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Abstract

Rapid model validation via the train-test paradigm has been a key driver for the
breathtaking progress in machine learning and AI. However, modern AI systems
often depend on a combination of tasks and data collection practices that violate
all assumptions ensuring test validity. Yet, without rigorous model validation we
cannot ensure the intended outcomes of deployed AI systems, including positive
social impact, nor continue to advance AI research in a scientifically sound way.
In this paper, I will show that for widely considered inference settings in complex
social systems the train-test paradigm does not only lack a justification but is
indeed invalid for any risk estimator, including counterfactual and causal estimators,
with high probability. These formal impossibility results highlight a fundamental
epistemic issue, i.e., that for key tasks in modern AI we cannot know whether
models are valid under current data collection practices. Importantly, this includes
variants of both recommender systems and reasoning via large language models,
and neither naïve scaling nor limited benchmarks are suited to address this issue.
I am illustrating these results via the widely used MOVIELENS benchmark and
conclude by discussing the implications of these results for AI in social systems,
including possible remedies such as participatory data curation and open science.
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Figure 1: Test validity in complex systems. Given assumptions A, target distribution T, data set D ∼ S𝑚 from
a sampling distribution S, and quality metric 𝜃, an inference setting is test-valid if the difference between 𝜃 and
the true risk 𝐿T

𝑓 ℎ
can be bounded over the distribution of all possible worlds 𝑓 ∼ F consistent with (A,D).

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



1 Introduction

Model validation, long taken to be “solved” via the train-test paradigm, has become one of the central
challenges in modern machine learning and artificial intelligence. In unison with the dramatic increase
of their capabilities, AI systems are now supposed to solve tasks of vastly expanded scope, including
potentially AI-complete tasks such as open domain question answering, autonomous decision making,
and ultimately, artificial general intelligence. Even before the recent triumphs of large language
models and deep learning, Anderson [3] proclaimed “the end of theory” and the scientific method
being obsolete due to the wonders of big data, large-scale computing, and data mining. At the same
time, it is entirely unclear how to rigorously evaluate the quality of models for these ambitious tasks.
This lack of proper evaluation can then materialize in persistent issues of deployed systems related
to generalization, e.g., hallucination [30], out-of-distribution generalization [39], fairness [6], and
generalization to the long-tail [23, 24]. Importantly, these issues do not only affect the accuracy of
models in a vacuum, but can also affect their social impact if they are deployed in consequential
social contexts [16]. In this paper, I aim to connect the former developments with the latter issues
through the lens of epistemology. More concretely, I ask:

Research Question 1. Given the ambitious tasks that we ask AI systems to solve and given
how we currently collect data, can we know whether a model performs well for these tasks?

Answering RQ 1 positively is central not only for the deployment of machine learning systems, but
also for scientific progress within artificial intelligence itself. After all, knowledge of a model’s
quality is a prerequisite to detect generalization issues and develop improved models. In deployed
systems, a model’s predictions are useless — as good as they might be — without knowing that they
are, in fact, reliable. In social systems, where the consequences of model errors can be severe, having
this knowledge is of even greater importance. Hence, the epistemic question of this work gets to the
heart of various debates surrounding AI and its capabilities: How can we understand and measure the
true capabilities of modern AI systems, which are so very impressive and yet lacking in fundamental
ways at the same time [11]? What can we know about the quality of our models? Are our benchmarks
suited to give insights into the intended tasks or do they project a false image of quality? How can we
develop systems such that they work for everyone? Will naïve scaling solve all these problems or do
we need to invest into entirely new approaches for evaluation within the scope of modern AI?

A prerequisite to answering RQ 1 positively is the validity of model validation: Without model
validation we can not know wether a model is good or bad and without a valid model validation
procedure we can not attain this knowledge. The almost exclusively used method for model validation
in machine learning and AI is the ubiquitous train-test paradigm, i.e., the practice of estimating
the generalization performance of a model on a test set distinct from the training set. Arguably,
much of the breathtaking progress in machine learning has been driven by the success of this single
experimental paradigm as it allows for the rapid validation and, therefore, improvement of models [10].
However, it is crucial to note that the train-test paradigm is inherently an inductive method that aims
to infer, not measure, the generalization error of a model from its error on a test set. It is well known
— dating back at least to Hume [28, 29] and formalized in the context of machine learning by Wolpert
[68] — that it is not possible to justify the validity of such inductive inferences without further
assumptions. This raises the question: is the train-test paradigm still valid for the combination of
tasks and data sets considered in modern AI and under what assumptions is this the case?

Importantly, such assumptions should be minimal in terms of ontological commitments, i.e., meet
ontological parsimony (or minimality), since (a) model validation results can not provide insights
about validity in the real world if they are contingent on strong ontological assumptions (b) any
assumptions that are required to ensure the validity of model validation can not be validated through
the same method without circular reasoning. In traditional machine learning settings, these ontological
commitments are placed entirely on the data collection process and, as such, the train-test paradigm is
indeed suitable to validate any model assumption outside the data collection process. More concretely,
under active data collection, i.e., when we actively control the data collection process, we can create
large enough test sets that are (approximately) sampled i.i.d. from the target distribution. Under these
conditions, it is well known that the train-test paradigm allows us to validate models simply via their
performance on this test set — without making any further ontological commitments. This property
is the beauty of the train-test paradigm and what makes it so valuable and successful.

However, domains in modern machine learning have become far too large to be covered via data sets
in this active and controlled manner — the required effort would be prohibitively difficult and costly.
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In lieu, passive data collection has become the predominant way to create data sets for modern AI
systems. Here, data is collected without intervention from some social system that generates data
within the domain of interest. For instance, rather than meticulously collecting independent samples
from all possible facts in a domain, training and validation corpora for QA models are gathered from
what has been published on the internet. Similarly, preferences of users are collected over items that
a recommender system has pre-selected, rather than sampling them i.i.d. over all possible user-item
pairs. Importantly, these sample generating systems need not correspond to the target data generating
process, have their own internal dynamics, and are driven by complex interactions of their parts and
social processes, e.g., well-known phenomena such as popularity bias [1], homophily [22, 37], or
feedback loops [14].

Hence, I will ground RQ 1 in these conditions of current machine learning practice: Under passive
data collection from a social system, can model validation be valid or not? To formalize the social
systems with which an AI system interacts, I am taking a complex systems perspective and describe
them as networks with well-established sampling biases and degree distributions. For these properties,
I will show how they affect necessary conditions of test validity. These results can also be understood
as a strengthening of the seminal No Free Lunch (NFL) theorems for supervised learning [68] in the
context of social systems. While the NFL theorems show the impossibility of an assumption-free
general purpose learning algorithm, a common criticism is that they need to assume an induction-
hostile universe, i.e., full ontological neutrality [60]. In practice, where assuming a reasonably
induction-friendly universe is common, the NFL theorems have had therefore limited impact. In
contrast, the results of this work are grounded in current machine learning practice and considerably
stronger: Even for non-trivial assumptions of an induction-friendly universe, model validation can be
shown to be invalid when data is collected passively in social systems. In other words, there is no
free delivery service of data for model validation in complex social systems. To discuss the above
results, I will provide a synthesis of results from learning theory, social science, and complex systems
— and combine them with new theoretical and empirical results on the validity of model validation.
In particular, the main contributions of this paper are as follows:

Theorem 1 (Informal). For passively collected data in complex social systems the train-test
paradigm cannot be valid under ontological parsimony for the vast majority of the system. This
includes widely considered variants of recommender systems and question answering.
Corollary 2 (Informal). Naïve scaling and limited benchmarks are prohibitively inefficient to
address theorem 1 and therefore not suited to attain test validity in these scenarios.
Supporting evidence. Theoretical results are supported via experiments on the popular MOVIE-
LENS benchmark where widely considered recommendation tasks are shown to be test-invalid.

The remainder of this paper proceeds as follows: Sections 2 and 3 formalize passive data collection
in social systems and connect it to test validity. Section 4 develops theorem 1, corollary 2, and
supporting evidence. Sections 5 and 6 discuss related work and implications for AI in social systems.

2 Passive data collection and inference tasks in social systems

To construct validation data sets for large-scale domains, there exist currently two main practical
approaches: (i) “scaling”, i.e., indiscriminately collecting as much data as possible from some domain
and (ii) manually constructing benchmarks of limited size that probe certain subareas of the domain.
In the following, I will focus on formalizing (i) as passive data collection from social systems.
Section 4 will then show that neither (i) nor (ii) can be solutions to the issues of this paper.

In sociology, a social system is often considered a pattern of networked interactions that exists between
individuals, groups, or institutions [44]. For the purposes of this paper, I will consider a social system
to be a pair ( 𝑓 ,S) where 𝑓 : X → Y is a possible world of interactions such that X = X1 × · · · × X𝑛

denotes the domain of interactions, Y denotes the set of outcomes (or labels) of an interaction, and
S : X → [0, 1] denotes the sampling distribution of the system over interactions. Within this
framework, passive data collection refers to sampling directly from S. This is in contrast to active
data collection where we would aim to sample directly from the target distribution T : X → [0, 1]
for an inference task, e.g., via simple random sampling, stratified sampling, etc.

In complex social systems, S is driven by social processes that lead to two characteristic properties of
samples: (i) they are biased and (ii) they follow heavy-tailed or power-law distributions. The earliest
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Table 1: Inference settings based on passive data collection in complex social systems.
Domain X Possible world 𝑓 Sample distribution S Target distribution T

Recommender
systems

U × I User preferences Probability of user interacting with
item, heavy-tailed in U and I

Uniform,
𝑝𝑇 (𝑢, 𝑖) = 1/|U × I|

Symbolic
reasoning

S × P × O Truth value
of factoids

Probability of observing factoid,
heavy-tailed in S, P, and O

Uniform,
𝑝𝑇 (𝑠, 𝑝, 𝑜) = 1/|S × P × O|

(a) Heavy-tailed samples
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Figure 2: (a) Heavy-tailed samples in recommender and reasoning datasets. (b) Symbolic reasoning via
LLMs. To validate reasoning capabilities of LLMs, natural language has to be mapped to logical knowledge
representations. This shows that validation of reasoning in LLMs is subject to the results of this paper. See also
fig. 6b and supp. G.1.

work on (ii) is due to Simon [56], and has independently been discovered in multiple contexts. In
fact, (ii) can often be understood as a consequence of (i), e.g., popularity bias leading to power-law
distributions in social networks [5, 48]. See also supp. C for further discussion of these properties.

In the remainder, I will therefore focus on the presence of heavy-tailed distributions in S to understand
how this ubiquitous property of social systems affects test validity. For this purpose, I will first
introduce the concept of a sample graph, i.e., the observed interactions that we receive from S:

Definition 1 (Sample graph). A data set S ∼ S𝑚 ⊂ X1 × X2 of observed interactions induces a
bipartite sample graph 𝐺 = (X1,X2, S) between entities of X1 and X2 where an edge indicates that
the corresponding interaction has been observed. In the following, I will use S and 𝐺 interchangeably.

For higher arity relations, definition 1 can easily be generalized to hypergraphs. For simplicity,
I will focus on bipartite graphs in the following. In sample graphs, the heavy-tailed property of
complex systems materializes then through their degree distribution. While the exact nature of these
distributions is disputed [13], I will follow Voitalov et al. [64] and assume that node degrees in S
follow a regularly-varying power-law distribution. Based on this observation, passive data in complex
social systems will then refer to the following:

Definition 2 (Passive data in complex social systems). Let S ∼ S𝑚 be a sample graph drawn from
sampling distribution S. Let 𝐾1, 𝐾2 denote random variables that model the degree distribution in
S of nodes in X1 and X, respectively. For passively collected data from complex social systems, I
will then assume that 𝐾1, 𝐾2 follow regularly-varying power-law distributions, i.e.,

P(𝐾1 > 𝑘) = 𝑢1 (𝑘)𝑘−𝛼1 and P(𝐾2 > 𝑘) = 𝑢2 (𝑘)𝑘−𝛼2

where 𝛼𝑖 > 0 are the tail indices and 𝑢𝑖 are slowly varying functions such that lim𝑥→∞ 𝑢(𝑟𝑥)/𝑢(𝑥) = 1
for any 𝑟 > 0. Higher arity relations are defined analogously. Next, I will show how passive data in
social systems materializes in key inference settings (see also table 1).

Example 1 (Recommender Systems). Recommender systems are concerned with inferring the true
preferences of a user over all items from a set of revealed preferences sampled from S. As such they
are a typical example for ( 𝑓 , S) where the target distribution T corresponds to the uniform distribution
over all possible interactions. Importantly, S is typically influenced by social processes and sampling
bias as well as heavy-tailed distributions are well documented in recommender systems. For instance,
an important factor for sampling biases are feedback loops, e.g., that past recommendations influence
which recommendations are shown in the future [34, 14]. Another source of sampling bias is user
feedback, which is often biased towards items with high ratings [59], as well as popularity bias [1,
48]. Popularity bias leads directly to heavy-tailed distributions in the degree distribution of the sample
graph [48, 5]. See also fig. 2a for evidence of this property on MOVIELENS.
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Example 2 (Symbolic reasoning and QA). Reasoning and question answering over symbolic knowl-
edge representations are another key example for ( 𝑓 ,S). In this setting, factoids are represented in
form of (subject, predicate, object) triples and the task is to infer the truth value for any unknown
factoid, i.e., for a uniform target distribution T. Importantly, while facts about the world itself do not
need to be influenced by social processes, our available knowledge about them, i.e., S, often is. In
addition to aspects such as popularity bias, causes for this can range from which questions are studied
in science [35, 36], over how data is collected [31], to who has access to the internet and the ability to
contribute to knowledge [67]. Consequently, heavy-tailed distributions are also well-documented
in this setting. For instance, Steyvers et al. [61] showed that semantic networks typically follow
heavy-tailed degree distributions. Similar distributions have been observed in large-scale knowledge
graphs such as DBPEDIA [4], YAGO [62], FREEBASE [9], and WIKIDATA [65]. See also fig. 2a
for evidence of this property on FB15K. Importantly, this setting applies to any reasoning task
over factoids in general — irrespective of the data representation. For instance, the validation of
reasoning capabilities for general purpose question answering in systems such as LLAMA [63, 21]
and CHATGPT [47] needs to follow this blueprint. See also fig. 2b for an illustration.

3 Test validity

To answer RQ 1, I will focus on the test validity of inference settings, i.e., whether task, assumptions,
and data allow for any valid validations at all. For this purpose, I will use a deductive approach:
model validation is valid if it is a logical consequence of its assumptions that the difference between
its estimate and the true generalization error is bounded with high probability. To formalize this, let
ℎ, 𝑓 : X → Y denote functions that map from sample domain X to target domain Y. For clarity, I will
assume noise-free 𝑓 and ℎ. Furthermore, let S ∼ S𝑚 = {𝑥𝑖}𝑚𝑖=1 denote a data set of 𝑚 samples drawn
from a sampling distribution S : X → [0, 1] and let D = {(𝑥, 𝑓 (𝑥)) : 𝑥 ∈ S} denote its supervised
extension. For notational convenience, I will also write D ∼ S𝑚 when 𝑓 is clear from context. In
addition, let A ⊆ { 𝑓 | 𝑓 : X → Y} be the set of all functions from X to Y that are consistent with
some set of assumptions on 𝑓 such as being low-rank. Next, note that A and D then induce a set of
possible worlds as follows:
Definition 3 (Possible worlds). Let A be a set of assumptions, D ⊂ X × Y a set of observations, and
𝑓 : X → Y. The set of possible worlds F is then the set of functions consistent with A and D, i.e.,

F = { 𝑓 | 𝑓 ∈ A ∧ ∀(𝑥, 𝑦) ∈ D : 𝑓 (𝑥) = 𝑦}.

Furthermore, I will consider an inference setting (A,D, T, F) to be a set of assumptions A, a fixed
dataset D ∼ S𝑚, a target distribution T : X → [0, 1] for which we want to make inferences, and an
assumed distribution over possible worlds F. Note that if S ≠ T, D can not be an i.i.d. sample from T.
For further details and notation see supps. A and B.

Next, let 𝑋 be a random variable over X and let ℓ : Y × Y → R+ be a positive loss function. The risk
of hypothesis ℎ with respect to a single world 𝑓 is then denoted by

𝐿T
𝑓 ℎ = E𝑋∼T [ℓ(ℎ(𝑋), 𝑓 (𝑋))] .

Furthermore, let 𝜃 denote any risk measure of a hypothesis ℎ on some test set T. For instance, 𝜃
could denote the empirical risk or a re-weighted estimator such as the Horvitz-Thompson adjusted
empirical risk (see also table 4 in the supp. material). Hence, 𝜃 does not only cover the standard
Monte-Carlo estimator for the i.i.d. setting, but also estimators used in counterfactual and causal
settings. To determine the test-validity of an inference setting, I am then interested in bounding the
difference between the estimated risk (𝜃) and the true risk of h (𝐿T

𝑓 ℎ
). Importantly, it is necessary to

consider the risk of ℎ relative to the distribution F over all possible worlds since no world 𝑓 ∈ F can
be excluded based on D and A. Hence, test validity is defined as follows:
Definition 4 (Test validity). Let 𝑓 ∼ F denote a distribution over possible worlds F and let H denote
a hypothesis class. Furthermore, let 𝐿T

𝑓 ℎ
denote the risk of hypothesis ℎ for target distribution T and

possible world 𝑓 . Let 𝜃 ∈ R+ denote any empirical risk measure of ℎ on a test set. Then, (A,D, T, F) is
(𝜖, 𝛿)-test-valid (test-invalid) if 𝜃’s difference to 𝐿T

𝑓 ℎ
can (cannot) be bounded accordingly, i.e.,

(A,D, T, F) ⊨
{
∃H ∃ℎ ∈ H : P 𝑓∼F ( |𝜃 − 𝐿T

𝑓 ℎ
| ≤ 𝜖) ≥ 1 − 𝛿 (𝜖, 𝛿)-test-validity

∀H ∀ℎ ∈ H : P 𝑓∼F ( |𝜃 − 𝐿T
𝑓 ℎ
| > 𝜖) > 𝛿. (𝜖, 𝛿)-test-invalidity
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The conditions in definition 4 for a valid validation setting are very mild since it requires only
a single hypothesis class in which 𝜃 for a single hypothesis has bounded difference to the true
risk with high probability. Since invalidity follows directly from validity via complement rule
and negation, the conditions for a validation setting to be invalid are strong: For any possible
hypothesis class it has to hold that the difference between 𝜃 and the true risk of all hypotheses can
not be bounded with sufficient probability. Importantly, both are statements about an inference
setting, i.e., the combination of assumptions, observed data, and target distribution, and not about a
specific hypothesis (class). Furthermore, note that definition 4 implies realizability with regard to
the assumptions: if { 𝑓 | ∀(𝑥, 𝑦) ∈ D : 𝑓 (𝑥) = 𝑦} ∩ A = ∅, an inference setting is test-invalid since
P(∅) = 0. However, definition 4 imposes no realizability or any other constraints on H.

Next, note that definition 4 implies straightforward necessary conditions for test validity:

Corollary 1 (Necessary condition for test validity). Let (A,D, T, F) be an inference setting, let
ℓ : Y × Y → R+ be a positive loss function, and let H be a hypothesis class. Furthermore, let 𝜃 ∈ R+
be any risk estimate for ℎ. Then, if (A,D, T, F) is (𝜖, 𝛿)-test-valid, it must hold that

∃H ∃ℎ ∈ H : P 𝑓 ∼ F (𝐿T
𝑓 ℎ ≤ 𝜖 + 𝜃) ≥ 1 − 𝛿.

Proof sketch. Corollary 1 follows simply via the monotonicity of probability, i.e., it holds that
1 − 𝛿 ≤ P 𝑓∼F ( |𝜃 − 𝐿T

𝑓 ℎ
| ≤ 𝜖) ≤ P 𝑓∼F (𝐿T

𝑓 ℎ
≤ 𝜖 + 𝜃). This holds for any risk measure 𝜃, loss ℓ ∈ R+

and hypothesis ℎ. See supp. D for proof details. □

4 Test validity under passive data collection in complex systems

In the following, I will provide an overview of the main results as well as high-level proof sketches.
For clarity, I will consider only binary relations X = X1 × X2 and possible worlds over unbounded
output domains 𝑓 : X → R. For detailed proofs and discussion, as well as extensions to ternary
relations and bounded domains, see supps. E to G. To meet ontological parsimony1 and get insights
into the validity of the train-test paradigm, I will focus on F being the uniform distribution U and A
imposing only minimal assumptions on 𝑓 .

Next, to derive bounds on the validity of inference settings in complex social systems, I will represent
possible worlds 𝑓 as partially observed matrices which are constructed as follows:

Definition 5 (Matrix representation). For a function 𝑓 : X1 × X2 → Y over finite sets of size
|X1 | = 𝑛1 and |X2 | = 𝑛2, its matrix representation F ∈ R𝑛1×𝑛2 is given via F𝑖 𝑗 = 𝑓 (𝑥𝑖 , 𝑥 𝑗 ) for all
(𝑥𝑖 , 𝑥 𝑗 ) ∈ X1 × X2.2 In the following, I will use 𝑓 and F interchangeably.

Using this matrix representation of a system, I will show in lemma 2 that the train-test paradigm is
invalid if the rank of 𝑓 , i.e., the complexity of the system, exceeds the 𝑘-connectivity of the sample
graph S and if 𝑓 is chosen uniformly from F. Here, 𝑘-connectivity is defined as follows:

Definition 6 (𝑘-core and 𝑘-connectivity). The 𝑘-core (or core of order 𝑘) of a graph is its maximal
subgraph such that all vertices are at least of degree 𝑘 .3 A graph is 𝑘-connected if and only if every
vertex is in a core of order at least 𝑘 .

Lemma 1 (Rank-𝑘 underdetermination). Let A = { 𝑓 | rank( 𝑓 ) ≤ 𝑘}. Then, if S is not 𝑘-connected,
the set of possible worlds F forms a non-empty vector space.

Proof sketch. Since S is not 𝑘-connected, any 𝑓 with rank( 𝑓 ) = 𝑘 can not be S-isomeric. It then holds
via [38, Lemma 5.1] that F, i.e., the set of matrices of rank 𝑘 or less that are consistent with D, form
a non-empty vector space. See supp. E for proof details. □

In the spirit of Occam’s razor, higher ranks of 𝑓 correspond to more complex possible worlds.
Lemma 1 establishes then that if the 𝑘-connectivity of S does not match the complexity of the
system 𝑓 , the observations S do not constrain F sufficiently and a randomly chosen possible world
can be arbitrarily different on the non-observed entries. Via corollary 1, lemma 1 implies then

1See also supp. B.2 for further discussion on the importance of ontological parsimony (minimality).
2This is trivially extended to higher arity functions using tensor representations. See also supp. G.1.
3Note that being in the 𝑘-core of S is a stronger condition than having degree 𝑘: A node can be outside the
𝑘-core even with a degree larger than 𝑘 if enough of its neighbors are outside the 𝑘-core (see also fig. 6c)
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that 𝑘-connectivity is necessary for test validity if ℓ belongs to the broad class of scalar Bregman
divergences, i.e., widely used loss functions such as the square loss, the log loss, or the KL-divergence
(see also table 5 in the supplementary material).
Lemma 2 (Rank-𝑘 test-invalidity). Let A be identical to lemma 1, let ℓ be a scalar Bregman
divergence, let F be the uniform distribution over F, and let T be the uniform distribution over
X. Furthermore, let 𝜃 ∈ R+ be any risk estimator on a test set. Then, if S is not 𝑘-connected,
(A,D, T, F) is test-invalid, i.e., it holds for any 𝜖 > 0 that

∀H ∀ℎ ∈ H : P 𝑓∼F ( |𝜃 − 𝐿T
𝑓 ℎ | ≤ 𝜖) = 0.

Proof sketch. If S is not 𝑘-connected, F is a vector space according to lemma 1. Lemma 2 follows
then from corollary 1 for uniformly sampled 𝑓 ∈ F and ℎ ∈ F via a simple volume argument. For
ℎ ∉ F, the result follows again from F being a vector space via the generalized Pythagorean theorem
for Bregman divergences [20, Eq. 2.3]. See supp. B.2 for proof details. □

The consequences of lemma 2 are non-trivial. Under ontological parsimony, it shows that passive
data from complex social systems, i.e., the foundation of basically all large-scale AI tasks, can not
be used to validate the quality of models if S ≠ T. Clearly, no subset of S, e.g., cross-validation,
can fulfill this task either. Importantly, lemma 2 holds not only for empirical risk, but for any
estimator on D, including counterfactual estimators, i.e., methods which are exactly meant to address
S ≠ T. This illustrates that lemma 2 is not simply an out-of-distribution or counterfactual estimation
problem. Rather, it is caused by a combination of out-of-distribution (S ≠ T) and insufficient data
(𝑘-connectivity < rank( 𝑓 )). Next, I will connect these results to the main result of this work.
Theorem 1 (Test validity in complex social systems). Let (A,D, T, F) be identical to lemma 2.
Furthermore, let S ∼ S𝑚 where S follows power-law distributions such that the degrees of
𝑥 ∈ X𝑖 in the sample graph S are drawn i.i.d. from a regularly-varying power-law distribution
P(deg(𝑥) > 𝑘) = 𝑢(𝑘)𝑘−𝛼𝑖 . Furthermore, let 𝑛𝑖 = |X𝑖 | be the size of domain X𝑖 . Then, the number
𝑉𝑖 of nodes in X𝑖 for which test validity holds decreases with a power-law decay in rank( 𝑓 ) = 𝑘 , i.e,

E[𝑉𝑖] ≤ 𝑛𝑖𝑢(𝑘)𝑘−𝛼𝑖 .

Proof sketch. Test validity requires the 𝑘-connectivity of S to be greater or equal to rank( 𝑓 ) via
lemmas 1 and 2. Hence, only subgraphs where all vertices are at least of degree 𝑘 can be valid.
Theorem 1 follows then via the expected number of nodes with degree at least 𝑘 in X𝑖 , i.e, E[𝑉𝑖] =∑

𝑥∈X𝑖
P(deg(𝑥) ≥ 𝑘). □

For heavy-tailed distributions, most nodes will be outside the required k-core for even moderately
complex worlds. Hence, theorem 1 shows that the train-test paradigm cannot be valid under ontologi-
cal parsimony for the vast majority of nodes in realistic social systems. Table 2 illustrates this using
parameters that match the well-known Book Crossing dataset.

An immediate next question is then if the issues raised by theorem 1 can simply be solved by
scaling, i.e., by collecting more data from S — or via manually constructed benchmarks such as
BigBench [58] to extrapolate from their results to the risk on T. Corollary 2 answers both questions
via lemma 1 (see supp. H for a detailed discussion and proof): (i) For scaling, we can ask how many
draws from S would be necessary such that all nodes are within the 𝑘-core of S with high probability,
i.e., how many samples are needed until arriving at a valid test setting. While there exists no easily
computable solution to this problem, we can compute a (weak) lower bound by asking how many
samples from S are needed to sample a random node in X𝑖 once. (ii) For benchmarks, we can ask
how many nodes would need at least one additional data point to arrive at a valid test setting, i.e.,
how much manual data collection is at least needed to create a benchmark that extrapolates to T.

Table 2: Inefficiency of scaling and benchmarks; validity coverage for the Pareto distribution.
Scaling Benchmarks

𝛼 𝑥min |X| Samples needed to increase k-core of random node Nodes with less than 100 observations

2.5 5 107 E𝑖∼U [𝑇𝑖] ≥ (|X|/2)𝛼+1/(𝛼𝑥𝛼min) = 2 · 1021 E[𝑁] = |X| (1 − (𝑥min/𝑥)𝛼) > 9.9 · 106

Book Crossing [69]
𝛼 𝑥min |X| Fraction of users with large enough degrees such that train-test measures and inferences are valid

2.38 8 105 Rank 8: 100%, Rank 10: 58.8%, Rank 20: 11.3%, Rank 100: 0.2%
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(a) eCDF of Maximum NAE (b) eCDF of Pairwise NAE (c) 𝑘-core per occupation

(d) Test-validity per demographic group and model complexity

Figure 3: MOVIELENS 100k experiments (a) Empirical CDF (eCDF) of maximum NAE over possible worlds.
Area over the curve (expected error) shaded. (b) eCDF of NAE for pairs of possible worlds. (c) eCDF k-coreper
demographic group. (d) Proportion of users for which test-validity holds relative to the rank of 𝑓 .

Corollary 2 (Inefficiency of scaling and benchmarks). Let (A,D, T, F) and S be identical to theo-
rem 1. Furthermore, let (i) 𝑇𝑖 denote the expected number of samples from S until node 𝑥𝑖 ∈ X is
sampled, and let (ii) 𝑁 𝑗 denote the number of nodes in X 𝑗 with less then 𝑘 samples. Then, 𝑇𝑖 scales
at least polynomially and 𝑁 𝑗 scales lineraly in the size of the domain |X|. Specifically,

E𝑖∼U{1, |X | } [𝑇𝑖] ≥ (|X|/2)𝛼+1/(𝛼𝑥𝛼min), and E[𝑁 𝑗 ] = |X| (1 − (𝑥min/𝑥)𝛼)

Clearly, sampling from S is highly inefficient to overcome the issues raised by theorem 1 since (i) it
is extremely difficult to get successful samples from the heavy tail (rare events) and (ii) covering all
nodes outside sufficiently large k-cores in selective benchmarks is prohibitively expensive. See also
table 2 for examples of these aspects for typical distributions in complex social systems.

Experimental evidence To illustrate the real consequences of the previous theoretical results, I will
now provide experimental evidence based on the MOVIELENS 100k dataset [27], a critical benchmark
that has, for years, been widely-used in recommender systems research. As predicted by lemma 2, I
will show that there exist possible worlds of low complexity that all explain the observed data equally
well but are widely different on the unobserved data. Hence, any quality metric that is inferred on
this benchmark, or subsets of it, can not be informative about the true generalization error. For this
purpose, I fit 𝑝 = 100 matrices of rank 𝑘 = 50 to the observed data D. All matrices, or possible
worlds, fit the observed data and rank constraint with error below 10−3 and 10−2, respectively. See
supp. I.1 for details. For a pair of possible worlds ( 𝑓 , 𝑓 ′) , I compute then the normalized absolute
error (NAE) for each unobserved entry (𝑖, 𝑗) ∉ S via NAE( 𝑓𝑖 𝑗 , 𝑓 ′𝑖 𝑗 ) = | 𝑓𝑖 𝑗 − 𝑓 ′

𝑖 𝑗
|/( 𝑓max − 𝑓min). This

informs us about how different pairs of possible worlds can be on the unobserved data. Figures 3a
and 3b shows the empirical CDF (eCDF) of the NAE over unobserved entries for such pairwise
comparisons of possible worlds as well as the worst-case over all worlds per entry. From fig. 3a,
it can be seen that the worst case error across possible worlds per entry is substantial for the vast
majority of unobserved entries. For instance, for 50% of entries the NAE is above 77% of the worst
case error. For arbitrary pairs of possible worlds, the situation is similar, where, depending on the
particular pair of worlds, the NAE is between 23% to 49% for 50% of entries. Furthermore, the area
over the eCDF curves in fig. 3b corresponds directly to the risk for a pair of possible worlds and is
again substantial for all pairs (see supp. I.2 for details). Since any possible world can be the “true”
world this shows again that the test error for any subset of this benchmark can not be informative for
the true generalization error of this task.

In addition to the NAE, fig. 3c shows the cumulative distribution of users within cores of order 𝑘 per
demographic group for MOVIELENS 100k. It can be seen that the cumulative distribution can vary
significantly between different demographics. For instance, while only 25% of “homemakers” are in
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a 𝑘-core larger than 50, 40% of “technicians” are in a 𝑘-core larger than 80. It follows from lemma 2,
that test-validity will therefore also vary significantly between demographic groups (if we assume
that there are no significant differences in the complexity of preferences between groups). Figure 3d
illustrates this point by showing the proportion of users for which test-validity holds relative to the
rank of a model. It can be seen that there exist clear differences already for moderately complex
worlds. For instance, for a model of rank 60, test-validity would hold for 67% of “technicians” while
it would only hold for 14% of “homemakers”. Clearly, this has important implications for fairness,
bias, and whether recommender systems work for everyone.

5 Related work

The no-free-lunch theorems for machine learning [68, 60] share important similarities to this work as
both consider the expected risk over possible worlds. However, the results in this paper are stronger
and directly applicable to current machine learning practice. While the NFL theorems consider the
performance over all possible worlds without any restrictions — an assumption that is too restrictive
in most instances — the results of this paper show that even for relatively strong assumptions about
the set of possible worlds, e.g., low-rank structures, valid model validation is not generally possible
for passive data collection in complex social systems. In motivation, this paper is also related to the
works [19, 7, 25, 54, 41, 66] which study outcomes of underspecification in ML pipelines, model
multiplicity and Rashomon sets. In the restricted context of personalized prediction, Monteiro Paes
et al. [46], discusses related limits to testing and estimation. Schaeffer et al. [52] discuss whether
seemingly emergent capabilities of LLMs are rather a result of insufficient metrics. In statistics, Meng
[43] analyzed a scaling-related question similar to this paper: Given a carefully collected survey
with low response rate (small data) or a large, self-reported dataset without data curation (big data),
which dataset should one trust more to estimate population averages? Outside machine learning,
validity theory has a long history in fields such as psychology and sociology. Here, test validity is
considered a measure of the degree to which a test measures what it is intended to measure [18] and
has been studied extensively in the context of psychological tests [45] and educational testing [32].
Increasingly, these notions of validity, have also been considered in machine learning [17, 51, 50, 2].

With regard to technical tools, this paper is also closely related to prior work in matrix completion. For
instance, [33] studied the problem of unique and finite completability of matrices and derived similar
𝑘-core related bounds using determinantal varieties and algebraic geometry. Srebro et al. [57] studied
the problem of matrix completion based on non-uniform samples such as power-laws but assume
that S = T. Meka et al. [42] focused on power-law samples for S ≠ T and, consistent with this work,
require at least 𝑘 samples per row and column to guarantee completability of a rank-𝑘 matrix. Cheng
et al. [15] derive similar results based on graph 𝑘-connectivity. Related to non-i.i.d. observations, [38]
developed a framework to provide necessary conditions for matrix completion under deterministic
sampling. Lemma 1 is based on these results. Different to these prior works, I provide formal
impossibility results for test validity based on passive data in complex social systems. This allows
to gain rigorous insights into the epistemic limits of what we can know based on this form of data
collection. See also supp. J for further related work.

6 Discussion

The results in this paper provide new insights into the validity of the train-test paradigm when data
is passively collected from complex social systems. In particular, I have shown that there exists
no free delivery service of data that allows for test validity on a global scale in this setting. While
valid inferences are possible with respect to the sampling distribution S and within high 𝑘-cores,
they are unlikely if T extends to the entirety of the system. Hence, test validity depends on the
interplay between task (T), the complexity of the system (A), and the 𝑘-connectivity of the sample
graph (S) underlying the observed data (D), what is a combinatorial property of the data. These
results are attained by establishing novel necessary conditions for which validation is possible. As
AI systems are increasingly applied in conditions for which sufficient conditions of validity are
difficult to guarantee, understanding such minimal conditions can provide guidelines into developing
better and more robust systems. Importantly, it can help to demarcate inference goals that are not
meaningful from ones that are attainable. It helps to understand the limits of what we can know and
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which questions are futile to ask. This work provides a first step in this direction by establishing such
epistemic limits of AI in complex social systems.

Furthermore, I have shown that the sub-system for which valid inferences are possible shrinks rapidly
with the complexity of the system and that a naïve application of the scaling paradigm is prohibitively
inefficient to overcome these validity issues. As a consequence, solving many complex AI tasks
are unlikely to come for free through scaling or for cheap through extrapolating from limited small-
scale benchmarks. Instead, there exists an inherent trade-off between data quality, quantity, and task
complexity. If we want to avoid asking AI systems to solve simpler tasks (e.g., non-out-of-distribution
or smaller scope), new data curation efforts are likely needed. Due to the substantial amount of data
that would have to be collected, centralized data collection is often infeasible to overcome the validity
issues of this paper. Instead, decentralized methods such as participatory data curation could provide
a way forward. This aligns with insights from fairness which also highlight the need for participatory
methods in data collection [31]. Similar arguments apply to the importance of open science and
open-source models in this context.

Importantly, the theoretical results of this paper also provide direct insights into how to improve
data collection for model validation via its 𝑘-core conditions. In particular, lemma 1 and corollary 2
imply two clear objectives for targeted data collection: (a) collecting data points that increase
the 𝑘-connectivity of the sample graph and (b) collecting data points that increase the size of the
rank( 𝑓 )-core of the sample graph, where rank( 𝑓 ) is the complexity of the world that we want to
assume. Pursuing (a) would increase the complexity of the world that can be assumed such that
model validation is still valid for the entire sample graph, while pursuing (b) would increase the
size of the subgraph for which a rank( 𝑓 ) = 𝑘 assumption would still yield valid model validation.
Hence, both objectives are based on the k-core conditions of this work and can be computed from a
given sample graph. Creating new mechanisms for efficient data collection based on these insights is
therefore a very promising avenue for future work.
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Supplementary Information

A Notation

Random variables are denoted by italic uppercase letters, e.g., 𝐿, 𝑆, 𝑋 . Sets are denoted by calligraphic
uppercase letters, e.g., X, S. Constants are indicated with lowercase greek letters, e.g., 𝜖, 𝜌. Functions
and scalar are denoted by lowercase letters, e.g., 𝑓 , 𝑔, ℎ and 𝑥, 𝑦. Matrices and higher-order tensors
are indicated with bold uppercase letters, e.g., F,U.

Table 3: Notation

Concept Notation
Possible world 𝑓 : X → Y
Hypothesis ℎ : X → Y
Loss ℓ : Y × Y → R+
Sample distribution S : X → [0, 1]
Target distribution T : X → [0, 1]
Social system ( 𝑓 ,S)
Sample graph S ∼ S𝑚

Test set D = {(𝑥, 𝑓 (𝑥)) : 𝑥 ∈ S}
Risk 𝐿T

𝑓 ℎ
= E𝑋∼T [ℓ(ℎ(𝑋), 𝑓 (𝑋))]

Estimated risk 𝜃 ∈ R+

B Validity framework

In this work, I am interested in the validity of inference settings, i.e., whether assumptions and
observations allow for any valid inferences at all. To formalize this, I will take the following
high-level approach:

Inference setting An inference setting consists of a set of assumptions A, a fixed dataset D which
is collected from a sampling distribution S, and a target distribution T for which we want to
make inferences. Note that S is not guaranteed to be identical to T. Hence, we’re concerned with
out-of-distribution generalization settings.

Expected risk over possible worlds Assumptions A and observed data D define a set of possible
worlds F that is consistent with A and D. Given a probability distribution F over F, I am then
interested in the expected risk over all possible worlds that are consistent with A and D.

Validity An inference setting is valid, if the expected risk over possible worlds can be bounded
meaningfully at all, i.e., if there exists at least one hypothesis class for which the generalization
error of at least a single hypothesis can be bounded sufficiently.

To approach the question of validity, learning theory has traditionally focused nearly exclusively
on sufficient conditions for valid inferences. Under active data collection, i.e., in scenarios where
one can control exactly how data is collected, sufficient conditions are highly attractive since they
provide exact specifications for inferences to be valid with high probability. However, under passive
data collection, the situation is reversed. Sufficient conditions for the validity of inferences usually
place highly restrictive demands on the data collection process (e.g., i.i.d. samples or simple random
sampling) which are challenging to satisfy even when data is collected carefully in an active way.
Since passive data collection, by definition, exerts no control over the sample generating process,
these sufficient conditions are not met with near certainty. For this reason, I am focusing here on
necessary conditions for validity, i.e., conditions that must always be satisfied for inferences to be
valid. Under passive data collection, necessary conditions can provide important insights since they
need to hold for any data collection process or, conversely, can be used to identify scenarios where
inferences are not valid with high probability.
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B.1 Connection to No-Free-Lunch theorems

The validity framework of section 3 and the No-Free-Lunch theorems are closely connected. First,
consider the expected risk over all possible worlds relative to F, i.e.,

E 𝑓∼F

[
𝐿T

𝑓 ℎ

]
= E 𝑓∼F E𝑋∼T [ℓ(ℎ(𝑋), 𝑓 (𝑋))] . (1)

Equation (1) is then akin to the objectives considered in the seminal No Free Lunch (NFL)
theorems [68, 60]. For instance, the NFL theorem for supervised learning can be written as
∀Λ : E 𝑓∼U E𝑋∼T [ℓ(ℎΛ(D) (𝑋), 𝑓 (𝑋))] = 1/2, where U is the uniform distribution over all possi-
ble worlds in an assumption-free setting (i.e., A = ∅), ℓ is the 0/1-loss, and ℎΛ(D) is the hypothesis
derived from a finite sample D with algorithm Λ. In contrast to the NFL theorems — where A = ∅
implies an induction-hostile universe — my focus is on induction-friendly settings (A ≠ ∅) but where
D is sampled from a complex social system. Since 𝐿T

𝑓 ℎ
is a non-negative random variable, we can

then connect definition 4 and eq. (1) via upper and lower bounds based on Markov’s inequality.

Definition 7 (Markov’s inequality). Let 𝑋 be a non-negative random variable and 𝑎 > 0. Then

P(𝑋 ≥ 𝑎) ≤ E[𝑋]/𝑎.

Hence, it follows that the expected risk over all possible worlds is large for invalid settings since it
holds that

E 𝑓∼F [𝐿T
𝑓 ℎ] ≥ 𝜖 · P 𝑓 ∼ F (𝐿T

𝑓 ℎ > 𝜖)

B.2 Importance of ontological parsimony and test validity in the i.i.d. setting

The strong appeal of the train-test paradigm is that, with careful data collection, we require no further
ontological assumptions to ensure the validity of the model validation procedure. In particular, if we
have a test set that is sampled independently from T, it follows straightforwardly from Hoeffding’s
inequality that we can meaningfully bound the approximation error over this test set [55, Theorem
11.1]. Let T ∼ T𝑚 be a test set of size 𝑚, sampled i.i.d. from the target distribution T. Then, it holds
that

PT∼T𝑚

(���𝐿Tℎ 𝑓 − 𝐿
T
ℎ 𝑓

��� ≤ √︂
log(2/𝛿)

2𝑚

)
≥ 1 − 𝛿.

Importantly, this holds for any hypothesis ℎ, any algorithm Δ, and any training set D. Hence, under
careful data collection where we know that if the test set is sampled i.i.d. from T, any hypothesis can
be validated based on the observed data only.

This property, i.e., that we can evaluate the performance of a model without further assumptions on the
model itself, is crucial to compare the performance of different methods since different architecture,
inference, and hyperparameter choices correspond to different assumptions. Maybe more importantly,
this property is also crucial to validate our model assumptions on observed data (given that the
sampling assumption holds), since otherwise we could only make statements relative to that our
model assumptions hold, which is, of course, much weaker and not informative. Hence, if we need to
make model specific assumptions for the validation error to be informative for the generalization error,
the train-test paradigm would be relatively meaningless. Of course, the (considerable) challenge is
to collect 𝑚 i.i.d. samples from the true target distribution T which can not be guaranteed and is an
important assumption on the data collection process.

Table 4: Estimators and quality measures.
Estimators Risk Measures

Monte Carlo Horvitz-Thompson Empirical Risk HT Weighted Emp. Risk

Estimator from S ∼ S𝑚 1
𝑚

∑
𝑥∈S 𝑥

1
𝑚

∑
𝑥∈S

𝑥𝑖
𝑝T (𝑥 )

1
𝑚

∑
𝑥∈S ℓ(ℎ(𝑥), 𝑓 (𝑥)) 1

𝑚

∑
𝑥∈S

ℓ (ℎ (𝑥 ) , 𝑓 (𝑥 ) )
𝑝T (𝑥 )

Estimated expected value E𝑋∼S [𝑋] E𝑋∼T [𝑋] E𝑋∼S [ℓ(ℎ(𝑋), 𝑓 (𝑋))] E𝑋∼T [ℓ(ℎ(𝑋), 𝑓 (𝑋))]
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(a) Sampling bias

1 2 3 4 5
0

1

2

3
𝛼

1
1.5
2

2.5
3

(b) Pareto distribution (c) Degree distribution of MOVIELENS 100k

Figure 4: Properties of complex social systems (a) Graphical model of sampling bias. (b) Illustration of
power-law distribution on the example of the Pareto distribution. (c) Degree distribution of MOVIELENS 100k.

C Complex social systems

In the following, I will discuss how sampling bias and heavy-tailed distributions can occur, and can be
connected, in complex social systems. First, sampling bias is concerned with how S is collected. Most
standard inference methods assume i.i.d. samples from T, but it is well know that this assumption can
be easily violated when sampling in complex systems.

Definition 8 (Sampling bias). Let S𝑡
𝑖 𝑗

denote the random variable corresponding to entities (𝑖, 𝑗) ∈
X1 × X2 𝑗 being samples at time 𝑡. Samples in complex social systems can then neither be assumed
to be independent across time nor independent with regard to the target value 𝑓𝑖 𝑗 , i.e.,

𝑃(𝑆𝑡𝑖 𝑗 |𝑆𝑡−𝑠𝑖 𝑗 ) ≠ 𝑃(𝑆𝑡𝑖 𝑗 ) and 𝑃(𝑆𝑡𝑖 𝑗 | 𝑓𝑖 𝑗 ) ≠ 𝑃(𝑆𝑡𝑖 𝑗 ).

Higher arity relations are defined analogously. See also fig. 4a for the assumed sample dependencies.

Sample biases as in definition 8 can be causes by aspects such popularity bias, i.e., if popular items
are more likely to be sampled, and quality biases, i.e., if items with higher values for 𝑓𝑖 𝑗 are more
likely to be sampled.

A prime example of how sampling bias in the form of popularity bias can lead to power-law
distributions, is the influential Barabasi-Albert model [5]. In this model of complex networks, nodes
are added to a network one by one and are connected to existing nodes with a probability proportional
to their degree, i.e., popularity. Formally, this model is defined as follows:

Definition 9 (Barabasi-Albert model). Let 𝐺 = (X,E) be a graph. Furthermore, let P(𝑖 ∼𝑡 𝑗) denote
the probability that the edge 𝑖 ∼ 𝑗 is added at time 𝑡 to E and let 𝜅𝑖 denote the degree of node 𝑥𝑖 . The
Barabasi-Albert model generates then a graph 𝐺 as follows:

1. Start with a small connected graph 𝐺0 with 𝑚 nodes.

2. At each time step 𝑡 > 0, add a new node 𝑥 to 𝐺 and connect it to 𝑚 existing nodes in 𝐺 with
a probability proportional to their degree, i.e.,

P(𝑖 ∼𝑡 𝑣) =
𝜅𝑖∑

𝑗∈X 𝜅 𝑗

It is then well known that definition 9 leads to a power-law degree distribution in 𝐺, i.e., a distribution
where the probability of a node having 𝑘 connections is proportional to 𝑘−𝛼 for some 𝛼 > 0.

D Proof corollary 1 (Necessary condition for test validity)

Corollary 1 (Necessary condition for test validity). Let (A,D, T, F) be an inference setting, let
ℓ : Y × Y → R+ be a positive loss function, and let H be a hypothesis class. Furthermore, let 𝜃 ∈ R+
be any risk estimate for ℎ. Then, if (A,D, T, F) is (𝜖, 𝛿)-test-valid, it must hold that

∃H ∃ℎ ∈ H : P 𝑓 ∼ F (𝐿T
𝑓 ℎ ≤ 𝜖 + 𝜃) ≥ 1 − 𝛿.
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(a) (b)

Figure 5: Sample graph degree distributions for widely used benchmark datasets. (a) Graph learning and
link prediction via Cora (b) Extreme classification via Wiki10-31k. As can be seen, all benchmarks follow
similar heavy-tailed distributions in their sample graph as the MovieLens dataset in the main text. As such, these
benchmarks are subject to the same results and pathologies.
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Figure 6: (a) Relation between assumptions, possible worlds, and hypotheses Assumptions A define a set
of functions 𝑓 of which a subset are possible worlds F, i.e., those functions which are also consistent with
observations D. While hypotheses H will often be equivalent to A, they can also be a proper subset of A and do
not need to overlap with F, e.g., due to additional assumptions or computational requirements that constrain H.
The functions 𝑓 , 𝑓★, and ℎ indicate the relevant objects for the necessary conditions in corollary 1 as well as
their relationships (solid and dotted lines). (b) Tensor representation of a function 𝑓 : X1 × X2 × X3 → R. (c)
Illustration of the 2-core of a graph. Nodes within the 2-core are indicated by black. Nodes outside the 2-core
are indicated as white, edges that are removed when reducing to the 2-core are indicated as dotted.

Proof. First, note that |𝜃 − 𝐿T
𝑓 ℎ
| ≤ 𝜖 is equivalent to 𝜃 − 𝐿T

𝑓 ℎ
≤ 𝜖 ∧ 𝐿T

𝑓 ℎ
− 𝜃 ≤ 𝜖 . Furthermore, we

have
{ 𝑓 | 𝜃 − 𝐿T

𝑓 ℎ ≤ 𝜖 ∧ 𝐿T
𝑓 ℎ − 𝜃 ≤ 𝜖} ⊆ { 𝑓 | 𝐿T

𝑓 ℎ − 𝜃 ≤ 𝜖}.
It follows then simply from the monotonicity of probability that

1 − 𝛿 ≤ P 𝑓 ∼ F ( |𝜃 − 𝐿T
𝑓 ℎ | ≤ 𝜖) ≤ P 𝑓 ∼ F (𝐿T

𝑓 ℎ − 𝜃 ≤ 𝜖) = P 𝑓 ∼ F (𝐿T
𝑓 ℎ ≤ 𝜖 + 𝜃). □

E Proof lemma 1 (Rank-𝑘 underdetermination)

I will first introduce the concept of S-isomerism and connect it to 𝑘-connectivity. I will then use these
results to proof lemma 1.

First, let S𝑖, · = { 𝑗 : (𝑖, 𝑗) ∈ S} denote the set of observed columns for row 𝑖 and S·, 𝑗 = {𝑖 : (𝑖, 𝑗) ∈ S}
denote the observed rows for column 𝑗 . Let S𝑖, · [F] ∈ R𝑚×|S𝑖, · | be the sub-matrix of F ∈ R𝑚×𝑛 which
is obtained by restricting the columns of F to the indices in S𝑖, · . Similarly, let S·, 𝑗 [F] ∈ R |S·, 𝑗 |×𝑛

be the sub-matrix of F ∈ R𝑚×𝑛 which is obtained by restricting the rows of F to the indices in S·, 𝑗 .
Then, S-isomerism is defined as follows:
Definition 10 (S-Isomeric). Let F ∈ R𝑚×𝑛 and let S ⊆ {1, . . . , 𝑚} × {1, . . . , 𝑛} with S·, 𝑗 ≠ ∅. Then,
F is called S-isomeric iff

rank
(
S𝑖, · [F]

)
= rank(F), ∀𝑖 ∈ 1, . . . , 𝑚 and

rank
(
S·, 𝑗 [F]

)
= rank(F), ∀ 𝑗 ∈ 1, . . . , 𝑛.
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Corollary 3 (Necessary condition for S-isomerism). Let S be a sample graph and let rank(F) = 𝑘 . If
F is S-isomeric, then it must hold that S is 𝑘-connected.

Proof. First, note that rank(X) ≤ min(𝑚, 𝑛) for any X ∈ R𝑚×𝑛. Hence, it follows from definition 10
that for a rank-𝑘 matrix to be S-isomeric, each column and row needs to have at least 𝑘 observed
entries. Since this is equivalent to 𝑘-connectivity, the result follows. □

Lemma 1 (Rank-𝑘 underdetermination). Let A = { 𝑓 | rank( 𝑓 ) ≤ 𝑘}. Then, if S is not 𝑘-connected,
the set of possible worlds F forms a non-empty vector space.

Proof. Since rank( 𝑓 ) = 𝑘 and S is not 𝑘-connected, it follows from corollary 3 that 𝑓 is not S-
isomeric. Hence, it holds via [38, Theorem 3.2] that there exist infinitely many matrices 𝑓 ′ that all
explain the observed data S perfectly, i.e.,

𝑓 ′ ≠ 𝑓 ∧ rank( 𝑓 ′) ≤ rank( 𝑓 ) ∧ 𝑓 ′𝑖 𝑗 = 𝑓𝑖 𝑗 ∀(𝑖, 𝑗) ∈ S.

Moreover, it follows from [38, Lemma 5.1] that this set of possible worlds F forms a non-empty
vector space V. □

F Proof lemma 2 (Rank-𝑘 test invalidity)

To prove lemma 2, I will first show the following auxiliary proposition:

Proposition 1 (Risk inequality for Bregman projection). Let ℓ : Y × Y → R+ be a scalar Bregman
divergence and let 𝑓★ = arg inf 𝑓 𝐿

T
𝑓 ℎ

be the Bregman projection of ℎ onto a vector space F. Then, it
holds that

𝐿T
𝑓 𝑓★ ≤ 𝐿T

𝑓 ℎ .

Proof. First, note that 𝐿T
𝑓 ℎ

is simply a convex combination of scalar Bregman divergences, i.e.,

𝐿T
𝑓 ℎ =

∑︁
𝑥∈X

ℓ( 𝑓 (𝑥), ℎ(𝑥))𝑝𝑇 (𝑥).

Hence, 𝐿T
𝑓 ℎ

itself is a (separable) Bregman divergence. Proposition 1 follows than from the general-
ized Pythagorean theorem for Bregman divergences [20, Eq. 2.3] since every vector space is a convex
set and 𝑓★ is the projection of ℎ onto F, i.e., it holds that

𝐿T
𝑓 ℎ ≥ 𝐿T

𝑓 𝑓★ + 𝐿T
𝑓★ℎ ≥ 𝐿T

𝑓 𝑓★ . □

Lemma 2 (Rank-𝑘 test-invalidity). Let A be identical to lemma 1, let ℓ be a scalar Bregman
divergence, let F be the uniform distribution over F, and let T be the uniform distribution over
X. Furthermore, let 𝜃 ∈ R+ be any risk estimator on a test set. Then, if S is not 𝑘-connected,
(A,D, T, F) is test-invalid, i.e., it holds for any 𝜖 > 0 that

∀H ∀ℎ ∈ H : P 𝑓∼F ( |𝜃 − 𝐿T
𝑓 ℎ | ≤ 𝜖) = 0.

Proof. Since the standard uniform distribution is not defined on an entire vector space, I will instead
consider the limit of the class of uniform distributions of balls of radius 𝑟. Next, since ℓ is Borel
measurable, B( 𝑓 , 𝜖) = { 𝑓 ′ | 𝐿T

𝑓 𝑓 ′ < 𝜖} defines a measurable set around each 𝑓 ∈ F. Furthermore,
let VolB( 𝑓 , 𝜖) denote the volume of such an 𝜖-“ball”. Via the change of variables formula, we know

Table 5: Examples of Scalar Bregman Divergences

Divergence ℓ(𝑥, 𝑦) Divergence ℓ(𝑥, 𝑦)

Squared loss (𝑥 − 𝑦)2 KL-divergence 𝑥 log(𝑥/𝑦)
Log loss 𝑥 log(𝑥/𝑦) + (1 − 𝑥) log((1 − 𝑥)/(1 − 𝑦)) Itakura-Saito 𝑥

𝑦 − log(𝑥/𝑦) − 1
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then that the volume of B( 𝑓 , 𝑟 · 𝜖), i.e., the volume of the original ball stretched in all directions by
𝑟 ≥ 1 is given by

Vol B( 𝑓 , 𝑟 · 𝜖) =
∫
𝑟 ·𝜖

𝑑𝑥 =

∫
𝜖

𝑟dimV𝑑𝑦 = 𝑟dimV · VolB( 𝑓 , 𝜖).

Next, let U𝑟 denote the uniform distribution over B( 𝑓 , 𝑟 · 𝜖). Then, the probability of sampling a
point inside B( 𝑓 , 𝜖) when drawing points uniformly from B( 𝑓 , 𝑟 · 𝜖) with 𝑟 ≥ 1 is given by

∀ 𝑓 ∈ F : P 𝑓 ′∼U𝑟

(
𝐿T

𝑓 𝑓 ′ ≤ 𝜖
)
=

Vol B( 𝑓 , 𝜖)
Vol B( 𝑓 , 𝑟 · 𝜖) =

1
𝑟dimV

.

Moreover, if V is non-empty it follows that dimV ≥ 1. Hence, as we increase 𝑟 to span large parts of
V, it holds that

∀𝜖∀ 𝑓 ∈ F : lim
𝑟→∞

P 𝑓 ′∼U𝑟

(
𝐿T

𝑓 𝑓 ′ ≤ 𝜖
)
= 0. (2)

Using eq. (2) I will then show lemma 2 by considering the two cases ℎ ∈ F and ℎ ∉ F.

If we assume ℎ ∈ F, lemma 2 follows directly from corollary 1 and F being a non-empty vector
space according to lemma 1 (since S is not 𝑘-connected).

On the other hand, if ℎ ∉ F, consider the projection of ℎ onto F according to ℓ, i.e., 𝑓★ = arg min 𝑓 𝐿
T
𝑓 ℎ

.
Since 𝐿T

𝑓 ℎ
is a Bregman divergence and F is a vector space, lemma 2 follows then from corollary 1,

proposition 1 and the monotonicity of probability since 𝐿T
𝑓 𝑓★

≤ 𝐿T
𝑓 ℎ

. □

G Extensions to Higher-arity relations and bounded domains

G.1 Ternary and higher arity relations

First, note that higher arity functions can be represented as tensors of the same order as follows (see
also fig. 6b for a visualization):
Definition 11 (Tensor representation). For a function 𝑓 : X1 × X2 × · · · × X𝑘 → R over finite
sets of size |X𝑖 | = 𝑚𝑖 , we can construct its tensor representation F ∈ R𝑚1×𝑚2×···×𝑚𝑘 via F𝑖 𝑗...,𝑘 =

𝑓 (𝑥𝑖 , 𝑥 𝑗 , . . . , 𝑥𝑘) for all 𝑥𝑖 ∈ X1, 𝑥 𝑗 ∈ X2, . . . , 𝑥𝑘 ∈ X𝑘 .

A trivial extension of theorem 1 and its related results can then be obtained by considering the
rank of the projection of the tensor representation of 𝑓 onto its matrix presentation such that
F𝑖 𝑗 =

∑
𝑘 𝑓 (𝑖, 𝑗 , 𝑘) (what equals the assumption that the rank of the predicate mode in 𝑓 is one).

Since predicates in many knowledge graphs are very sparse, the sum over 𝑘 will often preserve this
sparsity and the associated heavy-tailed distributions. In this case, the results of the matrix case
extend directly to the tensor case. If this is not the case, it is necessary to extend the matrix analysis
of lemma 1 to the tensor case and consider cases where the predicate mode can have rank larger than
one. However, this is beyond the scope of this paper and reserved for future work.

G.2 Bounded domains

In many practical applications, the output domain of the function 𝑓 is bounded, i.e., Y ∈ [0, 1]. In
this case, the main results of this paper can possibly be extended if 𝑓 can be expressed in terms of
a bijective link function 𝑔, i.e., 𝑓 (𝑥) = 𝑔(𝜙(𝑥)) where 𝜙 : X → R. Common link functions that
are bijective include the logit and probit functions (binary variable) and the log function (Poisson
variable). In the following, I provide a brief outline of the argument: Since 𝑔 is bijective, its inverse
exists and we can work on Φ by applying 𝑔−1 to 𝑓 . Next, for each column (or row) of Φ, consider
the regression problem Φ𝑖 = 𝑈𝑣𝑖 with the goal of modeling the observed entries of Φ. If the
dimensionality (rank) of𝑈 and 𝑣𝑖 is larger than the number of observed entries in Φ𝑖 , this regression
problem becomes an underdetermined system. For areas of the sample graph that are too sparse, we
can then find again infinitely many matrices that match all the observed entries of Φ but are different
on unobserved entries. The main results of this paper would then extend directly to Φ and via the link
function 𝑔 to the bounded domain. One difference to the results in the unbounded case is that the
above argument holds for the degrees in the sample graph, while the unbounded case holds for the
stronger 𝑘-core condition.
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H Inefficiency of scaling and benchmarks

Lemma 1 allows to answer the scaling question by asking how many draws from S would be necessary
such that all nodes are within the 𝑘-core of S with high probability, i.e., how many samples are needed
until arriving at a valid test setting. In the following, I will discuss different ways to approximate this
question.

H.1 Scaling and the coupon collector problem

One way to lower bound the number of samples needed to arrive at a valid test setting would be to
calculate the number of samples needed to sample each node outside the required k-core at least once.
This is an instance of the coupon collector problem with unequal probabilities. In particular, let 𝑇𝑘 be
the number of draws from S until we have collected 𝑘 distinct nodes from X2 for an arbitrary node in
X1. Then, it follows from [26, Corollary 4.2] that

E[𝑇𝑘] =
∑𝑘−1

𝑞=0 (−1)𝑘−1−𝑞 (𝑚−𝑞−1
𝑚−𝑘

) ∑
|𝐽 |=𝑞

1
1−𝑃𝐽

(3)

where 𝑃𝐽 =
∑

𝑗∈𝐽 𝑝 𝑗 and where
∑

|𝐽 |=𝑞 denotes the sum over all subsets 𝐽 of size 𝑞. However, eq. (3)
is hard to interpret and for that reason not very useful for our purposes. Moreover, eq. (3) is not even
tractable to compute at the scale that we would require for the settings considered in this paper. For
instance, assume that we are dealing with a relatively small-scale domain of |X| = 107 entities. Since
eq. (3) requires to over all subsets of size 𝑘 − 1, for a model of rank 𝑘 = 10 this operation alone would
require more than (

|X|
𝑘 − 1

)
=

(
107

9

)
> 2.75 · 1057 FLOPS.

H.2 Proof for scaling bound in corollary 2

Since the coupon collector problem is not computable, corollary 2 considers an even weaker lower
bound and asks how many samples are needed to sample an average node at least once. For a fixed
node 𝑥𝑖 , this is an instance of number of trials until first success and follows a geometric distribution
with expected value 𝑇𝑖 = 1/𝑝𝑖 . Next, for a power-law distribution with P(𝑋 > 𝑥) = 𝑢(𝑥)𝑥−𝛼 it holds
that 𝑃(𝑋 = 𝑥) = 𝑢′ (𝑥)𝑥−(𝛼+1) where 𝑢′ is also a slowly varying function. Hence, we have

𝑇𝑖 =
1

𝑢′ (𝑥𝑖)𝑥−(𝛼+1)
𝑖

=
𝑥𝛼+1
𝑖

𝑢′ (𝑥𝑖)
. (4)

To illustrate eq. (4), consider the following example using the Pareto distribution to instantiate𝑈′. In
this case, we have 𝑇𝑖 = 𝑥𝛼+1

𝑖
/𝛼𝑥𝛼min. For a random node in X os size 𝑛, it holds then that

E𝑖∼U{1,𝑛} [𝑇𝑖] = 1
𝑛

∑𝑛
𝑖=1

𝑥𝛼+1
𝑖

𝛼𝑥𝛼
min

= 1
𝛼𝑥𝛼

min
E𝑖∼U{1,𝑛} [𝑥𝛼+1

𝑖
] ≥ 1

𝛼𝑥𝛼
min

E𝑖∼U{1,𝑛} [𝑥𝑖]𝛼+1 = 1
𝛼𝑥𝛼

min
(𝑛/2)𝛼+1

where the inequality follows from Jensen’s inequality for 𝛼 > 0. This concludes the proof.

I Experiments

All experiments were computed on a single NVIDIA Volta V100 GPU and implemented using
Jax [12], Jaxopt [8], Numpy, and Scipy. All experiments were computed on the MOVIELENS 100k
benchmark [27] which is available at https://grouplens.org/datasets/movielens/100k/
and released under a custom license https://files.grouplens.org/datasets/movielens/
ml-100k-README.txt.

I.1 Computing possible worlds under rank constraints

To find possible worlds that fit the observed data under a rank-constraint, I will first compute a single
subspace for which we can model all observed data with highest accuracy. For this purpose, I am first
fitting a matrix F = UV⊤ to the observed entries under a rank constraint, i.e., via min ∥FS − YS∥2

𝐹

where the constraint rank(F ≤ 𝑘) is enforced simply via U ∈ R𝑚×𝑘 , V ∈ R𝑛×𝑘 . Next, let U = QR
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be the QR decomposition of U. Then, we know that the set of possible worlds within the subspace
spanned by Q ∈ R𝑛×𝑘 must be of the form PQ ∩ PS where

PQ (M) = QQ⊤M and [PS (M)]𝑖 𝑗 =
{
[M]𝑖 𝑗 if (𝑖, 𝑗) ∈ S

0 otherwise

are the orthogonal projections onto the column space of Q and the observed entries, respectively.
Furthermore, assume that we have already found 𝑝 matrices that are of rank 𝑘 and which fit the
observed entries YS with high accuracy. We can then find the 𝑝 + 1-th matrix by minimizing the
following objective:

X = arg min
X∈R𝑚×𝑛

∥PQ (X) − X∥2
𝐹 + ∥PS (X) − YS∥2

𝐹 − ∑𝑝

𝑖=1∥X − X𝑖 ∥2
𝐹 s.t. 𝑌min ≤ 𝑋𝑖 𝑗 ≤ 𝑌max. (5)

Importantly, the experimental results in section 3 and fig. 3 hold already for only a single subspace U
and considering further subspaces that also explain the observed data can only increase the differences
between possible worlds reported in these experimental results.

I.2 Area over the eCDF as expected risk

In the following, I will discuss how the area over the eCDF curves in fig. 3b correspond to the risk 𝐿U
𝑓 𝑓 ′

between these pairs of possible worlds. In particular, let 𝐸 be the random variable corresponding to the
normalized absolute error of entries in possible worlds 𝑓 and 𝑓 ′. Furthermore, let 𝐹𝐸 (𝑥) = P(𝐸 ≤ 𝑥)
be the CDF of 𝐸 . The expected error between both possible worlds (in terms of NAE) is then
equivalent to the area over the curve of eCDF, i.e.,

𝐿U
𝑓 𝑓 ′ = E𝑥∼U

[
| 𝑓 (𝑥) − 𝑓 ′ (𝑥) |
𝑥max − 𝑥min

]
=

∫ 1

0
(1 − 𝐹𝐸 (𝑥))𝑑𝑥.

(a) eCDF of Maximum NAE (b) eCDF of Pairwise NAE

Figure 7: Cora experiments. Empirical CDF of the maximum NAE (a) and pairwise NAE (b). It can be seen
that expected error (area over the curve) behaves similarly to the MovieLens dataset in the main text.

J Related work

In statistics, Meng [43] analyzed a scaling-related question similar to this paper: Given a carefully
collected survey with low response rate (small data) or a large, self-reported dataset without data
curation (big data), which dataset should you trust more to estimate population averages? For this
purpose, Meng introduces an Euler-formula-like identity which connects estimation quality to data
quality, data quantity, and problem difficulty. Similar to the results in this paper, Meng shows that
data quantity is highly inefficient to overcome issues in data quality, especially sampling related
issues. While related in spirit, the results in this paper go beyond the question of surveying and
population averages and establish related results in the more general context of inductive inference
via formalizing properties of complex social systems and their impact on validity of inferences.
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In motivation, this paper is also related to the work of D’Amour et al. [19] who study underspecifica-
tion of machine learning pipelines as a cause for inference failures. In this context, a machine learning
pipeline is “the full procedure followed to train and validate a predictor”. A machine learning pipeline
is then considered underspecified when it can return many distinct predictors with equivalently strong
test performance. This notion of underspecification is closed related to the concepts of possible
worlds and validity in this paper.

Srebro et al. [57] studied the problem of matrix completion based on non-uniform observations such
as power-laws. However, in contrast to this work, Srebro et al. [57] assume that S = T. The advantage
of this assumption is that it leads to a much simplified learning setting in which valid inferences are
indeed possible. However, as I discuss in section 2, I would argue that this is not the problem that
many inference settings are concerned with (and that it is questionable in a matrix completion setting
as well). Further important results in this context include [49] on low-rank matrix completion from
deterministic samples as well as the work of Schnabel et al. [53] and Marlin et al. [40] on learning
from biased samples. In contrast to these prior works, I am expanding the setting to the validity of
inferences and validation, provide necessary conditions, and situate them explicitly in the context of
complex social systems.

K Limitations

As most theoretical work, this work needs to make certain assumptions to make the phenomena of
interest amenable to analysis. In this work, the core assumption is that samples in complex social
systems follow a heavy-tailed distribution. While this is a very robust finding in social science and
widely supported, as discussed in section 2, it limits the results of this paper to this specific setting.
For further analysis, this paper further assumes that this heavy-tailed distribution follows a regularly-
varying power-law. This is again a supported assumption [64] and allows for a clean theoretical
analysis. However, as discussed in section 2, it is still disputed whether samples in complex social
systems actually follow this particular form. However, it is undisputed that they follow a heavy-tailed
distribution, and as such, while the power-law based results might not apply exactly, their general
implications are still supported.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Proofs for impossibility results as well as experimental evidence are provided
in section 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed throughout the paper and further summarized in
supp. K.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Proof sketches are provided in the main paper, full proofs are included in the
supplementary material. All results include a clear statement of assumptions.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The main paper includes an overview of the experimental results. All exper-
imental detail can be found in the supplementary material supp. I. Datasets are publicly
available (MovieLens).
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We intend to release the code for experiments and proofs for the camera ready
version. However, at current time, we are not able to provide access to the code. Yet,
all experiments should be easily reproducible from the information in the main text and
supplementary material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See supp. I.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Error bars are not applicable to the experimental analysis of this paper. How-
ever, fig. 3b shows the variability over possible worlds.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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Answer: [Yes]
Justification: See supp. I.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in this paper conforms with the NeurIPS Code of
Ethics, i.e., none of the potential harms apply to this work, societal impact of this work is
discussed, and impact mitigations are considered as far as they apply.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper is largely theoretical and focused on the validity of the train-test
paradigm in complex social systems. As such it has direct connections to understanding
and improving the social impact of deployed system. While the evaluation of this aspect is
beyond the scope of this aspect, I provide discussions of connections to societal aspects such
as fairness and participatory data collection. I also discuss fairness aspects in the MovieLens
experiments in section 4.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper is purely theoretical and does not release models or data that have a
high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The only existing assest used in the paper is the MovieLens 100k dataset for
which citations are provided and the license is linked in supp. I.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does currently not release new assets. In the future, code will be
released under a CC-BY-NC license.
Guidelines:
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve study participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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