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Abstract

Text-to-image (T2I) diffusion models, when fine-tuned on a few personal images,
can generate visuals with a high degree of consistency. However, such fine-tuned
models are not robust; they often fail to compose with concepts of pretrained
model or other fine-tuned models. To address this, we propose a novel fine-tuning
objective, dubbed Direct Consistency Optimization, which controls the deviation be-
tween fine-tuning and pretrained models to retain the pretrained knowledge during
fine-tuning. Through extensive experiments on subject and style customization, we
demonstrate that our method positions itself on a superior Pareto frontier between
subject (or style) consistency and image-text alignment over all previous baselines;
it not only outperforms regular fine-tuning objective in image-text alignment, but
also shows higher fidelity to the reference images than the method that fine-tunes
with additional prior dataset. More importantly, the models fine-tuned with our
method can be merged without interference, allowing us to generate custom sub-
jects in a custom style by composing separately customized subject and style
models. Notably, we show that our approach achieves better prompt fidelity and
subject fidelity than those post-optimized for merging regular fine-tuned models.2

1 Introduction

Text-to-image (T2I) models are for image generation guided by natural language prompts and have
seen rapid progress in recent years [1–8]. The compositional nature of the natural language has
enabled the creation of novel images, which compose multiple subjects with varying attributes in
different backgrounds or styles. However, the ambiguity of natural language in describing the visual
world makes it difficult to create an image of a specific subject, style, interaction, or background.

To overcome the lack of accuracy in natural language, there has been an emerging interest in teaching
the pretrained T2I models new concepts, such as subject [9, 10], style [11], interaction [12], or
background [13], whose precise visual description is given by a small set of reference images. As
proposed in DreamBooth [10], the fundamental idea is to fine-tune the pretrained T2I model on a
few images describing a new concept. The adoption of LoRA [14] or adapter fine-tuning [15] to T2I
models has made the process more accessible, fast and economical [16, 11]. Once fine-tuned, the
model can generate images by composing a new concept (e.g., my subject) and the knowledge of
the pretrained model (e.g., background, style). While these methods have shown great success, they
still suffer from reduced textual alignment and compositional generation capability [17], which is
problematic particularly when the number of reference images is small, e.g., one or two.

˚Work done while at Google Research.
2Project page: https://dco-t2i.github.io
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Figure 1: Overview. (a) Direct Consistency Optimization (DCO) pushes the Pareto frontier between
prompt fidelity and subject fidelity towards upper-right over DreamBooth [10], and with prior
preservation loss (DreamBooth+p.p.). DCO improves generating custom subject with various visual
attributes (e.g., astronaut outfits and background of Mars), or various styles that pretrained model
knows (e.g., flat cartoon illustration style). (b) The customized subject and style models fine-tuned
with DCO can be merged as is, allowing us to generate my subject in my style [11].

We hypothesize that the limitation comes from the knowledge forgetting during low-shot fine-tuning,
i.e., it fails to recontextualize new concepts with known concepts of pretrained models. Since fine-
tuning with regular diffusion training objective suffer from overfitting, DreamBooth [10] attempted
to tackle this issue by adding class-specific prior dataset for training dataset to preserve the prior
knowledge (i.e., prior preservation loss). However, while this helps retaining the generalization
capability, it comes at the cost of less subject fidelity (e.g., see Fig. 3). Especially, the loss becomes
more significant, when the number of reference images become smaller [18].

Contribution. In this paper, we propose a more principled method to mitigate the forgetting behavior
of low-shot fine-tuning of T2I diffusion models without using any additional data. Our method, coined
Direct Consistency Optimization (DCO), fine-tunes T2I diffusion models by controlling the deviation
between fine-tuning and pretrained model to be as minimal as possible in learning new concept. In
specific, we show that our objective is equivalent to learning an implicit reward function that is a
solution of constrained policy optimization problem [19, 20], which amounts for the consistency
between generated images and reference images. Furthermore, we propose consistency guidance
sampling which utilizes learned consistency function during inference, so that one can control the
tradeoff between subject consistency and textual alignment (e.g., see Fig. 5).

We conduct an extensive empirical study on the personalization of T2I diffusion models (see Fig. 1).
We show that the proposed method improves upon baselines that uses regular fine-tuning objective or
using prior preservation loss [10] in generation of custom subject with various visual attributes or
with the known style of pretrained model. To be specific, we show that our method positions on the
superior Pareto frontier than baselines (e.g., see Fig. 5a). Moreover, our approach is applied to style
personalization [11] and the composition of separately fine-tuned subject and style T2I models to
generate an image of my subject and my style [11]. Notably, direct merging of DCO fine-tuned models
outperforms merging models fine-tuned with regular diffusion loss even using post-optimization
method, e.g., ZipLoRA [21], in terms of prompt fidelity and subject fidelity. We believe that the
proposed method would enjoy a broader usage in customization diffusion models in various domains.

2 Related Work

We briefly review the relevant literatures on personalized T2I synthesis and fine-tuning of T2I
diffusion models, especially using rewards. We provide more comprehensive review and discussion
on related works in Appendix C.

Personalized T2I synthesis. Several works have shown the promise of personalized T2I synthesis
from a few images [9, 10, 22, 23, 11]. To improve efficiency, parameter efficient fine-tuning (PEFT)
methods such as soft prompt tuning [9, 24–27], LoRA [14, 28] and adapter tuning [15, 11], have been
proposed. To preserve the prior knowledge, Ruiz et al. [10] proposed prior preservation loss, which
additionally fine-tunes on a class-specific prior dataset synthesized from pretrained T2I model. We
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present a different approach to preserve prior knowledge by regularizing the model with pretrained
model without using any prior dataset.

Fine-tuning T2I diffusion models with rewards. A line of works has studied fine-tuning T2I diffu-
sion models using reward models such as human preferences [29–31] or aesthetic scores [32]. Those
methods use auxiliary reward models to update diffusion models by weighting with rewards [29], use
reinforcement learning algorithms [33, 34], or differentiate through the reward models [35, 36]. On
the other hand, Wallace et al. [37] have adapted direct preference optimizaton [38] to fine-tune T2I
models with paired preference dataset which do not require explicit reward models. To the best of our
knowledge, this paper is the first to study consistency as a reward function for T2I personalization.

3 Preliminaries

Diffusion models. For a data point x, let qpxq be the density of data distribution and pθpxq be a
generative model parameterized by θ that approximates q. Given x „ qpxq, the diffusion model
considers a series of latent variables zt for timesteps t P r0, 1s. The forward process of diffusion model
forms a conditional distribution qpzt|xq, and the marginal distribution is given by zt “ αtx ` σtϵ,
where ϵ „ N p0, Iq, and αt, σt are noise scheduling functions. We denote λt “ logpα2

t {σ2
t q log

signal-to-noise ratio (log-SNR), which is a decreasing function of t. For large enough λ1, z1 is
indistinguishable from pure Gaussian noise (i.e., ppz1q « N p0, Iqq, and for small enough λ0, the z0
is identical to the data x. The generative process of diffusion models starts off from a random noise
x1 „ N p0, Iq, and sequentially denoise it to recover z0. In theory, the generative sampling process
is governed by solving SDE [39, 40] or probability flow ODE [41, 42], using the score networks
sθpzt; tq that approximates the score function of marginal distribution ∇ log qpztq. When training
diffusion models, it is common practice to parameterize score network using the noise-prediction
model [40], i.e., sθpz; tq “ ´ϵθpz; tq{σt. Then the training objective of diffusion model is given by

Lϵpθ;xq “ Et„Up0,1q,ϵ„N p0,Iq

“

´ 1
2wtλ

1
t}ϵθpzt; tq ´ ϵ}22

‰

, (1)

where wt is a weighting function and λ1
t is a time-derivative of λt. Note that Eq. (1) is a generalized

weighted noise-prediction loss, which includes ϵ-prediction loss [40] when ´ 1
2wtλ

1
t “ 1.

Text-to-Image diffusion models. Text-to-Image (T2I) diffusion models [43, 2, 4] are diffusion
models of an image conditioned on text, which is often processed into embeddings using the
pretrained text encoders, such as T5 [44] or CLIP [45]. Given a dataset px, cq „ D of paired
image x and text prompt c, the training loss LDMpθ;Dq for T2I diffusion models is given by
LDMpθ;Dq “ Epx,cq„DrLϵpθ;x, cqs, with text conditional noise-prediction model ϵθpz; c, tq. T2I
diffusion models are often trained with classifier-free guidance (CFG) [46], which jointly learns
unconditional and conditional models, and interpolates them during inference. The predicted noise
with CFG scale ω ě 1 is given as:

ϵ̂θpzt; c, tq “ ω
`

ϵθpzt; c, tq ´ ϵθpzt; tq
˘

` ϵθpzt; tq, (2)
where ϵθpzt; tq denotes the unconditional noise prediction, e.g., with null text conditioning. It is
known that higher CFG scale ω improves the image-text alignment at the cost of the image fidelity.

Personalizing T2I models. Recent works have shown the potential for personalization of T2I models
by fine-tuning the T2I diffusion models on a few samples. DreamBooth [10] optimizes the diffusion
model on a few subject images accompanied with a compact caption composed of rare token identifier
and class noun. While fine-tuning with regular diffusion loss (i.e., LDM) works well, the authors
proposed the so-called prior preservation loss to retain the prior knowledge of the pretrained model.
This is achieved by optimizing the model with auxiliary training images of the same class to the
subject of interest. Formally, given reference dataset Dref and prior dataset Dprior, the training loss of
DreamBooth with prior preservation loss (DB+p.p.) with hyperparameter λprior ą 0 is given by

LDB+p.p.pθq “ LDMpθ;Drefq ` λpriorLDMpθ;Dpriorq. (3)

Parameter efficient fine-tuning (PEFT). In practice, parameter-efficient fine-tuning (PEFT) meth-
ods are combined with DreamBooth to enable fast and memory-efficient adaptation of diffusion
models. In particular, low-rank adaptation (LoRA) [14] is a popular choice, where it fine-tunes the
residuals ∆W P Rnˆm of weight matrix W P Rnˆm with low-rank decomposition ∆W “ AB
for A P Rnˆr and B P Rrˆm with rank r ! mintn,mu. Alternatively, Textual Inversion (TI) [9]
introduces a new token and corresponding textual embedding v to represent the concept. Then, TI
optimizes textual embedding by solving v˚ “ argminv LDMpv;Drefq.
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Algorithm 1 Regular fine-tuning

Require: Dataset Dref, fine-tuning model ϵθ,
learning rate η ą 0

1: while not converged do
2: Sample px, cq „Dref
3: Sample ϵ„N p0, Iq
4: Sample t„Up0, 1q

5: zt Ð αtx ` σtϵ
6: LDMpθq Ð }ϵθpzt; c, tq ´ ϵ}22
7: Update θ Ð θ ´ η∇θLDMpθq

8: end while

Algorithm 2 Fine-tuning with DCO loss

Require: Dataset Dref, fine-tuning model ϵθ, pre-
trained model ϵϕ, temperature βt ą 0, learn-
ing rate η ą 0

1: while not converged do
2: Sample px, cq „Dref
3: Sample ϵ„N p0, Iq
4: Sample t„Up0, 1q

5: zt Ð αtx ` σtϵ
6: ℓpθq Ð }ϵθpzt; c, tq ´ ϵ}22
7: ℓpϕq Ð }ϵϕpzt; c, tq ´ ϵ}22 (no gradient)
8: LDCOpθq Ð ´ log σ

`

´ βt

`

ℓpθq ´ ℓpϕq
˘˘

9: Update θ Ð θ ´ η∇θLDCOpθq

10: end while

4 Method

In this section, we introduce our method for T2I personalization. For presentation clarity, we focus
on our demonstration with the subject customization [10], but the method can be applied to a broader
context of personalization, such as style [11]. Throughout the paper, let us denote ϵθ, pθ and ϵϕ, pϕ the
noise-prediction model and density for each fine-tuning and pretrained diffusion model, respectively.

4.1 Direct Consistency Optimization

Problem setup. While fine-tuning based T2I personalization methods have shown great success
[10, 23, 16], it is shown that the generation quality heavily depends on the model’s fitness. For
example, the model suffers from image-text alignment when the model overfits to few images used
for fine-tuning, making it difficult to generate images with varying attributes around the subject. On
the other hand, the model cannot generate consistent subject images when the model underfits. To
find the right balance between overfit vs. underfit, certain heuristics such as early stopping or training
with an additional prior dataset (i.e., prior-preservation loss) have been popularly used.

Our approach. We devise an efficient training objective that seeks for minimal improvement on the
ELBO of fine-tuning model pθ over the reference model pϕ. Specifically, we seek for θ satisfying
DKL

`

qpxq}pθpxq
˘

ăDKL
`

qpxq}pϕpxq
˘

, while two quantities are still not far from each other. Since
computing the likelihood is intractable for diffusion models, we consider the variational bound over
sequence of latents z0:1 following [47, 48]. To this end, let us define the deviation as follows

∆ppθ, pϕ;x, cq :“ DKL
`

qpz0:1|xq } pϕpz0:1|cq
˘

´ DKL
`

qpz0:1|xq } pθpz0:1|cq
˘

, (4)

where the KL divergence takes expectation over ϵ „ N p0, Iq that generates zt “ αtx ` σtϵ for
t P p0, 1q. To enforce the positiveness of ∆ppθ, pϕq, we propose following log-sigmoid loss function:

L∆pθ;x, cq :“ ´ log σ
`

β∆ppθ, pϕ;x, cq
˘

, (5)

where σpuq “ p1 ` expp´uqq´1 and β ą 0 is a temperature that controls the deviation.

Direct Consistency Optimization. Now we show that Eq. (5) is equivalent to optimizing reward
function derived from the solution of constrained policy optimization problem [19, 20]. Suppose
fpx, c;Drefq :“ fpx, cq is a function that measures the consistency between image x and reference
dataset Dref given the prompt c. We opt to find θ that maximizes the consistency of generated sample
x „ pθpx|cq, while penalizing the deviation from the pretrained model pϕ. This can be written by

max
θ

Ec,x„pθpx|cqrfpx, cqs ´ βDKLppθp¨|cq } pϕp¨|cq
˘

, (6)

where β ą 0 is a temperature that controls the deviation from pretrained model. Since the likelihood
of diffusion model is intractable, we consider a consistency function on the latent variables z0:1, and
solve following relaxation of Eq. (6):

max
θ

Ec,z0:1„pθpz0:1|cq

“

fpz0:1, cq
‰

´ βDKL
`

pθpz0:1|cq } pϕpz0:1|cq
˘

. (7)
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Note that the optimal solution to Eq. (7) satisfies

pθpz0:1|cq 9 pϕpz0:1|cq exp
`

fpz0:1, cq{β
˘

. (8)

Then, we show that the deviation ∆ppθ, pϕq in Eq. (4) is equivalent to the expected consistency over
qpz0:1|xq up to constant, i.e., the following holds (see Appendix A for derivation):

Eqpz0:1|xqrfpz0:1, cqs “ β∆ppθ, pϕ;x, cq ` C, (9)

for some constant C that does not depend on x. Eq. (9) shows that our training objective can be
regarded as optimizing the consistency function with respect to the reference dataset Dref. Remark
that one can define explicit consistency function (reward) and fine-tune the diffusion model with such
function, e.g., by using reward-weighted regression (RWR) [49, 29] or using reinforcement learning
(RL) [33, 34]. However, those consistency function for personalized images is hard to obtain as we
only have few samples, and RL fine-tuning of diffusion models are expensive. We bypass these issues
by directly fine-tuning models with an implicit reward function, similar to those by Rafailov et al.
[38] and Wallace et al. [37]. Thus, we name our approach Direct Consistency Optimization (DCO),
as we directly optimize the consistency function in fine-tuning diffusion models.

4.2 Implementation and Analysis

Implementation. Note that computing the term for Eq. (4) is expensive as it requires computation
of likelihood over all t P r0, 1s. To this end, we derive an upper bound of Eq. (5) that allows efficient
implementation using ϵ-prediction loss. In Appendix A, we show that the deviation Eq. (4) can be
expressed by the difference between noise-prediction errors of fine-tuning and pretrained model:

∆ppθ, pϕq “ 1
2Et„Up0,1q,ϵ„N p0,Iq

“

λ1
t

`

}ϵθpzt; c, tq ´ ϵ}22 ´ }ϵϕpzt; c, tq ´ ϵ}22

˘‰

. (10)

Then by plugging Eq. (10) into Eq. (5) and taking out the expectation outside of logarithm function
using Jensen’s inequality, we have our final DCO loss at px, cq „ Dref defined as follows:

LDCOpθ;x, cq “ Et,ϵ

“

´ log σ
`

´ βtp}ϵθpzt; c, tq ´ ϵ}22 ´ }ϵϕpzt; c, tq ´ ϵ}22

˘˘‰

, (11)

where t „ Up0, 1q, ϵ „ N p0, Iq, and βt “ ´ 1
2βλ

1
t

3. We use LDCO in our experiments, which is as
practical and easy to implement as regular training objective (i.e., LDM). Algorithm 2 and Algorithm 1
present DCO fine-tuning and regular fine-tuning side-by-side, with differences colored in red.

Gradient analysis of DCO loss. We provide a gradient analysis of DCO loss in fine-tuning diffusion
models to better understand its effect. Given a data pair px, cq „Dref, ϵ „ N p0, Iq and t P Up0, 1q,
the gradient of DCO loss with respect to parameter θ is given as follows:

∇θLDCOpθq 9 p1 ´ σpdtqq∇θ}ϵθpzt; c, tq ´ ϵ}22, (12)

where dt “ ´βtp}ϵθpzt; c, tq ´ ϵ}22 ´ }ϵϕpzt; c, tq ´ ϵ}22

˘

with stop-gradient. Remark that Eq. (12)
is identical to the gradient of diffusion loss (i.e., LDM), except that is scaled by 1 ´ σpdtq, which
measures the incorrect reward modeling. In other words, DCO loss implicitly performs an adaptive
loss weighting by computing deviation from the pretrained model; if the deviation between fine-tuning
and pretrained models are large, it abstains update.

Comparison to prior preservation loss. While the prior preservation loss [10] in Eq. (3) has
a similar motivation to DCO loss, they work in very different ways. To elaborate, DCO directly
regularizes the KL divergence with respect to the samples in Dref, while prior preservation loss does
not impose regularization for the reference data. While prior preservation loss may enhance the
composition ability, fine-tuning on auxiliary samples from Dprior often causes undesirable model shift,
losing consistency to the pretrained model (e.g., Fig. 3). On the other hand, DCO is free from such an
issue, as it does not require any auxiliary samples besides the reference dataset.

4.3 Consistency Guidance Sampling

During inference, it is common practice to use classifier-free guidance to control text conditioning.
Similarly, to gain control over the consistency, we propose consistency guidance sampling, which is

3Since λt is a decreasing function of t, λ1
t ă 0. Thus, we use βt “ ´ 1

2
βλ1

t to enusre βt ą 0.
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Compact caption Comprehensive caption

“A photo of [V] dog”
”A photo of a dog sitting on a couch 
covered with grey blanket in a living 

room, indoor lighting style"

[V] dog with lake in 
the background

[V] dog in cartoon 
line drawing style

dog with lake in the 
background

Reference

dog in cartoon line 
drawing style

Figure 2: Comprehensive caption. We provide examples of compact caption [10] and our com-
prehensive caption (top row) and generated images from each method (bottom row). The model
fine-tuned with compact caption (left) generates images of a dog sitting on a couch though asked
to be on the lake. Our comprehensive caption (right) effectively disentangles unwanted attributes,
generating images that follow text prompts more faithfully.

an additional guidance from implicitly learned consistency function. Specifically, we decompose the
guidance term with respect to the text and consistency as follows:

ϵ̂pzt; c, tq “ ϵϕpzt, tq ` ωtext pϵϕpzt; c, tq ´ ϵϕpzt, tqq ` ωcon
`

ϵθpzt; c, tq ´ ϵϕpzt; c, tq
˘

, (13)
at each timestep t. Note that for fixed ωtext, the fidelity to the reference images increases if using
higher ωcon, while this comes at the cost of losing prompt fidelity. On the other hand, one can improve
prompt fidelity by using small ωcon. We show that varying ωcon controls the tradeoff between fidelity
to the reference and image-text alignment (e.g., see Fig. 5). Note that a similar sampling method
was introduced in [11], but for transformer-based T2I models [7]. While they do not use regularized
fine-tuning objectives, the consistency guidance scheme is still valid. Thus, the consistency guidance
could be implemented in any fine-tuned model, while we show that it is more effective when combined
with a DCO fine-tuned model (e.g., Fig. 5).

4.4 Prompt Construction for Reference Images

An important (yet often overlooked) part of the T2I personalization process is the prompt construction
of reference images. Recall that Ruiz et al. [10] have proposed the use of a compact prompt in
the form of “a photo of [V] [class]” with a rare token identifier [V]. However, we find that the use
of compact caption is prone to learning distractors, such as a background or a style, as part of the
fine-tuned model, as illustrated in Fig. 2.

Comprehensive caption. Instead, we propose to provide a comprehensive and visually grounded
caption that not only describes the subject but also details other visual attributes, backgrounds, and
styles of reference images. In Fig. 2, we show an example of a comprehensive caption and compare
the synthesized results that use a compact caption. We find that providing detailed descriptions of the
undesirable attributes, e.g., background, or style, helps anchor desirable attributes in reference images
to corresponding texts, making it easier to separate between them. This method not only holds for
subject customization, but also for style customization; we provide comprehensive descriptions of the
subject so that the model distinguishes style from the subject. Note that the use of comprehensive
caption has been considered in practice,4 but has not been investigated from the lens of model shift
and concept disentanglement. In our experiments, we use vision-language models such as GPT-4 [50]
or LLaVA [51] (e.g., see Fig. 11).

5 Experiments

We use Stable Diffusion XL [6] for our experiments. We conduct experiments on subject (Sec. 5.1),
style (Sec. 5.2) personalization, and their combination (Sec. 5.3). Ablative studies are in Sec. 5.4.

5.1 Subject Personalization

Experimental setup. We conduct experiments on DreamBooth dataset [10], containing 30 subjects,
with 4–6 images per subject. The examples of images and captions are in Fig. 11 in Appendix D.1.

4See this blog post as an example.
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A cat tangled with yarn in doodle art styleA dog gracefully leaping in origami style

A wolf plush exploring a future in isometric illustration styleA backpack in cartoon line drawing style

Reference DB+p.p. DB DCO (ours)Reference DB+p.p. DB DCO (ours)

An alarm clock made out of leatherA dog wearing a ball gown, dancing in a grand ballroom

Figure 3: Custom subject generation. We show selected generations from DreamBooth (DB), DB
with prior preservation (DB+p.p.), and ours (DCO) of custom subjects with varying attributes and
styles guided by text prompts. While DB captures subjects well, it does not follow text prompt well.
DB+p.p. shows better textual alignment, but falls short in subject fidelity. Ours show the best in both
image-text alignment and subject fidelity. Best viewed in color, zoomed in on monitor.

Reference

A {banana, robot, cow} in modern 3D rendering style

DB DCO (ours)

A {penguin, coffee maker, piano} in kid crayon drawing style

Figure 4: Custom style generation. We show selected generations from DreamBooth (DB) and
ours (DCO) of custom styles with varying subjects. DB is prone to capturing undesirable attributes,
resulting in generation of mixed concepts (e.g., the girl’s outfits in the first row, the dog in the second
row), whereas DCO mitigates such a concept mixing. Best viewed in color, zoomed in on monitor.

For baselines, we consider the training with a regular diffusion loss, i.e., DreamBooth (DB), and the
one with prior preservation loss (DB+p.p.). Note that we additionally optimized textual embeddings,
i.e., textual inversion [9], which enhances subject fidelity for all baselines, though we omit for clear
context. For all experiments, we fine-tune LoRA of rank 32 and textual embeddings using Adam [52]
optimizer with learning rates of 5e-5 and 5e-4, respectively. We use constant βt=1000 for DCO loss.

Following Sec. 4.4, we provide comprehensive and visually grounded caption that not only describes
the subject but also details other visual attributes, backgrounds, and styles of reference images, for
fine-tuning. Note that this is used for both baselines and ours. We observe that comprehensive
captioning improves all the baselines, thus we omit the indications of its usage.

Qualitative results. Fig. 3 shows the qualitative comparison of our approach with DreamBooth (DB)
and DreamBooth using prior preservation loss (DB+p.p.). We observe that our approach generates
images of various visual attributes, e.g., outfits and backgrounds, or changing the material, as well
as into various styles, e.g., in origami style or doodle art style. While DB changes the background,
it lacks recontextualization in different outfits or styles, especially due to the overfitting to the
photographic style. DB+p.p. is better than DB in prompt fidelity, but it often fails to preserve the
subject identity.More qualitative comparisons are demonstrated in Fig. 17.
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Figure 5: Quantitative results. We plot Pareto curve between subject / style fidelity (image similarity)
and prompt fidelity (image-text similarity) on (a) subject personalization and (b) style personalization
tasks. Scores of each point are measured with consistency guidance sampling (dots and lines) of
ωcon “ 2.0, 3.0, 4.0, 5.0, and conventional classifier-free guidance sampling (diamond). See Sec. 5.1
and Sec. 5.2 for experimental details, and Appendix B.1 for full comparison.

Quantitative results. For quantitative evaluation, we design two types of text prompts: subject
customization, where we modify the attributes of the subject or its background, and subject stylization,
where we change the visual style of a subject image. For each subject and type, we generate images
from 50 text prompts with 2 random seeds. For evaluation metrics, we report the image similarity
score using DINOv2 [53] and the image-text similarity score using SigLIP [54]. We also show the
results using DINO [55] and CLIP [45] in Fig. 9, showing similar trends. See Appendix D for details.

Noting that this is a multi-objective problem (i.e., maximizing image similarity and image-text
similarity), we report the Pareto curve consisting of scores with varying consistency guidance scale
values to show the tradeoff between two scores of each model, instead of reporting scores at one
operating point. If two curves overlap, two methods would likely perform similarly and the difference
is up to a change in the consistency guidance scale at sampling.

Averaged results are in Fig. 5a, and the results for each subject customization and stylization are in
Fig. 8a and Fig. 8b, respectively. Compared to DreamBooth (DB;red), ours (DCO;blue) positions
on the upper-right frontier in both image-text similarity and image similarity, demonstrating its
superiority. Compared to DreamBooth with prior preservation loss (DB+p.p.; green), ours (blue)
results in significantly improved image similarity, while being comparable in image-text similarity.
Interestingly, it (green) does not push the frontier to the upper-right compared to the ones without it
(red), but it shifts the operating point to the lower-right while lying on the seemingly similar Pareto
frontier. This suggests that the use of prior preservation loss improves prompt fidelity at the cost of
losing the subject consistency. In Appendix B.1, we further compare with various design choices for
DreamBooth, e.g., early stopping or lowering λprior for prior preservation loss.

5.2 Style Personalization

Experimental setup. We experiment on style images from StyleDrop dataset [11]. The examples
of style images and captions are in Fig. 12 in Appendix D.1. We fine-tune LoRA of rank 64 using
Adam optimizer with a learning rate of 5e-5 and do not train textual embedding. In addition, we add
an offset noise [56] of 0.1 during training, which empirically helps learning the solid background
color of style images. We use βt=1000 for DCO loss, and compare with DreamBooth (DB).

Qualitative results. Fig. 4 shows qualitative comparisons between DreamBooth (DB) and ours
(DCO). As seen in [21], DB captures the style of a reference image, yet it suffers from overfitting to
the reference image, e.g., the attributes of the subject in style reference appear in generated images.
On the other hand, DCO generates images with consistent style without being entangled with contents
in the reference images. We provide additional comparisons in Fig. 18.

Quantitative results. We choose 10 style images and generate stylized images using 190 text
prompts excerpted from Parti prompts [5], following [11]. We generate 2 images per evaluation
prompt, resulting in 380 images in total for each style. For evaluation metrics, we report the image
similarity against the style reference image and image-text similarity scores using SigLIP [54].
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Figure 6: My subject in my style generation. We show generated images by merging subject and
style LoRAs, each trained independently with DB (DB Merge) or DCO (DCO Merge). We also show
results of ZipLoRA [21] using DB models (DB ZipLoRA). DB Merge struggles to generate high
quality images. While DB ZipLoRA improves the quality, it less preserves fidelity. DCO Merge
produces consistent images in both subject and style. Best viewed in color, zoomed in on monitor.

Fig. 5b shows results. While two models operate in somewhat disjoint regimes, we see that the
curve of DCO (ours) is placed on the right of that of DB, showing improved image-text similarity.
Nevertheless, as noted in [11], the image similarity for style personalization is particularly noisy, as
the score is not only guided by the style but also by the unexpected appearance of the subject in the
style reference image (e.g., in Fig. 4) when the model overfits.

5.3 My Subject in My Style

Experimental setup. Following [11], we combine customized subject and style models to generate
images of my subject in my style. Specifically, given two LoRAs ∆W1 and ∆W2 for subject and
style, respectively, we use an arithmetic merge (Merge) [21], i.e., ∆W “ τ1∆W1 ` τ2∆W2 with
coefficients τ1 “ τ2 “ 1. We use subject and style LoRAs from Sec. 5.1 and Sec. 5.2, respectively,
for both baseline (DB) and our method (DCO). We also compare with ZipLoRA [21], which finds
optimal coefficients τ1 and τ2 for each layer by jointly preserving the subject and style LoRAs. For
ZipLoRA, we use DB fine-tuned subject and style models and follow the experimental setup in [21].

Qualitative results. In Fig. 6, we provide qualitative comparisons between our approach (DCO
Merge), and baselines (DB Merge and DB ZipLoRA). As noticed in [21], DB Merge struggles to
generate high-quality images when composing subject and style customized models. While DB
ZipLoRA improves the image quality with fewer artifacts, it often loses subject or style consistency.
Even using a simple arithmetic merge, DCO Merge (ours) generates images with high subject and
style consistency. In addition, Fig. 1 and Fig. 20 in the appendix shows that DCO Merge succesfully
generates my subjects in my styles under various contexts, guided by text prompts.

Quantitative results. We use 30 subjects from DreamBooth [10] dataset and 10 style images from
StyleDrop dataset [11] from Sec. 5.1 and Sec. 5.2, respectively. For each subject and style pair,
we generate images of “A [subject] in [style]” and of various text prompts that change attributes,
backgrounds, or actions (e.g., in Fig. 20). We compute subject similarity scores (Subject) using
DINO v2 [53], style similarity (Style), and image-text similarity (Text) scores using SigLIP [54].

Tab. 1 reports results. DCO Merge significantly outperforms DB Merge and DB ZipLoRA in subject
similarity (0.462 vs. 0.386, 0.406) and image-text similarity (0.773 vs. 0.430, 0.729), while retaining
competitive style similarity (0.651 vs. 0.672, 0.662). This aligns with our observation in Fig. 6.
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Table 1: Quantitative results of my subject in my style generation. We report subject, style, and
image-text similarity scores of DB Merge, DB ZipLoRA, and DCO Merge (ours).

DB Merge DB ZipLoRA DCO Merge

Subject 0.386 0.406 0.462
Style 0.672 0.662 0.651
Text 0.430 0.729 0.773
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Image-Text Similarity
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Figure 7: Ablation studies. We conduct ablation studies on (a) regularization hyperparameter β, and
(b) noise distance between pretrained model and fine-tuned model.

5.4 Ablation Study

Regularization parameter. We study the effect of the regularization parameter βt on the subject
personalization task. We use 10 subjects from the DreamBooth dataset and conduct experiments with
constant β “ t500, 1000, 2000u. As in Fig 7a, all DCO models form a better Pareto frontier than the
DB from Sec. 5.1. As β becomes larger the curve tends to move lower right, implying the loss in
subject identity for better image-text alignment. This is expected as β controls the deviation between
fine-tuned and pretrained models (e.g., Eq. (6)). We find β “ 1000 works well overall, though the
optimal β might vary across the reference dataset.

Error analysis. One of our insights is that DCO mitigates the shift in the model’s generation
distribution after fine-tuning. We verify this by computing the noise distance between pretrained
and fine-tuned models on reference images and prompts, i.e., }ϵθpzt; c, tq ´ ϵϕpzt; c, tq}22 at each
timestep t P r0, 1s. We simulate 100 random noises at each timestep and report the average value in
Fig. 7b. We see a clear decrease in noise deviation from the pretrained model with DCO fine-tuning
over DB. Moreover, as β increases, the noise deviation gets further reduced as expected.

1–shot personalization. We demonstrate the capability of our method in 1–shot personalization. We
refer to Appendix B.3 for experimental details and qualitative results are in Fig. 15 and Fig. 16.

6 Conclusion

We introduce a Direct Consistency Optimization (DCO), a novel training objective for robust low-shot
fine-tuning of the T2I diffusion model. DCO learn new concepts by controlling the deviation from
pretrained model, thus retaining capabilities of pretrained model. We show that DCO enhances the
image-text alignment and sample quality of personalized T2I synthesis compared to regular diffusion
fine-tuning. And together with consistency guidance sampling, DCO results in the most superior
Pareto frontier in terms of image-text similarity and image similarity. Moreover, DCO induces easier
composition of independently fine-tuned subject and style T2I models. Also, merging DCO models
outperforms post-processing methods on regular fine-tuned models, e.g., ZipLoRA [21]. We provide
limitations and broader impact statements in Appendix E and Appendix F, respectively.
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Appendix
A Derivation

Derivation of Eq. (9). From Eq. (8), we have

fpz0:1, cq “ β log
pθpz0:1|cq

pϕpz0:1|cq
` β logZ

“ β log
pθpz0:1|cq

qpz0:1|xq
´ β log

pϕpz0:1|cq

qpz0:1|xq
` β logZ,

where Z is a normalization constant that does not depends on x. Therefore, we have

Eqpz0:1|xqrfpz0:1, cq ´ β logZs “ Eqpz0:1|xq

„

β log
pθpz0:1|cq

qpz0:1|xq
´ β log

pϕpz0:1|cq

qpz0:1|xq

ȷ

“ β
`

DKLpqpz0:1|xq } pϕpz0:1|cqq ´ DKLpqpz0:1|xq } pθpz0:1|cqq
˘

“ β∆ppθ, pϕ;x, cq,
which proves our claim.

Derivation of Eq. (11). Let us consider subseries zt:1 of z0:1 for t P p0, 1q. Then, we define the
deviation ∆tppθ, pϕq for zt:1 as follows:

∆tppθ, pϕq “ DKL
`

qpzt:1|xq } pϕpzt:1|cq
˘

´ DKL
`

qpzt:1|xq } pθpzt:1|cq
˘

. (14)
It is known that one can express the KL divergence with ϵ-prediction as follows (e.g., see Appendix
A.1 in [48]):

d

dt
DKL

`

qpzt:1|xq } pθpzt:1|cq
˘

“
1

2
λ1
tEϵ„N p0,Iq

“

}ϵθpzt; c, tq ´ ϵ}22

‰

. (15)

Thus, the following holds:
d

dt
∆tppθ, pϕ;x, cq “

1

2
λ1
t Eϵ„N p0,Iq

“

}ϵϕpzt; c, tq ´ ϵ}22 ´ }ϵθpzt; c, tq ´ ϵ}22

‰

. (16)

Now it is straightforward to see that

∆ppθ, pϕq “

ż 0

1

d

dt
∆tppθ, pϕqdt

“

ż 0

1

1

2
λ1
t Eϵ„N p0,Iq

“

}ϵϕpzt; c, tq ´ ϵ}22 ´ }ϵθpzt; c, tq ´ ϵ}22

‰

dt

“
1

2
Et„Up0,1q,ϵ„N p0,1q

“

λ1
t

`

}ϵθpzt; c, tq ´ ϵ}22 ´ }ϵϕpzt; c, tq ´ ϵ}22

˘‰

,

which proves Eq. (9). Then since the softplus function is convex, we use Jensen’s inequality to show
that
L∆pθ;x, cq “ ´ logpβ∆ppθ, pϕqq

ď Et„Up0,1q,ϵ„N p0,Iq

„

´ log σ

ˆ

βλ1
t

2

`

}ϵθpzt; c, tq ´ ϵ}22 ´ }ϵϕpzt; c, tq ´ ϵ}22

˘

˙ȷ

“ Et„Up0,1q,ϵ„N p0,Iq

“

´ log σ
`

´ βt

`

}ϵθpzt; c, tq ´ ϵ}22 ´ }ϵϕpzt; c, tq ´ ϵ}22

˘˘‰

“ LDCOpθ;x, cq,

where βt “ ´ 1
2βλ

1
t.

Remark that one can consider weighted deviation ∆wppθ, pϕq that matches the general weighted
ϵ-prediction loss (i.e., Eq. (1)), by using monotonic weighting function wt as follows:

∆wppθ, pϕq “

ż 0

1

d

dt
wt∆tppθ, pϕqdt

“
1

2
Et„Up0,1q,ϵ„N p0,Iq

“

wtλ
1
t

`

}ϵθpzt; c, tq ´ ϵ}22 ´ }ϵϕpzt; c, tq ´ ϵ}22

˘‰

.

Note that for DDPM [40], i.e., conventional ϵ-prediction loss, it considers ´ 1
2wtλ

1
t “ 1.
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Figure 8: Quantitative results. We plot image similarity and image-text similarity for each (a)
subject customization and (b) subject stylization experiment. We use SigLIP [54] score for image-text
similarity, and DINOv2 [53] score for image similarity. We plot the results of consistency guidance
sampling (dots and solid lines), and conventional sampling (diamond). The reported reward guidance
scales are ωcon P t2.0, 3.0, 4.0, 5.0u.

B Additional Experiments

B.1 Full comparison

Here we provide full ablation studies that we have conducted in our experiments. For all 30 subjects
in DreamBooth dataset, we follow the same experimental setup as in Sec. 5.1. We report the image
similarity score using DINOv2 [53], and image-text similarity score using SigLIP [54].

Ablation on early stopping. Since low-shot fine-tuning methods suffer from overfitting, it is a
common practice to early stop the training. In Fig. 8b and Fig. 8b, we plot the results of DreamBooth
with comprehensive caption with half of training steps (DB+ES). When compared to DB, it improves
the image-text similarity (0.842 vs. 0.754 for customization, 0.645 vs. 0.468 for stylization), while
the image similarity significantly drops (0.575 vs. 0.754 for customization, 0.630 vs. 0.638 for
stylization). Notably, we remark that the frontier curve of DB+ES resides at the frontier of DB. Thus,
early stopping does not improve the frontier.

Ablation on prior preservation loss weight λprior. In Sec. 5.1, we show that using prior preserva-
tion loss often leads to loss of subject consistency. To further verify the effect of prior preservation
loss, we vary the coefficient λprior to be 0.5 (DB+p.p. (0.5)). As shown in Fig. 8a and Fig. 8b,
when compare to DB+p.p., using smaller λprior improves image similarity (0.547 vs. 0.532 for
customization, 0.441 vs. 0.424 for stylization), while decreases the image-text similarity (0.850 vs.
0.864 for customization, 0.839 vs. 0.851 for stylization). However, changing λprior does not improve
the frontier curve when using consistency guidance.

Prior preservation loss vs. pretrained model. In Fig. 8a and Fig. 8b, we notice that DB with
prior preservation loss (DB+p.p.) shows higher image-text similarity than pretrained model. This
is in partly due to that the model is fine-tuned with class-specific prior dataset, which improves the
prompt fidelity among the class. However, this does not necessarily improves the subject fidelity, and
it indicates the large model shift with respect to pretrained model.

Evaluation metrics. Following DreamBooth [10], in Fig. 9, we provide quantitative results using
(a) CLIP [45] for image-text similarity (CLIP-T) and DINO [55] for image similarity (DINO), (b)
CLIP for both image-text similarity and image similarity. We observe consistent trends to that which
we used with SigLIP and DINOv2.

User Evaluation. We conduct a user study over the results of our method (DCO), DreamBooth (DB),
and DB with prior preservation loss (DB+p.p.) on subject personalization task. As in Section 5.1,
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Figure 9: Quantitative results. We plot image similarity and image-text similarity scores using (a)
CLIP-T and DINO and (b) CLIP-T and CLIP-I. We plot the results of reward guidance sampling
(dots and solid lines), and conventional sampling (diamond). The reported consistency guidance
scales are ωcon P t2.0, 3.0, 4.0, 5.0u.

Table 2: User evaluation. We asked the users to select better one given two images generated by
DCO vs. baselines (DB and DB+p.p.) for each question: 1) subject fidelity, 2) image-text alignment,
and 3) image quality. We report the percentage of judgements in favor of DCO over baselines.

Win rate vs. DB vs. DB+p.p.

Subject fidelity 55.1 % 81.9 %
Prompt fidelity 72.7 % 58.0 %
Image quality 70.6 % 63.0 %

we trained three models per subject with identical experimental setup (i.e., all models are trained
with comprehensive caption and textual inversion), and generate images with the same random seeds.
Then we construct two binary comparison tasks (90 comparisons) to rank between DCO and each
baseline method. For each pair, 12 participants were asked to choose the preferred image on three
criteria with following questions:

• Subject fidelity: Which image most accurately reproduces the identity (e.g., item type and details)
of the reference item?

• Prompt fidelity: Which image most closely aligns with the given prompt?
• Image quality: Which image exhibits the highest quality (e.g., overall visual appeal and clarity)?

Overall, we collect 1,080 answers per query for each comparison pair, resulting in a total 2,160
responses. The results are summarized in Table 2, where for each method, we report the percentage
of judgements in our favor. Compared to DB, DCO shows better prompt fidelity while maintaining
subject fidelity. Most users favored DCO for subject fidelity compared to DB+p.p., implying that
DCO enables generating images with high subject and prompt fidelity.
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Figure 10: Comparison on the alignment of DreamBooth and DCO fine-tuned subject and
style LoRAs. We compute the average cosine similarity of column layers between subject and style
LoRAs fine-tuned with each DreamBooth (DB) [10] and our method (DCO). The x-axis denotes the
component of each U-Net layer. The cosine similarity measures the alignment between two LoRAs,
and high cosine similarity values are considered as the interference between them. Interestingly, we
find that there is no obvious difference in the cosine similarity values between models trained with
DCO and DB methods, while DCO fine-tuned models can be successfully combined with arithmetic
merge to generate images of my subject in my style (e.g., see Fig. 6 and Fig. 19). This may be in
contrast with the findings of recent works [21, 57] and suggests further investigation on method to
measure the compatibility between LoRA models.

B.2 Effect of Consistency Guidance Scale.

We have shown that the user can control the subject fidelity and textual alignment by changing the
consistency guidance scale. Yet, we remark that the optimal consistency guidance scale vary among
the reference dataset, and even for the input prompt that the user give during inference. As shown
in Fig. 14, the optimal guidance scale should be large (e.g., 5.0) for the first row, while it should be
low (e.g., 2.0) for the third row. Also, the effect of consistency guidance scale might be subtle as in
second row. In practice, choosing the best consistency guidance scale is up to the user’s preference.

B.3 1-shot personalization

Here we provide some qualitative examples that shows the capability of our method in learning
subjects with single reference image. Specifically, we show the capability of personalization with
synthetic images, generated by different T2I models such as pretrained SDXL [6] and DALLE–3 [8].
We follow the same setup as in Sec. 5.1 except that we fine-tune for 1000 steps. Remark that for
while we have access to the prompts that we used for generation, we did not use this prompt for
fine-tuning our model; the generated image might have more details (e.g., backgrounds or attributes),
or it may fail to capture all the prompts. Thus, we caption the images following Sec. 4.4.

Fig. 15 shows the qualitative results of DCO fine-tuning on images generated by SDXL. Remark
that our method can synthesize images into various actions and styles, while preserving the subject
consistency. Notably, it is possible to convert the photographs to other styles (e.g., photo of a man
to 2D animation style), and vice versa (e.g., 3D animation style of pig into photography). Also, as
shown in Fig. 16, our method is able to generate various actions, backgrounds, or styles.

C Extended Related Work

Training-free consistent image set generation. Several works have demonstrated the capability
of consistent image set generation without fine-tuning T2I diffusion models [58, 59]. While these
methods do not require fine-tuning and hence may be conceived more time-saving, they often
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take longer time at generation. On the other hand, fine-tuning is a one-time cost and can be used
for generation without additional cost. Also, training-free methods have difficulty in putting the
same subject in different styles (as mentioned as limitation in [59]), while our approach is possible.
Moreover, our method is able to combine style personalized model and subject personalized model.
Lastly, our approach do not require any segmentation mask for subject personalization.

Multi-concept personalization. Given multiple fine-tuned T2I diffusion models (often using
LoRAs), it is of great interest to combine them to generate a scene consists of multiple personalized
subjects [60, 57], or generating custom subject in custom style [11, 21]. Those approaches often
require post-optimization, e.g., orthogonal adaptation of LoRA layers [57] or optimization of merger
coefficients for composition of subject and style LoRAs [21]. Those methods hypothesize that the
interference between subject and style LoRAs (which is measured by the average cosine similarity
between LoRA layers), and aim to minimize the interference. Our method seeks for a better
training of LoRA for T2I diffusion models and thus complementary to existing works. On the other
hand, as shown in Fig. 10, we find that the cosine similarity values of DCO fine-tuned models
are not necessarily smaller than those of DreamBooth fine-tuned models, while we do not observe
significant interference during generation with arithmetically merged LoRAs trained with our DCO
loss. This observation may suggest that we need another metric other than the cosine similarity based
interference measure to evaluate the compatibility of LoRAs, which we leave as a future work.

D Experimental detail

Learning textual embeddings. The rare token identifier [V], such as “sks”, conveys undesirable
semantics.5 Thus, we opt to remove the rare token identifier and use the natural language captions by
default. In addition, we learn textual embeddings [9] to add more flexibility in subject personalization
without changing the semantics of pretrained model. Given a word or a phrase (i.e., [class]) of interest,
we insert new tokens and initialize them with textual embeddings of original ones. Then, newly
inserted textual embeddings are optimized with diffusion models.

D.1 Dataset

We use DreamBooth dataset [10] for subject personalization which contains 30 subjects, including
pets and unique objects such as backpack, dogs, plushie, etc. We provide examples of image and
comprehensive caption in Fig. 11 where the complete list of comprehensive captions are is available in
the source code. A comprehensive caption encompasses not only the subject but also provides detailed
information on visual attributes, backgrounds, and style. In contrast, a compact caption generally
incorporated in model personalization [10, 9] focuses solely on the subject itself, as exemplified by
“a photo of [class]”. To generate comprehensive captions in practical scenarios, we initially employ
LLaVA [51] to generate a description of the reference image. Subsequently, we filter out unnecessary
details such as non-visual attributes and make further modifications. Similarily, we use 10 images
from StyleDrop dataset [11] for style personalization, where examples are presented in Fig. 12.

License. The license for DreamBooth dataset can be found in here. Also, the attributes for style
images can be found in StyleDrop [11] paper as well as here.

D.2 Evaluation prompt

We construct two types of evaluation prompts; (1) subject customization, and (2) subject stylization.
In evaluating subject customization, we provide the textual prompts that alter the attributes of the
subject (e.g., “cube-shaped”) or its background (e.g., “on the beach”) following DreamBooth [10]. In
evaluating subject stylization, we provide the textual prompts that stylizes the subject into different
styles (e.g., “in watercolor painting style”, “in origami style”). For fine-grained evaluation, we
construct different prompts for each object (e.g., “clock”, “robot toy”) and subject (e.g., “cat”, “dog”,
“wolf plushie”). The examples of evaluation prompts for each category and type are in Table 3.

5See second and fourth rows of DB (baseline) in Fig. 17, where a dog is surrounded by guns and a monster
toy is holding a gun. Note that this is aligned with the existing findings in community.
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LLaVA output Comprehensive caption

“A photo of a dog sitting on a ledge in 
front of red wall and tree, macro style”

Reference

“The image features a cute, fluffy, and white dog sitting on a ledge or a wall, possibly a stone wall. The 
dog appears to be enjoying the sunlight and is smiling, with its tongue out. The dog's fur is well-groomed, 
and it appears to be a well-cared-for pet. In the background, there are some trees, adding a natural 
element to the scene. The overall composition of the image is a close-up of the dog, with the background 
providing context and depth to the scene.”

“A photo of a sloth plush sitting on a 
concrete ledge near the lake, 
cityscape with buildings and boats in the 
background, natural lighting style”

“The image features a brown teddy bear sitting on a concrete ledge near a body of water. The teddy bear 
is positioned in the foreground, occupying a significant portion of the scene. The background showcases 
a cityscape with buildings and boats visible in the distance. The combination of the teddy bear and the 
cityscape creates a unique and interesting contrast between the innocence of the toy and the urban 
environment.

“The image features a red vase with a plant in it, placed on a table. The vase is positioned in the center of 
the scene, and the plant appears to be a potted plant. The table is black, and the vase is the main focus 
of the image. In the background, there is a doorway visible, which adds depth to the scene. Additionally, 
there is a bowl on the table, located to the right of the vase. The overall composition of the image creates 
a sense of balance and harmony between the vase, plant, and the doorway in the background.”

“A photo of vase with plant in it and a 
cup, placed on a dining table, door in the 
background, natural lighting style”

Figure 11: Examples of comprehensive caption for subject images. We provide examples of
LLaVA [51] output and our comprehensive captions for each reference image. With help of LLaVA,
we extract the visual attributes, backgrounds, and styles to construct comprehensive caption (e.g., the
texts marked in red in LLaVA output are used). The class tokens that are marked in bold (e.g., dog,
sloth plush, vase) are additionally learned with new textual embeddings initialized from the original
one.

Comprehensive caption

“A seascape and cliffs 
in watercolor painting style”

Reference

“Row of flowers 
in watercolor painting style”

Comprehensive caption

“A female figure with 
exaggerated proportions 

in modern 3D rendering style”

Reference

“A person drowning 
into a smartphone in cartoon 

line drawing style”

Comprehensive caption

“A woman walking a puppy 
in flat cartoon 

illustration style”

Reference

“A flower in melting golden 
3D rendering style”

Figure 12: Examples of comprehensive caption for style images. We provide the examples
of reference style images and comprehensive captions for style personalization experiment. To
disentangle the subject and style in the image, we provide comprehensive description to the subject
of the image. The texts marked in bold are used to generate image in custom style.

D.3 Additional implementation detail

We use PyTorch and Huggingface Diffusers library6 for our codebase. Each training is performed on
a single A100 40GB GPU using a batch size of 1. We perform up to 2000 optimization steps. Note
that our approach is robust to the length of training steps compared to the baseline (i.e., DreamBooth),
which often requires early stopping to prevent overfitting. We fine-tune LoRA of rank 32 for subject
personalization and rank 64 for style personalization. For sampling, we use DDIM [41] scheduler
with 50 steps, and use CFG guidance scale of 7.5 throughout experiments.

D.4 Evaluation metric

To measure the image similarity, we use DINOv2 [53] score, which is given by the mean cosine
similarity between the embeddings of reference images and synthesized images. To measure the
image-text similarity, we use SigLIP [54] score, which is defined as

SIT px, cq “
1

1 ` exp
`

´ fimgpxqJftextpcq ` b
˘

where fimg and ftext are ℓ2 normalized embeddings from image and text encoders, and b is a bias term
that is optimized during pretraining. We opt to use SigLIP score instead of CLIP score [45], as the
range of CLIP score depends on the prompt and images, while SigLIP score provides a general score
that is bounded on r0, 1s. For style personalization experiment, we measure image similarity using
SigLIP image similarity, by computing the embeddings with SigLIP image encoder. While we desire

6https://github.com/huggingface/diffusers
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Table 3: Examples of evaluation prompts used to synthesize images for each object and live subject
category. Subject customization are prompts to generate novel views of photo-realistic images and
subject stylization aims to alter style of the subject. {}’s are filled with the class token of the subject.

Category\Type Subject customization Subject stylization

Object

“A photo of {} on the beach” “A {} in sticker style”
“A photo of {} with ribbons” “A {} in wooden sculpture”
“A photo of cube-shaped {}” “A {} in flat cartoon illustration style”

“A photo of golden {}” “A {} in pixel art style”
“A photo of {} made out of leathers” “A {} in wireframe 3D style”

“A photo of {} with a tree and autumn leaves in the background” “A {} in hygge style”
“A photo of {} on top of a white rug” “A {} in geometric art style”

Subject

“A photo of {} wearing a spacesuit, planting a flag on the moon” “A {} playing a violin in sticker style.”
“A photo of {} as a firefighter, extinguishing a fire in a skyscraper” “A {} carved as a knight in wooden sculpture”

“A photo of {} in a wetsuit, surfing a giant wave in the ocea” “A {} piloting a hot air balloon in travel agency logo style”
“A photo of {} in Victorian attire, attending a tea party in an elegant garden” “A {} constructed from abstract metal shapes in constructivism style”

“A photo of {} in a snowsuit, skiing down a steep mountain” “A {} on an epic quest in pixel art style”
“A photo of {} as an explorer, navigating through an icy Arctic landscape” “A {} designed as an intricate machine in blueprint style”

“A photo of {} in an elegant masquerade mask at a Venetian ball” “A {} illustrated in an educational infographic style”

high scores, these metrics are not perfect, e.g., the image similarity can get 1.0 if the model overfits,
otherwise, the image-text similarity can achieve high score if the model underfits. Thus, instead of
reporting the scores from a single data point, we provide multiple data points of the same model
while varying sampling parameters (e.g., guidance scale values of consistency guidance sampling)
and show the trends (e.g., by showing the Pareto frontier).

Reference DB+p.p.

A photo of a dog1 riding a car toy

DB DCO

A dog1 and cat in front of Eiffel Tower

A dog1 and dog2 playing together

dog1

car toy

cat

dog2

Figure 13: Limitations. We show the multi-subject composition results. While DCO (ours) do better
than DreamBooth (DB) and DreamBooth with prior preservation loss (DB+p.p.) on multi-subject
composition, the learned concepts are often mixed during generation (e.g., the dogs are mixed in
third row). We found this more frequently happens when learned concepts are similar to each other,
e.g., dog-dog composition is more challenging than dog-cat composition, and dog-cat composition is
more challenging than dog-toy composition.
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E Limitations

Computational efficiency. Since our method leverages inference on pretrained model during
training (e.g., Algorithm 2) and inference (when using consistency guidance sampling) (e.g., Eq. (13)),
there exists a few extra computational burden compared to original DreamBooth fine-tuning or CFG
sampling. Specifically, we measured the optimization and inference time per iteration. Compared to
DreamBooth, our method (DCO) approximately takes ˆ1.3 longer time in fine-tuning. Compared
to CFG sampling, consistency guidance sampling requires ˆ2 longer time in sampling. We believe
that our work will motivate future studies on efficient fine-tuning to enhance scalability in practical
scenarios.

Multi-subject composition. We have shown that DCO effectively compose learned subject and
style (i.e., my subject in my style). When composing multiple subject, we found the performance is
not stable. Fig 13 showcase some results in multi-subject compositional generation. We found that
for subjects that are semantically distant, e.g., dog-car toy or dog-cat composition, our method is able
to generate multi-subject consistent images, while DreamBooth or DreamBooth+p.p. often fails to.
However, when composing semantically similar subjects, e.g., dog-dog composition, we found that
our method fails as well. Specifically, the concepts are mixed during generation, which results in
subject inconsistency. We believe this is partly due to the lack of model’s capability in disentangling
the newly learned concepts that are semantically similar. Thus, we believe using better pretrained
model could ameliorate such issues.

F Broader Impact

This paper presents a method that enhances the performance of the personalization of T2I diffusion
models. Similarly to other works, the technology for personalization of T2I diffusion models comes
with benefits and pitfalls – the tool could be extremely effective for creative directors to efficiently
generate new visual assets of various subjects or styles derived from existing private visual assets.
Yet, the responsible use of the technology is required for protecting the ownership and copyright of
individual assets.
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Reference CFG

A monster toy playing violin in sticker style

A photo of sloth plush in a graduation gown, receiving a diploma on the stage

A monster toy soaring through a digital landscape in vector illustration style

<latexit sha1_base64="lEWn4ayhuGbRWFHaLmdgA4W71Fo="></latexit>

!con = 2.0
<latexit sha1_base64="stJmjqyOGvGiwA2wlXidcBgduYA="></latexit>

!con = 3.0
<latexit sha1_base64="+tXNrZGFFdpZFJGTNrz3kbcW6Xs="></latexit>

!con = 4.0
<latexit sha1_base64="LY+uOhz3g0eCJuMzwDx+YrLggiY="></latexit>

!con = 5.0

Figure 14: Effect of consistency guidance scale. We show the effect of consistency guidance scale
ωcon by varying from 2.0 to 5.0. We also show the synthesized results using CFG. Note that the
optimal choice of consistency guidance scale (in consideration of user’s preference) might varies
among reference dataset, or even input prompts.

23



A photo of a pig in 
natural lighting style

A pig jogging at the 
beach in cartoon style

A pig in chef outfit, 
making food, flat 
illustration style

A pig drinking coffee in 
2D cartoon style

A pig playing guitar at 
the stadium

A pig riding bicycleA pig holding an 
avocado

A pig eating pancakes

Reference

A photo of a man jogging 
in the park

A man in 2D animation 
style

A photo of a man having 
selfie with wife at his 

wedding

A photo of a man doing 
workout at the gym

A photo of a man
wearing blue jeans and 

shirts

A photo of a man giving 
lecture about diffusion 

models

A photo of a man
attending seminar

A photo of a man in the 
airplane

Reference

Figure 15: 1–shot personalization using synthetic images generatd by SDXL. We show the
capability of our method in 1–shot subject personalization using the images generated by pretrained
SDXL models. For each reference image (man and pig), DCO fine-tuned T2I models can generate
subjects with different actions and styles. The prompts that used to generate reference images were
“a photo of a 50 years old man with curly hair” and “a 3D animation of happy pig”, respectively, as
used in [61].
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Reference

An otter in origami style An otter in papercut art 
style

An otter drinking coffee 
in café logo style

An otter on a laptop in 
flat cartoon illustration 

style

A photo of an otter in a 
snowsuit, skiing in a 

snow mountain

A photo of an otter as an 
astronaut, walking down 

the surface of Mars

A photo of an otter as a 
chef, cooking in the 

kitchen

A photo of an otter as a 
rock star performing at 

huge stadium

Figure 16: 1–shot personalization using synthethic images generated by DALLE-3. We show the
capability of our method in 1–shot subject personalization using the images generated by DALLE–
3 [8]. We asked DALLE-3 to generate a cute baby otter image. The comprehensive caption to
fine-tune this image is “A closed-up photo of an <otter> on the top of wooden log, forest in the
background". Our method is able to recontextualize the subject in the reference image with various
text prompts depicting accessories, background, or style.
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A wolf plush emerging from colorful paper layers in paper cutout style

Reference DCO (ours)DB+p.p.Pretrained DB+CC+p.p.

A dog in a landscape of papercut art style

A backpack in flat cartoon illustration style

A photo of golden robot toy

A dog as tiny figure in a grand landscape in miniature model style

Figure 17: Custom subject generation. We compare our method (DCO) with pretrained model,
DreamBooth (DB), and with prior preservation loss (DB+p.p.). Note that images in each row are
generated using the same random seed. Our method is able to generate subject consistent images with
various accessories, background or style, with better image-text alignment than baseline methods.
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Reference

A {Christmas tree, butterfly, piano} in melting golden 3D rendering style

DB DCO (ours)

A {cat, cow, avocado} in watercolor painting style

A {butterfly, coffee maker, piano} in watercolor painting style

Figure 18: Custom style generation. Additional qualitative results on custom style generation. Our
method (DCO) is able to generate style consistent image, while prior method, DreamBooth (DB),
is prone to overfitting. For example, in the first row, the leaves of flower is inherited to butterfly,
Christmas tree, and piano in DB, while our methods disentangle such attributes in generation. Those
are also shown in second and third rows.

27



DB 
Merge

DB ZipLoRA

cartoon line 
drawing style sloth plush wolf plush backpack

DB 
Merge

DB ZipLoRA

kid crayon 
drawing style monster toy teddy bear dog

DCO Merge
(ours)

DCO Merge
(ours)

DB 
Merge

DB ZipLoRA

watercolor 
painting style dog alarm clock fringed boot

DCO Merge
(ours)

modern 3D 
rendering style cat backpack sneakers

DCO Merge
(ours)

DB ZipLoRA

DB 
Merge

Figure 19: My subject in my style generation. Additional results are shown. Our method (DCO
Merge) generates an image that maintains subject and style consistency without any post-processing.
On the other hand, DreamBooth Merge (DB Merge) shows inferior results as is either overfitted to
subject (e.g., sloth plush, wolf plush, backpack are not in cartoon line drawing style), or styles (e.g.,
monster toy, teddy bear, dog do not appear in kid crayon drawing style). Meanwhile, ZipLoRA shows
better results than DB Merge, yet it often loses the subject or style fidelity.
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Subject

drinking 
coffee

in a boat with a crown sleeping 
under cherry 

blossom

riding a 
bicycle

playing a 
violin

Style

DCO Merge (ours)

DB ZipLoRA

Subject

drinking 
coffee

in a boat on the 
mountain

sleeping 
under cherry 

blossom

riding a 
bicycle

playing a 
violin

Style

DCO Merge (ours)

DB ZipLoRA

Subject

playing with a 
ball

driving a car on the 
mountain

sleeping 
under cherry 

blossom

wearing a hat playing a 
violin

Style

DCO Merge (ours)

DB ZipLoRA

Figure 20: Text-compositional my subject in my style generation. We show more qualitative
results for my subject in my style generation that compare arithmetic merge of DCO fine-tuned models
(DCO Merge) and ZipLoRA [21] on DB fine-tuned models. DCO Merge generates images consistent
to both subject and style without further post-optimization, while ZipLoRA often misses the subject
or style consistency (e.g., teddy bear and monster toy are changed, and the style of the third example
is not as consistent).
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Figure 20: Text-compositional my subject in my style generation. (continued)
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have stated main claims in the abstract and the introduction (Sec. 1) with
descriptions on our method as well as experimental results (Fig. 1).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide limitations of our method in Appendix E.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Our paper considers training diffusion models, which we explain the back-
ground with principles in Sec. 3. We also provide derivation of our claims in Appendix A.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a pseudocode to implementation our method in Algorithm 2, and
implementation details in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We will make a related decision for this after the acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specified all the training dataset, hyperparameters (e.g., optimizers, learning
rate, rank of LoRA), and evaluation strategies. See Sec. 5 and Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: All experiments are conducted with the same and commonly used random
seed.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide sufficient information on the computer resources in Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Authors carefully read the NeurIPS Code of Ethics and preserved anonymity.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We provide potential negative societal impact in Appendix F.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The license for each data is described in Sec. D.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not introduce new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involves any crowdsourcing nor research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involves any crowdsourcing nor research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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