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Abstract

Heatmap regression has dominated human pose estimation due to its superior
performance and strong generalization. To meet the requirements of traditional
explicit neural networks for output form, existing heatmap-based methods discretize
the originally continuous heatmap representation into 2D pixel arrays, which leads
to performance degradation due to the introduction of quantization errors. This
problem is significantly exacerbated as the size of the input image decreases, which
makes heatmap-based methods not much better than coordinate regression on
low-resolution images. In this paper, we propose a novel neural representation for
human pose estimation called NerPE to achieve continuous heatmap regression.
Given any position within the image range, NerPE regresses the corresponding
confidence scores for body joints according to the surrounding image features,
which guarantees continuity in space and confidence during training. Thanks to
the decoupling from spatial resolution, NerPE can output the predicted heatmaps
at arbitrary resolution during inference without retraining, which easily achieves
sub-pixel localization precision. To reduce the computational cost, we design
progressive coordinate decoding to cooperate with continuous heatmap regression,
in which localization no longer requires the complete generation of high-resolution
heatmaps. The code is available at https://github.com/hushengxiang/NerPE.

1 Introduction

Human pose estimation (HPE) is a fundamental task in the field of computer vision, which is widely
used in various human-centered applications [41, 29, 37, 9, 55, 53]. In multi-person pose estimation,
the top-down framework is a mainstream two-stage pipeline, in which the person areas are firstly
cropped out and then the body joints within them are located. According to the way to describe the
positions of body joints, pose estimation methods can be further divided into coordinate regression
[44, 43, 20, 22, 28] and heatmap regression [31, 48, 42, 24, 52]. Due to better performance brought
by spatial encoding of heatmap representation, heatmap regression has received more attention than
coordinate regression. Recently, most heatmap-based methods [11, 51, 50] focus on the design of
network structure but ignore the importance of heatmap generation. Only a few works [26, 23] have
noticed the irrationality in the standard heatmap representation widely used in existing methods.

In the top-down framework, the ground-truth coordinates of body joints in the original image are
mapped to the input plane of a keypoint detector, through the same affine transformation applied to
the cropped image patch. To supervise the output of traditional explicit neural networks, the current
heatmap generation strategy yields 2D pixel arrays to reflect the spatial distribution of body joints,
which means that the originally continuous heatmap representation needs to be discretized as shown
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Figure 1: Comparison of discrete and continuous heatmap representations. In heatmap-based
methods, the Gaussian function is discretized to satisfy the form of 2D pixel arrays. As the resolution
decreases, the impact of quantization errors on positioning accuracy increases significantly. In
contrast, NerPE can regress confidence scores at any position via implicit neural representation.

in Fig. 1. Specifically, the center of the Gaussian kernel is placed at body joints to calculate the
confidence scores on the grid points as the ground-truth heatmaps. Although this discrete heatmap
representation has achieved great success, it introduces quantization errors since body joints after
affine transformation may fall anywhere within the image range rather than just at these fixed grid
points. For the output of explicit neural networks, the information loss caused by spatial sampling is
difficult to compensate through post-processing operations [31, 54]. With the reduction of the input
resolution, this problem will be further exacerbated, which makes the performance of heatmap-based
methods degraded even worse than some methods based on coordinate regression. Considering that
the Gaussian function used for heatmap generation is inherently continuous, it is a natural idea to
learn a continuous heatmap representation to replace fixed spatial sampling for HPE.

Implicit neural representations (INRs) are proposed to parameterize a variety of continuous signals
[30, 8, 7, 47, 39, 46] in computer vision. Unlike explicit neural networks that output specific
structures (e.g., mesh, sequence), INRs map an index to its corresponding value, enabling not only
continuous representations but also greater flexibility in use. Obviously, by combining INR and
heatmap regression, the pose estimation model is able to learn continuous confidence scores for all
body joints at any position. Compared to the discrete heatmap representation with a fixed resolution,
the introduction of INR avoids the invariant spatial sampling caused by discretization during training
and can yield the predicted heatmaps at arbitrary resolution during testing.

In this paper, to improve the performance of heatmap-based HPE, we abandon the main culprit of
quantization errors, namely discrete heatmap representation. Instead, we propose NerPE to achieve
continuous heatmap regression through a novel neural representation. Specifically, we generalize the
upsampling factor in discrete sub-pixel convolution [38] to infinity to obtain a continuous upsampling
function with respect to 2D coordinate. NerPE learns its continuous heatmap representation at a
series of queried positions that are randomly sampled within the image range. For any position,
the target likelihood at it is calculated from the target 2D pose and its absolute coordinate, and the
estimated likelihood at it is inferred from the local feature vector and its relative coordinate. Since
confidence scores are learned at all positions within the image range during training, our method
achieves better performance than discrete heatmap-based methods that focus only on fixed grid points.
As the resolution of the input image decreases, the superiority of continuous heatmap representation
over existing methods becomes more prominent.

Limited by the explicit neural representation of existing methods, the heatmap resolution for a given
image cannot be changed once the network structure is determined. In contrast, another benefit that
INR brings to heatmap regression is that the heatmap resolution is no longer correlated with the image
resolution. This means that our method can flexibly generate the predicted heatmaps with different
resolutions based on accuracy requirements without retraining. To speed up the inference when
high-resolution heatmaps are required, we design a progressive coordinate decoding method. Thanks
to the decoupling of INR and spatial resolution, NerPE enables high-precision localization without
the need to calculate the complete heatmaps. Specifically, low-resolution heatmaps are first output
to determine the approximate locations of body joints. Subsequently, the area near the maximal
activation is further retrieved in an iterative manner. Notably, our method can be easily integrated
into most heatmap-based methods. The contributions are summarized as follows:
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• We propose NerPE to avoid the introduction of quantization errors during training and to
output the predicted heatmaps at arbitrary resolution during inference. To our knowledge,
we are the first to apply implicit neural representations to human pose estimation.

• We design a progressive coordinate decoding method to derive the coordinates of body
joints from continuous heatmap representation, in which our method achieves high-precision
localization with low computational cost through coarse-to-fine retrieval.

• We conduct extensive experiments on three pose estimation benchmarks: COCO [25], MPII
[1], and CrowdPose [21]. The results show that NerPE significantly enhances existing
heatmap-based methods and obtains superior performance on low-resolution input images.

2 Related Work

2.1 Human Pose Estimation

2D human pose estimation (HPE) aims to locate a series of anatomical keypoints to represent the
human pose in the input image. Currently, coordinate regression [3, 22, 28] and heatmap regression
[17, 45, 12] are the two main pose estimation paradigms, both of which have received widespread
attention. Coordinate regression, also known as direct regression, relies on deep neural networks to
explore the mapping between the input image and the coordinates of body joints. The high degree of
nonlinearity is difficult for optimization, which makes coordinate regression not perform well enough.
As for heatmap regression, HPE is converted into a combination of multi-label keypoint classification
and coordinate decoding post-processing. Benefiting from dense prediction, heatmap-based methods
not only easily exploit visual cues around the target position, but also take the ambiguity of keypoint
localization into account. This is why heatmap-based methods are generally superior to those based
on coordinate regression. Although heatmap-based methods have made steady progress, quantization
errors are still a troubling problem, which is what our work is dedicated to solving.

2.2 Discrete Heatmap Regression

To be clear at first, the cause of quantization errors is discretization, not the introduction of heatmap
representations this behavior itself. As far as we know, existing heatmap-based methods [48, 42, 24,
52] all belong to discrete heatmap regression, using 2D pixel arrays to describe the spatial distribution
of body joints. There are a few works that attempt to compensate for the damage to performance
caused by quantization errors. In [31], the coordinates of body joints are empirically determined
as the position of moving a 0.25 pixel from the maximal to second maximal activation. DARK
[54] implements Taylor series approximation for heatmap activation to locate body joints based on
distribution information. Although these post-processing operations achieve sub-pixel localization
precision, subjective assumptions make the inference not so reliable, especially in low-resolution
cases. Instead of remedying the shortcomings of discrete heatmap representation, we propose
continuous heatmap regression to preserve the continuity of ground-truth heatmaps.

2.3 Implicit Neural Representation

In response to the need to model continuous signals, implicit neural representations (INRs) aim to
learn a neural function that predicts the corresponding value according to a given index. Encouraged
by the success in 3D reconstruction [14, 32, 4] and generation [6, 33, 49], INR has been extended
to some other tasks, including super-resolution [8, 10, 13], image generation [40, 5, 2], and video
compression [7, 15, 27]. In the paper, to avoid the damage of discretization to heatmap regression,
we approximate the continuous Gaussian function by multi-layer perceptrons (MLPs). Given a
coordinate within the image range, NerPE is designed to regress the confidence scores of all body
joints at that position, in which the heatmap representation is free from the constraints of 2D pixel
arrays [11, 51, 50]. As a result, NerPE has the ability to output the predicted heatmaps at arbitrary
resolution during inference. In terms of eliminating quantization errors, offset prediction [34, 19] has
the same goal as our work, and it aims to perform unbiased estimation for the coordinates of body
joints. However, the performance of offset prediction is still affected by the resolution of the distance
field. There is complementarity between the two techniques in HPE: offset prediction helps achieve
more advanced decoding, and INR makes the distance field continuous. In order to highlight the
superiority of INR, we only regress confidence scores in this paper.
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3 Proposed Method

In this section, we first discuss the hazards of discrete heatmap representation and the limitations of
existing post-processing operations. Then, we introduce a novel Neural representation for human
Pose Estimation (NerPE) and illustrate the superiority of continuous heatmap regression.

3.1 Preliminary of Heatmap Representation

Given an input image I ∈ R3×HI×WI , heatmap-based models output 2D pixel arrays H of size
K × HI

4 × WI

4 to reflect the spatial distribution of K body joints. To conform the output form of
explicit neural networks, the continuous Gaussian function is discretized in the heatmap generation
process, which leads to the introduction of quantization errors and the reduction of positioning
accuracy. Currently, there are two post-processing operations [31, 54] that are widely used to mitigate
the negative effects of discretization.

The standard coordinate decoding method [31] is designed entirely according to experience. Based
on the analysis of the model’s performance, the position p at which the maximal activation H(cm)
moves a 0.25 pixel towards the second maximum H(cs) is taken as the final coordinate:

p = cm + 0.25 · cs − cm
∥cs − cm∥2

. (1)

The distribution-aware decoding method [54] assumes that the predicted heatmaps still conform to
the Gaussian distribution. The Taylor series expansion to the quadratic term is implemented at the
position cm of the maximal activation as:

H(µ) = H(cm) +H ′(cm)(µ− cm) +
1

2
(µ− cm)TH ′′(cm)(µ− cm), (2)

where H ′(·) and H ′′(·) respectively denote the first and second order derivatives of the Gaussian
distribution close to the predicted heatmaps. The position p of each body joint is determined by the
Gaussian mean µ = cm − (H ′′(cm))−1H ′(cm).

To achieve sub-pixel localization precision against quantization errors, the above post-processing
operations impose subjective assumptions in coordinate decoding. Compared with the limited
improvements brought by the above passive compensations, the most direct way to solve quantization
errors is to abandon the explicit neural network and learn a continuous heatmap representation.

3.2 Reformulation in a Continuous Form

From a structural and functional perspective, general pose estimation models consist of an encoder
and a decoder (also called “head” in some works). To reduce the computational cost and increase the
receptive field, the image features are downsampled in the encoder. Correspondingly, the decoder
increases the output resolution by including upsampling layers such as interpolation, deconvolution
or sub-pixel convolution [38]. However, once the network structure is determined, the decoder in
existing methods makes the model only output the predicted heatmaps with a fixed resolution. Starting
from sub-pixel convolution, we derive its continuous version via implicit neural representation (INR),
known as a continuous upsampling function.

Using sub-pixel convolution as the final layer, the image features Z of size C×HZ×WZ are mapped
into higher resolution heatmaps H of size K × rHZ × rWZ with an upscaling factor r:

H = PS(W ∗ Z + b), (3)

where PS denotes a PixelShuffle operation used to reshape each element along the feature dimension
into small 2D pixel arrays (called a cell) corresponding to body joints. According to the spatial prior,
the weight W and bias b in Eq. (3) are further expressed as:

W = Concat(

W1,1 · · · W1,r

...
. . .

...
Wr,1 · · · Wr,r

), b = Concat(

b1,1 · · · b1,r
...

. . .
...

br,1 · · · br,r

), (4)

where the order of concatenation corresponds to the order of expansion in the PixelShuffle operation.
These sub-weights Wi,j and sub-biases bi,j can be viewed as the outputs of functions fW (i, j) and
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Figure 2: Overview of NerPE. The network structure consists of a general image encoder and an
MLP-based decoder. During training, we use random or uniform sampling to pick queried positions,
and calculate their confidence scores via continuous heatmap generation. During testing, we can
obtain the predicted heatmaps at arbitrary resolution by standard and progressive coordinate decoding.

fb(i, j) with a 2D index as argument. We use z∗ to refer to each element in the image features Z,
called a local feature vector. The confidence scores at (i, j) relative to z∗ is given by:

Hz∗(i, j) = fW (i, j) ∗ z∗ + fb(i, j) = fθ(z
∗, (i, j)). (5)

In order to ensure the consistency in description of sub-pixel convolution with different upscaling
factors, we normalize the 2D index array composed of integers in {1, 2, . . . , r} into [−1, 1]:[

i′

j′

1

]
=

 2
r 0 0
0 2

r 0
0 0 1

1 0 − r+1
2

0 1 − r+1
2

0 0 1

[
i
j
1

]
. (6)

As r increases, the spatial sampling of [−1, 1]× [−1, 1] becomes denser. When r approaches ∞, the
discrete grid points become a continuous region covering all resolutions. Therefore, we obtain the
expression for the continuous version of sub-pixel convolution Hz∗(crel) = fθ(z

∗, crel), and further
replace the relative coordinate crel with the absolute coordinate cabs to get:

H(cabs) = fθ

(
z∗,

cabs − cz∗

scell/2

)
, (7)

where cz∗ is the center coordinate of cell Hz∗ , and scell is the window size of cell Hz∗ . Starting
from sub-pixel convolution, the conclusion drawn is similar to the local implicit image function in
[8] except for the additional normalization step. In terms of network architecture, we only replace the
last few layers in existing heatmap-based models with our continuous upsampling function, which
fundamentally solves the problem of discretization in training.

3.3 Learning Continuous Heatmap Regression

Obviously, the discrete heatmap representation is a subcase of the proposed NerPE, where only
several fixed positions (i.e., grid points) within the image range are trained and predicted. Thanks
to the decoupling of heatmap representation and spatial resolution, NerPE can comprehensively fit
Gaussian or Laplace functions. The design of our method involves three aspects: continuous heatmap
generation, uniform position sampling, and progressive coordinate decoding.

Continuous heatmap generation. Since the output of the network is no longer 2D pixel arrays like
existing methods, we need to calculate the ground-truth confidence scores for those positions being
queried. In our method, the continuous heatmap representations based on Gaussian and Laplace
distributions respectively are expressed relative to cabs as:

Hgt
gau(cabs) = e−

(cabs−cgt)
2

2σ2 and Hgt
lap(cabs) = e−

|cabs−cgt|
b , (8)

where cgt is the ground-truth coordinates of body joints. Since the queried position can be anywhere
in the image range, the ground-truth heatmaps are continuous in space and confidence. The loss
function of continuous heatmap regression is:

L = ∥H(cabs)−Hgt(cabs)∥
2

2. (9)
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Uniform position sampling. For heatmap learning based on INR, the selection of queried positions
for training is critical to the model performance. On the one hand, in order to fully take care of the
entire heatmap plane, the sampling of queried positions during training should be evenly distributed
over the image range. Thus, we divide each cell uniformly into

√
NZ ×

√
NZ regions and perform

random sampling within them, as shown in Fig. 2(b). In each training sample, NZ × HZ × WZ

positions are picked out and their ground-truth confidence scores are calculated for supervision.

On the other hand, INR acts as a parameterized continuous function, which expects that spatially close
positions should have similar confidence scores. Inside each cell, this is easy to implement for deep
neural networks. However, at the junctions between cells, the difference of local feature vectors z∗ and
the mutation of relative coordinates crel make the network tend to produce discontinuous predictions.
To solve this problem, we adopt the local ensemble in [8] to perform bilinear interpolation, where the
sampling range is expanded to achieve overlapping.

Progressive coordinate decoding. The design of heatmap representation has been well discussed
above, and more importantly, it ultimately serves keypoint localization. In order to decode the
coordinates of body joints through argmax, a straightforward way is to arrange the candidate points
within the cells at a specific density, so that NerPE can output the predicted heatmaps with the
corresponding upsampling factor r ≥ 1:

H
(n)
cell = fθ(z

(n), Cr×r), (10)

where H(n)
cell is the distribution of body joints in the n-th cell of the input image, and Cr×r is a relative

coordinate matrix to indicate the candidate points. When the heatmap resolution is high enough,
argmax is sufficient to deal with quantization errors without extra post-processing operations.

In existing methods, the likelihood of body joints at each position is derived simultaneously by an
explicit neural network, which means there is no choice but to output the entire predicted heatmaps.
In contrast, NerPE can estimate confidence scores based on 2D coordinates in a serial manner thanks
to the decoupling of INR from spatial resolution. We propose progressive coordinate decoding to
reduce the computational cost by evading the complete generation of predicted heatmaps when the
heatmap resolution is high, as shown in Fig. 2(d). Specifically, we first generate the low-resolution
heatmaps to estimate the approximate locations of body joints. Then, the area near the maximal
activation is iteratively sub-divided for coarse-to-fine retrieval. This decoding method only needs to
calculate additional t ×K × (r + po) × (r + po) positions to achieve an equivalent resolution of
rtHZ × rtWZ , where t is the number of iterations and po is the number of pixels overlapped.

4 Experiments

In this section, we compare the performance of NerPE and discrete heatmap-based methods on input
images of different resolutions. The experimental results show the superiority of continuous heatmap
regression and the hazards of discrete heatmap representation, especially in the case of low resolution.

4.1 Implementation Details

Network architecture. We adopt ResNet [16], HRNet [42] or TokenPose [24] as the backbone
network, and resize the extracted image features to 8 × 8. The focus of this work is to provide a
new perspective on heatmap regression through implicit neural representation (INR) rather than
pursuing extreme performance. For clarity, we use a pure MLP structure as a decoder to implement
continuous heatmap regression. Queried position embeddings, derived from 2D coordinates and their
sinusoidal encodings, are concatenated with local feature vectors and then fed into the decoder. In
each cell corresponding to a local feature vector, we collect NZ = 64 queried positions as training
subjects. For continuous heatmap generation, σ in the Gaussian function is set to 0.06, which is
close in proportion to the discrete heatmap representation. When not explicitly stated, the size of the
predicted heatmaps is 256 × 256 by default. NerPE no longer needs those empirical operations to
align flipped heatmaps [48] and shift decoded coordinates [31].

Optimization. In the main experimental results, the training settings of NerPE is consistent with the
comparison methods [48, 42, 24] based on discrete heatmap regression. We use the Adam optimizer
[18] for training, in which the learning rate is initialized to 1e− 3 and decreased to 1e− 4 and 1e− 5.
The data augmentation used includes random rotation, random scale, image flipping, and half body
cropping. All our experiments are conducted on an open-source machine learning, PyTorch [35].
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Table 1: Comparisons on the COCO validation set. We report the performance of existing discrete
methods and continuous NerPE at different input resolutions. OR/IR: the ratio of output resolution to
input resolution. SimBa: SimpleBaseline. The best results are marked in bold.

Input size Method OR/IR Params AP AR
R

es
N

et
-5

0
[1

6]

64 × 64
SimBa [48] 1/4 34.0M 34.4 43.7
SimCC [23] 3/1 24.7M 39.3 48.4
Ours 4/1 29.6M 40.8 (↑1.5) 49.5 (↑1.1)

128 × 128
SimBa [48] 1/4 34.0M 60.3 67.6
SimCC [23] 3/1 25.0M 62.6 69.5
Ours 2/1 29.0M 63.3 (↑0.7) 70.1 (↑0.6)

256 × 192
SimBa [48] 1/4 34.0M 70.4 76.3
SimCC [23] 2/1 25.7M 70.8 76.8
Ours 1/1 28.4M 71.0 (↑0.2) 77.0 (↑0.2)

H
R

N
et

-W
48

[4
2] 64 × 64

HRNet [42] 1/4 63.6M 48.5 57.8
SimCC [23] 3/1 63.7M 59.7 67.5
Ours 4/1 63.9M 62.5 (↑2.8) 70.0 (↑2.5)

128 × 128
HRNet [42] 1/4 63.6M 68.9 75.3
SimCC [23] 2/1 64.1M 72.0 77.9
Ours 2/1 64.4M 73.1 (↑1.1) 78.8 (↑0.9)

256 × 192
HRNet [42] 1/4 63.6M 75.1 80.4
SimCC [23] 2/1 66.3M 75.9 81.2
Ours 1/1 65.0M 76.1 (↑0.2) 81.3 (↑0.1)

To
ke

nP
os

e-
S

[2
4] 64 × 64

DARK [54] 1/4 4.9M 57.1 64.8
SimCC [23] − 4.9M 62.8 70.1
Ours 4/1 5.4M 64.4 (↑1.6) 71.6 (↑1.5)

128 × 128
DARK [54] 1/4 5.2M 65.4 71.6
SimCC [23] − 5.1M 70.4 76.4
Ours 2/1 5.5M 71.8 (↑1.4) 77.7 (↑1.3)

256 × 192
DARK [54] 1/4 6.6M 72.5 78.0
SimCC [23] − 5.5M 73.6 78.9
Ours 1/1 6.5M 73.9 (↑0.3) 79.1 (↑0.2)

Table 2: Comparisons on the COCO test-dev set. † indicates the ground-truth confidence scores of
body joints calculated by the Laplace function in continuous heatmap generation.

Method Backbone Input size Params AP AP50 AP75 APM APL AR
SimBa [48] ResNet-152 384 × 288 68.6M 73.7 91.9 81.1 70.3 80.0 79.0
HRNet [42] HRNet-W48 384 × 288 63.6M 75.5 92.5 83.3 71.9 81.5 80.5
TokenPose [24] HRNet-W48 256 × 192 27.5M 75.1 92.1 82.5 71.7 81.1 80.2
SimCC [23] HRNet-W48 384 × 288 − 76.0 92.4 83.5 72.5 81.9 81.1
Ours† HRNet-W48 256 × 192 65.0M 75.6 92.5 83.4 72.0 81.6 80.6
Ours HRNet-W48 384 × 288 65.0M 76.2 92.6 83.6 72.8 82.0 81.2

4.2 Main Experimental results

Evaluation on COCO. To evaluate the value of continuous heatmap representation for human pose
estimation (HPE), we perform NerPE with three backbones [16, 42, 24] at three input resolutions
on the COCO validation set, as shown in Table 1. The experimental results show that our method
achieves better performance, and the superiority over discrete heatmap-based methods increases as the
input resolution decreases. Thanks to INR’s modeling of continuous signals, NerPE can still output
fine and smooth heatmaps of body joints even with a low-resolution image as input. In contrast, the
discrete heatmap representation resorts to manually designed decoding methods [31, 54] to achieve
sub-pixel accuracy, which suffers from significant performance degradation when quantization errors
are too large. The comparison results on the COCO test-dev set are given in Table 2. These suggest
that the accuracy and flexibility of the model are greatly improved by only replacing the last few
layers in the existing heatmap-based methods with the INR-based MLP.
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Table 3: Comparisons on the MPII dataset. The input resolution is 128 × 128 and the backbone is
HRNet-W32. As a more stringent metric, PCKh@0.1 has higher requirements for localization.

Method Hea Sho Elb Wri Hip Kne Ank PCKh@0.5 PCKh@0.1
HRNet [42] 96.6 94.7 87.3 81.7 86.4 82.3 78.0 87.3 26.5
DARK [54] 96.6 94.5 87.7 82.2 87.2 82.8 78.4 87.6 29.6
SimCC [23] 96.6 94.6 87.5 81.3 86.8 82.5 78.2 87.4 32.6
Ours† 96.6 94.7 87.6 81.7 87.5 82.7 78.4 87.6 33.9
Ours 96.7 94.8 87.7 81.7 87.6 82.8 78.5 87.7 34.6

Table 4: Comparisons on the CrowdPose dataset. For the same backbone HRNet-W32, the impact
of heatmap representation is given in the standard (256 × 192) and low-resolution (64 × 64) cases.

Input size Method Continuity AP AP50 AP75 APE APM APH

64 × 64
HRNet [42] × 42.4 69.6 45.5 51.2 43.1 31.8
SimCC [23] × 46.5 70.9 50.0 56.0 47.5 34.7
Ours ✓ 47.4 71.3 51.6 56.6 48.3 35.5

256 × 192
HRNet [42] × 66.4 81.1 71.5 74.0 67.4 55.6
SimCC [23] × 66.7 82.1 72.0 74.1 67.8 56.2
Ours ✓ 66.9 82.1 72.6 74.2 68.0 56.4

Evaluation on MPII. We compare our NerPE with representative discrete heatmap-based methods
[42, 54, 23] on the MPII dataset, as shown in Table 3. At the input size of 128 × 128, our method
achieves better performance based on the same backbone HRNet-W32. The higher scores obtained
on PCKh@0.1 indicate that NerPE’s positioning of body joints is closer to the ground truth.

Evaluation on CrowdPose. To evaluate the performance in crowded scenes, we test NerPE on the
CrowdPose dataset (see Table 4), in which YoloV3 [36] is adopted as the human detector. At the input
size of 256 × 192, our method achieves superior performance with 66.9 AP. Thanks to the learned
continuous heatmap representation, NerPE delivers performance gains on AP75, a more stringent
metric. For the low-resolution case, the experimental results show that NerPE brings an improvement
of 6.1 AP to HRNet and further expands its lead over discrete heatmap-based methods.
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Figure 3: Comparison of computational cost (left) and
accuracy (right) at different heatmap resolutions.

Progressive coordinate decoding. In the
proposed NerPE, the heatmap resolution is
not dependent on the input resolution with
the help of INR. Therefore, our method can
flexibly increase the heatmap resolution to
reduce quantization errors during inference.
The standard NerPE directly outputs the
complete predicted heatmaps for keypoint
localization, which will bring a large amount
of calculation when the heatmap resolution
is high. To solve this problem, we propose
the progressive coordinate decoding method and denote the corresponding version as NerPE-p.
Specifically, NerPE-p first yields coarse heatmaps of size 32 × 32. Then, we iteratively divide the area
near the maximal activation into 4 × 4 and set po to 2. Given inputs of size 128 × 128 from MPII, the
comparison results of NerPE and NerPE-p are given in Fig. 3. As the heatmap resolution increases,
the positioning accuracy is indeed improved but has a diminishing marginal effect. Compared with
the standard NerPE, the use of our progressive coordinate decoding trades negligible performance
degradation for a large reduction in computational cost.

4.3 Ablation Study

Sample selection of INR. In NerPE, we let the INR-related network learn the continuous heatmap
representation covering the entire image through uniform position sampling. We perform ablations
on the sampling modes (w/ and w/o uniform) and evaluate the impact of two hyper-parameters:
the division of cells HZ ×WZ (see Table 5) and the number of samples per cell NZ (see Table 6).
The experimental results based on ResNet-50 at the input size of 128 × 128 show that the model
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Table 5: Ablation study on different divisions
of cells. The number of samples per cell is set to
64 on MPII (PCKh@0.5), using ResNet-50.

Sampling division of cells HZ ×WZ

2 × 2 4 × 4 8 × 8
w/o uniform 75.28 80.83 82.54
w/ uniform 76.03 81.42 82.65

Table 6: Ablation study on different number
of samples per cell. The division of cells is set
to 8 × 8 on MPII (PCKh@0.5), using ResNet-50.

Sampling num_sample per cell NZ

4 16 64
w/o uniform 80.98 82.13 82.54
w/ uniform 81.45 82.49 82.65

Table 7: Ablation study on scale parameters for continuous heatmap generation. Experiments
are performed on CrowdPose with input resolutions of 128 × 128. The backbone is HRNet-W32.

Scale parameter AP AP50 AP75 APE APM APH

σ
0.08 59.1 78.1 64.5 68.9 60.4 46.5
0.06 60.1 79.1 65.4 70.0 61.3 47.6
0.04 59.5 79.1 64.6 69.1 60.6 47.2

b
0.12 57.7 77.6 63.7 67.6 58.9 45.2
0.09 58.8 78.5 64.6 68.4 60.1 46.5
0.06 58.4 78.5 64.1 67.8 59.7 46.4

performance decreases when uniform position sampling is not used. For the division of cells, if it is
too sparse (e.g., 2 × 2), each local feature vector needs to be responsible for the prediction of a larger
area, which is challenging for the network to fit the continuous heatmap representation. Considering
both performance and computational cost, 8 × 8 is a better setting for NerPE. Furthermore, as the
number of samples per cell increases, our method achieves better performance. The reason is that, on
the one hand, querying more positions makes each gradient descent more robust, On the other hand,
cells are decomposed into smaller regions to make the sampling more uniform.

Study of heatmap generation. In the Gaussian function, σ is used as a hyper-parameter to control
the scale of activation peaks. The difference between continuous and discrete heatmap representations
has been discussed, as shown in Fig. 1. Due to the existence of discretization in existing methods, σ
is commonly set to an integer to facilitate the generation of the pixel-based Gaussian kernel (formally
named standard biased encoding in [54]). In contrast, NerPE uses continuous coordinates rather
than discrete indices to describe the heatmap plane, and the setting of σ is more flexible under our
continuous heatmap representation. The same conclusion goes for b in the Laplacian function. We
explore the influence of scale parameters σ and b on keypoint localization, as shown in Table 7. The
proposed NerPE achieves better performance when σ = 0.06 and b = 0.09 respectively.

4.4 Visualization

In order to more intuitively show the superiority of continuous heatmap representation, we visualize
the output of NerPE at different heatmap resolutions, as shown in Fig. 4. Thanks to the decoupling of
INR from spatial resolution, NerPE can output the predicted heatmaps at arbitrary resolution without
changing the structure and retraining the network. In addition, we visualize the results of using
Gaussian and Laplace functions for supervision in continuous heatmap generation in Fig. 5.

32 × 32 64 × 64Input 128 × 128 256 × 256

Figure 4: The predicted heatmap of knee(r) output
by NerPE at different heatmap resolutions.

Sho.(l) Elb.(r) Kne.(l) Head

Gaussian

Laplace

Figure 5: The output of NerPE supervised by
different heatmap generation functions.

9



5 Conclusion

In this paper, to solve the quantization error issue plaguing heatmap regression, we propose an implicit
neural representation method NerPE for 2D human pose estimation. According to the extracted
image features, NerPE trains a simple MLP-based decoder to fit the Gaussian or Laplace functions at
a series of queried positions, which makes the learned heatmap representation continuous in space
and confidence. During inference, the decoupling from spatial resolution enables NerPE to output the
predicted heatmaps at arbitrary resolution. As a result, our continuous heatmap regression achieves
better performance than existing methods using discrete heatmap representation, especially in the
case of low resolution. Last but not least, inspired by the flexibility of implicit neural representation,
we design a progressive coordinate decoding method to speed up inference by avoiding the complete
generation of predicted heatmaps when the desired heatmap resolution is quite high.

Limitations and future work. The goal of this work is to explore the feasibility of using implicit
neural representations (INRs) to achieve continuous heatmap regression for 2D human pose estimation.
To highlight the superiority of NerPE over discrete heatmap representation, our INR-based decoder
is designed to be as simple as possible. In future work, we will conduct in-depth research on the
network structure to better utilize the characteristics of INRs.
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A Supplementary Implementation Details

As an implicit neural representation (INR) method, NerPE needs the correct coordinates to query the
confidence scores of body joints during training and testing, but traditional coordinate transformation
cannot meet our accuracy requirements. We give our data pre-processing and post-processing below.

A.1 Coordinate Transformation in Data Pre-processing

In the proposed NerPE, image pixels are expected to be located at the center of their corresponding
regions, which is not hold after affine transformation due to the implementation at the code level. In
fact, for each region, the interpolation result of its upper left corner in the original image is used as its
RGB value, as shown in Fig. A1. As a result, there is a spatial offset between the cropped image and
its coordinate system Oo-Xo-Yo. To solve this issue, we translate the 2D coordinates of body joints
to an unbiased target coordinate system Ou-Xu-Yu to achieve alignment. Specifically, what needs to
be done is to add 0.5 to the coordinates of body joints in Oo-Xo-Yo.

af
fi
ne

tr
an

sf
or
m
at
io
n

pixel

coord

pixel

coord

Original image Input image

Figure A1: Pre-processing of NerPE. Due to differences in the affine transformations performed
on pixels and coordinates, they are misaligned in the input image after standard data transformation.
Therefore, we need to map the coordinates into Ou-Xu-Yu to achieve alignment.

A.2 Coordinate Decoding in Data Post-processing

The schematic diagram of coordinate decoding in NerPE is shown in Fig. A2. To determine the
positions of body joints during inference, first the argmax operation is performed on the predicted
heatmaps H to obtain a series of 0-based integral indices. Then, NerPE calculates the corresponding
coordinates of these positions in Ou-Xu-Yu. Finally, these coordinates are transferred to Oo-Xo-Yo

for mapping back to the original image. The entire process is formulated as p = (argmax(H)+0.5) ·
s− 0.5, where s represents the ratio of input resolution to heatmap resolution.

as the heatmap resolution increasesas the heatmap resolution increases
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Figure A2: Post-processing of NerPE. Since the affine transformation is established between the
cropped image and the original image, we need to convert the 0-based integral indices calculated by
argmax into the coordinates in Oo-Xo-Yo.

B Additional Visualization and Analysis

Here, we discuss in detail the local ensemble used in NerPE, and perform ablation on it as shown
in Fig. A3. For the difference of local feature vectors z∗ and the mutation of relative coordinates
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Figure A3: Visualization of qualitative ablation on local ensemble. The prediction of activation
peaks is the key to heatmap-based pose estimation. When the activation peaks appear at the junction
between cells, the confidence scores show obvious discontinuity without local ensemble (LE).

crel at the junctions between cells, the local ensemble uses bilinear interpolation to ensure that the
confidence scores output by the network is continuous. This process is formulated as:

H(cabs) =
∑

t∈{00,01,10,11}

St

S
· fθ

(
z∗t ,

cabs − cz∗
t

scell/2

)
,

where z∗t refers to the four local feature vectors that are closest to the queried position. The predicted
confidence scores are weighted based on the surrounded areas St and their sum S =

∑
t St. The use

of local ensemble means that the sampling of queried positions is no longer limited to the interior of
each cell, but the sampling range is expanded to twice the original to achieve overlapping. It can be
found in Fig. A3 that the predicted heatmaps show discontinuity after removing the local ensemble.
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• The answer NA means that the paper does not include theoretical results.
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referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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Justification: We provide a thorough description of the proposed method in the paper.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

16



Answer: [No]

Justification: Although we do not provide open access to our code during review, we will
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
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• The authors should provide scripts to reproduce all experimental results for the new
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
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Answer: [Yes]
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that is necessary to appreciate the results and make sense of them.
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7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The paper does not report error bars or other statistical significance information.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report the detailed efficiency comparison in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper fully conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not have the risks mentioned above.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The datasets used in the paper are publicly available and properly credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [No]
Justification: We will make the code publicly available upon acceptance of the paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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