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Figure 1: 3D assets created by ID-to-3D can be photorealistically rendered in common 3D engines.
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Figure 2: ID-consistent texture and geometry genera-
tion. The input images for ArcFace conditioning (Left)
have been created using Stable-Diffusion. Normal maps
(Center) are displayed next to renderings in studio light-
ing (Right). ID-to-3D creates ID-consistent geometry and
textures with precise alignment.

Figure 3: Randomized lighting
(Left) creates sharper textures and
realist colors. Results generated
by training with fixed lighting
(Right) struggle to create crisp de-
tails.

1 Additional Results

We provide additional results for our methods. Figure 1 displays neutral expression for additional
subjects, showcasing realistic, high-detail, ID-conditioned 3D assets that can be relit under various
conditions. Figure 10 reports additional comparisons with text-to-3D SDS pipelines specialized in the
generation of human avatars via SDS, while Figure 11 displays additional comparisons with methods
that leverage text and images to create 3D assets. All methods are presented using the same rendering
conditions. As apparent from the figures, the comparisons are consistent with the results presented in
the main manuscript. ID-to-3D achieves the highest degree of geometric and texture quality. Figure 2
present ID-conditioned examples for AI-generated identities created starting from the test cases of the
NHPM dataset, demonstrating results consistent with the findings presented in the main manuscript.

Visualization in Video Format. Taking in input only unconstrained pictures of a subject, ID-to-3D
produces high-fidelity shapes and textures that can be photorealistically relighted in an arbitrary envi-
ronment and illumination. Moreover, ID-to-3D establishes a new State-of-the-Art in the generation
of 3D consistent human heads. Relighting videos for ID-to-3D’s 3D heads assets that are shown in
this paper, can be explored using our project page, together with video comparisons of existing SDS
methods under fixed rendering conditions.

Impact of Randomized Lighting. We provide an ablation study on the impact of randomized
lighting during texture training. As apparent in Figure 3 the use of this augmentation, paired with
an albedo-oriented 2D guidance, allows for the generation of crisp details and vibrant colors, not
achievable with standard training.

Visualization of 2D Guidance Images. Figures 5 and 6 display images generated by our 2D
geometry-oriented and albedo-oriented guidance models for a range of identities, poses, and expres-
sions. As visible, after convergence, our models are able to convincingly separate geometric and
texture information for a given subject, realistically portrait side and back views, and reliably convey
a wide range of id-consistent expressions. In Figure 7, we provide comparisons of our specialized
2D models against two well-established text-to-image models traditionally used in SDS pipelines:
Stable-Diffusion v2.1 [3], DreamLike-PhotoReal [1]. As visible, traditional Stable-Diffusion models
have three main shortcomings that limit their applicability to the task at hand: (1) Low ID retention:
the models struggle to consistently create outputs of specific identities since they rely only on textual
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Figure 4: Impact of Different ID-embeddings. All the 3D heads are generated using a Neutral
expression and rendered under the same lighting conditions. The first row displays the images used
as input. Geometry is displayed as normal maps in camera coordinates.

prompts. (2) Low expressivity: the use of natural language to enforce expression conditioning is
ineffective. The models overlook expression-related prompts to boost photorealism. (3) Inconsistent
lighting: the models generate a wide range of lighting conditions, to enhance photorealism and
artistic effect. This complicates the separation of lighting and albedo contributions when creating
ready-to-render assets with SDS. In contrast, our 2D generators effectively separate appearance and
geometry information while ensuring high expressivity, making them suitable for creating ID-driven
3D heads with expression control.

Impact of Different Identity Conditionings. Our method uses identity embedding to guide the
geometry and texture generation of facial details, and is therefore bounded by the ability of these
representations to convey in a concise and distinct manner the unique features of each face identity.
Figure 4 compares the results of our final pipeline with that using less robust identity conditioning.
We compare a 3D asset obtained using the identity embeddings derived from five images, with two
different 3D heads created using a single in-the-wild picture of the same subject. Our pipeline is
capable of creating 3D consistent heads in all the considered cases. However, The ArcFace features
collected from a small poll of images provide better identity conditioning, with fewer texture artifacts
and closer ID similarity with the reference identity.
2 Implementation Details
Implementation Details: 2D Guidance. We develop the geometry-oriented and albedo-oriented
2D guidance models by finetuning a large-scale diffusion model on a small dataset of real 3D scans.
This representation serves as identity conditioning for the geometry-oriented and albedo-oriented
2D diffusion models. We follow [6] and use normal maps in camera coordinates as a 2D proxy for
geometric information. To encourage the separation of color and lighting information, we select
albedo maps as texture data. We modified a large-scale Stable Diffusion model pre-trained to perform
photorealistic 2D face portrait generation [8], and finetuned the geometry and albedo model in
two stages to minimize identity drifting. First, we modified the architecture with LoRA layers to
perform a style transfer task. Then, we modified and trained the same architecture to accommodate
expression conditioning. Both fine-tuning is done for 200k iterations with early stopping with
a lr of 1e − 4 on 8 Nvidia-V100 GPUS. We use 16 as the hidden LoRA size for self-attention
layers. We use LoRA for cross-attention layers with a hidden size 32. For each image, we extract
the ArcFace identity embedding after cropping and centering. The identity embeddings are then
concatenated and processed by a shallow 2-layer MLP to match the dimension of the text features in
the pretrained diffusion model. For training, we use the recently released neural head parameter
data set [5], comprising 255 subjects and 23 facial expressions. We selected 25 subject to test the
drifting ID during training. For the geometry-oriented 2D guidance model, we created a training
set of 250k samples that extract 2D normal maps in camera coordinates from random subjects in
random expressions and camera poses. For the texture-oriented 2D guidance model, we extracted
a dataset of 250k samples from the texture of the objects. We extracted text descriptions for each
render and supplemented the training with a text prompt containing camera pose, gender, ethnicity,
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Figure 5: Camera aware 2D
generation enables the gener-
ation of samples aligned with
different camera poses. We
display images for back views
(Left), side views (Center)
and front views (Right).

Figure 6: Generation of id and expression conditioned images.
The geometry-oriented model (Right), creates high quality 2D
normal maps that can be used as proxy for geometric information.
The albedo-oriented 2D model (Left) generate images with consis-
tent lighting that can be used as guidance for high-quality texture
generation.

Figure 7: Comparison of image generation with id and expression conditioning. Images generated
by our albedo-oriented model (Row 2), our geometry-oriented model (Row 3), Stable-Diffusion v2.1
model (Row 4), DreamLike-Photoreal model (Row 5). All image generators are prompted using a
common textual prompt “A DSLR face portrait of ...” and the same id/expression specific text (Row
1). Traditional text-to-2D models struggle to create consistent lighting and expressive faces.
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and age group for each subject (e.g., ’A front view normal map face portrait of a young Caucasian
female on a white background’).

Implementation Details: Geometry and Texture Generation. Given an ArcFace identity, ge-
ometry generation is achieved through a two-stage pipeline. First, we follow [4] and initialize the
3D geometry with a FLAME head template by regression fitting. Then, we train the geometry
model using randomly selected camera poses and expression conditioning. We used a neural head
expression model as a hybrid 3D representation for geometry. We used HashGrid [7] encoding and a
grid with 256 resolution. We used a 4 layers transformer and jointly trained 3, 6, or 13 expressions
each associated with its unique latent code of dimensions 32. Our model can train a neutral identity
representation in 6000 iterations, which takes approximately 30 minutes on v100 GPUS. Our model
can jointly train a larger set of 13 expressions in approximately 4 hours. We use a learning rate of
1e− 4. We used a random sampling strategy and considered time steps in the range [200, 700] for
the first half of the training. We use an annealing strategy with time steps in the range [200, 50] in
the second half of the training. We use a score distillation sampling loss with a guidance weight 10
and a Laplacian smoothing loss with a weight 5000.

Given a learned geometry model, the texture generation is achieved via a three-stage pipeline
conditioned on the same ArcFace identity. We train the texture model using randomly selected
camera poses and expression conditioning. We use random lighting during training, using a list of 60
HDR maps and a set of random augmentations. We trained a 3 layers transformer and jointly trained
3, 6, or 13 expressions each associated with its unique latent code of dimensions 32. Our model can
train a neutral identity representation in 2000 iterations, taking approximately 15 minutes on v100
GPUS. Our model can jointly train a larger set of 13 expressions in approximately 10000 iterations.
As first step, the model is optimized to learn only the diffuse term of the textures. This portion of
the training uses 80% of all available iterations, a learning rate of 0.01, and time steps in the range
[50, 900]. The second step then proceeds to jointly optimize the roughness and metallic term of
the texture together with the diffuse term, using the same learning rate but a different timesteps
range [50, 500]. Lastly, the pipeline uses an optional and quick refinement stage with the goal of
introducing high-frequency details. The last 20 iterations use a large photorealistic text-to-image
model as guidance and deploy timesteps in the range [50, 100]. All stages use a score distillation
sampling loss with weight 10.

Implementation Details: User Study. In the main paper, we evaluate the 3D heads generated
by ID-to-3D in terms of perceptual geometric quality and texture quality through a user study. We
follow [6] and compare with four state-of-the-art methods on 30 prompts. We collect the preferences
of 50 participants using anonymous online survey forms. To fairly compare among methods, we
created 3D assets using comparable input (i.e. same text and image prompt), and gathered as
visualization a GIF accumulating 360 renderings under the same lighting and camera conditions. To
assess geometric quality, we remove the contribution of texture by visualizing normal maps. Each
volunteer was asked to: 1) Choose which 3D head among the 5 options represents the most appealing,
detailed, and ready-to-use 3D object. 2) Choose which 3D head among the 5 options represents
the most appealing, detailed, and ready-to-use 3D geometry. As visible in the main manuscript,
ID-to-3Daccumulates higher preferences for both metrics, showing superior performance compared
to both human-specific text-based methods and image-to-3D baselines.

Results Rendering. For the rendering of results shown in this paper, as well as in the supplemental
video files, an off-the-shelf commercial rendering engine has been used [2], highlighting the ease of
integration of our results to the tools of the industry. In that manner, any similar standard rendering
engine could also be used.

3 Additional Analyses
Dataset Statistics. We train our model using the NPHM dataset, which is rich in expression data
and geometric quality. To use personalized text prompt during training, we semi-automatically
annotate the provided assets as a pre-processing step. An overview of the statistics of the dataset
is shown in Figure 8 (Right). During the 2D guidance training, we use gender, age, ethnicity, and
hairstyle as textual prompts to guide generation. As a result, our method generates 3D heads with
diverse identities, ethnicities, and ages. However, we acknowledge the imbalanced nature of the
dataset, which could result in the underrepresentation of minorities.
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Figure 8: Dataset Visualizations. (Left) Renders at various camera angles for different subjects of
the NPHM dataset. (Right) NPHM dataset statistics for gender, age, ethnicity, and hairstyle choices.

Figure 9: Analyses on identity embeddings. (Left) Cosine similarity between ArcFace of neutral
expression and remaining expressions for each subject in the training dataset. (Middle) Cosine
similarity between ArcFace of frontal pose and 9 alternative poses captured with different camera
angles for each subject in the training dataset. (Right) Relationship between identity similarity
and number of reference images. The identity embeddings are robust to expression variety, camera
choices, and number of images used.

Robustness of the ID Embeddings. We provide analyses on the robustness of ID embeddings with
respect to the expressions and poses of the camera in Figure 9. We use the 3D assets provided in our
training dataset. For each identity and expression, we collect renders for 9 different camera rotation
angles [-60°, -45°, -30°, -15°, 0°, 15°, 30°, 45°, 60°] and extract their identity embedding (ArcFace).
Examples of renders are visible in Figure 8 (Left). We use a neutral pose with a 0° rotation angle
as a reference. Note that, according to definition, a similarity score above 0.5 signifies the same
identity. The impact of the expressions on the ID embeddings (Fig. 9 (Left)) is isolated by computing
the cosine similarity between the neutral reference and all remaining expressions captured with a
rotation angle of 0°. The impact of the camera pose on ID embeddings (Fig. 9 (Middle)) is isolated
by computing the cosine similarity between the neutral reference and the neutral expression captured
with all the 9 possible rotation angles. As clearly visible, ArcFace reliably captures identity features
across various expressions and poses, showcasing robust behavior even for extreme expressions (e.g.
"Squeeze" Avg-SimID: 0.62) and substantial camera rotation (e.g. -60° Avg-SimID: 0.7).

Relationship between ID similarity and number of reference images. We provide analyses on
the robustness of ID embeddings with respect to the number of reference images used to capture the
identity of a subject in Figure 9 (Right). We consider 40 subjects, 25 in-the-wild images for each
subject, and extract for each image its identity embedding (ArcFace). For each subject, we consider
the center of the distribution as representative of its facial features. We report the similarity between
the center of the distribution and the mean ArcFace created with a subset of N number of reference
images. The plot shows the averaged trend for 40 identities (blue line) together with its standard
deviation (light blue). The trend reaches a plateau after 20 images, while 5 images is enough to reach
an identity similarity of more than 0.95 for all the IDs considered. In our experiments, we selected 20
images to use as references for our comparisons and kept 5 images to use as input to our method,
ensuring a good trade-off between identity similarity retention and practicality.
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Figure 10: Comparisons with text-to-3D generation methods. ID-to-3D creates realistic 3D heads
when compared with human-centric SDS methods based on text prompts.
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Figure 11: Evaluating text+image-to-3D generation techniques. ID-to-3D consistently produces
high-quality 3D heads across various viewpoints, outperforming state-of-the-art SDS methods utiliz-
ing text prompts and images.
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