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Abstract

Decoding non-invasive brain recordings is pivotal for advancing our understanding
of human cognition but faces challenges due to individual differences and complex
neural signal representations. Traditional methods often require customized models
and extensive trials, lacking interpretability in visual reconstruction tasks. Our
framework integrates 3D brain structures with visual semantics using a Vision
Transformer 3D. This unified feature extractor efficiently aligns fMRI features
with multiple levels of visual embeddings, eliminating the need for subject-specific
models and allowing extraction from single-trial data. The extractor consolidates
multi-level visual features into one network, simplifying integration with Large
Language Models (LLMs). Additionally, we have enhanced the fMRI dataset
with diverse fMRI-image-related textual data to support multimodal large model
development. Integrating with LLMs enhances decoding capabilities, enabling
tasks such as brain captioning, complex reasoning, concept localization, and visual
reconstruction. Our approach demonstrates superior performance across these
tasks, precisely identifying language-based concepts within brain signals, enhanc-
ing interpretability, and providing deeper insights into neural processes. These
advances significantly broaden the applicability of non-invasive brain decoding
in neuroscience and human-computer interaction, setting the stage for advanced
brain-computer interfaces and cognitive models.

1 Introduction

The decoding of non-invasive brain recordings, such as those obtained from fMRI [1], is a corner-
stone of cognitive neuroscience [2; 3; 4]. This process offers unparalleled insights into the neural
underpinnings of human cognition, contributing not only to fundamental scientific knowledge but
also to advancements in clinical and technological applications. Despite its potential, the field faces
significant challenges primarily due to the high variability of brain activity across individuals [5] and
the complexity inherent in the neural representations of cognitive processes [6].

Brain decoding techniques have traditionally relied on customized, subject-specific models [7; 6; 8].
These models necessitate intricate and costly experimental setups, depending on multiple trials
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to achieve reliable results. Such approaches, while helpful, are inherently limited in scalability
and flexibility, hindering broader application and generalization across different populations and
conditions.

Visual reconstruction [9] aims to recreate perceived visual stimuli from brain signals and is consid-
ered one of the benchmarks of brain decoding. However, this approach often struggles to accurately
reproduce the visual experiences of individuals, generally lacking semantic precision and interpretabil-
ity [8]. This inability to effectively decode and reconstruct signals restricts our understanding of
how sensory information is processed. Recognizing these limitations, our study introduces language
modalities as a critical enhancement designed to assess decoding performance more effectively and
enrich brain-computer interfaces’ interaction capabilities.

Addressing these multifaceted challenges, our research introduces the Vision Transformer 3D
(ViT3D) [10] specifically tailored to the domain of visual reconstruction. Unlike traditional ap-
proaches that often reduce complex brain regions to one-dimensional vectors [11; 6; 12; 13], losing
critical spatial structure information, our implementation of ViT3D preserves the three-dimensional
structural integrity of the brain data. This adaptation enables an unprecedented enhancement in the
extraction of visual semantic information, ensuring a deeper fidelity and richness in the decoded
visual representations.

Our fMRI feature extractor includes a unified network backbone and two alignment heads for feature
matching. This setup enables efficient, high-quality visual reconstructions across subjects from
one experimental trial. By simply aligning the extractor’s output with CLIP embeddings [14] and
features of Variational Autoencoder (VAE) [15], our method eliminates the need for multiple, subject-
specific models, substantially simplifying the decoding process. This straightforward and effective
configuration reduces the resources required for brain decoding and showcases the potential for easy
integration with Large Language Models (LLMs), enhancing its usability across various applications.

Moreover, our research delves into the integration of brain recordings with visual and linguistic data
within a comprehensive multimodal framework using LLMs. This integration significantly improves
visual reconstruction performance and introduces the groundbreaking capability for direct interaction
through natural language. Our model facilitates diverse communication with brain data using natural
language and precisely localizes linguistic concepts within brain signals. These advancements help
deepen our understanding of the interactions between language, perception, and neural activity.
Additionally, to bolster the development of these multimodal models, we have augmented the brain-
recording visual dataset with natural language enhancements.

In summary, our contributions can be summarized as follows:

• Our fMRI feature extractor, based on Vision Transformer 3D, aligns fMRI features with
visual embeddings at multiple levels, integrating 3D brain structures with visual semantics.
This eliminates the need for subject-specific models and enables efficient data extraction
from single trials, significantly reducing training costs and enhancing practical usability in
real-world scenarios.

• We expanded the language dimension of our fMRI-visual dataset to build a multimodal
large model capable of decoding fMRI data. This enhancement boosts brain decoding
performance and broadens the application scope to include tasks like visual reconstruction,
question-answering, and complex reasoning while also allowing precise localization and
manipulation of language-based concepts within brain signals.

• Experimental results on the Natural Scenes Dataset (NSD) [16] for visual reconstruction
and language interaction tasks demonstrate that our method surpasses existing models,
effectively achieving concept localization and elimination.

2 Related Works
Non-invasive techniques such as functional magnetic resonance imaging (fMRI) are pivotal in pro-
viding direct insights into neural activities, significantly deepening our understanding of complex
cognitive processes from neural network structures [17] to advanced image and language processing
tasks [18; 19]. This section reviews key developments in fMRI-based brain decoding, particu-
larly emphasizing the shift from simple subject-specific analyses to more complex, multimodal
interpretations.
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Visual Reconstruction from Brain Activity Visual reconstruction from brain activity involves
translating brain recordings into the visual stimuli perceived by subjects. Early methods, like
those developed by Horikawa et al. [18], relied on sparse linear regression to predict features
extracted by convolutional neural networks from fMRI data. Recent advancements in generative
artificial intelligence, particularly diffusion models [20], have propelled efforts to reconstruct visual
stimuli directly from fMRI. For instance, Lin et al. [21] aligned fMRI data with image features and
corresponding CLIP embeddings to facilitate image generation using fine-tuned StyleGAN [22].
Similarly, Takagi et al. [9] improved the quality of visual reconstructions by aligning fMRI with
CLIP text embeddings and the latent spaces of diffusion models. Xia et al. [11] aligned fMRI data
from dimensions of image CLIP features, depth, and color using T2I Adapters [23] for fine-grained
conditional control. Despite these advancements, the complexity of such methods, involving multiple
independent modules, complicates their integration with technologies like LLMs and restricts their
generalizability across different subjects. We observed that some contemporary works also attempt
cross-subject alignment; however, these methods either require subject-specific parameters [24] or
face performance issues compared to subject-specific models [25].

fMRI Data Processing Efficiently processing fMRI data to extract visually relevant activities typically
involves simplifying the data into one-dimensional vectors and selecting voxels most responsive to
visual stimuli. Traditional methods utilize simple linear regression or fully connected networks to
predict visual stimulus features [18; 21]. However, these methods often lose essential spatial structural
information, which is critical given the individual differences in brain anatomy. To address these
challenges, innovations such as Vision Transformer 3D (ViT3D) have been developed for managing
data with intricate spatial structures [26; 27]. ViT3D segments 3D data into patches, preserving
local spatial information within each patch and maintaining overall structural integrity through
self-attention mechanism [28], thereby enhancing the performance of brain activity extraction [29].

Multimodal Integration with Brain Signals The utilization of language as a medium for repre-
sentation allows for the expression of complex concepts with precision and abstraction. The advent
of LLMs has showcased their potential to act as bridges across different modalities, enhancing
interactions with visual and audio data through natural language [30; 31]. For example, approaches
like those by Défossez et al. [32], which align brain recordings with spoken language to decode
speech non-invasively, have demonstrated the effectiveness of combining brain recordings with LLMs.
However, these approaches are often limited by the specificity of the fMRI feature extractors used,
which can restrict the scalability and the size of the models employed. By integrating our specially
designed cross-subject fMRI feature extractor, we enhance visual reconstruction quality and enable
complex reasoning and direct interaction with model outputs using natural language, achieving
precise localization of open natural language concepts within the brain.

3 Methodology
Our approach is designed to tackle the key challenges encountered in the visual reconstruction of
brain activity and the integration of LLMs with multimodal data. Traditional brain decoding methods,
especially those involving fMRI, often struggle with the complexity of accurately reconstructing
visual stimuli and generalizing these models across different subjects. Furthermore, while LLMs
hold significant potential for enhancing interactions across various cognitive models, their integration
with neuroimaging data has been hindered by the need for non-scalable or efficient customized,
subject-specific models.

In the following sections, we detail our methodology’s components, as seen in Fig. 1. We describe
the architecture of our feature preprocessor that maintains the spatial structure of fMRI data, our
unified fMRI feature extractor, and the integration strategies for the network with LLMs. We also
elaborate on the multimodal interaction techniques that enable direct and meaningful communication
between the computational model and the neural representations and the implementation details for
visual reconstruction.

3.1 fMRI Feature Preprocessor

fMRI quantifies changes in the blood-oxygen-level-dependent (BOLD) signals to characterize neural
activity. The BOLD signal for a given subject can be represented as a 3D matrix borigin ∈ RXs×Ys×Zs ,
where s indexes the subject, accounting for inter-individual variability. Traditional preprocessing
methods typically involve masking voxels sensitive to the specific task, followed by flattening the
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Figure 1: Overview of the integrated multimodal framework combining fMRI feature extraction with
LLMs for interactive communication and reconstruction. The architecture comprises: (a) a dual-
stream pathway for feature alignment with VAE and CLIP embeddings. (b) A 3D fMRI preprocessor
p, and an fMRI feature extractor. (c) A multimodal LLM integrated with fMRI. The extracted features
are then fed into an LLM for processing natural language instructions and generating responses or
visual reconstructions.

remaining data into a 1D vector. For subject s, the processed fMRI signal can thus be represented as
bs ∈ R1×Ns , where Ns denotes the number of voxels selected after masking.
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Figure 2: Description of fMRI data preprocessing. First align
the data of different subjects, then patch them, and finally
remove activity-irrelevant patches.

However, this approach results in a
loss of spatial structural information,
complicating alignment across differ-
ent subjects. We propose a feature ex-
traction method that preserves spatial
structure, as shown in Fig. 2. Starting
with the original BOLD signal borigin,
we first use trilinear interpolation to
resize the data to a uniform dimension,
ensuring maximal spatial consistency
across subjects’ brains while not in-
troducing subject-specific parameters.
After resizing, the normalized data un-
dergoes a patching process where it is divided into smaller cubic segments, each of dimension C = r3.
This step retains the local spatial features within each segment, preserving the 3D structure crucial for
accurate analysis. Finally, patches containing non-task-relevant information are filtered out to reduce
computational load. This results in patched data with dimensions RN×C , where N is the number
of patches retained that contain meaningful information. The entire preprocessing operation can be
summarized as a mapping:{

p : bsorigin 7→ b | bsorigin ∈ RXs×Ys×Zs , b ∈ RN×C
}
. (1)

In Eq. 1, p is the preprocessing function applies resizing, patching, and masking to transform the
original fMRI data into a structured format. This function provides a uniform representation of the
BOLD signals across different subjects, ensuring that the spatial structure is preserved and capable of
integration with Transformer architectures.

3.2 Dual-Stream fMRI Feature Extractor

Visual reconstruction tasks typically begin by mapping the processed BOLD signal, b, to various
estimated visual feature spaces, represented as {ẑ1, ẑ2, . . .}, where z indicates different levels of
visual features and ẑ denotes the visual features estimated from the BOLD signals. Subsequently,
these features are used to reconstruct the image, represented as x̂, from the visual features. To
enhance the quality of the reconstructed images, complex feature extractor designs are required,
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which increases the preprocessing and computational overhead. However, thanks to the design of
our fMRI feature extractor, we can achieve efficient visual reconstruction using a single network
backbone, as shown in Fig. 1(b).

Specifically, the patched features obtained from Eq. 1 are directly processed through a Transformer
Encoder Eb to extract features, obtaining the hidden states from the last layer, hNb = Eb(b), where
Nb represents the number of layers of the encoder. These outputs are then aligned with the visual
stimulus’s CLIP embeddings zc = Ec(x) and VAE features zv = Ev(x), where x represents the visual
stimulus. The loss function used to train the fMRI feature extractor can be expressed as:

Lalign = E(b,x)∼P (B,X)

[∥∥∥fwc(h
Nb
0 )− Ec(x)

∥∥∥2
2
+ α

∥∥∥fwv (h
Nb
0 )− Ev(x)

∥∥∥2
2

]
. (2)

In Eq. 2, the expectation (b, x) ∼ P (B,X) averages the alignment loss across samples from the
B (fMRI signals) and X (corresponding visual stimuli). Here, hNb

0 represents the output from the
first token of the last hidden state layer of the encoder Eb. The functions fwc and fwv are two-layer
perceptrons designed to align the extracted fMRI features with these embeddings. The hyperparameter
α balances the losses between the alignments of CLIP and VAE features. Through this dual-stream
configuration, we create a backbone network that incorporates different levels of visual features.
Using only a simple MSE loss function, we achieve high-quality visual reconstruction.

3.3 Multimodal Interaction with fMRI

Our feature extractor architecture, equipped with a single backbone network, is adept at encapsulating
various feature levels, making it highly suitable for integration with LLMs. Inspired by advancements
such as those in LLaVA [33], we utilize the penultimate hidden states of our network, hNb−1, as
multimodal tokens of fMRI data. A two-layer perceptron ft projects this state to the same dimension
as the text embeddings, resulting in the fMRI embeddings t = ft(h

Nb−1). Considering a sequence
of question-answer pairs related to the fMRI data [q0, a0, q1, a1, . . . , qL, aL], the training objective is
formulated as:

max pθ(A|Q, t) = max

L∏
j=0

pθ(aj |qj , aj−1, . . . , q0, t). (3)

Eq. 3 describes the probability of generating a sequence of answers A given a sequence of questions
Q and the derived fMRI embeddings t. Each answer aj is conditionally dependent on all preceding
questions and answers, as well as the context embeddings derived from fMRI data, where θ represents
the trainable parameters of LLMs.

To effectively couple fMRI data with language models, annotated data is essential. Although the
NSD [16] uses labeled visual stimuli from the COCO dataset [34], semantic mismatches often
occur due to modifications such as image cropping performed when displaying images to subjects
(Appendix A.1). Moreover, the original captions in NSD are not detailed enough to capture nuanced
semantic information. Recognizing the importance of comprehensive linguistic annotations, we
have constructed a diverse instructional dataset that includes various textual data: brief descriptions,
detailed descriptions, continuous dialogues, complex reasoning tasks, instruction reconstruction, and
concept localization.

3.4 Interaction and Reconstruction via LLMs

Our fine-tuned model can understand information embedded within fMRI data and adhere to human
instructions. Interactions and explanations of visual stimuli content occur through natural language.
A typical dialogue format is structured as follows: <human>:[image] [instruction]
<bot>:[answer]. Here, [instruction] denotes a natural language instruction, which during
inference is tokenized and embedded, while [image] acts as a placeholder, replaced by the fMRI
data embedding t. The model then responds based on the directive and the embedded fMRI data.
[answer] represents the response generated by the LLMs.

After instruction-based fine-tuning, the model communicates directly via natural language and
supports visual reconstruction and location identification of concepts expressed in natural language,
as shown in Fig. 3. These are facilitated respectively through Stable UnCLIP [20] for visual
reconstruction and GradCAM [35] for concept localization.
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Figure 3: Demonstration of the model’s capabilities for engaging in multi-round dialogue, complex
reasoning, visual reconstruction, and concept location tasks using fMRI data.

For visual reconstruction, the LLM initially generates a reconstruction prompt ar, which, combined
with the latent representations ẑv and ẑc from the fMRI feature extractor, results in the generation of
an image. This process can be formalized as:

x̂ = D((1− β)ẑv + βσ | ẑc, ar), σ ∈ N (0, 1). (4)

In Eq. 4, D represents the frozen UnCLIP, used for visual reconstruction, where ẑc and ar serve as
conditional information during the denoising process, and ẑv acts as the initial latent representation of
the image. The hyperparameter β is used to introduce noise into the latent space prior, balancing low-
level features brought by the prior and high-level information controlled by the diffusion conditions
during the denoising process. For concept localization in natural language, LLMs activate the
feature extractor using keywords from the instructions, enabling precise location identification of the
discussed concepts.

4 Experiments
4.1 Implementation Details
Dataset and Preprocessing: We utilized the Natural Scenes Dataset (NSD) [16], containing high-
resolution 7Tesla fMRI scans and corresponding visual stimuli from COCO [34]. The dataset involved
eight subjects, but analyses focused on the four (subj01, subj02, subj05 and subj07) who
completed all sessions. Modifications like cropping necessitated re-annotation of images using
BLIP2 [36] for captions and DETR [37] for bounding boxes to maintain consistency. fMRI data
was standardized to dimensions 83 × 104 × 81 using trilinear interpolation and segmented into
14× 14× 14 patches.

Architecture and Training: Our architecture integrates CLIP ViT-L/14 [14] and an Autoen-
coderKL [15] for image feature extraction, aligned with fMRI data processed through a 16-layer
Transformer Encoder [28]. This setup employed two perceptrons (fwc

, fwv
) to align features with

CLIP and VAE, respectively. Training involved a multi-stage approach where the LLM was initially
frozen, followed by a fine-tuning stage for both the LLM and the Transformer Encoder. For visual
reconstructions, the model utilized UnCLIP-2 [20] with β set to 0.93, and concept localization was
achieved using GradCAM [35]. For more details on the dataset and experimental setup, please refer
to Appendices A, B, and C. Additional experimental results can be found in Appendix D.

4.2 Captioning and Question Answering
Tab. 1 shows the performance of our method on multimodal language tasks. With the introduction of
LLMs, we have expanded the task forms to include brain captions, detailed descriptions, and complex
reasoning, as illustrated in Fig. 3. Our approach has demonstrated superior performance on the
majority of metrics for the brain captioning task. Notably, our model can generalize across subjects
without the need to train separate models for each subject or introduce subject-specific parameters.

Given the semantic mismatch between captions and images in the original NSD (Section 3.3), we
reran the experiment using BLIP2 [36]-generated captions as ground truth. The results, shown in
Tab. 1, show significant improvements when evaluated against BLIP2-generated captions, confirming
the effectiveness of our model in the brain captioning task and the reasonableness of the task setting.

Beyond brain captioning, we have incorporated tasks for detailed description and complex reasoning.
Our model also achieved the best performance on these two tasks, suggesting that it can generate
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Table 1: Quantitative analysis of brain captioning, detailed descriptions, and complex reasoning tasks.
Some results are derived from UMBRAE [24]. Results are compared to those from other studies, with
best , second , and third highlighted. Underline indicates the best result under identical conditions,

while ∗ denotes results obtained using BLIP2-generated captions as ground truth.

Method # Models BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE CIDEr SPICE CLIP-S

Brain Caption

SDRecon [9] 4 36.21 17.11 7.72 3.43 10.03 25.13 13.83 5.02 61.07
OneLLM [38] 4 47.04 26.97 15.49 9.51 13.55 35.05 22.99 6.26 54.80

UniBrain [39] 4 − − − − 16.90 22.20 − − −
BrainCap [40] 4 55.96 36.21 22.70 14.51 16.68 40.69 41.30 9.06 64.31

UMBRAE [24] 1 57.84 38.43 25.41 17.17 18.70 42.14 53.87 12.27 66.10

Our Method 1 57.19 37.17 23.78 15.85 18.60 36.67 49.51 12.39 65.49

w/o ViT3D 1 52.91 32.18 15.64 8.49 14.07 23.25 39.64 8.34 56.92

Our Method∗ 1 64.26 51.44 47.70 32.17 20.41 52.61 83.94 18.27 68.72
w/o ViT3D∗ 1 58.87 42.11 29.48 21.39 15.85 38.48 56.37 11.27 64.35

Detail Description

Our Method 1 38.91 24.02 15.24 12.41 18.44 27.83 42.58 18.41 56.16
w/o ViT3D 1 33.57 18.95 11.09 6.13 15.56 23.80 20.23 16.21 51.47

Complex Reasoning

Our Method 1 65.41 59.61 50.68 36.46 34.46 62.60 217.83 60.29 80.96
w/o ViT3D 1 60.36 47.81 39.76 30.57 24.37 45.39 150.67 52.13 73.26

not only simple captions but also detailed descriptions and perform complex reasoning. The model’s
performance increases on complex reasoning tasks, possibly due to the richer semantic information
in the questions, which our model captures more effectively. An ablation study was also conducted,
revealing a noticeable performance drop in multimodal language tasks when the structural-preserving
features of fMRI data were not extracted using ViT3D. Instead, the fMRI data were flattened and
patched, similar to methods used in other literature, while maintaining the same fMRI feature extractor
structure. This underlines the effectiveness of ViT3D and the capability of our model in multimodal
tasks.

4.3 Visual Reconstruction
While our primary objective extends beyond mere visual decoding from fMRI data, visual recon-
struction offers a tangible demonstration of a model’s comprehension of fMRI data. Therefore, we
conducted visual reconstruction experiments and compared our results with those from other studies.
The quantitative evaluation highlights our method’s proficiency.

Tab. 2 showcases that our model competes with or surpasses traditional subject-specific frameworks
on several metrics. Notably, it excels in high-level feature matching, demonstrating the model’s
ability to effectively leverage LLMs for interpreting complex visual data. The robust performance
across various visual stimuli confirms our model’s comprehensive understanding of fMRI data.
Experiments without key components like LLM and VAE features highlight the significance of each
element in our method, which is crucial for achieving state-of-the-art results. Moreover, we have
conducted single-trial experiments, opting to use only the first visual stimulus, similar to the approach
of MindEye [6], rather than averaging signals from three identical stimuli, which typically escalates
data collection costs. Even under these more stringent conditions, our model shows only a slight
decrease in performance, enhancing its feasibility for practical applications. Visual reconstruction
examples are provided in Fig. 4, illustrating the effectiveness of our approach.

The balance between noise introduction and feature preservation in fMRI data visual reconstruction is
governed by the hyperparameter β. Fig. 5 presents a detailed ablation study on how different β values
impact various metrics. Fig. 5(a) shows that Pixel Correlation (PixCorr) peaks at intermediate β
values, indicating the optimal balance between injected noise and retained prior. The integration of the
LLMs does not significantly influence low-level feature capture. In Fig. 5(b), increasing β enhances
CLIP accuracy, with LLM integration having a substantial effect on capturing high-level features.
Fig. 5(c) indicates the features of the 5 th layer of AlexNet, similar to CLIP features, effectively
represent the similarity between reconstructed images and visual stimuli, capturing high-level features
accurately. Additionally, Fig. 5(d) illustrates that both the Structural Similarity Index (SSIM) and
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Table 2: Quantitative evaluation on visual reconstruction. Performance metrics are reported across
different levels of features, with the best , second and third scores highlighted. The underline
indicates the best result under the same conditions. Our method achieves state-of-the-art results using
a single model trained across subjects (# Models = 1).

Method # Models Low-Level High-Level
PixCorr ↑ SSIM ↑ AlexNet(2) ↑ AlexNet(5) ↑ Inception ↑ CLIP ↑ EffNet-B ↓ SwAV ↓

Mind-Reader [21] 4 − − − − 78.2% − − −
Takagi et al [9] 4 − − 83.0% 83.0% 76.0% 77.0% − −
Gu et al [41] 4 .150 .325 − − − − .862 .465

Brain-Diffuser [42] 4 .254 .356 94.2% 96.2% 87.2% 91.5% .775 .423

MindEye [6] 4 .309 .323 94.7% 97.8% 93.8% 94.1% .645 .367

DREAM [11] 4 .288 .338 95.0% 97.5% 94.8% 95.2% .638 .413

MindBridge [25] 1 .151 .263 87.7% 95.5% 92.4% 94.7% .712 .418

UMBRAE [24] 1 .283 .328 93.9% 96.7% 93.4% 94.1% .700 .393

Our Method 1 .265 .357 93.1% 97.1% 96.8% 97.5% .633 .321

w/o LLM 1 .263 .369 92.0% 97.1% 94.2% 96.1% .680 .328
w/o VAE feature 1 .093 .263 84.5% 90.6% 93.6% 95.7% .684 .398
w/o C_Subj 4 .241 .356 88.1% 95.7% 92.1% 95.1% .631 .347
w/o C_Subj & ViT3D 4 .164 .273 86.7% 91.4% 89.3% 91.8% .731 .417

Single Trial

MindEye [6] 4 .255 .308 91.6% 95.9% 91.3% 91.6% .691 .398
Our Method 1 .257 .336 91.2% 96.3% 94.6% 95.3% .671 .324

Visual 
Stimulus

MindEye
(2023)

Brain-Diffuser
(2023)

Takagi et al.
(2023)

DREAM
(2024)

Our Method
MindEye

(2023)
Visual 

Stimulus
Visual 

Stimulus
MindEye

(2023)
Our MethodOur Method

(b) Single Trial(a) All Trials

Figure 4: Visual reconstruction results showcasing the comparison between (a) using the average
signal from all trials and (b) using the first visual stimulus.

CLIP scores benefit from optimally chosen β values, with LLM integration enhancing overall image
quality and semantic accuracy. Appropriately adjusting β helps balance the representation of different
feature levels in the reconstructed images. Fig. 6 provides examples of visual reconstructions at
various β values, demonstrating the model’s enhanced capabilities.

4.4 Concept Localization
To further our understanding of semantic concept localization within brain signals, we capitalized
on the alignment between our fMRI encoder and CLIP features, which were developed during the
training phase. Building on this, we devised a method to localize concepts within brain signals.
Specifically, we first fine-tuned Language Models (LLMs) to extract the target concepts from natural
language. These concepts, once encoded through the CLIP text encoder, served as targets for
GradCAM, which facilitated the localization of the concept within brain signals. To enhance the
precision of our localization, we trained three models with varying patch sizes (14, 12, 10) and
utilized the penultimate layers of all models to extract semantic features. Fig. 7 illustrates the brain
signal localization results for different semantic information, indicating our method’s capacity to
discriminate the positions of various semantics within brain signals for the same visual stimulus.
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(a) (b) (c) (d)

Figure 5: Ablation analysis of the hyperparameter β on visual reconstruction performance.
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Figure 6: Visualization of the impact of β on visual reconstruction.

To validate the efficacy of our method, we conducted an ablation study on the semantic concepts.
After localizing the concepts in the original brain signals, we zeroed out the signals in the identified
voxels and performed feature extraction and visual reconstruction using the modified brain signals.
As depicted in Fig. 8, the removal of neural activity in specific brain regions associated with
certain semantic concepts resulted in the omission of the corresponding semantics in the visual
reconstruction. This substantiates the validity of our concept localization method within brain signals
and demonstrates our approach’s capacity for extracting and modifying semantic information in brain
activity, which is pivotal for comprehending semantic information processing in the brain.

5 Conclusion

Our study has successfully developed and validated a novel brain decoding framework that leverages
the capabilities of Vision Transformer 3D in conjunction with fMRI data, enhanced by the integration
of LLMs. This approach has demonstrated a notable improvement in the reconstruction of visual
stimuli from brain signals, offering a more precise and interpretable understanding of the underlying
neural mechanisms. The experimental results confirmed the robustness of our model in performing
various cognitive tasks, including captioning, question-answering, and visual reconstruction, all
from single-trial fMRI data. By enabling accurate localization of linguistic concepts within the
brain, our work has potential applications in developing brain-computer interfaces and advanced
cognitive modeling. Conclusively, this research contributes to the broader endeavor of decoding and
interpreting brain activity, with significant implications for neuroscience and technology interface
development. The fusion of advanced AI models with neuroimaging opens new avenues for exploring
the intricacies of human cognition and the seamless integration of technology with neural processes.
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Figure 7: Differential heatmaps of neural activity representing various semantic information for the
same visual stimulus.
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Figure 8: Validation of concept localization by semantic signal nullification and its effect on visual
reconstruction.
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A Dataset

A.1 Natural Scenes Dataset

We conducted our experiments on the Natural Scenes Dataset (NSD) [16], which consists of high-
resolution 7Tesla fMRI scans collected from eight healthy adult participants. Our analysis focused
on the four subjects (subj01, subj02, subj05, and subj07) who completed all data collection
sessions. Participants were exposed to thousands of natural scene images from the COCO dataset [34]
during the sessions. However, the NSD required preprocessing to correct temporal resampling for
slice timing differences and spatial interpolation to adjust for head motion and spatial distortion. We
processed the scans in a 1.8-mm native volume space, particularly targeting the "nsdgeneral" region
known for its high sensitivity to visual stimuli. This area, predominantly covering the posterior cortex,
is crucial for targeted analysis of visual processing.

Multi-round Dialogue

Q: <image>\n How many cows are grazing in 
the field?

A: There are about twenty cows Grazing.

Q: Can you describe the positioning of 
the cows?

A: The cows are spread out 
in the field, with some 
cows closer to the trees 
while others are further 
away.

For Reference

Complex Re

Q: <image>\n What is t
doing with the remote 
their posture and the 
environment?

For 

Reference

A: The p
watching
some ele
the remo
they are
cozy set
suggests
leisurel

A person kite boarding in rough 
seas near the shoreline.

There is a laptop computer in a 
room with a couch and a 

bookcase.

A jeep with a dead bird on the 
windshield.

three people riding horses on a 
beach

A bathroom with sink, mirror, 
and lights in it.

the seven sheep are preparing to 
be sheered

A toilet, mirror and sink in a 
toilet

A three car passenger train on 
the train tracks.

Figure 9: Examples of some images and corresponding captions from the NSD dataset. Due to some
image operations such as cropping, there is a mismatch between the original captions and the instance
bounding boxes.

Our testing protocols included using the average response from three trials associated with each
image to enhance reliability, a common practice in recent studies, as well as assessing each response
separately to provide a more challenging and practically relevant test scenario. This approach allowed
us to rigorously evaluate our method under realistic and diverse conditions, ensuring thorough
validation against established benchmarks. Modifications such as cropping when presenting images
to participants led to mismatches between the original captions and instance bounding boxes, as
illustrated in Fig. 9. To ensure data consistency, we re-annotated the cropped images, generating
eight captions for each image using BLIP2 [36].

A.2 Language Extension

To ensure compatibility between fMRI data and Large Language Models (LLMs) and to enable
instruction-following and diversified interactions, we extended the Natural Scenes Dataset (NSD) with
natural language annotations. This extension includes seven types of dialogues: brief descriptions,
detailed descriptions, continuous dialogues, complex reasoning tasks, instruction reconstruction, and
concept localization.

We first generated concise descriptions of the visual stimuli using BLIP2 and integrated these with the
original COCO dataset captions to create brief descriptions of the images. Subsequently, DETR [37]
was employed to generate bounding boxes for these images. We then combined the image captions
and bounding box information as inputs and utilized GPT-3.5-turbo-0125 to generate various
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forms of dialogues. These dialogues were manually adjusted for format and content to ensure
consistency and relevancy. For specifics on the prompts used during generation, please refer to the
supplementary document.

Furthermore, we constructed a multimodal fine-tuning dataset based on the generated dialogues. For
each piece of fMRI data, we created corresponding language extensions. Commands for brief and
detailed descriptions are illustrated in Tab. 3 and 4, respectively. We randomly selected questions
and corresponding answers from these to construct Q&A pairs, enhancing the model’s ability to
engage in meaningful dialogue based on the visual content. For continuous dialogues and complex
reasoning, we used dialogues generated by GPT-3.5-turbo-0125. For instruction reconstruction,
the commands are shown in Tab. 5, which aim to have the model generate detailed descriptions
of visual stimuli using concise expressions. For concept localization, the commands are shown in
Tab. 6, used to extract concepts mentioned in the prompts and visualize the model’s attention using
grad-CAM [35].

• "Describe the image concisely."

• "Provide a brief description of the given image."

• "Offer a succinct explanation of the picture presented."

• "Summarize the visual content of the image."

• "Provide a brief description of the image."

• "Describe the image briefly."

• "Summarize the image."

• "Give a short and clear explanation of the subsequent image."

• "Share a concise interpretation of the image provided.

• "Present a compact description of the photoś key features."

• "Relay a brief, clear account of the picture shown."

• "Render a clear and concise summary of the photo."

• "Write a terse but informative summary of the picture."

• "Create a compact narrative representing the image presented."

Table 3: The list of instructions for brief description.

B fMRI Data Preprocessing

We initially preprocess the fMRI data to ensure consistency. Specifically, we resize the data to
uniform dimensions using trilinear interpolation. The BOLD signal dimensions for subj01 are used
as the standard, set at 83× 104× 81. After applying zero-padding to the edges, we divide the data
into 14× 14× 14 patches to preserve local information. We then employ a mask created from the
union of the “nsdgeneral” regions across all subjects in the NSD dataset, which helps in eliminating
information unrelated to the visual stimuli. This process results in data formatted as N × C, where
N is the number of retained patches, and C represents the size of each patch.

During the training of our feature extractors, we enhance data variability by applying MixUp [43] to
different fMRI responses from the same subject for the same visual stimuli. MixUp coefficients are
generated using a uniform distribution, with the mixing ratio λ ∼ U(0, 1), to blend features from
different trials. This technique aids in developing a robust model by exposing it to interpolated data
points, fostering generalization across varied neural responses.

C Architecture and Training Details

CLIP ViT-L/14 [14] and Autoencoder KL [15] were used as feature extractors for images, aligning
with fMRI data. For the fMRI data, we employed a 16-layer Transformer Encoder [28] with a
hidden size of 768 to extract features, using the class token from the last layer as the output. Two
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• "Describe the following image in detail.",

• "Provide a detailed description of the given image.",

• "Give an elaborate explanation of the image you see.",

• "Share a comprehensive rundown of the presented image.",

• "Offer a detailed description of the image.",

• "Describe the image in detail.",

• "Offer a thorough analysis of the image.",

• "Provide a detailed explanation of the subsequent image.",

• "Explain the various aspects of the image before you.",

• "Clarify the contents of the displayed image with great detail.",

• "Characterize the image using a well-detailed description.",

• "Break down the elements of the image in a detailed manner.",

• "Walk through the important details of the image.",

• "Portray the image with a rich, descriptive narrative.",

• "Narrate the contents of the image with precision.",

• "Analyze the image in a comprehensive and detailed manner.",

• "Illustrate the image through a descriptive explanation.",

• "Explain the image in detail.",

• "Examine the image closely and share its details.",

• "Write an exhaustive depiction of the given image.",

Table 4: The list of instructions for detailed description.

• "Provide the corresponding Stable Diffusion prompts for the image.",

Table 5: The list of instructions for instruction reconstruction.

• "Locating the concept of "<object>",

Table 6: The list of instructions for concept localization.

two-layer perceptrons with a hidden dimension of 1024, fwc
and fwv

, were used to align with CLIP
and VAE features, respectively, with the hyperparameter α set to 1/64. The learning rate was set
to 5 × 10−4, training for 30 epochs. For multimodal interaction, the aforementioned Transformer
Encoder was frozen, using its second-to-last layer’s hidden states as the fMRI token, processed
through a two-layer perceptron fwt , to interact with Llama-3-8B [44]. Training was divided into two
stages: initially, the LLM was frozen, tuning only fwt , and in the second stage, both the LLM and
fwt were fine-tuned simultaneously. The learning rate was set to 2× 10−5, training for one epoch. In
the visual reconstruction phase, the LLM called upon UnCLIP-2 [20] for visual reconstruction, with
the hyperparameter β set to 0.93. For concept location, the LLM first extracted keywords and then
localized them using GradCAM [35], visualizing the results.

All experiments were conducted on a server equipped with 8 NVIDIA A100 GPUs, each with 80 GB
of memory. Training of the feature extractor was performed on a single GPU with a batch size set to
32, and the training duration across subjects was approximately 8 hours. For fine-tuning with LLMs,
all 8 GPUs were utilized. During the phase where only fwt was fine-tuned, the batch size was set
to 32, and the training time was about 4 hours. In the phase where LLMs were unfrozen for joint
fine-tuning, the batch size was adjusted to 24, extending the training time to approximately 36 hours.
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C.1 Metrics for Visual Reconstruction

For evaluating visual decoding performance, we adhere to the established suite of eight metrics,
commonly utilized in the field [41; 6; 11; 9]. The metrics are divided into two categories: low-level
and high-level. Low-level metrics include Pixelwise Correlation (PixCorr) and Structural Similarity
Index Metric (SSIM) [45], as well as AlexNet(2) and AlexNet(5) [46], which measure the fidelity of
reconstructed images against ground truth. High-level metrics comprise Inception [47], CLIP [14],
EfficientNet-B (EffNet-B) [48], and SwAV-ResNet50 (SwAV) [49], which evaluate the semantic
accuracy of the reconstructions.

Following protocols from previous research [11], we downsampled the generated images from a
resolution of 512× 512 to 425× 425, which matches the resolution of ground truth images in the
NSD Dataset. This resolution adjustment was specifically for PixCorr and SSIM evaluations. For
other metrics, the generated images were processed according to the input requirements of each
respective model.

Two-way identification tests were conducted following the methodology of Ozcelik and Van-
Rullen [42]. For each model, we calculated the Pearson correlation between embeddings of the
ground truth image and its reconstruction, as well as between the ground truth image and another
random reconstruction from the test set. A test was marked as correct if the correlation with the
ground truth was higher than with the unrelated reconstruction. Performance for each test sample
was averaged over all possible pairwise comparisons with the other 981 reconstructions to eliminate
any bias from random selection. This resulted in 982 averaged percentage correct outputs, which
were then averaged to derive the final metrics presented in Tab 2.

In addition to the established metrics, we introduced a testing protocol by utilizing only the first fMRI
record for each visual stimulus to construct a single-trial test [6]. This approach presents a more
stringent and practical challenge, reflecting a scenario closer to real-world applications where each
neural response is unique and not averaged over multiple instances.

D More Results

D.1 Visual Reconstruction

Fig. 10 shows some randomly selected visual reconstruction results of different subjects under
the single-trial condition. Consistent with the results in the main article, our method produces
consistent visual reconstruction results across different subjects. This shows that our method has good
generalization performance across different subjects. But there are also some erroneous reconstruction
results.

Table 7: Performance comparison on visual reconstruction tasks when using different LLMs and
different instructions. The underline indicates the best result under the same conditions.

Method Instruction Low-Level High-Level
PixCorr ↑ SSIM ↑ AlexNet(2) ↑ AlexNet(5) ↑ Inception ↑ CLIP ↑ EffNet-B ↓ SwAV ↓

w/o LLM - .263 .369 92.0% 97.1% 94.2% 96.1% .680 .328
w/ Vicuna-13B briefly descriptions .259 .351 91.5% 96.6% 95.1% 96.7% .641 .337
w/ Vicuna-13B instruction reconstruction .257 .361 92.1% 96.9% 96.2% 97.1% .628 .331
w/ Llama-3-8B briefly descriptions .261 .354 92.7% 96.8% 96.4% 97.0% .637 .327
w/ Llama-3-8B instruction reconstruction .265 .357 93.1% 97.1% 96.8% 97.5% .633 .321

Tab. 7 shows the performance comparison of visual reconstruction tasks when using different large
language models (LLMs) and different generation instructions. We compared the two models Vicuna-
13B [50] and Llama-3-8B [44]. The results indicate that our method is compatible with various
LLMs and performs better in visual reconstruction tasks when using more powerful LLMs. When
using Llama-3-8B, the best performance was achieved across the majority of metrics. Additionally,
we explored the impact of different generation instructions on the visual reconstruction task. The
results show that using instructions specifically designed for visual reconstruction can improve the
performance of the visual reconstruction task. We believe this is because these instructions enable the
LLMs to generate more detailed descriptions of visual stimuli, thereby enhancing the performance of
the visual reconstruction task.
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away.
suggests a relaxed and 
leisurely activity.

Visual Stimulus Subj01 Subj02 Subj03 Subj04 Visual Stimulus Subj01 Subj02 Subj03 Subj04

Figure 10: More visual reconstruction results for different subjects under single-trial conditions.

D.2 Language Interaction

We show some examples of multimodal interactions from fMRI data, as shown in Fig. 11. The model
conducted multimodal interactions based on fMRI signals and generated different forms of dialogue,
including brief descriptions, detailed descriptions, and complex reasoning.
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Q: Can you describe the positioning of 
the cows?

A: The cows are spread out 
in the field, with some 
cows closer to the trees 
while others are further 
away.

For Reference

For 

Reference

A: The person is likely 
watching TV or controlling 
some electronic device with 
the remote control. The way 
they are holding it and the 
cozy setting with a blanket 
suggests a relaxed and 
leisurely activity.

For 

Referen

A: A d
sticks
      

mulus

Detailed Description

Q: <image>\n Describe the following image in detail.

A: a group of cows peacefully grazing in a lush green field. Some of the cows are standing in the tall grass, while others are scattered across the grassy 
area. In the background, there are trees adding to the picturesque view. The cows have varying colors, with some being brown and white. The composition of the 
image captures the essence of a calm and natural environment where the cows are free to roam and feed.

Brief Description

Q: <image>\n Describe the image concisely.

A: a herd of cows standing in a field

Complex Reasoning

Q: <image>\n What is the distribution of the cows in the field based on the description and their positions in 
the image.

A: It seems that the cows are spread out across the field rather than clustered closely together. Some cows are 
grazing towards the left side of the field, while others are scattered towards the right side. There is no 
specific pattern to their distribution, indicating a more relaxed grazing behavior rather than a tight grouping.

Detailed Description

Q: <image>\n Describe the following image in detail.

A: a gray cat is peacefully resting under a white blanket on top of a bed. The cat's head is peeking out from underneath the blanket, illuminated by a gentle 
light. The cat seems comfortable and relaxed in its hiding spot. The bed occupies the lower portion of the image, while the cat takes up a significant portion 
of the upper area, creating a contrast between the soft bedding and the furry feline. The overall atmosphere is serene and domestic, with the cat enjoying a 
quiet moment of rest under the covers.

Brief Description

Q: <image>\n Describe the image concisely.

A: A cat is sitting on a wooden bench.

Complex Reasoning

Q: <image>\n Why is the cat positioned in a specific way on the bench?

A: The cat is positioned with its head up and eyes open, lying comfortably on the 
bench.

Detailed Description

Q: <image>\n Describe the following image in detail.

A: a person holding a game controller in their hand. The person is positioned towards the left side of the image. The controller is placed on the right side of 
the person, slightly towards the center. The scene seems to be focused on the interaction between the person and the Wii remote, possibly indicating a gaming 
or entertainment activity. The person's hand holding the controller appears to be in a relaxed position, suggesting a casual setting. The Wii remote is sleek 
and modern in design, contrasting with the person's hand holding it. 

Brief Description

Q: <image>\n Describe the image concisely.

A: a person is holding a remote control in 
their hand

Complex Reasoning

Q: <image>\n What is the person likely doing with the remote control based on their posture and the surrounding 
environment?

A: The person is likely watching TV or controlling some electronic device with the remote 
control. The way they are holding it and the cozy setting with a blanket suggests a relaxed and 
leisurely activity.

Detailed Description

Q: <image>\n Describe the following image in detail.

A: I see a person standing next to a dining table. On the table, there are two donuts placed on a white paper. One of the donuts is 
covered in powdered sugar. The person is holding two more donuts in their hand. Additionally, there is a cup on the table. The scene 
seems to be focused on the delicious treats of donuts and ice cream being enjoyed by the person

Brief Description

Q: <image>\n Describe the image concisely.

A: a man holding a donut and a napkin

Complex Reasoning

Q: <image>\n What is the man in the image holding, and what is his expression like?

A: The man in the image is holding a donut and some napkins. He appears to be 
smiling, possibly indicating a positive expression.

Figure 11: Some examples of multimodal interactions from fMRI data. The images are for reference
only. The model performs multi-modal interaction based on fMRI signals and generates different
forms of dialogue, including brief descriptions, detailed descriptions, and complex reasoning.

D.3 Concept Localization

In the section, we explored the neural correlates of visual stimuli by mapping the captions derived
from the visual content directly onto brain signals. This process involved using GradCAM [35] to
generate heatmaps that visually represent the regions of the brain activated in response to specific
elements of the visual stimuli. These heatmaps provide a compelling visualization of how different
concepts associated with the images are processed across various areas of the brain.

Fig. 12 displays heatmaps that localize the brain activity corresponding to the captions of visual
stimuli. These images are crucial for understanding the distribution and intensity of neural responses
as they relate to the cognitive processing of visual information. By analyzing these heatmaps, we
can infer which areas of the brain are most involved in the interpretation and semantic processing of
the stimuli, providing insights into the underlying mechanisms of visual perception and cognitive
response.

The localization of these concepts within the brain not only aids in validating theoretical models
of brain function but also enhances our understanding of the cognitive processes involved in visual
perception. Such detailed mappings are instrumental in advancing our knowledge of the brain’s
architecture and its functional connectivity in response to complex stimuli.
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Figure 12: Heatmaps illustrating brain regions activated by specific captions derived from visual
stimuli, demonstrating the spatial distribution of neural responses.

E Limitations

While our study introduces several innovative approaches to the decoding of non-invasive brain
recordings and extends the capabilities of visual reconstruction using advanced computational models,
there are several limitations that should be acknowledged:

Generalization across Diverse Populations: Our method was validated primarily using the Natural
Scenes Dataset (NSD), which consists of data from a limited number of subjects. Although we
demonstrate robustness across these subjects, the generalizability of our findings to broader pop-
ulations remains an area for further investigation. Differences in neural anatomy and functional
organization across individuals that are not represented in the NSD could affect the efficacy and
accuracy of our model in wider applications.

Computational Complexity and Resource Requirements: The implementation of our framework,
particularly the integration with Large Language Models (LLMs) and advanced image processing
techniques like ViT3D, requires substantial computational resources. This might restrict the utility of
our approach in environments with limited computational capacity or in real-time applications where
rapid processing is crucial.
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Challenges in Real-World Application:While the single-trial test setting introduced in our study
adds a layer of practical relevance by evaluating model performance in a more realistic scenario, it
also presents challenges. The variability in single-trial fMRI responses, which can be influenced
by numerous uncontrollable factors such as minor head movements or physiological fluctuations,
may lead to inconsistencies in decoding accuracy. This variability emphasizes the need for further
refinement of noise reduction and signal processing techniques.

Ethical Considerations: The development and application of brain decoding technologies raise
ethical questions, particularly concerning privacy and consent. As our methods advance and poten-
tially become capable of decoding more detailed and sensitive information from brain data, ensuring
ethical deployment and the protection of participant data becomes paramount.

These limitations highlight the need for continuous improvement and careful consideration in the
deployment of brain decoding technologies. Addressing these challenges through further research
and development will be crucial for realizing the full potential of non-invasive brain decoding in both
scientific research and clinical applications.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations are discussed in Appendix E.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The manuscript does not contain theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In Appendices A, B and C we describe in detail the settings required to
reproduce the experiment, and for the datasets and key code that will be released with this
manuscript, we have provided it in the supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Code and language extensions for the NSD dataset are provided in the supple-
mentary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Detailed training details and evaluation metrics are provided in Appendices B
and C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The results of the manuscript do not include error bars, mainly for the following
reasons: 1. In order to make a fair comparison with other methods, other literature in this
field does not report error bars. 2. Multiple experiments involving LLMs are computationally
expensive. 3. The results of this manuscript have been verified on different subjects, and the
results are consistent.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Detailed hardware facilities and computational overhead are provided in
Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This manuscript does not involve direct human subjects; all data used are from
publicly available datasets that comply with the ethical standards of NIPS.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Detailed social impact is discussed in the Conclusion and Appendix E.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: There is no relevant risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We do cite all the existing assets in our paper as well as in our codebase.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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