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Abstract

Certified defenses against adversarial attacks offer formal guarantees on the ro-
bustness of a model, making them more reliable than empirical methods such as
adversarial training, whose effectiveness is often later reduced by unseen attacks.
Still, the limited certified robustness that is currently achievable has been a bot-
tleneck for their practical adoption. Gowal et al. and Wang et al. have shown
that generating additional training data using state-of-the-art diffusion models can
considerably improve the robustness of adversarial training. In this work, we
demonstrate that a similar approach can substantially improve deterministic certi-
fied defenses but also reveal notable differences in the scaling behavior between
certified and empirical methods. In addition, we provide a list of recommen-
dations to scale the robustness of certified training approaches. Our approach
achieves state-of-the-art deterministic robustness certificates on CIFAR-10 for the
ℓ2 (ϵ = 36/255) and ℓ∞ (ϵ = 8/255) threat models, outperforming the previous
results by +3.95 and +1.39 percentage points, respectively. Furthermore, we
report similar improvements for CIFAR-100.

1 Introduction

Deep learning models have been successfully applied for a variety of different applications. However,
it is widely recognized that the vulnerability of neural networks to adversarial examples [1] remains an
open problem and hinders their adoption in safety-critical domains. Prior research on improving the
robustness of neural networks against adversarial examples can be broadly classified into empirical [2,
3] and certified approaches [4].

Adversarial training is currently the most prominent empirical robustification method [3]. Here, the
training data of neural networks is augmented with adversarial examples, improving the robustness
against attacks at inference time. Recent work has demonstrated that adversarial training can be
considerably improved using synthetically generated data, even without training the generative
model with external data [5, 6]. Nevertheless, empirical robustness has repeatedly been shown to be
ineffective against more sophisticated attacks developed in subsequent work [7].

In contrast to empirical methods, certified approaches yield robustness guarantees given a predefined
threat model, most often based on the ℓ1, ℓ2, or ℓ∞ norm. As a result, these methods provide reliable
protection against future attacks. Nevertheless, the robustness guarantees achieved by certification
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Figure 1: Certified and clean accuracy of top-ranked models on CIFAR-10 taken from the SoK
Certified Robustness for Deep Neural Networks [10] leaderboard. By using data generated by an
elucidating diffusion model (EDM), accuracy significantly improves for four different models and
two different norms (ℓ∞ and ℓ2). Grey arrows indicate improvements stemming from this data
augmentation.

methods are generally substantially lower than the robustness obtained by empirical defenses for the
same threat model [3, 4, 8].

In this work, we aim to analyze how well certified robustness scales when utilizing additional
data generated by diffusion models during the model training, a recipe that has previously proven
successful for empirical robustness. Only Hu et al. [9] have already used generated data, and thus
a broader in-depth review of the factors influencing scalability is to date missing. In our empirical
study, we analyze models trained to be robust against ℓ∞ and models trained to be robust against
ℓ2 norm attacks. The proposed approach improves robustness for both the (ℓ∞, ϵ = 8/255) and
(ℓ2, ϵ = 36/255) threat models on CIFAR-10, improving upon the previous results in the literature by
3.95%p and 1.39%p (percentage points), respectively. In most experiments, the increase in certified
accuracy is accompanied by an increase in accuracy on clean data, where we observe improvements
by up to 4.83%p. Figure 1 summarizes the improvements compared to the previous state-of-the-art
with respect to clean and certified accuracy on CIFAR-10. Further experiments show that the same
approach considerably improves certified accuracy on CIFAR-100 as well.

Moreover, we conduct ablations to evaluate the impact of different design choices, including regular-
ization, the number of training epochs, the optimization schedule, and the optimal balance between
real and generated data. We summarize the most important insights of this empirical study in a list
of recommendations that can be followed to more accurately compare and improve the robustness
of deterministic certified defenses. Lastly, we discern crucial differences in the scaling behavior
between empirical and certified methods. All code used to produce the results and figures in this
paper will be released on GitHub after publication.

2 Related Work

Empirical Robustness. Adversarial training was first introduced by Goodfellow et al. [2]. The
authors employed the single-step Fast Gradient Sign Method (FGSM) to craft adversarial examples
during training and thereby robustify the model against these attacks. Later research by Madry et al.
[3] demonstrated that single-step adversarial training does not yield considerable robustness against
multi-step attacks. They showed that using the multi-step Projected Gradient Descent (PGD) attack
during training successfully improves the robustness of neural networks at test time, even against
strong attacks. Subsequent work proposed improvements to the loss function, the adversarial attack
used during training, and better trade-offs between clean and certified accuracy [11, 12].

Certified Robustness. Unlike empirical methods, certified methods yield robustness guarantees,
thereby eliminating possible vulnerabilities to future attacks. Certification methods can be broadly
classified into two methodologically distinct groups, namely probabilistic and deterministic methods.
Probabilistic methods aim to approximate smooth classifiers using Monte Carlo sampling and
noise injection [4]. A given sample is verified as robust with a certain probability depending on
the noise magnitude and number of Monte Carlo samples. To obtain a tight verification bound,
probabilistic methods need to perform a substantial amount of sampling procedures (forward passes)
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for each sample, considerably increasing the computational overhead in practice. Contrary to
probabilistic methods, deterministic approaches do not entail considerable computational overhead
during inference.

Convex bound propagation [13, 14, 15, 16] is a group of deterministic methods that leverages interval
arithmetic and linear programming to track how perturbations in the input space transform through
each layer, effectively constructing an outer envelope that contains all possible network outputs for
inputs within the specified perturbation region. Our initial results scaling the work by Palma et al.
[16], provided in Appendix H, show that this yields severely deteriorated performance when training
with additional generated data and is thus a poor candidate for scaling certified robustness.

Our main focus is hence devoted to deterministic approaches that bound the Lipschitz constant of each
neural network layer to be small (generally smaller or equal to 1) for a predefined ℓp norm [17, 18].
The Lipschitz constant of the whole network is bounded by the multiplication of the Lipschitz
constants of the individual layers [19]. Given a network’s upper bound of the Lipschitz constant, a
robustness guarantee can be trivially obtained by computing the distance between the highest two
logits in the output space.

Diffusion Models. More recently, diffusion models have superseded generative adversarial net-
works (GANs) as the preferred method for image generation [20]. Denoising diffusion probabilistic
models (DDPM) [21] can generate high-quality samples on CIFAR-10 [22] with an FID score of
3.17, a common measure of image quality. Since then, other variants have been proposed [23, 24].
By further analyzing the design space of these models [23], elucidating diffusion models (EDMs)
achieve a current state-of-the-art FID score of 1.79 on CIFAR-10. With additional discriminator
guidance [24], the quality of these EDM-generated images are reported to reach an FID score of 1.64,
the best score reported in literature for CIFAR-10 at the time of writing.

Improving Empirical Robustness with Auxiliary Data. Hendrycks et al. [25] showed that uti-
lizing additional data from external datasets during adversarial training can improve empirical
adversarial robustness. Gowal et al. [5] extended this approach to synthetically generated data from
generative models only trained on the source dataset. Recently, Wang et al. [6] showed that leveraging
the latest advances in diffusion models further improves empirical adversarial robustness.

In this work, we investigate if leveraging data generated with state-of-the-art diffusion models can also
improve certified robustness against adversarial attacks and analyze how certified training approaches
can be scaled optimally.

3 Experiment Setup

Given the recent improvements in adversarial training using additional data generated by diffusion
models, we devise a set of experiments to investigate whether this also transfers to certified robustness.
We focus on deterministic methods as probabilistic methods entail a tremendous computational
overhead during inference time and do not achieve considerable robustness for the ℓ∞ norm yet [10].
All our experiments are done on a single Nvidia A100 graphics card (40GB of VRAM) without
distributed training.

3.1 Dataset and Threat Models

We perform experiments on CIFAR-10 and CIFAR-100 [22], for which EDM-generated data is readily
available and a wealth of previous robustness research exists [6]. Our experiments and ablation
studies focus on CIFAR-10. We refrain from experiments on larger datasets like ImageNet [26] as
robustness guarantees achieved by deterministic methods for these datasets are still comparatively
low, and only [9] support it at the time of writing. We perform experiments on two common threat
models, specifically (ℓ∞, ϵ = 8/255) and (ℓ2, ϵ = 36/255) adversaries. We do not consider the ℓ1
threat model, as only smoothing-based approaches achieve considerable robustness for this threat
model at the time of writing. For our experiments, we select the two best architectures from the
popular certified robustness leaderboard introduced by Li et al. [10] for both the ℓ2 (GloroNet [9]
and LOT [17]) and ℓ∞ threat models (SortNet [18] and ℓ∞-dist Net [27]). In total, we perform
experiments on architectures from four different papers.
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Table 1: Clean and certified test accuracy (%) on CIFAR-10 (ℓ∞, ϵ = 8/255) for ℓ∞-dist Net and
SortNet with dropout rate ρ. Bold highlights the best model with and without auxiliary data. |Dgen|
denotes the number of EDM-generated images at which highest accuracy was achieved.

Net Ep-
ochs

w/o auxiliary w/ auxiliary

Clean Cert. Clean Cert. |Dgen|

ℓ∞-dist 800 57.34 34.25 61.04 36.98 1m
1600 57.19 34.00 62.02 37.53 1m

SortNet
ρ = .85

3000 53.38 39.72 53.29 41.32 10m
6000 53.36 39.05 52.41 40.70 1m

SortNet
ρ = .00

3000 56.09 37.44 54.36 41.71 5m
6000 54.81 36.50 54.75 41.78 10m

3.2 Generated Auxiliary Data

To explore the effectiveness of augmenting the original CIFAR-10 and CIFAR-100 [22] datasets
with generated data, we adjust the data loader of each model to use a fraction of generated data and
original data in every epoch. We use the same generated data used by Wang et al. [6], which was
produced by an EDM trained only on the train set of CIFAR-10. In a preliminary experiment, we
found the generated-to-real ratio to be optimal when 30% of training images are real and 70% are
generated in every epoch during training, matching the ratio used by Wang et al. [6]. We performed
experiments with 50, 000 (50k), 100, 000 (100k), 200, 000 (200k), 500, 000 (500k), 1 million (1m),
5 million (5m) and 10 million (10m) generated images. Wang et al. [6] sub-sampled the 1m images
from 5m images choosing only the 20% most confidently classified images according to a pretrained
WRN-28-10 model. In contrast, we naively sub-sample the 1m images from the 5m image dataset
to avoid potential selection bias by the classifier used to select the data. Moreover, using the same
selection process for all datasets should allow us to assess better the effect of the amount of generated
data on the final robustness.

3.3 Hyperparameters

With additional data, it is also expected that both model size and the number of training epochs can
be further scaled to improve clean accuracy and robustness. We thus perform experiments on the
influence of model depth and the number of epochs on clean and certified accuracy. For some models,
we investigate further techniques that add learning capacity. Concretely, for SortNet [18] we also
experiment with models that do not employ dropout, and for LOT [17] we adjust the learning rate
scheduler to cosine annealing [28].

4 Results

In the following, we first summarize the effect of using additional generated data on the achievable
certified and clean accuracy. Furthermore, we ablate the effect of other design choices on the certified
robustness, such as the number of training epochs, model size, the amount of additional synthetic data
and other hyperparameters. Lastly, we summarize our findings and provide a list of recommendations
to scale certified robustness effectively.

4.1 Improving Certification Approaches with Generated Data

Across all four reference models and all two threat models, we find that the inclusion of generated
data can improve certified accuracy. In most cases, clean accuracy is considerably improved as well.
An overview of our new state-of-the-art results in comparison with existing related work is given in
Figure 1. For the (ℓ∞, ϵ = 8/255) threat model on CIFAR-10 we can increase the robustness of the
existing SortNet [18] to 41.78%, an improvement of 1.39 percentage points. For the (ℓ2, ϵ = 36/255)
model we achieve a certified accuracy of 69.05% using LOT [17], a substantial increase of 3.95
points compared to the best result previously reported in the literature [10]. In almost all cases this
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Figure 2: Influence of total CIFAR-10 dataset size |Dorig|+ |Dgen| (number of original and generated
images) on certified accuracy. ρ is the dropout rate of SortNet. All models were trained with a large
number of epochs, i.e., 1600 for ℓ∞-dist Net, 6000 for SortNet, 600 for LOT, and 2400 for GloroNet.
Accuracy generally improves little beyond 1m generated images.

improvement coincides with an increase in clean accuracy. One exception is SortNet, where the clean
accuracy slightly decreases from 54.84% to 54.75%.

Full results are given in Tab. 1 for both SortNet and ℓ∞-dist Net, as well as Tab. 2 for LOT and
Tab. 3 for GloroNet. We find that by removing the dropout from SortNet we can improve certified
accuracy from 41.32% to 41.78% when using auxiliary data. However, the same leads to a drop from
39.72% to 37.44% with only the original data, reinforcing the notion that the additional data acts as a
good regularizer. Similarly, for LOT, cosine annealing is superior by a margin of up to 1.12 points
compared to a multi-step scheduler, indicating that the model can make better use of its capacity
when trained with auxiliary data. For full results using the multi-step scheduler, we refer to App. B,
Tab. 2 – all results discussed in subsequent sections refer to those obtained with cosine annealing.

Adding auxiliary data improves certified robustness on CIFAR-100 as well, as demonstrated in Tab. 4.
We restrict our evaluation to the most effective models from the analysis on CIFAR-10 and do not
further scale the number of training epochs. The most substantial improvements on CIFAR-100 are
obtained for the SortNet model, where certified accuracy increases by 8.08 percentage points from
9.2% to 17.28%, and for GloroNet, where certified accuracy increases by 2.49 percentage points
from 36.41% to 38.9%.

4.2 Sensitivity Analysis

Scaling the Amount of Auxiliary Data. The main goal of this work was to evaluate the influence
of additional synthetic data during training on the achievable certified accuracy of deterministic
certification methods. To this end, we analyze how different amounts of additional data affect the
final certified robustness. We evaluate the saturation by training with with 50k, 100k, 200k, 500k,
1m, 5m, and 10m auxiliary generated images. All models are trained for at least twice the amount of
epochs that were used in the original papers to ensure saturation in terms of training time. As seen in
Fig. 2, improvements in certified robustness beyond 1m are mostly negligible. This behavior is also
largely independent of model size, which stands in contrast to prior results reported for adversarial
training [5].

Scaling the Model Size. We performed experiments on several different model sizes to investigate
possible correlations between the benefit of additional training data and the model capacity. The
ℓ∞-based models are largely constructed out of fully connected layers. As a result, the computational
effort when scaling these models increases quadratically. As experiments on the ℓ∞-based models
proved to be computationally too expensive we refrain from scaling these models and focus instead
on ℓ2-based models.

Tables 1 to 3 demonstrate that scaling the model size can increase the certified robustness for both
LOT and GloroNet. Shown are the best improvements when adding 1m, 5m, or 10m auxiliary
data when compared to the same model trained without any auxiliary data – referred to as the base
model from here on. The highest gains are for medium models with LOT and for large models with
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Table 2: Clean and certified test accuracy (%) on CIFAR-10 (ℓ2, ϵ = 36/255) for LOT. Bold
highlights the best model with and without auxiliary data. |Dgen| denotes the number of EDM-
generated images at which highest accuracy was achieved.

Size Ep-
ochs

w/o auxiliary w/ auxiliary

Clean Cert. Clean Cert. |Dgen|

S
200 76.60 63.45 79.22 66.17 10m
400 76.50 63.48 80.02 67.42 5m
600 76.75 63.81 80.59 68.07 10m

M
200 76.92 63.38 79.59 66.95 5m
400 76.41 63.93 80.53 68.17 5m
600 76.49 63.63 80.98 68.66 5m

L
200 77.21 64.53 79.91 67.58 10m
400 77.00 64.47 80.80 68.66 5m
600 76.62 64.39 81.42 69.05 5m

Table 3: Clean and certified test accuracy (%) on CIFAR-10 (ℓ2, ϵ = 36/255) for GloroNet. Bold
highlights the best model with and without auxiliary data. |Dgen| denotes the number of EDM-
generated images at which highest accuracy was achieved.

Size Ep-
ochs

w/o auxiliary w/ auxiliary

Clean Cert. Clean Cert. |Dgen|

XS
800 76.51 63.44 77.42 65.57 5m
1600 76.95 63.79 78.38 66.48 10m
2400 77.56 64.14 78.54 66.60 10m

S
800 77.22 64.33 77.90 66.23 10m
1600 77.91 64.68 78.74 66.78 1m
2400 78.28 64.79 78.89 67.07 1m

M
800 77.73 64.81 77.95 66.59 5m
1600 77.77 65.06 79.18 67.31 10m
2400 78.41 64.87 79.43 67.56 10m

L
800 77.94 65.09 79.13 67.06 10m
1600 78.99 65.16 79.81 67.67 1m
2400 79.33 65.21 80.28 68.12 5m

GloroNet. For GloroNet in particular we observe that model size becomes more important the longer
the model is trained, with all models trained for the default 800 epochs showing similar gains.

Scaling the Number Training Epochs. As larger models and additional training data may require
longer model training to achieve optimal results we increased the number of training epochs compared
to the original configurations for all tested models1. For the ℓ∞-based models in Tab. 1 we see that
by doubling the number of epochs we can further improve certified robustness when regularization
is removed. A similar picture arises for the ℓ2-based models, presented in Tabs. 2 and 3. Here, we
find that an increase in the number of epochs yields a significant improvement regardless of model
size. Overall, this parameter had the strongest impact in combination with auxiliary data and all
best certified accuracies are achieved at their respective maximum number of epochs, with the only
exception being SortNet with dropout.

4.3 Relationship between Generalization Gap and Certified Robustness

The individual improvements in certified robustness vary considerably between different model and
data configurations in our experiments. One possible explanation for these differences may be that
the generalization gap of the respective models trained without auxiliary data – i.e., the base models –
are different, leading to different gains when closing this generalization gap. To investigate this, we

1During training of CIFAR-10 a model will see 0.7 · 50, 000 = 35, 000 generated images in each epoch.
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Figure 3: a Correlation between generalization gap and certified accuracy improvement. Generaliza-
tion gap measures difference between training and testing accuracy. ∆ refers to difference between
base model and model trained with auxiliary data. b Generalization gaps by amount of auxiliary
data |Dgen| for all models trained with maximal epoch count. c Clean and certified accuracy (%) for
different ratios of generated and real data for ℓ∞-dist Net and LOT-S. Here, a generated-to-original
ratio of 70 means 70% of each batch is generated data and the remaining 30% is real data.

correlate the difference in generalization gap with the improvement in certified accuracy obtained
when adding auxiliary data. Here, generalization gap refers to the difference between the train and
test accuracy on clean data for the best epoch. Figure 3a demonstrates a considerable correlation
between the decrease in generalization gap compared to the base model trained with no auxiliary data
and the improvement in certified robustness for models with auxiliary data. Moreover, we perform
a line fit between the generalization gap and robustness improvement for all the analyzed models.
Surprisingly the slope of the different lines is similar for most models, except ℓ∞-dist Net, indicating
that robustness gains can be predicted once the offset of the line is known for unseen models. However,
the offset of the different lines depends on the base model considered. Generalization gaps for each
auxiliary dataset size |Dgen| in Fig. 3b also correlate well with scaling curves in Fig. 2.

These results are in line with certified robustness gains achieved for SortNet with and without dropout
shown in Tab. 1. Here, the certified robustness of the SortNet model trained without auxiliary data
and for 3000 epochs decreases when using less regularization by removing dropout from 39.72%
to 37.44%. At the same time, the generalization gap of the two models increases from 4.16% to
12.89%, respectively, as an effect of removing dropout. However, once additional synthetic data is
used, removing dropout actually improves the certified robustness to up to 41.71% by nearly two
points. Here, increasing the generalization gap by removing dropout had a positive effect on the final
certified robustness, which fits observations in Fig. 3a.

4.4 Ratio of Generated and Real Data

In every training epoch, we use a proportion of synthetic and real images and keep the total amount
of images the same as the size of the original training set. The default configuration throughout our
experiments, and the one also used by Wang et al. [6], is to use 30% real images and 70% generated
images in each batch. Figure 3c illustrates how using different proportions for generated and real
data affects the certified robustness of the ℓ∞-dist Net and LOT-S architectures. We see that at ratios
of 60% generated data the clean accuracy saturates, and with 70% the certified accuracy saturates.
Notably, in all cases the accuracy when only training with generated images was higher than when
only training with real images, indicating that it may be possible to fully train these models on only
generated data in the future.

4.5 Certification Radius Distribution

To examine the underlying factors contributing to the observed increase in robustness when using
auxiliary data, we conduct an analysis of the certification radius distribution for the SortNet (without
dropout) and LOT-L architectures. Figure 4 displays the number of images on the y-axis with a
certification radius equal to or above a specific value, shown on the x-axis. Curves are plotted for the
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Figure 4: Cumulative distribution of certification radii for the best ℓ∞-based model, Sortnet w/o
dropout, and the best ℓ2-based model, LOT-L. Note how for SortNet images exhibit overall smaller
certification radii for both correct and incorrect classes, yet clean accuracy slightly decreases.

best models trained with and without auxiliary data. Additionally, curves for correct and incorrect
classifications are displayed separately.

We observe no considerable differences between the distribution of certification radii for the LOT
model obtained with or without auxiliary data. Nevertheless, models trained with auxiliary data show
slightly higher robustness for correctly classified samples and lower robustness for misclassified
samples on average. The SortNet architecture exhibits considerably higher robustness radii for
both correct and incorrect classifications when using auxiliary data. Here, differences in certified
robustness do not seem to come from a better generalization ability on clean data but from larger
certification radii on unseen data. On the other hand, the LOT architecture shows similar certification
radii but considerably better generalization on clean data. A more detailed analysis is given in App.
G, Fig. 3. Both models show considerable over-robustness for a considerable fraction of the test set,
where the certification radius is well beyond the certification goal ϵ.

4.6 Takeaways for Scaling Certified Robustness

Differences in certified robustness between distinct defense approaches are often marginal and even
small improvements over prior work may be relevant. Here, we summarize the most important take-
aways from the empirical study presented in this work on how to scale the robustness of deterministic
certified models.

• Scale the number of training epochs. Among all investigated hyperparameters, we found
the number of training epochs had the most consistent effect on certified accuracy when
training with auxiliary data. Based on our experiments, we expect the amount of auxiliary
data to not matter as long as it is sufficient for closing the generalization gap.

• Increase your model capacity. When using auxiliary data, a large generalization gap
between training and testing accuracies is less of an issue and, based on our results, indicative
of untapped performance improvements that can be leveraged (see Sec. 4.3). This means
model capacity can be scaled with little fear of overfitting. Our experiments show that
reducing the amount of regularization, using better optimizers, and increasing the model
size all improve certified accuracy when using auxiliary data without leading to large
generalization gaps.

• Compare with caution. Even small adjustments, such as a change to dropout, learning rate
schedulers, or even different random seeds can improve certified accuracy by about 0.5 to 1
percentage points. This makes it difficult to assess the individual contribution of different
architectures towards robustness – for example, contrary to results reported in the original
papers, our results indicate that LOT may actually be superior to GloroNet.

• Benchmark with generated auxiliary data. As the proposed approach does not entail
a computational overhead for the same amount of training epochs, we recommend future
work to compare their approaches using auxiliary data and ensure that models are trained
till convergence. Differentiating between approaches that use auxiliary data and those that
only utilize the original dataset may be helpful for future benchmarks. Similar approaches
have been adopted in the empirical robustness domain [29].
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• Decrease over-robustness. While not related to the usage of auxiliary data, our evaluation
in Fig. 4 indicates that a considerable number of samples are noticeably more resistant to ad-
versarial attacks than what was intended during training. Future research may consider using
smaller certification objectives for samples that already demonstrate considerable robustness,
an approach that has already been shown to be successful in adversarial training [12].

5 Comparison to Empirical Robustness

While we observe many of the same trends as Gowal et al. [5] and Wang et al. [6], i.e., that larger
models and more epochs generally help, we also note a few crucial differences.

• Amount of training data. Scaling beyond one million CIFAR-10 generated images did
not further improve certified accuracy, regardless of model size. This is different to scaling
behavior reported previously for adversarial training, with, e.g., Gowal et al. [5] reporting
an improvement of +2.65 and +2.52% when scaling their WRN-23-10 and WRN-70-16
models, respectively, from one million to 100 million generated images. One hypothesis
would be that this is due to the consistency property of the Glivenko-Cantelli class, mentioned
by Béthune et al. in Section 5.1 [30], due to which Lipschitz-1 neural networks’ training
loss converges to the testing loss for increasingly large datasets. In contrast, adversarial
training can be interpreted as a data-dependent operator norm regularization [31] and seems
to require more data samples to close the generalization gap. More recent work suggests that
the Bayes error may limit the achievable accuracy of both deterministic [32] and probabilistic
[33] certified robustness, in line with our results.

• Overfitting between best and last epoch. In adversarial training, prior work finds that the
difference between the best and the last epoch becomes increasingly smaller with larger
amounts of auxiliary data [6]. In contrast, we observe no such effect for certifiably robust
models (see App. E, Fig. 1), highlighting another difference in scaling behavior between
empirical and certified robustness.

• Optimal generated-to-original ratio. Previous research regarding the optimal generated-
to-original ratio for adversarial training observes a drop-off when using only generated
data. Both Gowal et al. [5] (Fig. 5) and Wang et al. [6] (App. B, Fig. 3) suggest accuracy
decreases again significantly beyond 70% generated data when using diffusion models. As
evident in Fig. 3c this is not as pronounced for certifiably robust models.

Together, these results suggest that for certifiably robust models it may be possible to determine a
sufficient amount of generated data beforehand for any given dataset - contrary to what is the case
for adversarial training, where more is always better. Moreover, it indicates that certified robustness
is considerably harder to scale than empirical robustness, as once saturation with respect to data
has been achieved, further gains can only be attained by better algorithms and increased model
size. Future experiments should explore concrete scaling laws for certified and empirical adversarial
robustness, which was out-of-scope of this paper. Deriving and verifying theoretical properties of
certifiably robust models, such as those already known on graphs [34], also remains an exciting topic
for further research.

Table 4: Clean and certified test accuracy (%) on CIFAR-100 for both (ℓ∞, ϵ = 8/255) and
(ℓ2, ϵ = 36/255) threat models. Bold highlights the best overall model for each architecture.

Architecture w/o auxiliary w/ auxiliary

Clean Cert. Clean Cert. |Dgen|
ℓ∞-dist Net 25.99 9.36 27.73 10.47 10m
SortNet ρ = .00 24.93 9.20 27.58 17.28 1m
LOT-L 46.60 32.92 50.68 36.56 5m
GloroNet-L 51.57 36.41 51.71 38.90 10m
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6 Limitations

Despite our best efforts and extensive experiments, some limitations remain. Our focus is largely on
deterministic Lipschitz-bound methods, which incidentally were used in the two best-performing
models for the (ℓ∞, ϵ = 8/255) and (ℓ2, ϵ = 36/255) attacks on CIFAR-10 at the time the experi-
ments were performed [10]. Other approaches for certified robustness, including probabilistic ones
and other deterministic methods, stay largely unexplored except for our experiments on convex bound
propagation in Appendix H. The inherently high computational complexity of the evaluated models
[9, 17, 18, 27] also inhibited us from running each configuration multiple times, as even a single run
already results in an overall compute time of around five thousand GPU hours. Finally, we made the
conscious choice to not perform experiments on ImageNet as only one of the evaluated models, that
by Hu et al. [9], supported this dataset and thus no meaningful comparison could be made.

7 Conclusion

We show that deterministic certified robustness can be improved by up to 5.28%p when additional
generated data from a diffusion model is used during training. This is true across four different
architectures and two different threat models, (ℓ∞, ϵ = 8/255) and (ℓ2, ϵ = 36/255), on CIFAR-10,
where we report improved certified accuracies of 41.78% and 69.05%, respectively. For ℓ∞ we are
thus able to achieve a new state-of-the-art, while Hu et al. [9] report a slightly better accuracy of
70.1% for the ℓ2 threat model using data generated by DDPM. In addition, we show the data scaling
also improves certified accuracy on CIFAR-100 substantially.

We find that the highest gains can be achieved for models where the generalization gap, i.e., the
difference between training and testing accuracy, is high for the original model. When augmenting
with generated data, the generalization gap is mostly eliminated across all models when a sufficient
amount of additional images are used. As the generalization gap gets smaller, removing regularization
techniques, such as dropout, and switching to learning rate schedulers aimed at better convergence
yields additional improvements. We also note that increasing the number of epochs had the greatest
impact when paired with generated data. Lastly, we observe that a considerable number of samples
are noticeably more resistant to adversarial attacks than required by the ϵ-bound.
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A Model Details

Table 5 lists the different model configurations used. We limit our summary to the most important
parameters – for the full parameters used during training we refer to the respective papers [9, 11, 17,
18] and repositories, as well as our own scripts provided in our code release.

Table 5: Model Configurations
Model Configuration Depth Width Comments Code

ℓ∞-dist Net – 6 5120
GitHubSortNet ρ = .85 6 5120

SortNet ρ = .00 6 5120

LOT S 10 (2 blocks) n/a LipConvnet-10
GitHubLOT M 20 (4 blocks) n/a LipConvnet-20

LOT L 40 (8 blocks) n/a LipConvnet-40

GloroNet XS 6 128 LiResNet L6W128

GitHubGloroNet S 12 128 LiResNet L12W128
GloroNet M 18 128 LiResNet L18W128
GloroNet L 18 256 LiResNet L18W256

B Results LOT Multi-Step Scheduler

Table 6 summarizes the results of LOT trained with the multi-step learning rate scheduler used in the
original paper. Overall the results are approximately 0.5% worse than using a cyclic learning rate.

Table 6: LOT w/ Multi-Step Scheduler, ℓ2, ϵ = 36/255

Architecture Epochs No 1m 5m 10m

Clean Cert. Clean Cert. Clean Cert. Clean Cert.

LOT-S 200 75.64 62.43 78.69 65.06 78.40 65.01 78.82 65.09
400 75.74 62.95 79.58 66.36 79.40 66.51 79.33 66.41
600 75.85 63.02 80.03 66.97 80.04 66.97 79.86 66.95

LOT-M 200 77.03 63.60 79.14 66.30 79.30 66.40 79.29 66.12
400 76.83 63.42 80.01 67.37 80.35 67.67 80.15 67.61
600 76.47 63.56 80.53 67.98 80.54 68.19 80.17 67.82

LOT-L 200 76.90 63.70 79.35 66.60 79.33 66.79 79.53 66.66
400 76.76 64.23 80.42 67.84 80.52 67.78 80.21 67.80
600 76.93 64.35 80.73 68.70 81.08 68.40 80.59 68.54
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C Full Results 1m/5m/10m

Table 7: Clean and certified test accuracy (%) on CIFAR-10 (ℓ∞, ϵ = 8/255) for ℓ∞-dist Net and
SortNet. Bold and italics highlight the best model with and without auxiliary data and underlining
highlights the overall best model. ∆Cert. denotes the highest absolute increase in certified robustness
when using auxiliary data, and e the number of epochs.

Architecture e No 1m 5m 10m ∆Cert.

Clean Cert. Clean Cert. Clean Cert. Clean Cert.

ℓ∞-dist Net 800 57.34 34.25 61.04 36.98 60.35 36.00 60.64 36.30 +2.73
1600 57.19 34.00 62.02 37.53 61.39 37.20 61.40 37.03 +3.53

SortNet
w/ dropout

3000 53.38 39.72 52.50 41.23 52.78 40.35 53.29 41.32 +1.60
6000 53.36 39.05 52.41 40.70 52.57 40.23 53.09 40.65 +1.65

SortNet
w/o dropout

3000 56.09 37.44 54.28 41.51 54.36 41.71 54.18 41.41 +4.27
6000 54.81 36.50 54.72 41.76 54.36 41.52 54.75 41.78 +5.28

Table 8: Clean and certified test accuracy (%) on CIFAR-10 (ℓ2, ϵ = 36/255) for LOT and GloroNet.
Bold and italics highlight the best model with and without auxiliary data and underlining highlights
the overall best model. ∆Cert. denotes the highest absolute increase in certified robustness when
using auxiliary data, e the number of epochs, and XS, S, M, and L the model size.

Architecture e No 1m 5m 10m ∆Cert.

Clean Cert. Clean Cert. Clean Cert. Clean Cert.

LOT

S
200 76.60 63.45 79.19 65.81 79.18 65.93 79.22 66.17 +2.72
400 76.50 63.48 79.87 66.99 80.02 67.42 79.96 67.23 +3.94
600 76.75 63.81 80.36 67.75 80.56 68.00 80.59 68.07 +4.26

M
200 76.92 63.38 79.58 66.85 79.59 66.95 79.90 66.82 +3.57
400 76.41 63.93 80.37 67.96 80.53 68.17 80.75 68.08 +4.24
600 76.49 63.63 80.71 68.44 80.98 68.66 80.69 68.52 +5.03

L
200 77.21 64.53 80.06 67.34 80.29 67.47 79.91 67.58 +3.05
400 77.00 64.47 80.80 68.39 80.80 68.66 80.76 68.51 +4.19
600 76.62 64.39 81.24 68.93 81.42 69.05 81.20 69.03 +4.66

GloroNet

XS
800 76.51 63.44 77.30 65.29 77.42 65.57 77.45 65.17 +2.13
1600 76.95 63.79 78.13 66.24 78.21 65.98 78.38 66.48 +2.69
2400 77.56 64.14 78.98 66.53 78.34 66.34 78.54 66.60 +2.46

S
800 77.22 64.33 78.12 66.17 77.99 66.14 77.90 66.23 +1.90
1600 77.91 64.68 78.74 66.78 78.44 66.62 78.53 66.59 +2.10
2400 78.28 64.79 78.89 67.07 78.76 66.85 78.87 66.97 +2.28

M
800 77.73 64.81 78.11 66.37 77.95 66.59 78.02 66.45 +1.78
1600 77.77 65.06 78.83 67.12 79.04 66.83 79.18 67.31 +2.25
2400 78.41 64.87 79.57 67.39 79.44 67.44 79.43 67.56 +2.69

L
800 77.94 65.09 79.12 66.97 78.94 66.80 79.13 67.06 +1.97
1600 78.99 65.16 79.81 67.67 79.50 67.28 79.90 67.60 +2.51
2400 79.33 65.21 80.20 68.05 80.28 68.12 80.00 68.11 +2.91
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D Full Results CIFAR-100

Table 9: Clean and certified test accuracy (%) on CIFAR-100 for both (ℓ∞, ϵ = 8/255) and
(ℓ2, ϵ = 36/255) threat models. Bold highlights the best overall model for each architecture.

Architecture No 1m 5m 10m ∆Cert.

Clean Cert. Clean Cert. Clean Cert. Clean Cert.

ℓ∞-dist Net 25.99 9.36 27.56 10.45 27.69 10.25 27.73 10.47 +1.11
SortNet w/o dropout 24.93 9.20 27.58 17.28 26.74 16.69 27.50 17.25 +8.08
LOT-L 46.60 32.92 50.52 36.50 50.68 36.56 50.59 36.22 +3.64
GloroNet-L 51.57 36.41 51.78 38.54 51.81 38.66 51.71 38.90 +2.49

E Robust Overfitting

In Figure 5 we visualize the number of epochs between the epoch where the best-certified accuracy
was achieved and the total amount of epochs trained on the x-axis. On the y-axis we plot the certified
accuracy difference between the best and last epoch. Here, the auxiliary data used for the different
configurations are visualized with unique colors and symbols. No clear connection between the
amount of auxiliary data and the distance between the best and last epoch can be observed. However,
the highest distance is observed for models using no auxiliary data. On average, the observed
difference between the last and best epoch is small for all models and always below 0.5%. We
conclude that robust overfitting is not an issue for the certified training approaches tested in our
experiments.
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Figure 5: Relationship between 1) the amount of auxiliary data used, 2) the number of epochs between
the epoch where the best certified accuracy was achieved, and 3) the difference in certified accuracy
between the best and last epoch.
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F Influence Model Size/Epoch Count

Figure 6 visualizes the effects we also mention in our sensitivity analysis in Sec. 4.2. Looking
at each row, increasing epoch counts yields to a linear increase in improvements, with the sole
exception of GloroNet-XS. Model size similarly has a positive effect on certified accuracy, especially
in combination with increases of epoch counts.

×1 ×2 ×3

Number of Epochs

L
M

S
M

od
el

 S
iz

e

+3 % +3.8 % +4.4 %

+3.1 % +4.1 % +4.7 %

+2.6 % +3.6 % +4 %

LOT

×1 ×2 ×3

Number of Epochs
L

M
S

X
S

M
od

el
 S

iz
e

+1.9 % +2.4 % +2.9 %

+1.7 % +2 % +2.6 %

+1.9 % +2 % +2.2 %

+1.9 % +2.4 % +2.3 %

GloroNet

3.0

3.5

4.0

4.5

1.75

2.00

2.25

2.50

2.75

∆
 C

er
tif

ie
d 

A
cc

ur
ac

y

Figure 6: Influence of model size and increase in the number of epochs for CIFAR-10 (ℓ2, ϵ = 36/255)
models. Color shading indicates average absolute improvement across 1m, 5m, and 10m auxiliary
data over the same model trained without auxiliary data.

G Certification

Figure 7 illustrates the difference between the best base model (w/o auxiliary) and the best model
trained with auxiliary data (w/ auxiliary). We investigate different combinations of correctness and
certification for each image. An image may either be correctly or incorrectly classified, and either
certified or not certified. If it is certified, this means that its certification radius is larger than ϵ.
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Figure 7: Confusion matrices for different correctness and certification constellations between models
trained with and without auxiliary data. Here, ¬ means not, i.e., ¬Cert. means that images were not
certified to be within the ϵ-bound.

16



H Convex Bound Propagation

Our focus on Lipschitz-bound methods may raise questions regarding the applicability of data
scaling to other certified robustness domains, such as convex bound propagation. Our additional
experiments on MTL-IBP [16], a summary of which is reproduced below, indicate vastly different
scaling dynamics with no observed improvements even when further adjusting (being originally used
by Palma et al. [16] for the larger ImageNet). A few remarks:

• Verification runs were aborted after 24 hours to accommodate the discussion period. If
aborted, reported numbers indicate percentage of certified/correctly classified samples on
the subset of CIFAR-10 test images for which verification completed within 24 hours.

• Non-completed runs included more hard-to-certify samples that required computationally
expensive branch-and-bound verification. Extrapolated full runtimes for some configurations
are up to about 2 weeks.

• Runs that yielded 0% certified accuracy oftentimes completed quickly as the comparatively
cheap PDG attack already found counterexamples, and thus a full verification was not
needed.

We conclude that MTL-IBP, a convex bound propagation approach, cannot benefit from additional
generated data. This indicates that results with regards to scalability do not trivially transfer from one
robustness method to another, and a detailed investigation of a single method, such as Lipschitz-bound
approaches, seems justified.

Table 10: Clean (top) and certified (bottom) test accuracy (%) on CIFAR-10 (ℓ∞, ϵ = 8/255) for
MTL-IBP. Bold highlights the best overall model for each configuration. e denotes the number of
epochs, α the expressive loss coefficient.

e α None 50k 100k 200k 500k 1m 5m 10m

260 0.5 35.08% 34.14% 32.04% 21.07%* 0.34%* † 0.00% 0.00%
520 0.5 35.95% 34.74% 34.57% 33.05% 17.57%* 0.54%* 0.00%* 0.00%
260 0.05 28.71%* 26.67%* 23.75%* 8.12%* 0.00%* † 0.00% 0.00%
520 0.05 27.76%* 27.26%* 26.68%* 26.72%* - - - -

e α None 50k 100k 200k 500k 1m 5m 10m

260 0.5 53.69% 55.46% 57.70% 66.04%* 79.31%* † 94.60% 94.82%
520 0.5 54.68% 55.64% 55.88% 57.34% 68.63%* 79.10%* 94.60%* 95.09%
260 0.05 64.58%* 66.12%* 67.67%* 76.35%* 84.92%* † 94.67% 94.84%
520 0.05 65.94%* 66.08%* 66.73%* 67.77%* - - - -

* Verification run did not finish within 24 hours, preliminary result on test data subset shown
† Implementation by Palma et al. [16] triggered an assertion error
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Analysis of data scaling behavior for certified robustness described in both
abstract and introduction
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [NA]
Justification: Limitations of the paper transfer from the models by Hu et al. [9], Xu et al.
[17], Zhang et al. [18, 27] and the general approach of using generated data by Gowal et al.
[5], Wang et al. [6], and hence are not separately discussed
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: No theoretical results provided

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Sec. 3 Experiment Setup describes in detail the configurations used for all
experiments, and code is provided

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Datasets CIFAR-10 and CIFAR-100 are readily available, and link to code will
be added upon acceptance

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Sec. 3 Experiment Setup describes in detail the configurations used for all
experiments

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: With a single model run taking one to two days on a A100 graphics card it
proved infeasible to perform multiple runs

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Sec. 3 Experiment Setup describes the compute resources used for experiments

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: No specific concerns to address in terms of potential harmfulness

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Societal impact related to general impact of robustness research, i.e., robustness
may improve safety of systems, but also cause emissions due to increased training times

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No specific risks to address
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Both datasets (CIFAR-10 and CIFAR-100) and models (ℓ∞-dist Net, SortNet,
LOT, and GloroNet) are referenced
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets provided

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No human subjects involved

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No human subjects involved

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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