to depart from strict equivariance when necessary; that is, to develop approximately
equivariant models.

A family of models that have benefited greatly from the use of equivariant deep learning architectures
are neural processes [NPs; Garnelo et al., 2018a,b]. However, many of the problem domains that NPs
are applied to exhibit only approximate equivariance. It is therefore desirable to build approximately
equivariant NPs through the use of approximately equivariant deep learning architectures. Whilst
there exist several approaches to constructing approximately equivariant architectures, they are limited
to CNN- and MLP-based models [Wang et al., 2022a, van der Ouderaa et al., 2022, Finzi et al., 2021,
Romero and Lohit, 2022]—which restricts their applicability to certain symmetry groups—and often
require modifications to the loss function used to train the models [Finzi et al., 2021, Kim et al.,
2023a]. As there exist NPs that utilise a variety of architectures, such as transformers and GNNs
[Carr and Wingate, 2019, Nguyen and Grover, 2022, Kim et al., 2019, Feng et al., 2022], these
approaches are not sufficient. We address this shortcoming through the development of an approach
to constructing approximately equivariant models that is both architecture and symmetry-group
agnostic. Importantly, our approach can be realised without modifying the core architecture of
existing equivariant models, enabling use in a variety of equivariant NPs such as the convolutional
conditional NP [ConvCNP; Gordon et al., 2019], the equivariant CNP [EquivCNP; Kawano et al.,
2021], the steerable CNP [SteerCNP; Holderrieth et al., 2021], the translation equivariant transformer
NP [TE-TNP; Ashman et al., 2024], and the relational CNP [RCNP; Huang et al., 2023].

We outline our core contributions as follows:

1. We demonstrate that under certain technical conditions, such as Hölder regularity and compactness,
any non-equivariant mapping between function spaces can be approximated by an equivariant
mapping with fixed additional inputs (Theorems 2 and 3). This provides insight into how to con-
struct approximately equivariant models, and generalises several existing approaches to relaxing
equivariant constraints.

2. We apply this result and the insights it provides to construct approximately equivariant versions
of several popular equivariant NPs. The modifications required are very simple, yet effective:
we demonstrate improved performance relative to both strictly equivariant and non-equivariant
models on a number of spatio-temporal regression tasks.

2 Background

We consider the supervised learning setting, where X , Y denote the input and output spaces, and
(x,y) ∈ X × Y denotes an input-output pair. Let S =

⋃∞
N=0(X × Y)N be a collection of all finite

data sets, which includes the empty set ∅. Let SM = (X × Y)
M be the collection of M input-output

pairs and S≤M =
⋃M

m=1 Sm be the collection of at most M pairs. We denote a context and target set
with Dc, Dt ∈ S, where |Dc| = Nc, |Dt| = Nt. Let Xc ∈ (X)Nc , Yc ∈ (Y)Nc be the inputs and
corresponding outputs of Dc, and let Xt ∈ (X)Nt , Yt ∈ (Y)Nt be defined analogously. We denote a
single task as ξ = (Dc,Dt) = ((Xc,Yc), (Xt,Yt)). Let P(X) denote the collection of Y-valued
stochastic processes on X . Let Θ denote the parameter space for some family of probability densities,
e.g. means and variances for the space of all Gaussian densities.

2.1 Neural Processes

NPs [Garnelo et al., 2018a,b] can be viewed as neural-network-based parametrisations of prediction
maps π : S → P(X) from data sets S to predictions P(X), where predictions are represented
by Y-valued stochastic processes on X [Foong et al., 2020, Bruinsma, 2022]. Throughout, we
denote the density of the finite-dimensional distribution of π(D) at inputs X by p(· | X,D).
In this work, we restrict our attention to conditional NPs [CNPs; Garnelo et al., 2018a], which
only target marginal predictive distributions by assuming that the predictive densities factorise:
p(Y|X,D) =

∏
n p(yn|xn,D). We denote all parameters of a CNP by ω. CNPs are trained in a

meta-learning fashion, in which the expected predictive log-probability is maximised:

ωML = argmaxω LML(ω) where LML(ω) = Ep(ξ)

[∑Nt

n=1 log pω(yt,n|xt,n,Dc)
]
. (1)

Here, the expectation is taken with respect to the distribution over tasks p(ξ). In practice, we only
have access to a finite number of tasks for training, so the expectation is approximated with an average

2

over tasks. The global maximum is achieved if and only if the model recovers the ground-truth
marginals [Proposition 3.26 by Bruinsma, 2022].

2.2 Group Equivariance

We consider equivariance with respect to transformations in some group G. For example, G can
be the group of translations or the group of rotations. Mathematically, a group G is a set endowed
with a binary operation G×G→ G (denoted as multiplication) such that (i) (fg)h = f(gh) for all
f, g, h ∈ G; (ii) there exists an identity element e ∈ G such that eg = ge = g for all g ∈ G; and
(iii) every element g ∈ G has an inverse g−1 ∈ G. A G-space is a space X for which there exists a
function G×X → X called a group action (again denoted by multiplication) such that (i) ex = x for
all x ∈ X; and (ii) f(gx) = (fg)x for all f, g ∈ G and x ∈ X . The notion of group equivariance is
used to describe mappings for which, when the input to the mapping is transformed by some g ∈ G,
the output of the mapping is transformed equivalently. This is formalised in the following definition.
Definition 1 (G-equivariance). LetX and Y beG-spaces. Call a mapping ρ : X → Y G-equivariant
if ρ(gx) = gρ(x) for all g ∈ G and x ∈ X .

2.3 Group-Equivariant Conditional Neural Processes

The property of G-equivariance is particularly useful in NPs when modelling ground-truth stochastic
processes that exhibit G-stationarity:
Definition 2 (G-stationary stochastic process). Let X be a G-space. We say that a stochastic process
P ∈ P(X) is G-stationary if, for f ∼ P and all g ∈ G, f(·) is equal in distribution to f(g ·).

Let P ∈ P(X) be a ground-truth stochastic process. For a dataset D ∈ S, define πP (D) by
integrating P against some density π′

P (D), such that dπP (D) = π′
P (D) dP . π′

P (D) is the Radon-
Nikodym derivative of the posterior stochastic process with respect to the prior; intuitively, π′

P (D)(f)
is proportional to the likelihood, π′

P (D)(f) = p(D | f)/p(D), so it determines how the data is
observed (e.g. under which noise?). Assume that π′

P (∅) ∝ 1 so that πP (∅) = P . We say that π′
P is

G-invariant if π′
P (gD) ◦ g = π′

P (D).
Proposition 1 (G-stationarity and G-equivariance). The ground-truth stochastic process P is G-
stationary and π′

P is G-invariant if, and only if, πP is G-equivariant.

Proof. This is Thm 2.1 by Ashman et al. [2024] with translations replaced by applications of
g ∈ G.

Thus, for data generated from a stochastic process that is approximately G-stationary, incorporating
G-equivariance into NP approximations of the corresponding prediction map can serve as a useful
inductive bias that can help generalisation and improve parameter efficiency. Intuitively, requiring
a NP to be equivariant effectively ties parameters together, which significantly reduces the search
space during optimisation, enabling better solutions to be found with fewer data. The improved
generalisation capabilities ofG-equivariant models is formalised by Elesedy and Zaidi [2021], Bulusu
et al. [2021], Petrache and Trivedi [2023].

For a CNP, assume that every marginal p(· |x,D) is in some fixed parametric family with parameters
θ(x;D) ∈ Θ. For example, θ could consist of the mean and variance for a Gaussian distribution.
Let C(X ,Θ) denote the set of continuous functions X → Θ. For a CNP, define the associated
parameter map Φ: S → C(X ,Θ) by Φ(D)(x) = θ(x;D). Intuitively, the parameter map Φ maps a
dataset D to a function Φ(D) giving the parameters Φ(D)(x) for every input x. Assume that X is a
G-space. We turn S and C(X ,Θ) into G-spaces by applying g to the inputs: gD ∈ S consists of the
input–output pairs (gxn,yn), and gθ(x;D) ∈ C(X ,Θ) is defined by gθ(x;D) = θ(g−1x;D).
Definition 3 (G-equivariant CNP). A CNP is G-equivariant if the associated parameter map Φ is
G-equivariant: Φ(gD) = gΦ(D) for all datasets D.

To parametrise a G-equivariant CNP, we must parametrise the associated parameter map Φ. Here we
present a general construction by Kawano et al. [2021].
Theorem 1 (Representation of G-equivariant CNPs, Theorem 2 by Kawano et al. [2021]). Let
Y ⊆ RD be compact. Consider an appropriate collection S ′

≤M ⊆ S≤M . Then a function Φ: S ′
≤M →

3

C(X ,Θ) is continuous, permutation-invariant, and G-equivariant if and only if it is of the form

Φ(D) = ρ(fenc(D)) where fenc((x1,y1), . . . , (xm,ym)) =
∑m

i=1 ϕ(yi)ψ(· ,xi) (2)

for some continuous ϕ : Y → R2D, an appropriate G-invariant positive-definite kernel ψ : X 2 → R
(i.e. ψ(xn,xm) = ψ(gxn, gxm) for all g ∈ G), and some continuous and G-equivariant ρ : H →
C(X ,Θ) with H an appropriate G-invariant space of functions (i.e. closed under g ∈ G).

Theorem 1 naturally gives rise to architectures which can be deconstructed into two components: an
encoder and a decoder. The encoder, fenc : S → Z , maps datasets to some embedding space Z . The
decoder, ρ : Z → C(X ,Θ), takes this representation and maps to a function that gives the parameters
of the CNP’s predictive distributions: p(y|x,D) = p(y|ρ(fenc(D))(x)) where ρ(fenc(D))(x) ∈ Θ.
For simplicity, we often view the decoder as a function Z × X → Θ and more simply write
ρ(fenc(D),x). In Theorem 1, both the encoder fenc and decoder ρ are G-equivariant. Many neural
process architectures are of this form, including the ConvCNP [Gordon et al., 2019], the EquivCNP
[Kawano et al., 2021], the RCNP [Huang et al., 2023], and the TE-TNP [Ashman et al., 2024].2 We
discuss the specifics of each of these architectures in Appendix B.

3 Equivariant Decomposition of Non-Equivariant Functions

In this section, we demonstrate that, subject to regularity conditions, any non-equivariant operator
between function spaces can be constructed as, or approximated by, an equivariant mapping with
additional, fixed functions as input. These results motivate a simple construction for approximately
equivariant models, which we use to construct approximately equivariant NPs in Section 3.1. We first
illustrate the proof technique by proving the result for linear operators (Theorem 2) and then extend
the result to nonlinear operators (Theorem 3).

Setup. Let (H, ⟨ · , · ⟩) be a Hilbert space of functions X → R. Let G be a group acting linearly
on H from the left. For every g ∈ G and f ∈ H, applying g to f gives another function: gf ∈ H.
By linearity, for f1, f2 ∈ H, g(f1 + f2) = gf1 + gf2. Assume that H is separable and that H is
G-invariant, meaning that, for all f1, f2 ∈ H and g ∈ G, ⟨gf1, gf2⟩ = ⟨f1, f2⟩. If H = L2(X) and
X is a separable metric space, then H is also separable [Brezis, 2011, Theorem 4.13]. Let B be the
collection of bounded linear operators on H. We say that an operator T ∈ B is of finite rank if the
dimensionality of the range of T is finite. Moreover, we say that an operator T ∈ B is compact if the
image of every bounded set is relatively compact. Let (ei)i≥1 be an orthonormal basis for H. Define
Pn =

∑n
i=1 ei⟨ei, · ⟩. The following proposition is well known:

Proposition 2 (Finite-rank approximation of compact operators; e.g., Corollary 6.2 by Brezis [2011].).
Let T ∈ B. Then T is compact if and only if there exists a sequence of operators of finite rank
(Tn)n≥1 ⊆ B such that ∥T − Tn∥ → 0. In particular, one may take Tn = PnT , so T is a compact
operator if and only if ∥T − PnT∥ → 0.

Intuitively, compactness of an operator implies that its inputs and outputs can be well approximated
with a finite-dimensional basis. The following new result shows that every compact T ∈ B can be
approximated with a G-equivariant function with additional fixed inputs: T ≈ En(·, t1, . . . , t2n)
where En is G-equivariant and t1, . . . , t2n are the additional fixed inputs.
Theorem 2 (Approximation of non-equivariant linear operators.). Let T ∈ B. Assume that T is
compact. Then there exists a sequence of continuous nonlinear operators En : H1+2n → H, n ≥ 1,
and a sequence of functions (tn)n≥1 ⊆ H such that every En is G-equivariant,

En(gf1, gf2, . . . , gf2n+1) = gEn(f1, f2, . . . , f2n+1) for all g ∈ G and f1, . . . , f2n+1 ∈ H, (3)

and ∥T − En(· , t1, . . . , t2n)∥ → 0.

Proof. Observe that PnTf =
∑n

i=1 ei⟨T ∗ei, f⟩ =
∑n

i=1 ei⟨τi, f⟩, with τi = T ∗ei ∈ H. Define the
continuous nonlinear operators En : H1+2n → H as En(f, τ1, e1, . . . , τn, en) =

∑n
i=1 ei⟨τi, f⟩. By

G-invariance of H, these operators are G-equivariant:

En(gf, gτ1, ge1, . . .) =
∑n

i=1 gei⟨gτi, gf⟩ = g
∑n

i=1 ei⟨τi, f⟩ = gEn(f, τ1, e1, . . .). (4)

2We note that the form of the embedded dataset fenc(D) differs slightly in the RCP and TE-TNP. However,
in both cases the form in Equation 2 can be recovered as special cases. We discuss this more in Appendix B.

4

Since T is compact, ∥T − PnT∥ → 0 (Proposition 2), so ∥T −En(· , τ1, . . . , τn, e1, . . . , en)∥ → 0,
which proves the result.

As an example, consider G to be the group of translations such that En is translation equivariant.
Translation-equivariant mappings between function spaces can be approximated with a CNN [Kuma-
gai and Sannai, 2020]. Therefore, Theorem 2 gives that T ≈ CNN(· , t1, . . . , tk) where t1, . . . , tk
are additional fixed inputs that are given as additional channels to the CNN and can be treated as
model parameters to be optimised. These additional inputs in the CNN break translation equivariance,
because they are not translated whenever the original input is translated. The number k of such inputs
roughly determines to what extent equivariance is broken: the larger k, the more non-equivariant
the approximation becomes. This example holds true for any CNN architecture provided it can
approximate any translation-equivariant operator.

Theorem 2 is not exactly what we set out to achieve: we wish to construct approximately equivariant
mappings, not use equivariant mappings to approximate non-equivariant models. However, instead
of applying Theorem 2 directly to T , consider the decomposition T = Tequiv + Tnon-equiv where
Tequiv is in some sense the best “equivariant approximation” of T and Tnon-equiv is the residual. Then,
if we approximate Tnon-equiv with Enon-equiv using Theorem 2, and approximate Tequiv with some
G-equivariant mapping Eequiv directly, we have T ≈ Eequiv +Enon-equiv(· , t1, . . . , tk). If k = 0, this
approximation roughly recovers Eequiv, the best equivariant approximation of T ; and, if k is increased,
the equivariance starts to break and the approximation starts to wholly approximate T . Specifically, in
Theorem 2, k = 2n determines the dimensionality of the range of the approximation En. Therefore, a
small k means that that one would deviate from Tequiv in only a few degrees of freedom. The idea that
k can be used to control the degree to which our approximation is G-equivariant inspires our training
procedure in Section 3.1, where, with some probability, we set the additional inputs to zero. This
forces the model to learn the ‘best equivariant approximation’, so that the number of additional fixed
inputs has the desired influence of controlling only the flexibility of the non-equivariant component.

We now extend the result to any continuous, possibly nonlinear operator T : H → H. For T ∈ B,
it is true that T is compact if and only if ∥T − PnTPn∥ → 0 (Proposition 3 in Appendix A). In
generalising Theorem 2 to nonlinear operators, we shall use this equivalent condition. Roughly
speaking, ∥T − PnTPn∥ → 0 says that both the domain and range of T admit a finite-dimensional
approximation, and the proof then proceeds by discretising these finite-dimensional approximations.
Theorem 3 (Approximation of non-equivariant operators.). Let T : H → H be a continuous, possibly
nonlinear operator. Assume that ∥T − PnTPn∥ → 0, and that T is (c, α)-Hölder for c, α > 0, in
the following sense:

∥T (u)− T (v)∥ ≤ c∥u− v∥α for all u, v ∈ H. (5)

Moreover, assume that the orthonormal basis (ei)i≥1 is chosen such that, for every n ∈ N and
g ∈ G, span {e1, . . . , en} = span {ge1, . . . , gen}, meaning that subspaces spanned by finitely many
basis elements are invariant under the group action (∗). Let M > 0. Then there exists a sequence
(kn)n≥1 ⊆ N, a sequence of continuous nonlinear operators En : H1+kn → H, n ≥ 1, and a
sequence of functions (tn)n≥1 ⊆ H such that every En is G-equivariant,

En(gf1, . . . , gf1+kn
) = gEn(f1, . . . , f1+kn

) for all g ∈ G and f1, . . . , f1+kn
∈ H, (6)

and
sup

u∈H:∥u∥≤M

∥T (u)− En(u, t1, . . . , tkn
)∥ → 0. (7)

If assumption (∗) does not hold, then the conclusion holds with En(· , t1, . . . , tkn
) replaced by

En(Pn · , t1, . . . , tkn
). We provide a proof in Appendix A.

Condition (∗) says that the orthonormal basis (ei)i≥1 must be chosen in a way such that applying
the group action does not “introduce higher basis elements”. Note that only one such basis needs to
exist for the result to hold. An important example where this condition holds is H = L2(S1) where
S1 = R/Z is the one-dimensional torus ([0, 1] with endpoints identified); G the one-dimensional
translation group; and (ei)i≥1 the Fourier basis: ek(x) = ei2πkx. Then ek(x− τ) = ei2πkτek(x) ∝
ek(x), so span {ek(· − τ)} = span {ek}. This example shows that the result holds for translation
equivariance, which is the symmetry that we will primarily consider in the experiments. Importantly,
Theorem 3 requires ∥T − PnTPn∥ → 0 to hold. For this example, this condition roughly means that
the dependence of T on high-frequency basis elements goes to zero as the frequency increases.

5

In Theorem 3, the sequence (kn)n≥1 determines how many additional fixed inputs are required to
obtain a good approximation. For linear T (Theorem 2), kn grows linearly in n. In the nonlinear case,
kn may grow faster than linear in n, so more basis functions may be required. We leave it to future
work to more accurately identify how the growth of kn in n depends on T . A promising idea is to
consider ∥Tgf − gTf∥ as a measure of how equivariant a mapping is [Wang et al., 2022a].

3.1 Approximately Equivariant Neural Processes

Theorem 3 provides a general construction of non-equivariant functions from equivariant functions,
lending insight into how approximately equivariant neural processes can be constructed. Consider a
G-equivariant CNP withG-equivariant encoder fenc and decoder ρ. The construction that we consider
in this paper is to insert additional fixed inputs into the decoder ρ:

p(Y|X,D) =
∏

n p(yn|xn,D) =
∏

n p(yn|xn, ρ(fenc(D), t1, . . . , tB)) (8)

where the decoder ρ : H1+B → C(X ,Θ) now takes in the dataset embedding fenc(D) as well as
B additional fixed inputs (tb)Bb=1 ⊆ H. These become additional model parameters and break G-
equivariance of the decoder. The more are included, the more non-equivariant the decoder becomes.
Crucially, Theorem 3 shows that including sufficiently many additional inputs eventually recovers
any non-equivariant decoder. Conversely, by only including a few of them, the decoder deviates from
G-equivariance in only a few degrees of freedom. Hence, the number B of additional fixed inputs
determines to which extent the decoder can become non-equivariant.

There are a myriad of ways in which (tb)
B
b=1 can be incorporated into existing architectures for

ρ. If ρ is a CNN or a G-equivariant CNN, the additional inputs become additional channels,
which can be either concatenated or added to the dataset embedding. We use the latter approach
in our implementation. For more general ρ, such as that used in the TE-TNP, we can employ
effective alternative choices, as discussed in Appendix B. Theorem 3 also intimately connects to
positional embeddings in transformer-based LLMs [Vaswani et al., 2017] and vision transformers
[ViT; Dosovitskiy et al., 2021]. These architectures consist of stacked multi-head self-attention
(MHSA) layers, which are permutation equivariant with respect to the input tokens. However, after
tokenising individual words or pixel values into tokens, the underlying transformer which processes
these tokens should not be equivariant with respect to the permutations of words or pixels, as their
position is important to the overall structure. Following Theorem 3, we can add word- or pixel-
position-specific inputs to break this equivariance. This corresponds exactly to the usual positional
embeddings that are regularly used. This connection between breaking equivariance and positional
encodings was also noted by Lim et al. [2023], where they interpret several popular positional
encodings as group representations that can help incorporate approximate equivariance.

Recovering equivariance out-of-distribution. We stress that equivariance is crucial for models to
generalise beyond the training distribution—this is the ‘shared’ component that is inherent to the
system we are modelling. Whilst the non-equivariant component is able to learn local symmetry-
breaking features that are revealed with sufficient data, these features do not reveal themselves outside
the training domain. To obtain optimal generalisation performance, we desire that the model ignores
the non-equivariant component outside of the training domain and instead reverts to equivariant
predictions. We achieve this in the following way: (i) During training, set tb = 0 entirely with
some fixed probability. This allows the model to learn and produce predictions for the equivariant
component of the underlying system wherever the fixed additional inputs are zero. (ii) Forcefully
set the additional fixed inputs to zero outside the training domain: tb(x) = 0 for x not close to any
training data.3 This forces the model to revert to equivariant predictions outside the training domain,
which should substantially improve the model’s ability to generalise.

Our approach to recovering equivariance out-of-distribution also connects to Wang et al.’s (2022b)
notion of ϵ-approximate equivariance. Let πAE-NP be the learned neural process, and let πE-NP be the
neural process obtained by setting tb = 0 in πAE-NP. If the predictions of πAE-NP are not too different
from those of πE-NP, because the fixed additional inputs only affect the predictions in a limited way,
then πAE-NP is ϵ-approximately equivariant in the sense of Wang et al. [2022b]. See Appendix D.

3For example, the rectangle covering the maximum longitude and latitude of geographical locations seen
during training of an environmental model.

6

4 Related Work

Group equivariance and equivariant neural processes. Group equivariant deep learning architec-
tures are ubiquitous in machine learning, including CNNs [LeCun et al., 1989], group equivariant
CNNs [Cohen and Welling, 2016a], transformers [Vaswani et al., 2017, Lee et al., 2019] and GNNs
[Scarselli et al., 2008]. This is testament to the usefulness of incorporating inductive biases into
models, with a significant body of research demonstrating improved sample complexity and generali-
sation capabilities [Mei et al., 2021, Elesedy and Zaidi, 2021, Bulusu et al., 2021, Zhu et al., 2021].
There exist a number of NP models which realise these benefits. Notably, the ConvCNP [Gordon
et al., 2019], RCNP [Huang et al., 2023], and TE-TNP [Ashman et al., 2024] all build translation
equivariance into NPs through different architecture choices. More general equivariances have been
considered by both the EquivCNP [Kawano et al., 2021] and SteerCNPs [Holderrieth et al., 2021],
both of which consider architectures similar to the ConvCNP.

Approximate group equivariance. Two methods similar to ours are those of Wang et al. [2022a]
and van der Ouderaa et al. [2022], who develop approximately equivariant architectures for group
equivariant and steerable CNNs [Cohen and Welling, 2016a,b]. We demonstrate in Appendix C that
both approaches are specific examples of our more general approach. Finzi et al. [2021] and Kim et al.
[2023a] obtain approximate equivariance through a modification to the loss function such that the
equivariant subspace of linear layers is favoured. These methods are less flexible than our approach,
which can be applied to any equivariant architecture. Romero and Lohit [2022] only enforce strict
equivariance for specific elements of the symmetry group considered. Their approach hinges on the
ability to construct and sample from probability distributions over elements of the groups, which both
restricts their applicability and complicates their implementation. An orthogonal approach to imbuing
models with approximate equivariance is through data augmentation. Data augmentation is trivial
to implement; however, previous work [Wang et al., 2022b] has demonstrated that both equivariant
and approximately equivariant models achieve better generalisation bounds than data augmentation.
Kim et al. [2023b] propose a similar approach to data augmentation, replacing a uniform average
over group transformations with an expectation over an input-dependent probability distribution.
Implementation of this distribution is involved, and must be hand-crafted for each symmetry group.

5 Experiments

In this section, we evaluate the performance of a number of approximately equivariant NPs derived
from existing strictly equivariant NPs in modelling both synthetic and real-world data. We provide
detailed descriptions of the architectures and datasets used in Appendix E.4 Throughout, we postfix
to the name of each model the group it is equivariant with respect to, with the postfix G̃ denoting
approximate equivariance with respect to group G. We shall also omit reference to the dimension
when denoting a symmetry group (e.g. T (n) becomes T). In all experiments, we compare the
performance of three TNP-based models [Ashman et al., 2024]: non-equivariant, T , and T̃ ; three
ConvCNP-based models [Gordon et al., 2019]: T , T̃ using the approach described in Section 3.1,
and T̃ using the relaxed CNN approach of Wang et al. [2022a]; and two EquivCNP-based models
[Kawano et al., 2021]: E and Ẽ. For experiments involving a large number of datapoints, we replace
the TNP-based models with pseudo-token TNP-based models [PT-TNP; Ashman et al. 2024].

5.1 Synthetic 1-D Regression With the Gibbs Kernel

We begin with a synthetic 1-D regression task with datasets drawn from a Gaussian process (GP)
with the Gibbs kernel [Gibbs, 1998]. The Gibbs kernel similar to the squared exponential kernel,
except the lengthscale ℓ(x) is a function of position x. The non-stationarity of the kernel implies that
the predictive map is not translation equivariant, hence we expect an improvement of approximately
equivariant NPs with respect to their equivariant counterparts. We construct each dataset by first
sampling a change point, either side of which the GP lengthscale is either small (ℓ(x) = 0.1) or large
(ℓ(x) = 4.0). The range from which the context and target points are sampled is itself randomly
sampled, so that the change point is not always present in the data. We sample Nc ∼ U{1, 64} and
the number of target points is set as Nt = 128. See Appendix E for a complete description.

4An implementation of our models can be found at cambridge-mlg/aenp.

7

https://github.com/cambridge-mlg/tetnp/tree/aenp

Table 1: Average test log-likelihoods (↑) for the synthetic 1-D GP and 2-D smoke experiments. For
the 1-D dataset we used the regular TNP, while for the 2-D experiment we used the PT-TNP. Results
are grouped together by model class. Best in-class result is bolded.

1-D GP 2-D Smoke

Model ID Log-lik. (↑) OOD Log-lik. (↑) Log-lik. (↑)

TNP −0.406± 0.004 −1.3734± 0.002 4.299± 0.008
TNP (T) −0.500± 0.004 −0.430± 0.007 4.181± 0.011
TNP (T̃) −0.406± 0.004 −0.424± 0.007 4.715± 0.010

ConvCNP (T) −0.499± 0.004 −0.442± 0.006 3.637± 0.041
ConvCNP (T̃) −0.430± 0.004 −0.412± 0.006 3.827± 0.011

RelaxedConvCNP (T̃) −0.419± 0.004 −0.405± 0.007 4.006± 0.010

EquivCNP (E) −0.504± 0.004 −0.443± 0.007 4.194± 0.015
EquivCNP (Ẽ) −0.435± 0.004 −0.413± 0.007 4.233± 0.012

(a) TNP. (b) ConvCNP (T). (c) EquivCNP (E). (d) TNP (T).

(e) ConvCNP (T̃). (f) RelaxedConvCNP (T̃). (g) EquivCNP (Ẽ). (h) TNP (T̃).

Figure 1: A comparison between the predictive distributions on a single synthetic 1-D regression
dataset of the TNP-, ConvCNP-, and EquivCNP-based models. For the approximately equivariant
models, we plot both the model’s predictive distribution (blue), as well as the predictive distributions
obtained without using the fixed inputs (red). The dotted black lines indicate the target range.

We evaluate the log-likelihood on both the in-distribution (ID) training domain and on an out-of-
distribution (OOD) setting in which the test domain is far away from the change point. Table 1
presents the results. We observe that the approximate equivariant models are able to: 1) recover the
performance of the non-equivariant TNP within the non-equivariant ID regime; and 2) generalise
as well as the equivariant models when tested OOD. We provide an illustrative comparison of the
predictive distributions for each model in Figure 1. More examples can be found in Appendix E.
When transitioning from the low-lengthscale to the high-lengthscale region, the equivariant predictive
distributions behave as though they are in the low-lengthscale region. This is due to the ambiguity as
to whether the high-lengthscale region has been entered. In contrast, the approximately equivariant
models are able to learn that a change point always exists at x = 0, resolving this ambiguity.

We show in Appendix E.1 that the approximately equivariant models deviate only slightly from strict
equivariance, thus being equivariant in the approximate sense as we describe in Section 3.1. We also
analyse the performance of the models with increasing number of basis functions in Appendix E.1.
The biggest improvement is obtained when going from 0 to 1 basis function, highlighting the
importance of relaxing strict equivariance. We generally find that a few basis functions suffice to
capture the symmetry-breaking features, but using more fixed inputs than necessary does not hurt
performance, thus justifying in practice the use of a ‘sufficiently high number’ of fixed inputs.

5.2 Smoke Plumes

There are inherent connections between symmetries and dynamical systems, yet it is also true that
real world dynamics rarely exhibit perfect symmetry. Motivated by this, we investigate the utility of

8

approximate equivariance in the context of modelling symmetrically-imperfect simulations generated
from partial differential equations. We consider a setup similar to Wang et al. [2022a]—we construct
a dataset of 128× 128 2-D smoke simulations, computing the air flow in a closed box with a smoke
source. Besides the closed boundary, we also introduce a fixed spherical obstacle through which
smoke cannot pass, and we sample the position of the spherical smoke inflow out of three possible
locations. These three components break the symmetry of the system. We consider 25,000 different
initial conditions generated through PhiFlow [Holl et al., 2020]. We use 22,500 for training and
the remaining for testing. We randomly sample the smoke sphere radius r ∼ U{5, 30} and the
buoyancy coefficient B ∼ U[0.1,0.5]. For each initial condition, we run the simulation for a fixed
number of steps and only keep the last state. We sub-sample a 32 × 32 patch from each state to
construct a dataset. We sample the number of context points according to Nc ∼ U{10, 250} and
set the remaining datapoints as target points. Table 1 compares the average test log-likelihood of
the models. As in the 1-D regression experiment, the approximately equivariant versions of each
model outperform both the non-equivariant and equivariant versions, demonstrating the effectiveness
of our approach in modelling complex symmetry-breaking features. We provide illustrations of the
predictive means for each model in Appendix Figure 6.

5.3 Environmental Data

As remarked in Section 1, aspects of modelling climate systems adhere to symmetries such as
equivariance. However, there are also unknown local effects which may be revealed by sufficient data.
We explore this empirically by considering a real-world dataset derived from ERA5 [Copernicus
Climate Change Service, 2020], consisting of surface air temperatures for the years 2018 and
2019. Measurements are collected at a latitudinal and longitudinal resolution of 0.5◦, and temporal
resolution of an hour. We also have access to the surface elevation at each coordinate, resulting
in a 4-D input (xn ∈ R4). We consider measurements collected from Europe and from central
US.5. We train each model on Europe’s 2018 data, and test on both Europe’s and central US’ 2019
data. Because the CNN-based architectures have insufficient support for 4-D convolutions, we first
consider a 2-D experiment in which the inputs consist of longitudes and latitudes, followed by a 4-D
experiment consisting of all four inputs upon which the transformer-based architectures are evaluated.

2-D Spatial Regression. We sample datasets spanning 16◦ across each axis. Each dataset consists of
a maximum ofN = 1024 datapoints, from which the number of context points are sampled according
to Nc ∼ U{⌊N/100⌋, ⌊N/3⌋}. The remaining datapoints are set as target points. Table 2 presents
the average test log-likelihood on the two regions for each model. We observe that approximately
equivariant models outperform their equivariant counterparts when tested on the same geographical
region as the training data. As the central US data falls outside the geographical region of the
training data, we zero-out the fixed inputs, so that the predictions for the approximately equivariant
models depend solely on their equivariant component. Surprisingly, they also outperform their
equivariant counterparts. This suggests that incorporating approximate equivariance acts to regularise
the equivariant component of the model, improving generalisation in finite-data settings such as this.
In Figure 2, we compare the predictions of the PT-TNP and EquivCNP-based models for a single
test dataset with the ground-truth data and the equivariant predictions made by the same models with
the fixed inputs zeroed out. The predictive means of both models are almost indistinguishable from
ground-truth. We can gain valuable insight into the effectiveness of our approach by comparing a plot
of the difference between the approximately equivariant and the equivariant predictions (Figures 2f
and 2i) to that of the elevation map for this region (Figure 2c). As elevation is not provided as an input,
yet is crucial in predicting surface air temperature, the approximately equivariant models can infer the
effect of local topographical features on air temperature through their non-equivariant component. As
with the 1-D GP experiment, we analyse the degree of approximate equivariance and the performance
with an increasing number of fixed inputs in Appendix E.3, drawing similar conclusions.

4-D Spatio-Temporal Regression. In this experiment, we sample datasets across 4 days with
measurements every day and spanning 8◦ across each axis. Each dataset consists of a maximum
of N = 1024 datapoints, from which the number of context points are sampled according to
Nc ∼ U{⌊N/100⌋, ⌊N/3⌋}. The remaining datapoints are set as target points. We provide results
in Table 2. Similar to the 2-D experiment, we observe that the approximately equivariant PT-TNP
outperforms both the equivariant PT-TNP and non-equivariant PT-TNP on both testing regions.

5A longitude / latitude range of [35◦, 60◦] / [10◦, 45◦] and [−120◦, −80◦] / [30◦, 50◦], respectively.

9

Table 2: Average test log-likelihoods (↑) for the 2-D and 4-D environmental regression experiment.
Results are grouped together by model class. Best in-class result is bolded.

2-D Regression 4-D Regression

Model Europe (↑) US (↑) Europe (↑) US (↑)

PT-TNP 1.14± 0.01 < −106 0.94± 0.01 < −1026
PT-TNP (T) 1.06± 0.01 0.55± 0.01 1.14± 0.01 0.73± 0.01
PT-TNP (T̃) 1.22± 0.01 0.55± 0.01 1.21± 0.01 0.76± 0.01

ConvCNP (T) 1.11± 0.01 0.12± 0.02 - -
ConvCNP (T̃) 1.18± 0.01 0.15± 0.02 - -

RelaxedConvCNP (T̃) 1.20± 0.01 0.22± 0.02 - -

EquivCNP (E) 1.27± 0.01 0.64± 0.02 - -
EquivCNP (Ẽ) 1.36± 0.01 0.69± 0.01 - -

(a) Context. (b) Ground-truth. (c) Elevation.

(d) PT-TNP: T . (e) PT-TNP: T̃ . (f) PT-TNP: T̃ − T .

(g) EquivCNP: E. (h) EquivCNP: Ẽ. (i) EquivCNP: Ẽ − E.

Figure 2: A comparison between the predictive distributions of the equivariant (left column) and
approximately equivariant (middle column) components of the PT-TNP (T̃) and EquivCNP (Ẽ)
models on a single (cropped) test dataset from the 2-D environmental data experiment.

6 Conclusion

The contributions of this paper are two-fold. First, we develop novel theoretical results that provide
insights into the general construction of approximately equivariant operators which is agnostic to
the choice of symmetry group and choice of model architecture. Second, we use these insights to
construct approximately equivariant NPs, demonstrating their improved performance relative to non-
equivariant and strictly equivariant counterparts on a number of synthetic and real-world regression
problems. We consider this work to be an important step towards understanding and developing
approximately equivariant models. However, more must be done to rigorously quantify and control
the degree to which these models depart from strict equivariance. Further, we only considered simple
approaches to incorporating approximate equivariance into equivariant architectures, and provided
empirical results for relatively small-scale experiments. We look forward to addressing each of these
limitations in future work.

10

Acknowledgements

CD is supported by the Cambridge Trust Scholarship. AW acknowledges support from a Turing AI
fellowship under grant EP/V025279/1 and the Leverhulme Trust via CFI. RET is supported by The
Alan Turing Institute, Google, Amazon, ARM, Improbable, EPSRC grant EP/T005386/1, and the
EPSRC Probabilistic AI Hub (ProbAI, EP/Y028783/1).

11

References
Matthew Ashman, Cristiana Diaconu, Junhyuck Kim, Lakee Sivaraya, Stratis Markou, James Re-

queima, Wessel P Bruinsma, and Richard E Turner. Translation-equivariant transformer neural
processes. In International conference on machine learning. PMLR, 2024.

Haim Brezis. Functional analysis, Sobolev spaces and partial differential equations, volume 2.
Springer, 2011.

Wessel P. Bruinsma. Convolutional Conditional Neural Processes. PhD thesis, Department of
Engineering, University of Cambridge, 2022. URL https://www.repository.cam.ac.uk/
handle/1810/354383.

Srinath Bulusu, Matteo Favoni, Andreas Ipp, David I Müller, and Daniel Schuh. Generalization
capabilities of translationally equivariant neural networks. Physical Review D, 104(7):074504,
2021.

Andrew Carr and David Wingate. Graph neural processes: Towards Bayesian graph neural networks.
arXiv preprint arXiv:1902.10042, 2019.

Taco Cohen and Max Welling. Group equivariant convolutional networks. In International conference
on machine learning, pages 2990–2999. PMLR, 2016a.

Taco S Cohen and Max Welling. Steerable cnns. arXiv preprint arXiv:1612.08498, 2016b.

Copernicus Climate Change Service. Near surface meteorological variables from 1979 to 2019
derived from bias-corrected reanalysis, 2020. URL https://cds.climate.copernicus.eu/
cdsapp#!/home.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=YicbFdNTTy.

Bryn Elesedy and Sheheryar Zaidi. Provably strict generalisation benefit for equivariant models. In
International conference on machine learning, pages 2959–2969. PMLR, 2021.

Leo Feng, Hossein Hajimirsadeghi, Yoshua Bengio, and Mohamed Osama Ahmed. Latent bottle-
necked attentive neural processes. arXiv preprint arXiv:2211.08458, 2022.

Marc Finzi, Samuel Stanton, Pavel Izmailov, and Andrew Gordon Wilson. Generalizing convolutional
neural networks for equivariance to lie groups on arbitrary continuous data. In International
Conference on Machine Learning, pages 3165–3176. PMLR, 2020.

Marc Finzi, Gregory Benton, and Andrew G Wilson. Residual pathway priors for soft equivariance
constraints. Advances in Neural Information Processing Systems, 34:30037–30049, 2021.

Andrew Foong, Wessel Bruinsma, Jonathan Gordon, Yann Dubois, James Requeima, and Richard
Turner. Meta-learning stationary stochastic process prediction with convolutional neural processes.
Advances in Neural Information Processing Systems, 33:8284–8295, 2020.

Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho, David Saxton, Murray
Shanahan, Yee Whye Teh, Danilo Rezende, and SM Ali Eslami. Conditional neural processes. In
International conference on machine learning, pages 1704–1713. PMLR, 2018a.

Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J Rezende, SM Eslami, and
Yee Whye Teh. Neural processes. arXiv preprint arXiv:1807.01622, 2018b.

Mark N Gibbs. Bayesian Gaussian processes for regression and classification. PhD thesis, Citeseer,
1998.

Jonathan Gordon, Wessel P Bruinsma, Andrew YK Foong, James Requeima, Yann Dubois, and
Richard E Turner. Convolutional conditional neural processes. arXiv preprint arXiv:1910.13556,
2019.

12

https://www.repository.cam.ac.uk/handle/1810/354383
https://www.repository.cam.ac.uk/handle/1810/354383
https://cds.climate.copernicus.eu/cdsapp#!/home
https://cds.climate.copernicus.eu/cdsapp#!/home
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy

Peter Holderrieth, Michael J Hutchinson, and Yee Whye Teh. Equivariant learning of stochastic
fields: Gaussian processes and steerable conditional neural processes. In International Conference
on Machine Learning, pages 4297–4307. PMLR, 2021.

Philipp Holl, Nils Thuerey, and Vladlen Koltun. Learning to control pdes with differentiable physics.
In International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=HyeSin4FPB.

Daolang Huang, Manuel Haussmann, Ulpu Remes, ST John, Grégoire Clarté, Kevin Sebastian Luck,
Samuel Kaski, and Luigi Acerbi. Practical equivariances via relational conditional neural processes.
arXiv preprint arXiv:2306.10915, 2023.

Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao Carreira.
Perceiver: General perception with iterative attention. In International conference on machine
learning, pages 4651–4664. PMLR, 2021.

Makoto Kawano, Wataru Kumagai, Akiyoshi Sannai, Yusuke Iwasawa, and Yutaka Matsuo. Group
equivariant conditional neural processes. arXiv preprint arXiv:2102.08759, 2021.

Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, Ali Eslami, Dan Rosenbaum, Oriol
Vinyals, and Yee Whye Teh. Attentive neural processes. arXiv preprint arXiv:1901.05761, 2019.

Hyunsu Kim, Hyungi Lee, Hongseok Yang, and Juho Lee. Regularizing towards soft equivariance
under mixed symmetries. In International Conference on Machine Learning, pages 16712–16727.
PMLR, 2023a.

Jinwoo Kim, Dat Nguyen, Ayhan Suleymanzade, Hyeokjun An, and Seunghoon Hong. Learning prob-
abilistic symmetrization for architecture agnostic equivariance. Advances in Neural Information
Processing Systems, 36:18582–18612, 2023b.

Wataru Kumagai and Akiyoshi Sannai. Universal approximation theorem for equivariant maps by
group CNNs. arXiv preprint arXiv:2012.13882, 2020.

Yann LeCun, Bernhard Boser, John Denker, Donnie Henderson, Richard Howard, Wayne Hubbard,
and Lawrence Jackel. Handwritten digit recognition with a back-propagation network. Advances
in neural information processing systems, 2, 1989.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set trans-
former: A framework for attention-based permutation-invariant neural networks. In International
conference on machine learning, pages 3744–3753. PMLR, 2019.

Derek Lim, Hannah Lawrence, Ningyuan Teresa Huang, and Erik Henning Thiede. Positional
encodings as group representations: A unified framework. 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Learning with invariances in random
features and kernel models. In Conference on Learning Theory, pages 3351–3418. PMLR, 2021.

Tung Nguyen and Aditya Grover. Transformer neural processes: Uncertainty-aware meta learning
via sequence modeling. arXiv preprint arXiv:2207.04179, 2022.

Mircea Petrache and Shubhendu Trivedi. Approximation-generalization trade-offs under (approxi-
mate) group equivariance. Advances in Neural Information Processing Systems, 36:61936–61959,
2023.

David W Romero and Suhas Lohit. Learning partial equivariances from data. Advances in Neural
Information Processing Systems, 35:36466–36478, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI
2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III
18, pages 234–241. Springer, 2015.

13

https://openreview.net/forum?id=HyeSin4FPB
https://openreview.net/forum?id=HyeSin4FPB

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

Tycho van der Ouderaa, David W Romero, and Mark van der Wilk. Relaxing equivariance constraints
with non-stationary continuous filters. Advances in Neural Information Processing Systems, 35:
33818–33830, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Rui Wang, Robin Walters, and Rose Yu. Approximately equivariant networks for imperfectly
symmetric dynamics. In International Conference on Machine Learning, pages 23078–23091.
PMLR, 2022a.

Rui Wang, Robin Walters, and Rose Yu. Data augmentation vs. equivariant networks: A theory of
generalization on dynamics forecasting. arXiv preprint arXiv:2206.09450, 2022b.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. Advances in neural information processing systems, 30, 2017.

Sicheng Zhu, Bang An, and Furong Huang. Understanding the generalization benefit of model
invariance from a data perspective. Advances in Neural Information Processing Systems, 34:
4328–4341, 2021.

14

A Proof of Theorem 3

Proposition 3. Let T ∈ B. Then T is compact if and only if ∥T − PnTPn∥ → 0.

Proof. Assume that ∥T − PnTPn∥ → 0. Then T is the limit of a sequence of finite-rank operators,
so T is compact (Proposition 2).

On the other hand, assume that T is compact. Then ∥T −PnT∥ → 0 (Proposition 2). Use the triangle
inequality to bound

∥T − PnTPn∥ = ∥T − PnT + PnT − PnTPn∥ ≤ ∥T − PnT∥+ ∥Pn∥∥T − TPn∥. (9)

We already know that ∥T −PnT∥ → 0, and it is true that ∥Pn∥ = 1. Finally, since T is compact, the
adjoint T ∗ is also compact. Hence, again by Proposition 2,

∥T ∗ − PnT
∗∥ = ∥(T − TPn)

∗∥ = ∥T − TPn∥ → 0, (10)

which proves that ∥T − PnTPn∥ → 0.

Theorem 3 (Approximation of non-equivariant operators.). Let T : H → H be a continuous, possibly
nonlinear operator. Assume that ∥T − PnTPn∥ → 0, and that T is (c, α)-Hölder for c, α > 0, in
the following sense:

∥T (u)− T (v)∥ ≤ c∥u− v∥α for all u, v ∈ H. (5)

Moreover, assume that the orthonormal basis (ei)i≥1 is chosen such that, for every n ∈ N and
g ∈ G, span {e1, . . . , en} = span {ge1, . . . , gen}, meaning that subspaces spanned by finitely many
basis elements are invariant under the group action (∗). Let M > 0. Then there exists a sequence
(kn)n≥1 ⊆ N, a sequence of continuous nonlinear operators En : H1+kn → H, n ≥ 1, and a
sequence of functions (tn)n≥1 ⊆ H such that every En is G-equivariant,

En(gf1, . . . , gf1+kn
) = gEn(f1, . . . , f1+kn

) for all g ∈ G and f1, . . . , f1+kn
∈ H, (6)

and
sup

u∈H:∥u∥≤M

∥T (u)− En(u, t1, . . . , tkn)∥ → 0. (7)

If assumption (∗) does not hold, then the conclusion holds with En(· , t1, . . . , tkn
) replaced by

En(Pn · , t1, . . . , tkn
). We provide a proof in Appendix A.

Proof. Let ε > 0. Choose n ∈ N such that ∥T − PnTPn∥ < 1
2ε, and choose h > 0 such that

chα = 1
2ε. Set hn = h/

√
2n. Consider the following collection of vectors:

A = {jhne1 : j = 0,±1, . . . ,±⌈M/hn⌉} × · · · × {jhnen : j = 0,±1, . . . ,±⌈M/hn⌉}. (11)

By construction of A, for every u ∈ H such that ∥u∥ ≤ M , there exists an a ∈ A such that
∥Pnu− a∥2 ≤ nh2n = 1

2h
2 < h2.

Let k̃ : R → [0,∞) be a continuous function with support equal to (−h, h). Set k : H×H → [0,∞),
k(u, v) = k̃(∥u− v∥). Consider the following map:

E : H×H2|A| → H, E(u, a1, t1, . . . , a|A|, t|A|) =

∑|A|
i=1 k(u, ai)ti∑|A|
i=1 k(u, ai)

(12)

where 0/0 is defined as 0. This map E is continuous: the numerator is a continuous H-valued
function, and the denominator is continuous R-valued function which is non-zero wherever the
numerator is non-zero. Moreover, by G-invariance of H, k is G-invariant, so E is G-equivariant:

E(gu, ga1, gt1, . . .) =

∑|A|
i=1 k(gu, gai)gti∑|A|
i=1 k(gu, gai)

= g

∑|A|
i=1 k(u, ai)ti∑|A|
i=1 k(u, ai)

= gE(u, a1, t1, . . .). (13)

15

Now set ti = (PnTPn)(ai). Consider some u ∈ H such that ∥u∥ ≤ M . By construction of A,∑|A|
i=1 k(Pnu, ai) > 0. Therefore, by (c, α)-Hölder continuity of T ,

∥(PnTPn)(u)− E(Pnu, a1, t1, . . .)∥

=

∥∥∥∥∥
∑|A|

i=1 k(Pnu, ai)(PnTPn)(u)∑|A|
i=1 k(Pnu, ai)

−
∑|A|

i=1 k(Pnu, ai)(PnTPn)(ai)∑|A|
i=1 k(Pnu, ai)

∥∥∥∥∥ (14)

=

∥∥∥∥∥
∑|A|

i=1 k(Pnu, ai)((PnTPn)(u)− (PnTPn)(ai))∑|A|
i=1 k(Pnu, ai)

∥∥∥∥∥ (15)

(i)
≤
∑|A|

i=1 k(Pnu, ai)∥(PnTPn)(u)− (PnTPn)(ai)∥∑|A|
i=1 k(Pnu, ai)

(16)

(ii)
≤
∑|A|

i=1 k(Pnu, ai)c∥Pnu− ai∥α∑|A|
i=1 k(Pnu, ai)

(iii)
≤ chα = 1

2ε (17)

where (i) uses the triangle inequality; (ii) (PnTPn)(u) = (PnTPn)(Pnu) and (c, α)-Hölder conti-
nuity of PnTPn; and (iii) that ∥Pnu− ai∥ ≥ h implies that k(Pnu, ai) = 0.

Therefore, for all u ∈ H such that ∥u∥ ≤M ,

∥T (u)− E(Pnu, . . .)∥ ≤ ∥T (u)− (PnTPn)(u)∥+ ∥(PnTPn)(u)− E(Pnu, . . .)∥ ≤ ε. (18)

Finally, if condition (∗) holds, then Pn isG-equivariant, which we show now. Let u ∈ H and consider
g ∈ G. Since span {e1, . . . , en} = span {ge1, . . . , gen} and ge1, . . . , gen forms an orthonormal
basis for span, {e1, . . . , en}, we can also write Pn =

∑
i=1 gei⟨gei, · ⟩, so

Pn(gu) =

n∑
i=1

gei⟨gei, gu⟩ = g

n∑
i=1

ei⟨ei, u⟩ = g(Pnu). (19)

Therefore, in the case that condition (∗) holds, Pn can be absorbed into the definition of En.

From the proof, we find that kn = 2|A| = 2(1 + 2⌈
√
2nM/h⌉)n ≤ 2(2 + 2

√
2nM/h)n and

chα = 1
2ε, which implies that h = (ε/2c)1/α, so kn ≤ 2(2 + 2

√
2nM(ε/2c)−1/α)n. This growth

estimate is faster than exponential. Like the linear case shows (Theorem 2), better estimates may be
obtained with constructions of E that better exploit structure of T .

B Equivariant Neural Processes

In this section, we outline the equivariant NP models we use throughout our experiments, and how
their approximately equivariant counterparts can easily be constructed using the results from Section 3.
In all cases, the asymptotic space and time complexity remains unchanged.

B.1 Convolutional Conditional Neural Process

The ConvCNP [Gordon et al., 2019] is a translation equivariant NP and is constructed in exactly
the form shown in Equation 2, with ψ : X 2 → R an RBF kernel with learnable lengthscale and
ϕ(yi) = [yT

i ;1]
T . The functional embedding is discretised and passed pointwise through an MLP

to some final functional representation ẽ(D) : X̃ → RDz , where X̃ denotes the discretised input
domain. ρ implemented as a CNN through which ẽ(D) is passed through together with another RBF
kernel ψp which maps back to a continuous function space. We provide pseudo-code for a forward
pass through the ConvCNP in Algorithm 1.

16

Algorithm 1: Forward pass through the Con-
vCNP (T) for off-the-grid data.
Input: ρ = (CNN, ψp), ψ, and density γ.

Context
Dc = (Xc,Yc) = {(xc,n,yc,n)}Nc

n=1,
and target Xt = {xt,m}Nt

m=1

begin
lower, upper← range (Xt ∪Xc);
{x̃i}Ti=1 ← grid(lower, upper, γ);
hi ←

∑Nc
n=1[1,y

T
c,n]

Tψ(x̃i − xc,n);
h
(1)
i ← h

(1)
i /h

(0)
i ;

hi ← MLP(hi);
{f(x̃i)}Ti=1 ← CNN

(
{x̃i,hi}Ti=1

)
;

θm ←
∑T

i=1 f(x̃i)ψp(xt,m − x̃i);
return p(·|θm);

end

Algorithm 2: Forward pass through the Con-
vCNP (T̃) for off-the-grid data.
Input: ρ = (CNN, ψp), ψ, density γ, and fixed

input t. Context
Dc = (Xc,Yc) = {(xc,n,yc,n)}Nc

n=1,
and target Xt = {xt,m}Nt

m=1

begin
lower, upper← range (Xt ∪Xc);
{x̃i}Ti=1 ← grid(lower, upper, γ);
hi ←

∑Nc
n=1[1,y

T
c,n]

Tψ(x̃i − xc,n);
h
(1)
i ← h

(1)
i /h

(0)
i ;

hi ← MLP(hi) + t(x̃i);
{f(x̃i)}Ti=1 ← CNN

(
{x̃i,hi}Ti=1

)
;

θm ←
∑T

i=1 f(x̃i)ψp(xt,m − x̃i);
return p(·|θm);

end

To achieve approximate translation equivariance, we construct a learnable function t : X̃ → RDz

using an MLP which represents the fixed inputs. We sum these together with the resized functional
embedding, resulting in the overall implementation ρ(e(D), t1, . . . , tB) = CNN(ẽ(D) + t). Note
that the number of fixed inputs is B = Dz . We provide pseudo-code for a forward pass through the
approximately translation equivariant ConvCNP in Algorithm 2.

B.2 Equivariant Conditional Neural Process

The EquivCNP [Kawano et al., 2021] is a generalisation of the ConvCNP to more general group
equivariances. As with the ConvCNP, it is constructed in the form shown in Equation 2. We achieveE-
equivariance with ψ : X 2 → R an RBF kernel with learnable lengthscale and ϕ(yi) = [yT

i ; 1]
T . The

functional embedding is discretised and passed pointwise through an MLP to some final functional
representation ẽ(D) : X̃ → RDz , where X̃ denotes the discretised input domain. ρ is implemented
as a group equivariant CNN [Cohen and Welling, 2016a] together with another RBF kernel ψp

which maps back to a continuous function space. The approximately E-equivariant EquivCNP is
constructed in an analogous manner to the approximately translation equivariant ConvCNP.

B.3 Translation Equivariant Transformer Neural Process

The TE-TNP [Ashman et al., 2024] is a translation equivariant NP. However, unlike the ConvCNP,
the function embedding representation differs slightly to that in Equation 2, and is given by

e(D)(·) : X → RDz = cat

(
{

N∑
i=1

αh(z0, ϕ(yi), ·,xi)ϕ(yi)
TWV,h}Hh=1

)
W0 (20)

where

αh(z0, ϕ(yi), ·,xi) =
eµ(z

T
0 WQ,h[WK,h]

Tϕ(yi),·−xi)∑N
j=1 e

µ(zT
0 WQ,h[WK,h]

Tϕ(yj),·−xj)
. (21)

Here, µ is implemented using an MLP. This is a partially evaluated translation equivariant multi-head
cross-attention (TE-MHCA) operation, with attention weights computed according to Equation 21.
We refer to ϕ(yi) as the initial token embedding for yi. ρ is implemented using translation equivariant
multi-head self-attention (TE-MHSA) operations which update the token representations. These are
combined with TE-MHCA operations which map the token representations to a continuous function
space. We provide pseudo-code for a forward pass through the TE-TNP in Algorithm 3.

17

Algorithm 3: Forward pass through the TE-
TNP (T).
Input: ρ = {TE-MHSA(ℓ),TE-MHSA(ℓ)}Lℓ=1,

ϕ. Context
Dc = (Xc,Yc) = {(xc,n,yc,n)}Nc

n=1,
and target Xt = {xt,m}Nt

m=1

begin
zc,n ← ϕ(yc,n);
zt,m ← z0;
for ℓ = 1, . . . , L do

zt,m ←
TE-MHCA(ℓ) (zt,m,Zc,xt,m,Xc);
{zc,n}Nc

n=1 ← TE-MHSA(ℓ) (Zc,Xc);
end
θm ← MLP(zt,m);
return p(·|θm);

end

Algorithm 4: Forward pass through the TE-
TNP (T̃).
Input: ρ = {TE-MHSA(ℓ),TE-MHSA(ℓ)}Lℓ=1,

ϕ, fixed input t. Context
Dc = (Xc,Yc) = {(xc,n,yc,n)}Nc

n=1,
and target Xt = {xt,m}Nt

m=1

begin
zc,n ← ϕ(yc,n) + t(xc,n);
zt,m ← z0;
for ℓ = 1, . . . , L do

zt,m ←
TE-MHCA(ℓ) (zt,m,Zc,xt,m,Xc);
{zc,n}Nc

n=1 ← TE-MHSA(ℓ) (Zc,Xc);
end
θm ← MLP(zt,m);
return p(·|θm);

end

Unlike the ConvCNP and EquivCNP, we do not discretise the input domain of the functional
representation. It is not clear how one would sum together a fixed input and the functional embedding
without requiring infinite summations over the entire input domain. Thus, we take an alternative
approach in which the initial token representations for context set are modified by summing together
with the fixed input value at the corresponding location. This modification still conforms to the form
given in Equation 8, and is simple to implement. We provide pseudo-code for a forward pass through
the approximately translation equivariant TE-TNP in Algorithm 4.

B.4 Pseudo-Token Translation Equivariant Transformer Neural Process

The pseudo-token TE-TNP (PT-TE-TNP) is an alternative to the TE-TNP which avoids the O(N2)
computational cost of regular transformers through the use of pseudo-tokens [Feng et al., 2022,
Ashman et al., 2024, Lee et al., 2019]. The functional embedding representation for the PT-TE-TNP
is given by

e(D)(·) : X → RDz = cat

(
{

M∑
m=1

αh(z0,um, ·,xi)u
T
mWV,h}Hh=1

)
W0 (22)

where

um = cat

(
{

N∑
i=1

αh(um,0, ϕ(yi),vm,xi)ϕ(yi)
TWV,h}Hh=1

)
W0 (23)

and

vm = vm,0 +
1

N

N∑
i=1

xi. (24)

The attention mechanism used in the PT-TE-TNP is the same as in the TE-TNP, and is given in
Equation 21. Intuitively, the initial token embeddings for the dataset D are ‘summarised’ by the
pseudo-tokens {um}Mm=1 and pseudo-token input locations {vm}Mm=1. ρ is implemented using a
series of TE-MHSA and TE-MHCA operations which update the pseudo-tokens and form a mapping
from pseudo-tokens to a continuous function space. We provide pseudo-code for a forward pass
through the PT-TE-TNP in Algorithm 5. Note that this assumes that the perceiver-style approach
is taken [Jaegle et al., 2021], as in the latent bottlenecked attentive NP of Feng et al. [2022]. The
induced set transformer approach of Lee et al. [2019] can also be used.

18

Algorithm 5: Forward pass through the PT-
TE-TNP (T).
Input: ρ =

{TE-MHSA(ℓ),TE-MHCA
(ℓ)
1 ,TE-MHCA

(ℓ)
2 }Lℓ=1,

ϕ, V = {vm,0}Mj=1, U = {uj,0}Mm=1, z0.
Context
Dc = (Xc,Yc) = {(xc,n,yc,n)}Nc

n=1,
and target Xt = {xt,m}Nt

m=1

begin
zc,n ← ϕ(yc,n);
vm ← vm,0 + 1/N

∑Nc
i=1 xc,i;

uj ← uj,0;
zt,m ← z0;
for ℓ = 1, . . . , L do

uj ← TE-MHCA
(ℓ)
1 (uj ,Zc,vj ,Xc);

{uj}Mj=1 ← TE-MHSA(ℓ) (U,V);
zt,m ←
TE-MHCA

(ℓ)
2 (zt,m,U, zt,m,V);

end
θm ← MLP(zt,m);
return p(·|θm);

end

Algorithm 6: Forward pass through the PT-
TE-TNP (T̃).
Input: ρ =

{TE-MHSA(ℓ),TE-MHCA
(ℓ)
1 ,TE-MHCA

(ℓ)
2 }Lℓ=1,

ϕ, V = {vm,0}Mj=1, U = {uj,0}Mm=1, z0.
Context
Dc = (Xc,Yc) = {(xc,n,yc,n)}Nc

n=1,
and target Xt = {xt,m}Nt

m=1

begin
zc,n ← ϕ(yc,n);
vm ← vm,0 + 1/N

∑Nc
i=1 xc,i;

uj ← uj,0 + t(vm);
zt,m ← z0;
for ℓ = 1, . . . , L do

uj ← TE-MHCA
(ℓ)
1 (uj ,Zc,vj ,Xc);

{uj}Mj=1 ← TE-MHSA(ℓ) (U,V);
zt,m ←
TE-MHCA

(ℓ)
2 (zt,m,U, zt,m,V);

end
θm ← MLP(zt,m);
return p(·|θm);

end

We incorporate the fixed inputs by modifying summing together the initial pseudo-token values with
the fixed inputs evaluated at the corresponding pseudo-token input location. We provide pseudo-code
for a forward pass through the approximately translation equivariant PT-TE-TNP in Algorithm 6.

B.5 Relaxed Convolutional Conditional Neural Process

The RelaxedConvCNP is equivalent to the ConvCNP with the RelaxedCNN of Wang et al. [2022a]
used in place of a standard CNN. The RelaxedCNN replaces standard convolutions with relaxed
convolutions, which we discuss in more detail in Appendix C. In short, the relaxed convolution is
defined as

(k ∗̃ f)(u) =
∫
G

L∑
l=1

f(v)wl(v)kl(u
−1v)dµ(v). (25)

This modifies the kernel weights kl(u−1v) with the input-dependent function wl(v), which is our
fixed input. To enable the fixed inputs to be zeroed out, we modify this slightly as

(k ∗̃ f)(u) =
∫
G

L∑
l=1

f(v)(1 + tl(v))kl(u
−1v)dµ(v) (26)

so that when tl(v) = 0 we recover the standardG-equivariant convolution. We make tl(v) a learnable
function parameterised by an MLP, as with the other approaches.

C Unification of Existing Approximately Equivariant Architectures

In this section, we demonstrate that the input-dependent kernel approaches of Wang et al. [2022a]
and van der Ouderaa et al. [2022] are special cases of our approach. Throughout this section, we
consider scalar-valued functions. We define the action of g ∈ G on f : G→ R as

(g · f)(u) = f(g−1u). (27)

We begin with the approach of Wang et al. [2022a], which defines the relaxed group convolution as

(k ∗̃ f)(u) =
∫
G

L∑
l=1

f(v)wl(v)kl(u
−1v)dµ(v) (28)

19

where µ(v) is the left Haar measure on G. Observe that this replaces a single kernel with a set of
kernels {kl}Ll=1, whose contributions are linearly combined with coefficients that vary with v ∈ G.
This can be expressed as

(k ∗̃ f)(u) =
L∑

l=1

∫
G

f(v)wl(v)kl(u
−1v)dµ(v)︸ ︷︷ ︸

El(f,wl)(u)

=

L∑
l=1

El(f, wl) = E(f, w1, . . . , wL)(u) (29)

where wl correspond to the fixed inputs and E is used to denote equivariant operators w.r.t. the group
G. Clearly each El is G-equivariant with respect to its inputs, as applying a transformation g ∈ G to
the inputs gives

El(g · f, g · wl)(u) =

∫
G

f(g−1v)wl(g
−1v)kl(u

−1v)dµ(v)

=

∫
G

f(v)wl(v)kl(u
−1gv)dµ(v)

=

∫
G

f(v)wl(v)kl((g
−1u)−1v)dµ(v)

= g · El(f, wl)(u).

(30)

Since the sum of G-equivariant functions is itself G-equivariant, E(f, w1, . . . , wL)(u) is G-
equivariant with respect to its inputs.

The approach of van der Ouderaa et al. [2022] is more general than that of Wang et al. [2022a], and
relax strict equivariance through convolutions with input-dependent kernels:

(k ∗̃ f)(u) =
∫
G

k(v−1u, v)f(v)dµ(v). (31)

Define a fixed input t(u) = u. We can express the above convolution as a G-equivariant operation on
t and f :

E(f, t)(u) =

∫
G

k(v−1u, t(v))f(v)dµ(v). (32)

To demonstrate G-equivariance, consider applying a transformation g ∈ G to the inputs:

E(g · f, g · t)(u) =
∫
G

k(v−1u, t(g−1v))f(g−1v)dµ(v)

=

∫
G

k(v−1g−1u, t(v))f(v)dµ(v)

=

∫
G

k(v−1(g−1u), t(v))f(v)dµ(v)

= g · E(f, t)(u).

(33)

Thus, this method is also a special case of ours.

D Achieving ϵ-Approximate G-Equivariance

Wang et al. [2022b] introduce a useful metric for assessing the degree to which mappings are
approximately equivariant. Specifically, let π : X → Y denote some mapping between G-spaces X
and Y . Let d : Y × Y → R be a metric on Y . We say π is ϵ-approximately G-equivariant if for all
g ∈ G and x ∈ X

d
(
π(gx), gπ(x)

)
≤ ϵ. (34)

Let πAE-NP : S → C(X ,Θ) be a learned neural process that breaks equivariance with fixed additional
inputs (tb)Bb=1, and let πE-NP : S → C(X ,Θ) be the strictly equivariant neural process obtained by
setting tb = 0 in πAE-NP. If the predictions of πAE-NP are not too different from those of πE-NP, because
the fixed additional inputs only affect the predictions in a limited way, then in this appendix we argue
that πAE-NP is ϵ-approximately equivariant.

20

To assume that predictions of πAE-NP are not too different from those of πE-NP, assume that there
exists some metric d and ϵ > 0 such that, for all D, d(πAE-NP(D), πE-NP(D)) ≤ ϵ. For example,
the metric can be the root-mean-squared-error (RMSE) between the mean functions x 7→ E[f(x)]
of two stochastic processes by integrating over the input domain X . In practice, we will find
that d(πAE-NP(D), πE-NP(D)) ≤ ϵ holds for D over the training domain. If we assume that
πAE-NP has a finite receptive field—in the sense that the output stochastic process has only lo-
cal dependencies—then, provided we zero out the additional fixed inputs as described in Section 3.1,
d(πAE-NP(D), πE-NP(D)) ≤ ϵ will hold over the entire input domain.

Finally, to show that πAE-NP is ϵ-approximately equivariant, we use the triangle inequality:

d
(
gπAE-NP(D), πAE-NP(gD)

)
≤ d
(
gπAE-NP(D), gπE-NP(D)

)
≤ϵ

+ d
(
gπE-NP(D), πE-NP(gD)

)
=0

+ d
(
πE-NP(gD), πAE-NP(gD)

)
≤ϵ

(35)

≤ 2ϵ, (36)

where d
(
gπE-NP(D), πE-NP(gD)

)
= 0 because πE-NP is strictly equivariant.

E Experiment Details and Additional Results

E.1 Synthetic 1-D Regression

We consider a synthetic 1-D regression task using samples drawn from Gaussian processes (GPs)
with the Gibbs kernel with an observation noise of 0.2. This kernel is a non-stationary generalisation
of the squared exponential kernel, where the lengthscale parameter becomes a function of position
l(x):

k(x, x′; l) =

√√√√(2l(x)l(x′)

l(x)2 + l(x′)2

)
exp

(
− (x− x′)2

l(x)2 + l(x′)2

)
We consider a 1-D space with two regions with constant, but different lengthscale - one with l = 0.1,
and one with l = 4.0. The lengthscale changepoint is situated at x = 0. We randomly sample
with a 0.5 probability the orientation (left/right) of the low/high lengthscale region. Formally,
l(x) = (0.1β + 4(1− β))δ[x < 0] + (0.1(1− β) + 4β)δ[x ≥ 0], where β ∼ Bern(0.5). For each
task, we sample the number of context points Nc ∼ U{1, 64} and set the number of target points to
Nt = 128. The context range [xc,min,xc,max] (from which the context points are uniformly sampled)
is an interval of length 4, with its centre randomly sampled according to U[−7,7] for the ID task, and
according to U[13,27] for the OOD task. The target range is [xt,min,xt,max] = [xc,min − 1,xc,max + 1].
This is also applicable during testing, with the test dataset consisting of 80,000 datasets.

We use an embedding / token size of Dz = 128 for the TNP-based models and Dz = 64 for the
ConvCNP-based ones, and a decoder consisting of an MLP with two hidden layers of dimension
Dz . The decoder parameterises the mean and pre-softplus variance of a Gaussian likelihood with
heterogeneous noise. Model specific architectures are as follows:

TNP The initial context tokens are obtained by passing the concatenation [x, y, 1] through an MLP
with two hidden layers of dimension Dz . The initial target tokens are obtained by passing the
concatenation [x, 0, 0] through the same MLP. The final dimension of the input acts as a ‘density’
channel to indicate whether or not an observation is present. The TNP encoder consists of nine
layers of self-attention and cross-attention blocks, each with H = 8 attention heads with dimensions
DV = DQK = 16. In each of the attention blocks, we apply a residual connection consisting of
layer-normalisation to the input tokens followed by the attention mechanism. Following this, there is
another residual connection consisting of a layer-normalisation followed by a pointwise MLP with
two hidden layers of dimension Dz .

TNP (T) For the TNP (T) model we follow Ashman et al. [2024]. The architecture is similar to the
TNP model, with the attention blocks replaced with their translation equivariant counterparts. For the
translation equivariant attention mechanisms, we implement ρℓ : RH × RDx → RH as an MLP with

21

two hidden layers of dimension Dz . The initial context token embeddings are obtained by passing
the context observations through an MLP with two hidden layers of dimension Dz . The initial target
token embeddings are sampled from a standard normal. Pseudo-code for a forward pass through the
TNP (T) can be found in Appendix B.3.

TNP (T̃) The architecture of the TNP (T̃) is similar to that of the TNP (T), with the exception of
the extra fixed inputs that are added to the context token representation. These are obtained by first
performing a Fourier expansion to the context token locations, and then passing the result through an
MLP with two hidden layers of dimension Dz . We use four Fourier coefficients, zero out the fixed
inputs outside of [-7, 7], and during training we drop them out with a probability of 0.5. Pseudo-code
for a forward pass through the TNP (T̃) can be found in Appendix B.3.

ConvCNP (T) For the ConvCNP model, we use a CNN with 9 layers. We use C = 64 channels, a
kernel size k = 21 with a stride of one. The input domain is discretised with 46 points per unit. The
decoder uses five different learned lengthscales to map the output of the CNN back to a continuous
function. Pseudo-code for a forward pass through the ConvCNP (T) can be found in Appendix B.1.

ConvCNP (T̃) The ConvCNP (T̃) closely follows the ConvCNP (T) model, with the main difference
being in the input to the model. For the approximately equivariant model, we sum up the output of
the resized functional embedding with the representation of the fixed inputs. The latter is obtained
by passing the input locations (that lie on the grid) through and MLP with two hidden layers of
dimension C. We consider C fixed inputs, we zero them out outside of [-7, 7] and during training we
drop them out with a probability of 0.1. Pseudo-code for a forward pass through the ConvCNP (T̃)
can be found in Appendix B.1.

RelaxedConvCNP (T̃) We use an identical architecture to the ConvCNP(T), with regular convo-
lutional operations replaced by relaxed convolutions. We use L = 1 kernels such that the total
parameter count remains similar (see Appendix B.5)

EquivCNP (E) We use an identical architecture to the ConvCNP (T), with symmetric convolutions
in place of regular convolutions. Pseudo-code for a forward pass through the EquivCNP (E) can be
found in Appendix B.2.

EquivCNP (Ẽ) We use an identical architecture to the ConvCNP (T̃), with symmetric convolutions
in place of regular convolutions. Pseudo-code for a forward pass through the EquivCNP (Ẽ) can be
found in Appendix B.2.

Training Details and Compute For all models, we optimise the model parameters using AdamW
[Loshchilov and Hutter, 2017] with a learning rate of 5× 10−4 and batch size of 16. Gradient value
magnitudes are clipped at 0.5. We train for a maximum of 500 epochs, with each epoch consisting of
16,000 datasets (10,000 iterations per epoch). We evaluate the performance of each model on 80,000
test datasets. We train and evaluate all models on a single 11 GB NVIDIA GeForce RTX 2080 Ti
GPU.

Additional Results In Figure 1 we compared the predictive distributions of the eight considered
models for a test dataset where the context range spanned both the low and high-lengthscale regions.
In Figure 3 and Figure 4 we provide additional examples where the context range only spans one
region (the low-lengthscale one in Figure 3 and high-lengthscale one in Figure 4).

Figure 3 shows that the non-equivariant model (TNP) does not produce well-calibrated uncertainties
far away from the context region. The equivariant models underestimate the uncertainty near the
change point location x = 0, giving rise to overly-confident predictions at the transition between
the low and high-lengthscale regions. For the TNP (T) the uncertainties remain low throughout the
entire high-lengthscale region. In contrast, the approximately equivariant models manage to more
accurately capture the uncertainties beyond the transition point, into the high-lengthscale region. This
indicates that the approximately equivariant models are better suited to cope with non-stationarities
in the data.

When the context region only spans the high-lengthscale region, both the strictly and approximately
equivariant models output predictions that closely follow the ground truth. However, the non-
equivariant model completely fails to generalise, outputting almost symmetric predictions about the
origin (x = 0). We hypothesise this is because of its inability to generalise, resulting from the lack of
suitable inductive biases.

22

(a) TNP. (b) ConvCNP (T). (c) EquivCNP (E). (d) TNP (T).

(e) ConvCNP (T̃). (f) RelaxedConvCNP (T̃). (g) EquivCNP (Ẽ). (h) TNP (T̃).

Figure 3: A comparison between the predictive distributions on a single synthetic 1D regression
dataset of the TNP-, ConvCNP-, and EquivCNP-based models with different inductive biases (non-
equivariant, equivariant, or approximately equivariant). Unlike in Figure 1, the context range only
spans the low-lengthscale region. For the approximately equivariant models, we plot both the model
prediction (blue), as well as the predictions obtained without using the fixed inputs, which results in
a strictly equivariant model (red). The approximately equivariant models are the only ones able to
correctly capture the uncertainties around the lengthscale change point (x = 0).

(a) TNP. (b) ConvCNP (T). (c) EquivCNP (E). (d) TNP (T).

(e) ConvCNP (T̃). (f) RelaxedConvCNP (T̃). (g) EquivCNP (Ẽ). (h) TNP (T̃).

Figure 4: A comparison between the predictive distributions on a single synthetic 1D regression
dataset of the TNP-, ConvCNP-, and EquivCNP-based models with different inductive biases (non-
equivariant, equivariant, or approximately equivariant). The context range only spans the high-
lengthscale region. For the approximately equivariant models, we plot both the model prediction
(blue), as well as the predictions obtained without using the fixed inputs, which results in a strictly
equivariant model (red). Both the strictly and approximately equivariant models output predictions
that closely resemble the ground truth, but the non-equivariant TNP model completely fails to
generalise.

23

Table 3: Average log-likelihoods (↑) for the synthetic 1-D GP experiment when tested on context
sets. Ground truth log-likelihood is 0.2806± 0.0005.

Model Context log-likelihood (↑)

TNP 0.2296± 0.0007
TNP (T) 0.2396± 0.0013

TNP (T̃) 0.2344± 0.0020

ConvCNP (T) 0.2362± 0.0007

ConvCNP (T̃) 0.2218± 0.0009

RelaxedConvCNP (T̃) 0.2381± 0.0008

EquivCNP (E) 0.2213± 0.0007

EquivCNP (Ẽ) 0.1992± 0.0010

Log-likelihood of context data We assess the model’s ability to reconstruct the context set by
setting the target set equal to the context set and computing the log-likelihood. Note that, unlike the
log-likelihood values from Table 1, where the target range expands beyond the context range, now
the model is just tested within the context range, leading to higher overall values.

The results in Table 3 show that the model is able to accurately model the context sets, with log-
likelihood values close to the ground truth log-likelihood of the data of 0.2806± 0.0005.

Analysis of equivariance deviation We next analyse the approximately equivariant behaviour
of our models. More specifically, we show that while breaking equivariance to a certain degree,
the models still share similarities with the fully-equivariant models—thus being characterised as
approximately equivariant. This is already visually depicted in Figure 1, where the predictive means
of the approximately equivariant models are similar to the predictive means of the corresponding
equivariant models up to some ‘small perturbation’.

We also show this quantitatively, by introducing the equivariance deviation

∆equiv = E

[∥∥∥µequiv − µapprox-equiv

µequiv

∥∥∥
p

]
,

where µapprox-equiv represents the predictive mean of the approximately equivariant model, and µequiv
the predictive mean of the same model with zeroed-out basis functions (i.e. the equivariant component
of the approximately equivariant model). In this case, we consider the L1 norm (i.e. p = 1).

Table 4: Equivariance deviation (∆equiv) of the approximately equivariant models in the 1-D synthetic
GP experiment.

Model ∆equiv

TNP (T̃) 0.0896± 0.0011

ConvCNP (T̃) 0.0823± 0.0005

RelaxedConvCNP (T̃) 0.1460± 0.0006

EquivCNP (Ẽ) 0.0825± 0.0006

The equivariance deviations from Table 4 are around 8 − 9% (with the exception of the Relaxed-
ConvCNP (T̃) which shows a 15% deviation). This indicates that the approximately equivariant
models’ predictions deviate only slightly from the equivariant predictions, thus being equivariant in
the approximate sense. Moreover, as pictured in Figure 1, the deviation from strict equivariance is
not random, and allows the models to learn symmetry-breaking features in a data-driven manner (in
this case, the lengthscale changepoint).

Analysis of number of fixed inputs In this ablation, we analyse the effect of the number of fixed
inputs B. As mentioned in the main text, the number of fixed inputs influences the number of degrees
of freedom in which the decoder deviates from G-equivariance. Thus, 0 fixed inputs leads to a

24

G-equivariant model, while in the limit of infinitely many fixed inputs, the decoder can become fully
non-equivariant.

In the main experiment we used 64 fixed inputs for the ConvCNP (T̃) and 4 Fourier coefficients for
TNP (T̃). Table 5 shows the results when varying the number of fixed inputs B for the two models.
We observe that the biggest gain in performance is achieved by going from B = 0 to B = 1 basis
functions. In this dataset, the approximate equivariance is achieved by modifying one parameter
(i.e. lengthscale) of the data generation process from one side of the changepoint location to the
other. Indeed, for the TNP (T̃) we observe that the performance plateaus for B ≥ 1, suggesting that
one Fourier coefficient is enough to capture the symmetry-breaking feature of the dataset. For the
ConvCNP (T̃) the performance increases up to B ≥ 4, and for B ≥ 1 the test log-likelihoods are
within 3 standard deviations for all variants. Thus, the empirical findings are in agreement with the
data generation process, indicating that deviation in one or a couple of degrees of freedom suffices to
capture the departure from strict equivariance. What is more, we see that using more fixed inputs than
necessary does not hurt the performance of the model (when considering the standard deviations).
This motivates in practice the use a ‘sufficiently high number’ of fixed inputs, to make sure the model
is given enough flexibility to correctly capture the departure from strict equivariance.

Table 5: Average test log-likelihoods (↑) of the TNP (T̃) and the ConvCNP (T̃) models when varying
the number of fixed inputs. All standard deviations are 0.004.

No. fixed inputs

Model 0 1 2 4 8 16

TNP (T̃) −0.488 −0.409 −0.410 −0.406 −0.408 −0.403

ConvCNP (T̃) −0.499 −0.451 −0.439 −0.430 −0.433 −0.432

E.2 Smoke Plumes

The smoke plume dataset consists of 128× 128 2-D smoke simulations for different initial conditions
generated through PhiFlow[Holl et al., 2020]. Hot smoke is emitted from a circular region at the
bottom, and the simulations output the resulting air flow in a closed box. We also introduce a fixed
obstacle at the top of the box. To obtain a variety of initial conditions we sample the radius of the
smoke source uniformly according to r ∼ U [5, 30]. Moreover, we randomly choose its position
among three possible x-axis locations: {30, 64, 110} (but we keep the y position fixed at 5). Finally,
we sample the buoyancy coefficient of the medium according to B ∼ U [0.1, 0.5]. The closed box,
the fixed spherical obstacle, and the position of the smoke inflow (sampled out of three possible
locations) break the symmetry in this dynamical system.

For each initial condition, we run the simulation for 35 time-steps with a time discretisation of
∆t = 0.5, and only keep the last state as one datapoint. We show in Figure 5 examples of such states.
In total, we generate samples for 25,000 initial condition, and we use 20,000 for training, 2,500 for
validation, and the remaining for test.

The inputs consist of [32, 32] regions sub-sampled from the [128, 128] grid. Each dataset consist of a
maximum of N = 1024 datapoints, from which the number of context points are sampled according
to Nc ∼ U{10, 250}, with the remaining points set as the target points.

We use an embedding / token size of Dz = 128 for the PT-TNP-based models and Dz = 16 for the
ConvCNP-based models. The decoder consists of an MLP with two hidden layers of dimension Dz .
The decoder parameterises the mean and pre-softplus standard deviation of a Gaussian likelihood
with heterogeneous noise. Model specific architectures are as follows: PT-TNP For the PT-TNP
models we use the same architecture dimensions as the TNP described in Appendix E.1. We use
the IST-style implementation of the PT-TNP [Ashman et al., 2024], with initial pseudo-token values
sampled from a standard normal distribution. We use 128 pseudo-tokens.

PT-TNP (T) The PT-TNP (T) models adopt the same architecture choices as the TNP (T) described
in Appendix E.1. The initial pseudo-tokens and pseudo-input-locations are sampled from a standard

25

Figure 5: Examples of smoke simulations from the smoke plume dataset for six different combina-
tions of smoke radius r and buoyancy B. For each such combination, we show the resulting state for
all of the three possible x-axis locations. The inputs to our models are randomly sampled 32× 32
patches (indicated in red) from the 128× 128 states.

normal. We use 128 pseudo-tokens. Pseudo-code for a forward pass through the PT-TNP (T) can be
found in Appendix B.4.

PT-TNP (T̃) The architecture of the PT-TNP (T̃) is similar to that of the PT-TNP (T), with the
exception of the extra fixed inputs that are added to the pseudo-token representation. These are
obtained by passing the pseudo-token locations through an MLP with two hidden layers of dimension
Dz . We use Dz fixed inputs and apply dropout to them with a probability of 0.5. Pseudo-code for a
forward pass through the PT-TNP (T̃) can be found in Appendix B.4.

ConvCNP (T) For the ConvCNP model, we use a U-Net [Ronneberger et al., 2015] architecture for
the CNN with 9 layers. We use Cin = 16 input channels and Cout = 16 output channels, with the
number of channels doubling / halving on the way down / up. Between each downwards layer we
apply pooling with size two, and between each upwards layer we linearly up-sample to recover the
size. We use a kernel size of k = 9 with a stride of one. We use the natural discretisation of the
128× 128 grid.

ConvCNP (T̃) We use the same architecture as the ConvCNP (T). The fixed inputs are obtained by
passing the discretised grid locations through an MLP with two hidden layers of dimension Cin. We
use Cin fixed inputs and apply dropout with probability 0.5.

RelaxedConvCNP (T̃) We use an identical architecture to the ConvCNP (T), with regular con-
volutional operations replaced by relaxed convolutions. We use L = 1 kernels such that the total
parameter count remains similar. We obtain the additional fixed inputs by passing the effective
discretised grid at each layer (after applying the same pooling / up-sampling operations as the U-Net)
through an MLP with two hidden layers of dimension Cin.

EquivCNP (E) For the EquivCNP (E) model, we use a steerable E-equivariant CNN architecture
consisting of nine layers, each with C = 16 input / output channels. We use a kernel size of k = 9
and stride of one. We discretise the continuous rotational symmetries to integer multiples of 2π/8.
We use the natural discretisation of the 128× 128 grid.

EquivCNP (Ẽ) We use the same architecture as the EquivCNP (E) with the same fixed input
architecture as the ConvCNP (T̃).

Training Details and Compute For all models, we optimise the model parameters using AdamW
[Loshchilov and Hutter, 2017] with a learning rate of 5×10−4. For the ConvCNP T and T̃ , EquivCNP
T and T̃ , and non-equivariant PT-TNP models we use a batch size of 16, while for the PT-TNP T
and T̃ models we use a batch size of 8. Gradient value magnitudes are clipped at 0.5. We train for a
maximum of 500 epochs, with each epoch consisting of 16,000 datasets for a batch size of 16, and

26

8,000 datasets for a batch size of 8 (10,000 iterations per epoch). We evaluate the performance of
each model on 80,000 test datasets. We train and evaluate all models on a single 11 GB NVIDIA
GeForce RTX 2080 Ti GPU.

Additional Results We show in Figure 6 a comparison between the predictive means, as well as
the absolute difference between them and the ground-truth (GT), for all the models in Table 1.
For PT-TNP and ConvCNP, the predictions of the equivariant models are more blurry, whereas
the approximately equivariant models better capture the detail surrounding the obstacle or the flow
boundary. For the EquivCNP we did not observe a significant difference between the equivariant and
approximately equivariant model.

GT. PT-TNP (∅, T , and T̃). ConvCNP (T and T̃). EquivCNP (E and Ẽ).

Context.

Figure 6: A comparison between the predictive distributions of the equivariant and approximately
equivariant versions of the three classes of models: PT-TNP, ConvCNP, and EquivCNP. From left
to right we show: the ground-truth (GT), the non-equivariant PT-TNP, PT-TNP (T), PT-TNP (T̃),
ConvCNP (T), ConvCNP (T̃), RelaxedConvCNP (T̃), EquivCNP (E), and EquivCNP (Ẽ). The top
row shows the mean of the predictions, while the bottom row shows the absolute difference between
the predicted mean of each model and the ground-truth.

E.3 Environmental Data

The environmental dataset consists of surface air temperatures derived from the fifth generation of the
European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalyses (ERA5)
[Copernicus Climate Change Service, 2020]. The data has a latitudinal and longitudinal resolution of
0.5◦, and temporal resolution of an hour. We consider data collected in 2018 and 2019 from regions
in Europe (latitude / longitude range of [35◦, 60◦] / [10◦, 45◦]) and in the US (latitude / longitude
range of [−120◦, −80◦] / [30◦, 50◦]). In both the 2-D and 4-D experiment, we train on Europe’s
2018 data and test on both Europe’s and the US’s 2019 data.

For the 2-D experiment, the inputs consist of latitude and longitude values. Individual datasets are
obtained by sub-sampling the larger regions, with each dataset consisting of a [32, 32] grid spanning
16◦ across each axis. For the 4-D experiment, the inputs consist of latitude and longitude values, as
well as time and surface elevation. Each dataset consists of a [4, 16, 16] grid spanning 8◦ across each
axis and 4 days. In both experiments, each dataset consists of a maximum of N = 1024 datapoints,
from which the number of context points are sampled according to Nc ∼ U{⌊ N

100⌋, ⌊
N
3 ⌋}, with the

remaining set as target points.

For all models, we use a decoder consisting of an MLP with two hidden layers of dimension
Dz . The decoder parameterises the mean and pre-softplus variance of a Gaussian likelihood with
heterogeneous noise. Model specific architectures are as follows:

PT-TNP Same as Appendix E.2.

PT-TNP (T) Same as Appendix E.2.

PT-TNP (T̃) Same as Appendix E.2 with 128 pseudo-tokens and fixed inputs zeroed outside 2018
and the latitude / longitude range of [35◦, 60◦] / [10◦, 45◦].

ConvCNP (T) Same as Appendix E.2.

ConvCNP (T̃) Same as Appendix E.2 with fixed inputs zeroed outside 2018 and the latitude /
longitude range of [35◦, 60◦] / [10◦, 45◦].

27

RelaxedConvCNP (T̃) Same as Appendix E.2 with fixed inputs zeroed outside 2018 and the latitude
/ longitude range of [35◦, 60◦] / [10◦, 45◦].

EquivCNP (E) Same as Appendix E.2.

EquivCNP (Ẽ) Same as Appendix E.2 with fixed inputs zeroed outside 2018 and the latitude /
longitude range of [35◦, 60◦] / [10◦, 45◦].

Training Details and Compute For all models, we optimise the model parameters using AdamW
[Loshchilov and Hutter, 2017] with a learning rate of 5× 10−4 and batch size of 16. Gradient value
magnitudes are clipped at 0.5. We train for a maximum of 500 epochs, with each epoch consisting of
16,000 datasets (10,000 iterations per epoch). We evaluate the performance of each model on 16,000
test datasets. We train and evaluate all models on a single 11 GB NVIDIA GeForce RTX 2080 Ti
GPU.

Additional Results To demonstrate the importance of dropping out the fixed inputs during training
with finite probability, we compare the performance of two ConvCNP (T̃) models on the 2-D
experiment in Table 6: one with a dropout probability of 0.0, and the other with 0.5. Due to limited
time, we were only able to train each model for 300 epochs (rather than for 500 epochs, hence the
difference in results for the ConvCNP (T̃) model with dropout probability of p = 0.5 to those shown
in Table 2). Nonetheless, we observe that having a finite dropout probability is important for the
model to be able to generalise OOD (i.e. the US).

Table 6: Average test log-likelihoods (↑) for the 2-D environmental regression experiment. p denotes
the probability of dropping out the fixed inputs during training.

Model Europe (↑) US (↑)

ConvCNP (T̃ , p = 0.0) 1.19± 0.01 −0.51± 0.02

ConvCNP (T̃ , p = 0.5) 1.16± 0.01 0.16± 0.02

Log-likelihood of context data We perform the same assessment as in Appendix E.1 to check
whether the model is able to accurately reconstruct the context data.

The results in Table 7 show that the models have good performance when tested on the context sets,
achieving better log-likelihoods than in Table 2, where the models are tested on target sets.

Analysis of equivariance deviation We repeat the equivariance deviation analysis from Appendix E.1
on the 2-D environmental regression dataset. In this case we use the L2 instead of the L1 norm. Note
that we only compute this on Europe, since the predictions on US are obtained by zeroing-out the
basis function, leading to an equivariance deivation of 0. The results are shown in Table 8.

All equivariance deivations are between 2− 4%, indicating that the models only slightly deviate from
the equivariant prediction. However, as shown in Figure 2, this deviation allows them to capture the

Table 7: Average test log-likelihoods (↑) for the 2-D environmental regression experiment when
tested on context sets.

2-D Regression

Model Europe (↑) US (↑)

PT-TNP 1.74± 0.01 −
PT-TNP (T) 1.66± 0.01 1.28± 0.01

PT-TNP (T̃) 1.76± 0.01 1.47± 0.01

ConvCNP (T) 1.20± 0.02 0.34± 0.02

ConvCNP (T̃) 1.50± 0.01 0.97± 0.01

RelaxedConvCNP (T̃) 1.29± 0.01 0.86± 0.01

EquivCNP (E) 2.03± 0.01 1.76± 0.01

EquivCNP (Ẽ) 2.05± 0.01 1.69± 0.01

28

Table 8: Equivariance deviation (∆equiv) of the approximately equivariant models in the 2-D environ-
mental regression experiment.

Model ∆equiv

PT-TNP (T̃) 0.0406± 0.0005

ConvCNP (T̃) 0.00237± 0.0004

RelaxedConvCNP (T̃) 0.0239± 0.0004

EquivCNP (Ẽ) 0.0242± 0.0005

symmetry-breaking components of the weather dataset, with one important such component being
the topography.

Analysis of number of fixed inputs Finally, we investigate the influence of the number of fixed
inputs B on the performance of the model. We vary the number of fixed inputs used in the ConvCNP
(T̃) from the 2-D regression experiment. The fixed inputs are linearly transformed to 16 inputs, which
are then summed together with the input into the CNN.

The results are shown in Table 9, where we see that, similarly to the 1-D GP experiment, the largest
gain in performance is obtained by going from 0 to a single fixed input. Using more than 1 fixed input
provides diminishing gains, but, importantly, never hurts performance. The saturation in performance
for B ≥ 1 is expected in this dataset, given that the information that is primarily missing is the
topography. However, in practice, given that the performance of the model does not decrease with
increasing B (i.e. the model learns to ignore unnecessary fixed inputs), one can choose a ‘sufficiently
high’ value for B.

Table 9: Average test log-likelihoods (↑) of the ConvCNP (T̃) with different number of additional
fixed inputs for the 2-D environmental regression experiment. We show the results when the models
are tested on Europe.

No. fixed inputs

Region 0 1 2 4 8 16

Europe 1.11± 0.01 1.19± 0.01 1.19± 0.01 1.20± 0.01 1.20± 0.01 1.20± 0.01

29

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All novel theorems include either the full proof, or a reference to the full
proof in the Appendix. We show supporting empirical evidence to justify our claims and
contributions in Section 5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

30

Justification: Limitations are discussed in Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All novel theorems include either the full proof, or a reference to the full proof
in the Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide full experimental details in the Appendix.

Guidelines:

31

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide open access to the codebase, containing instructions to reproduce
the data and replicate the main experimental results. The environmental data is public.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

32

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide full experimental details in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report standard errors for all results across the entire test set.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide details of compute for each experiment in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.

33

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper conforms to the Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our paper conducts foundational research and is not tied to particular applica-
tions.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

34

https://neurips.cc/public/EthicsGuidelines

Justification: This paper does not pose such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We provide complete citations for all datasets used in this paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We released documented code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

35

paperswithcode.com/datasets

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

36

	Introduction
	Background
	Neural Processes
	Group Equivariance
	Group-Equivariant Conditional Neural Processes

	Equivariant Decomposition of Non-Equivariant Functions
	Approximately Equivariant Neural Processes

	Related Work
	Experiments
	Synthetic 1-D Regression With the Gibbs Kernel
	Smoke Plumes
	Environmental Data

	Conclusion
	Proof of Theorem 3
	Equivariant Neural Processes
	Convolutional Conditional Neural Process
	Equivariant Conditional Neural Process
	Translation Equivariant Transformer Neural Process
	Pseudo-Token Translation Equivariant Transformer Neural Process
	Relaxed Convolutional Conditional Neural Process

	Unification of Existing Approximately Equivariant Architectures
	Achieving Approximate Equivariance
	Experiment Details and Additional Results
	Synthetic 1-D Regression
	Smoke Plumes
	Environmental Data

