
A More discussions.

A.1 Different attention weight distribution requirements.

We measured the distributions of the attention weights for content and position update in our cross
attention, as visualized in Fig. 5, the distributions of these two groups of attention weights show a
significant difference, indicating that the attention weights required by content and position update
are different. This can also verify the importance of our weight disentangle design in APU.

Figure 5: Attention weight distributions for feature and position updating in our cross attention.

A.2 Removing of cost-volume makes framework lightweight.

As shown in Table. 5, TAPTRv2 exhibits a faster speed and lower resource requirements compared to
TAPTR. More importantly, it’s a common case that in the downstream tasks, we need to track all
pixels in a region (e.g. tracking a text written on the back of a horse) rather than just a few scattered
points. In this case, the number of points to be tracked will reach tens of thousands. However,
since the computation of the cost-volume and also the cost-volume aggregation operation in TAPTR
increases sharply with the number of tracking points, with the number of tracking points increased, the
advantage of TAPTRv2 will become more and more pronounced. As shown in the right table, when
the number of tracking points reaches 5000 (which is only 1.9% of the pixels in a 512x512 image),
the advantage of TAPTRv2 in speed and resource consumption becomes much more significant
(about 24% faster and 20% fewer computational resource requirements).

800 Points FPS GFLOPS #Param

TAPTR 65.9 147.2 39.2M
TAPTRv2 69.1 143.4 38.2M

5000 Points FPS GFLOPS #Param

TAPTR 11.8 426.8 39.2M
TAPTRv2 14.6 354.2 38.2M

Table 5: Comparison of resource requirements between TAPTR and TAPTRv2. We evaluate TAPTR
and TAPTRv2 on A100 GPU (80G), and the computational cost (GFLOPS) is calculated following
detectron2.

B More Visualizations

B.1 Application of TAPTRv2 in Video Editing
Here we show the results of the video editing using TAPTRv2. After the users plot on one frame to
specify the region to be edited, we sample points in the editing area and track these points across the
whole video. For more details please refer to the videos in our supplementary material.

Fig. 6 (a) not only shows the ability of video editing but also the potential of TAPTRv2 in applying in
3D reconstruction.

Fig. 6 (b) shows that TAPTRv2 can handle the color change during the tracking. More importantly,
although the editing area is cluttered in the middle of the video TAPTRv2 can robustly continue
tracking the editing area when it reappears again.

Fig. 6 (c) shows that TAPTRv2 has the ability to handle the changing of scale.

B.2 Application of TAPTRv2 in Trajectory Estimation
In Fig. 7 we show the results of the trajectory estimation using TAPTRv2. After the users click on
one frame to specify the points to be tracked, TAPTRv2 will keep tracking these points across the
whole video to construct their trajectory.
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https://github.com/facebookresearch/detectron2/blob/master/detectron2/utils/analysis.py


A user plot circle regions on 
cars, and track the regions 

throughout the video.

A user write “tiger” on 
image, and track “tiger” 

throughout the video.
(a)

A user write “o” on 
chameleon, and track “o” 

throughout the video.
(b)

(c)

Figure 6: Apply TAPTRv2 in Video Editing. The color of the editing area changes over time.
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(c)

A user click points on  the 
“car”, and track points 
throughout the video.

A user click points on 
“fighers”, and track points 

throughout the video.
(a)

A user click points on the 
“horse”, and track points 

throughout the video.

(b)

Figure 7: Apply TAPTRv2 in Trajectory Estimation.
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