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Abstract

We study optimal teaching for a family of Behavior Cloning learners that learn using1

a linear hypothesis class. In this setup, a knowledgeable teacher can demonstrate a2

dataset of state and action tuples, and is required to teach an optimal policy to an3

entire family of BC learners using smallest possible dataset. We analyse the linear4

family and design a novel teaching algorithm called ‘TIE’ that achieves the instance5

optimal teaching complexity for the entire family. However, we show that this6

problem is NP-hard for action spaces with |A| > 2 and provide an approximation7

algorithm with a log(|A| − 1) guarantee on the optimal teaching size. We present8

empirical results to demonstrate the effectiveness of our TIE algorithm compared9

to various baselines in different real-world teaching environments.10

1 Motivation11

Behavior Cloning (BC) [7, 13, 33] is an important paradigm of learning in Reinforcement Learn-12

ing(RL), that has been applied extensively to solve real-world problems like teaching machines to13

drive autonomous vehicles [26, 27], fly planes [30], perform robotic manipulations [20] etc. These14

real-world environments have large state space where the ability to generalize using linear or neural15

hypothesis class becomes essential for effective learning.16

However, naively teaching an optimal policy to a BC learner using i.i.d. trajectories often demands17

a sample size that scales with the horizon length and the complexity of the learner’s hypothesis18

class [4, 29]. In scenarios like teaching machines to drive cars, an expert teacher may possess the19

knowledge of a (near)-optimal policy and the hypothesis class employed by the learner and can20

leverage this knowledge to construct a small, non-i.i.d. dataset to teach the target policy to the BC21

learner far more efficiently. This problem is known as optimal Machine Teaching and the size of22

smallest teaching set so produced is called Teaching Dimension [16, 35].23

Several existing works in machine teaching have studied teaching individual linear learners like24

linear support vector machines (SVM) [21] and linear perceptron [25] but mainly in classification25

settings. These surrogate learners exhibit optimization biases that arguably make them easier to teach.26

Furthermore, the optimal teaching set so produced is very learner specific and does not work for other27

linear learners. In contrast, in many scenarios like teaching a classroom of students [36], the teacher28

needs to provide a dataset that can teach an entire family of learners and it cannot base its teaching on29

the bias of individual surrogate learners. In this work, we focus on the task of optimally teaching a30

family of linear BC learners that satisfy the consistency property, i.e., they all produce a (subset of)31

hypothesis that is consistent with a dataset. We seek to answer the following question:32

What is the smallest dataset required to teach a policy to a family of consistent linear BC learners?33

To illustrate the challenge of optimally teaching the linear BC family using a minimal dataset, consider34

the following example below.35
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Figure 1: a) A board in a “Pick the Right Diamond” game. In this example 1, the target policy says to
pick the diamond with the highest edge breaking the tie in favor of the rightmost slot if any. There
are a total of 5n − 1 candidate teaching state and action pairs. We ask what is the minimum set of
demonstrations of such boards would allow the teacher to teach the target policy to consistent linear
learners. b) Only two carefully chosen demonstrations are sufficient to teach.

Example 1 (Pick the Right Diamond). The game is shown in Figure 1a. There is a board with n = 636

slots where each slot can have one of 4 different types of diamonds or can be empty. The game rule37

says that one must pick the most expensive diamond i.e. one with the highest number of edges, first;38

and if there are ties one must pick the rightmost one. The game continues until the board is empty.39

The teacher wants to find a minimal demonstration set to convey this rule to the agent.40

There are 5n− 1 number of states withA = [n]. Consider the family of consistent linear BC learners41

with a two-dimensional feature space denoting slot index and number of edges in the slot. A naive42

teacher would demonstrate target action in all 5n − 1 states which grows exponentially with n.43

However, a clever teacher succeeds by just demonstrating two states(refer to Section 4.1 for complete44

results), thereby significantly saving the teaching cost from O(5n) to 2.45

Towards this end, we make the following contributions:46

1. We formulate the problem of optimally teaching a family of linear BC learners and show47

that this problem reduces to optimally teaching the hardest (unbiased) member in the family,48

i.e., a version space BC learner (Lemma 1).49

2. We characterize optimal teaching in terms of covering extreme rays of version space cone and50

design a novel algorithm called ‘TIE’ 1 to optimally teach the linear BC family (Theorem 4).51

3. However, as shown in Theorem 7, solving this problem is NP-hard for instances with52

|A| > 2. We propose an efficient, approximately optimal algorithm with an approximation53

ratio guarantee of log(|A| − 1) on teaching dimension (Theorem 8).54

4. Through a set of experiments on real-world environments, we demonstrate the effectiveness55

of our TIE algorithm compared to other baselines (Section 4).56

2 Problem Formulation57

Consider a Markov Decision Process (MDP)M = (S,A, R, P, γ, µ) where S is a state space, A a58

finite action space, R is reward function, P is transition distribution, γ is the discount factor and µ59

is the initial state distribution. For simplicity, we assume that S is finite, however, we also extend60

our algorithm to an infinite setting under reasonable assumption later on. Let ϕ : S × A → Rd be61

a feature representation function. Given a fixed w ∈ Rd, it induces a set of policies Πw given as62

follows:63

∀s ∈ S, Πw(s) = ∆

(
argmax
a∈A

w⊤ϕ(s, a)

)
.

Let Π = ∪w∈RdΠw and ΠDet = {w ∈ Π : Πw ∈ AS} denote all stochastic and deterministic policy64

induced by H = Rd. The value of policy π ∈ Π is denoted by V πµ = E [
∑∞
t=0 γ

tr(st, at)]. An65

optimal policy π∗ is one that achieves an optimal value π∗ = argmaxπ∈∆(A)S V
π
µ .66

2.1 The Learner Family67

We consider a Behavior Cloning (BC) learner L : D → 2H that learns using a linear hypothesis class
H = Rd and only has access to a teaching dataset D ⊆ S ×A. It reduces the problem of learning an
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optimal policy to a supervised learning problem [1, 29] by doing empirical risk minimization (ERM),

L(D)← arg min
w∈H,π∈Πw

∑
(s,a)∈D

Ea′∼π(s)[lL(a′, a)].

Note that L(D) is the entire set of ERM hypothesis minimizer obtained by minimizing learner-68

specific loss function lL : A × A → R+. During deployment in MDP environment, the learner69

arbitrarily chooses a consistent w ∈ L(D) and a π ∈ Πw, thereby suffering a worst-case value risk70

of RV (D;L) = V π
∗

µ −minw∈L(D),π∈Πw
V πµ .71

Consistent Linear BC Learner: In this work, we consider teaching a family of linear BC learners,72

denoted by C, that always outputs a (subset of) consistent hypotheses i.e. on input dataset D, the73

ERM hypothesis set agrees with D, i.e., ∀w ∈ L(D), π ∈ Πw, π(s) = a, ∀(s, a) ∈ D.74

Note that L(D) is non-empty if D is generated by a deterministic policy π ∈ ΠDet, i.e., π(s) =75

a,∀(s, a) ∈ D. In linear classification settings, learners like linear SVM, perceptron, and logistic76

regression are some popular examples of consistent learners. We note that not all consistent learners77

are created equal; many exhibit strong biases towards certain hypotheses, influenced by their surrogate78

loss functions [14] or iterative gradient-based learning procedures [32]. In contrast, a linear version79

space BC learner is one of the simplest consistent learners in C as it maintains the entire version80

space of consistent hypotheses without any specific bias for one hypothesis over the other.81

Linear Version Space (LVS) BC Learner: We consider a consistent linear BC learner that82

maintains the entire version space of hypothesis V(D) consistent with dataset D given as follows:83

V(D) = {w ∈ Rd : w⊤ψsab > 0, ∀(s, a) ∈ D, a ̸= b} (1)

where ψsab := ϕ(s, a)− ϕ(s, b) is the feature difference vector induced for strictly preferring action84

a over b in state s. Equivalently, a version space learner can be seen as an ERM learner minimizing85

zero-one loss function L0-1, i.e., V(D) = L0-1(D).86

Remark 1. We use the following notation: Ψ(D) is the set of all feature difference vectors induced87

by D and is defined as Ψ(D) = {ψsab : (s, a) ∈ D, b ∈ A, b ̸= a}. We denote the primal cone of88

Ψ(D) induced by dataset D as cone(Ψ(D)) := {
∑
ψ∈Ψ(D) λψψ : λψ ≥ 0, λ ̸= 0}, and its dual as89

cone∗(Ψ(D)) := {w ∈ Rd : ⟨w,ψ⟩ > 0,∀ψ ∈ Ψ(D)}. Note that V(D) is the dual of Ψ(D). Refer90

to Example 2 for a concrete example.91

2.2 The Teacher92

In our setup, there exists a helpful teacher who controls the demonstration dataset D ⊆ S × A93

provided to the learner and has the following teaching objective:94

It wants to unambiguously teach a target optimal policy π∗ to the entire family of consistent linear95

BC learners C using as few demonstrations as possible.96

Formally, given a teaching instance (M, ϕ, π∗), the optimal teaching problem of the teacher is defined97

by the following optimization problem :98

(Teach-C) D∗ ← min
D⊆S×A

|D|

s.t. max
L∈C,w∈L(D),π∈Πw

RL(π, π
∗) = 0 (2)

where RL(π, π
′) =

∑
s∈S lL(π(s), π

′(s)) is a learner specific true risk. We note that the constraint99

requires the teacher to jointly teach all consistent learner to zero risk. The size of the optimal teaching100

set TD(C) = |D∗| is called the teaching dimension of the class C.101

Remark 2. Teaching the entire family C is not free, i.e., if the teacher knows the bias of individual102

learners, it can possibly teach them more efficiently. For example, an optimal SVM just requires two103

examples to teach in Rd[21]. However, such teaching sets are not even a valid teaching set for other104

learners in the family C like version space learners, see Figure 3a for an example.105

In finite state space, a naive teacher could succeed in teaching by demonstrating a full dataset106

DS = {(s, π∗(s)) : s ∈ S} defined on the entire state space, which can be practically infeasible in107
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Figure 2: A simple illustration on importance of extreme rays. D,D′, D′′ succeed in teaching but D♭

fails depending on if they cover the extreme rays of cone(Ψ(D)).

large state space environments. However, a clever teacher can utilize the linear feature representation108

structure of the learner to find a much smaller dataset to teach the target optimal policy.109

We assume that π∗ is realizable under a linear policy family which has been widely used in both110

learning theory [23, 31] and optimal teaching literature [17, 37].111

Assumption 1 (Realizability). A policy π : S ×A is realizable under a linear policy family if and112

only if ∃w ∈ Rd s.t. ∀s ∈ S, {π(s)} = argmaxa∈A w⊤ϕ(s, a).113

In general, our teacher can teach any realizable policy π : S → A to the learner, but for simplicity, we114

only focus on teaching an optimal π∗. We note that under realizability, ψs,π∗(s),a ̸= 0, ∀a ̸= π∗(s)115

and V(DS) is a non-empty cone in Rd as shown in figure 2a. The following lemma connects optimal116

teaching the entire family C to optimally teaching a linear version space BC learner. The proof of this117

lemma can be found in the Appendix.118

Lemma 1. Optimally teaching the family of consistent linear BC learners is equivalent to optimally119

teaching linear version space BC learners.120

Hence, the teacher can achieve its objective of optimally teaching family C by just focusing on121

optimally teaching linear version space (LVS) BC learner. From now on, we will focus on optimally122

teaching a target optimal policy π∗ to a LVS learner given by the following optimization problem:123

(Teach-LVS) D∗ ← min
D⊆S×A

|D|

s.t. ∀w ∈ V(D), π ∈ Πw, ∀s ∈ S, π(s) = π∗(s). (3)
This requires the teacher to find a minimal data D∗ that induces π∗ uniquely on the version space.124

Previous works have studied the problem of optimal teaching of version space learners, but have125

mostly been limited to either a finite hypothesis setting [6, 16] or highly structured hypothesis classes126

like axis-aligned rectangles [12, 16] which is very different from our linear version space setting.127

Before delving into the algorithm, we present an illustrative example in R2.128

Example 2 (An instance of teaching linear version space BC learner in R2). Let S = {s, t, u}, A =129

{a, b, c}, and π∗(s) = a, ∀s ∈ S. Consider the full demonstration set D = {(s, a), (t, a), (u, a)}130

that induce Ψ(D) = {ψsab, ψsac, ψtab, ψtac, ψuab, ψuac} as indicated by dots in Figure 2a. The131

primal cone cone(Ψ(D)) is shown in blue, and the version space V(D;R2) is in green. We note that132

the primal cone is supported by two extreme rays.133

The subset D♭ is not a valid/feasible teaching set as its version space V(D♭) (shown in green in134

Figure 2b) is wider than V(D) and contains some w’s that do not induce π∗ in all states, thus135

violating the feasibility condition in equation 3. On the other hand, both D′ and D′′ induce the136

correct version space V(DS) (as shown in green in Figures 2c and 2d) on the learner and succeeds137

in teaching π∗ to it. Furthermore, D′′ is the smallest optimal set among them to do so. The problem138

become challenging as we move to higher dimensions where we can have large number of extreme139

rays as shown in Figure 3b.140

3 Teaching Algorithm and Analysis141

We first describe a naive teaching algorithm that frames optimal teaching as an infinite covering142

problem in the hypothesis/weight space and highlight the difficulty to solve it using the simple143
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Figure 3: a.) Optimal teaching set D of (biased) consistent learner like SVM induce a larger space of
weights w some of which(shown in light red color regions) are inconsistent wrt π∗ and so they cannot
succeed in teaching LVS learner. b.) Optimal teaching example in higher dimension d ≥ 3 can have
a large number of extreme rays to be covered using a subset of states making it a hard problem 7.

inconsistent hypothesis elimination method studied in prior works [16]. We then characterize the144

optimal teaching goal in terms of covering extreme rays of target version space and devise an optimal145

teaching algorithm called ‘TIE’ based on this insight.146

3.1 Optimal Teaching as an Infinite Set Cover Problem in w Space147

Demonstrating (s, π∗(s)) at a state s induces A− 1 inequalities: w⊤ϕ(s, π∗(s)) > w⊤ϕ(s, b),∀b ̸=148

π∗(s) on the learner. Each such inequality, rewritten as w⊤ψsπ∗(s)b > 0, eliminates a halfspace149

Wsb := {w : w⊤ψsπ∗(s)b ≤ 0}. Therefore, the effect of demonstrating (s, π∗(s)) is to eliminate150

the set of weights Ws := ∪b̸=π∗(s)Wsb. The full demonstration set DS = ∪s∈S{(s, π∗(s))} over151

all states eliminates the union ∪s∈SWs, such that only the version space V(DS) survives. We are152

interested in finding the smallest demonstration set that also produces V(DS) which is equivalent to153

covering the infinite collection inconsistent weight space V(DS)
C by a smallest finite collection of154

infinite subsets Ws. This is a set cover problem:155

min
T⊆S
|T | s.t. V(DS)

C = ∪t∈TWt.

It is not immediately clear how to solve this infinite set cover problem. In the next section, we156

characterize the version space cone V(DS) in terms of extreme rays and show that the problem is157

equivalent to covering the extreme rays of feature difference cone(Ψ(DS)).158

3.2 Teaching as a Finite Set Cover Problem in Extreme Rays of cone(Ψ(DS))159

In this section, we show that the infinite set cover problem for the teacher can be simplified to covering160

only the extreme rays of cone(Ψ(DS)) using the feature difference vector induced by a subset of161

states T ⊆ S. Before doing that, we introduce some definitions below.162

Definition 1 (Extreme Ray and its Cover). An ray induced by a vector v ∈ Rd\{0} is the set163

R = {cv : c > 0}. A ray R is called an extreme ray of a cone K ⊆ Rd if for any x, y ∈ K,164

x+ y ∈ R =⇒ x, y ∈ R. We say that a state s ∈ S covers a rayR if ∃b ̸= π∗(s) : ψsπ∗(s)b ∈ R.165

Similarly, T ⊆ S is said to coverR if ∃s ∈ T that coversR.166

We first show that it is not necessary to teach with the full demonstration set DS or, equivalently,167

induce the full set of induced difference vectors Ψ(DS). Instead, we just need to induce subset168

U ⊆ Ψ(DS) that covers the extreme rays of cone(Ψ(DS)) as shown by Lemma 2.169

Lemma 2 (Necessary and Sufficient Condition for Teaching). A subset of states T ⊆ S is a valid170

teaching set if and only if it can induce a set of all extreme rays of target cone(Ψ(DS)).171

The proof can be found in the appendix. To construct an optimal teaching set, the teacher first needs172

to find all extreme rays and then find smallest subset of states T ⊆ S that cover all those extreme rays.173

This is our new set cover problem with the universe as a set of all extreme rays Ψ∗ of cone(Ψ(DS))174

defined by U = Ψ∗. Note that each state s covers a subset of extreme rays Vs ⊆ Ψ∗ by its feature175

difference vectors and the teacher wants to choose the smallest subset of states to cover U . Unlike176

the infinite set cover problem (3.1), this is a standard finite set cover problem.177
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3.3 The Optimal Teaching Algorithm and Analysis178

Algorithm 1 Teach using Iterative Elimination (TIE)
def MinimalExtreme(X ):

1: for each xj ∈ X do
2: Solve LP(xj ,X/{x}) defined by 3
3: if vj > 0 then
4: X ← X\xj ▷ eliminate xj if not necessary
5: return X ▷ extreme vectors

def OptimalTeach(S,A, π∗, ϕ):
1: let Ψ(DS) = {ψsπ∗(s)b ∈ Rd : s ∈ S, b ∈ A, b ̸= π∗(s)} ▷ compute feature differences
2: Ψ∗ ←MinimalExtreme(Ψ(DS))
3: for s ∈ S do
4: Vs ←

{
ψ ∈ Ψ∗ : ∃ψsπ∗(s)b ∈ Ψ(DS), ψ̂sπ∗(s)b = ψ̂

}
▷ extreme rays covered by s

5: {Vs : s ∈ T ∗ ⊆ S} ← SetCover(Ψ∗, {Vs}|s∈S) ▷T ∗ is smallest cover of all extreme rays
6: teach D∗ = {(t, π∗(t)) : t ∈ T ∗} to the agent ▷D∗ is the minimum demonstration set

Lemma 3 shows how to compute extreme rays of cone(X ) formed by a finite set X which when179

applied to X = Ψ(DS) allows the teacher to find Ψ∗. The proof can be found in the appendix.180

Lemma 3 (Extreme Ray Test). Given a set of vectors X ∈ Rd and x ∈ X , the following linear181

program determines if x is the only vector in X that lies on an extreme ray of cone(X ). The objective182

value of LP(x,X ) is −∞ if x /∈ cone(X\{x}), and strictly positive otherwise.183

LP(x,X ) : minw ⟨w, x⟩ s.t. ⟨w, x′⟩ ≥ 1 ∀x′ ∈ X\{x}.184

Note that to finding all the extreme rays is equivalent to finding one representative vector for each185

extreme ray. If LP(x,X ) = −∞, x is the only vector on one of the extreme ray of cone(X ) and we186

should keep x. If LP(x,X ) > 0, then x is not a unique representative of some extreme ray of cone(X )187

in set X , in which case, we can remove x. Employing this test iteratively to X = Ψ(DS) provides188

unique representative for all the extreme rays of cone(Ψ(DS)). When this process terminates, the189

surviving set Ψ∗ ⊆ Ψ(DS) contains exactly one vector on each extreme ray of cone(Ψ(DS)). Next,190

the teacher solves a finite set cover problem defined by instance (U, {Vs}|s∈S) to find minimum191

teaching set. We provide the complete teaching algorithm‘TIE’ in Algorithm 1. Our algorithm ‘TIE’192

achieves the following guarantee on Teaching Dimension.193

Theorem 4 (Optimal Teaching in Finite State Setting). Given an optimal teaching problem instance194

(M, ϕ, π∗) 2, our teaching algorithm TIE 1 correctly finds the optimal teaching set D∗ and achieves195

the teaching dimension TD(C).196

Our algorithm also works in an infinite state setting under mild assumption as stated by the next197

corollary. Proof for both Theorem 4 and Corollary 5 can be found in the appendix.198

Corollary 5 (Optimal Teaching for Infinite State Setting). Assuming cone(Ψ(DS)) is a closed convex199

cone with finite extreme rays and the teacher knows the extreme rays to state mapping, our algorithm200

TIE 1 correctly finds the optimal teaching set D∗.201

Behavior Cloning learners suffer from the issue of distribution shift [29] which is undesirable. Next,202

we show that in the presence of our helpful teacher, this issue is not present. Furthermore, we could203

argue that since BC learners learn directly in policy space and do not require further planning like204

IRL learners[3, 8], they are the most canonical example of learners to teach using demonstration in205

MDP setting.206

Corollary 6 (Optimal Value Guarantee). Under teaching by our algorithm TIE, the entire family of207

learners L ∈ C achieve zero value risk, i.e., RV (D∗;L) = 0.208

We note that for instances with |A| = 2, the subsets Vs in the set cover problem contain only one209

element, and thus the corresponding set cover problem is computationally efficient to solve. However,210

solving the set cover problem for a general A is NP-hard problem as each state can cover as much211
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as |A| − 1 extreme rays. We show that no teacher can avoid this hardness by giving a poly-time212

reduction from a finite set cover problem to optimal teaching problem; proof can be found in the213

appendix.214

Theorem 7. Finding an optimal teaching set for a linear version space BC learner is an NP-hard for215

instance with action space size |A| > 2.216

Next, we instantiate the set cover problem by an efficient greedy procedure which leads to the217

following guarantee on optimal teaching by ‘TIE’ with a computation complexity of O((|S||A|)3).218

Corollary 8 (Approximately Optimal Teaching). Our algorithm TIE 1 can efficiently teach a family219

of consistent linear BC learners C and it finds an approximate optimal teaching set D̃ such that |D̃| ≤220

log(|A| − 1)|D∗|[34].221

4 Experiments222

We evaluate our teaching algorithm TIE on three environments: 1) Pick the Right Diamond, 2)223

Visual Programming in Maze with Repeat Loops and 3) Polygon Tower environment (provided in the224

appendix). Through these experiments, we aim to demonstrate the following: a) Our algorithm TIE225

finds an optimal or a near-optimal teaching set in all these environments. b) The optimal teaching226

dataset so produced is competitive with a learner-specific optimal teaching set and can teach any227

consistent linear BC learners, and c) TIE performs significantly better than competitive baselines like228

Teach-Random and Teach-All that we define below.229

Baselines: We consider two baselines. 1) Teach-All: This teacher simply teacher the target action in230

all states to the learner, 2) Teach-Random: This teacher draws states uniformly at random s ∼ U(S)231

and adds it to a collection until the collection becomes a valid teaching set, i.e., it induces the target232

cone V(DS). We note that the teaching set produced by prior works [21, 25] are specialized to233

individual learners and do not yield a feasible set for teaching the entire family of consistent linear234

learners. Furthermore, their teacher directly constructs covariate vectors (features) in Rd and is not235

able to choose individual states, thus, not directly applicable to our setting.236

4.1 Pick the Right Diamond237

Recall the game from Example 1. A state in S = { , ,□,△, o}n/{o}n consists of a n dimensional238

board with one of four types of diamond or be empty(o). Each action in action space A = [n]239

represents picking an object in one of the cells. The complete description of the MDP environment240

can be found in the appendix.241

Feature representation & optimal policy: The learner uses a natural feature function in R2 given242

as follows, ϕ(s, a) = [a,#edges of diamond at a], where [#edges of diamond at a] is 0 if the slot is243

empty. The optimal policy is to collect the diamonds in order of decreasing value i.e. from a large to a244

small number of edges. In case of ties, the learner should choose the rightmost diamond. This policy245

is feasible under the above featurization, for example, w∗ = [1, 10] uniquely induces π∗. For a board246

of size n = 6, there are a total of 56 − 1 states and their feature difference vectors Ψ(DS) are shown247

as blue dots in Figure 4a. The primal cone cone(Ψ(DS)) is the blue-shaded area. It contains two248

extreme rays, both need to be covered for successful teaching. The version space is denoted in green.249

Optimal teaching set: We note that any teaching set that covers the two extreme rays is a valid250

teaching set. When run on a board instance of size n = 6, our algorithm TIE produces a teaching set251

of size two as illustrated in Figure 4b. This is an instance optimal teaching set and shows a dramatic252

improvement over teaching all 56 − 1 states. We perform experiments on boards of different sizes253

and found that TIE significantly outperforms other two baselines as shown in Figure 4c.254

4.2 Visual Block Programming in Maze with Repeat Loop255

We consider a real-world visual programming platform used for teaching kids/learners to write code256

to complete visual task in a maze environment [5, 9, 11, 15]. Further, we choose a domain that aims257

to teach learners to use repeat code blocks to write succint code to complete a navigation-based task258
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Figure 4: Optimal teaching in “Pick the right diamond” with n = 6 slots. a) Feature difference
vectors Ψ(DS) induced by target policy is shown as blue dots, primal cone cone(Ψ(DS)) as blue
area, and dual version space V(DS) as green area. b) A teaching set produced by TIE on board of
size 6. c) Comparison of our TIE algorithm with other baselines.
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Figure 5: a) An example of programming task in 5 × 5 with solution code. The maze contains a
turtle facing one of four directions (shown by green arrow) and a goal cell (shown by red star). The
optimal (smallest) solution code to lead the turtle to the goal is shown on the side. The action apace
consisting of 5 basic code block is shown on the right. b) Performance of TIE compared to baselines
on this domain with different maze sizes.

in maze environments of different sizes. The environment state consists of a n× n maze with a turtle259

(shown in green in Figure 5a) facing one of four directions, a goal cell (shown by a red star), and a260

(partial) piece of code that can be executed to move the turtle in the maze. The learners objective is to261

assemble multiple code blocks in sequence to write a piece of code that can solve a given maze task.262

The action space A consists of n actions (each representing a basic code block) available to the263

learner to write code and is given as follows: Turn-Left (TL): turns turtle to its left, Turn-Right (TR):264

turns turtle to its right, Move-Forward (MV): moves turtle forward by one cell, Repeat-k-Times-Move265

(Rk-MV) is a complex block with repeat loop that moves the turtle forward by k cells in a single266

command where k ∈ {3, · · · , n − 1} The task is to teach the agent to write most succint piece of267

code that can be executed to make the turtle reach the goal cell. This is captured by a reward function268

that gives a reward of −1 to the first three code blocks (TL/TR/MV) and a reward of −2 to repeat269

blocks Rk-MV. 1 The complete description of the MDP defining this problem can be found in the270

appendix.271

Feature representation & optimal policy: We consider an execution-guided feature272

representation[11] that takes an initial board with a partial piece of code and constructs a fea-273

ture vector by first executing the partial code to get an intermediate state and extracting features274

from that state. We use a natural feature representation ϕ : S × A → Rd that encodes the relative275

orientation and distance of the goal cell from the turtle cell; refer to the appendix for more details.276

The optimal policy is realizable by a linear policy under this representation. The teacher knows ϕ and277

can construct a dataset D of (state and optimal action) tuples and provide it to the learners. Its goal is278

to teach the target optimal policy of writing a succinct code to the entire family of learners C.279

1We note that repeats are complex code blocks that have two components and should be used only when it
provide an advantage, i.e., it can substitute more than two basic blocks.
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Figure 6: Optimal Teaching Set produced by TIE on a goal-reaching coding task with 5× 5 maze.
The demonstration consists of states with an initial board without any partial code. The optimal
action demonstrated to the learner is shown below each state.

Optimal teaching set: We run our algorithm TIE on environments with different sizes of maze and280

observe that it is able to find an optimal teaching set for each of the environments; refer to Figure 6281

for an example on 5 × 5 maze. This optimal teaching set demonstrates each action exactly once282

on a suitable maze state where that action is an optimal one. Our algorithm performs significantly283

better than the other two baselines: Teach-Random and Teach-All when run on maze of different sizes284

as shown by Figure 5b. We also trained other candidate consistent learners like linear SVM, linear285

perception, and linear logistic regression on teaching set obtained by TIE and verified that all of them286

achieve a risk of zero as claimed by our Theorem 4.287

5 Related Work288

Several prior works have studied optimal teaching of version space learners but mostly in finite or289

countable infinite version space settings[16, 18]. Some works like [36] has studied teaching mulitple290

learners simultaneously but in unsupervised learning setting of teaching mean. Instead, we study291

teaching a family of consistent BC learners in linear hypothesis space setting.292

Comparatively, studies on optimal teaching of different linear learners are highly relevant to our293

work. For example, [21, 25] examined teaching linear learners like like SVM, perceptron and294

logistic regression which can be seen as individual instances of consistent linear BC learners. These295

works focus on teaching individual learners where teacher could exploit strong biases of these296

learners to arguably teach them relatively easily. On the other hand, we aim to teach entire family of297

consistent linear BC learners where the teacher cannot base its teaching on bias of individual learners.298

Additionally, [22] delved into the optimal teaching of iterative learners like gradient descent learners299

which have also been shown to be biased learners [32]. Further, [19, 28] explored the teaching300

dimension of kernel learners for teaching a non-linear boundary in RK space. Furthermore, these301

studies typically assume a more powerful teacher capable of constructing arbitrary covariate and label302

pairs, whereas we restrict the teacher to select states from a fixed state space and teach the learner to303

generalize to other states using feature covariates induced by the feature function.304

Another significant line of research involves Teaching by Demonstration in a RL setting. Relevant305

studies by [8, 10] have focused on teaching linear IRL learners[2, 24] which are different kind of306

imitation learners that learn using a linear reward model and require planning access to environment307

to eventually learn an optimal policy. Unlike them, our linear BC learners learn directly in the policy308

space by only using teaching demonstration and are not limited by access to MDP environment.309

6 Discussion & Conclusion310

We studied the problem of optimal teaching of a family of linear learners in a behavior cloning setting.311

We provided an efficient algorithm that achieved an approximately optimal guarantee of log(|A| − 1)312

on the teaching dimension. Our work focused mainly on teaching linear learners and we hope future313

works would extend this teaching a family setting to more complex non-linear learners like neural314

networks. Another interesting future direction would be to study optimal teaching for family of linear315

learners under budget constraints. It would be also interesting to apply our method to more complex316

real-world settings like teaching a class of kids to learn to code.317
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NeurIPS Paper Checklist406

1. Claims407

Question: Do the main claims made in the abstract and introduction accurately reflect the408

paper’s contributions and scope?409

Answer: [Yes]410

Justification: Our abstract clearly reflects the main contribution of studying optimal teaching411

problem for family of linear BC learners and providing an (approximately) optimal algorithm412

for teaching the family. Our experiments support highlight the effectiveness of our teaching413

algorithm over other baselines.414

2. Limitations415

Question: Does the paper discuss the limitations of the work performed by the authors?416

Answer: [Yes]417

Justification: Limitations are discussed in last section of the paper.418

3. Theory Assumptions and Proofs419

Question: For each theoretical result, does the paper provide the full set of assumptions and420

a complete (and correct) proof?421

Answer: [Yes]422

Justification: We provide complete theorem with assumptions in main paper and proofs in423

appendix.424

4. Experimental Result Reproducibility425

Question: Does the paper fully disclose all the information needed to reproduce the main ex-426

perimental results of the paper to the extent that it affects the main claims and/or conclusions427

of the paper (regardless of whether the code and data are provided or not)?428

Answer: [Yes]429

Justification: We describe the experimental setup in the paper with additional details provided430

in appendix. We also provide code to replicate our results in supplementary material.431

5. Open access to data and code432

Question: Does the paper provide open access to the data and code, with sufficient instruc-433

tions to faithfully reproduce the main experimental results, as described in supplemental434

material?435

Answer: [Yes]436

Justification: We provide code for constructing simulation environment and our algorithms437

in supplementray material.438

6. Experimental Setting/Details439

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-440

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the441

results?442

Answer: [Yes]443

Justification: All the relevant details to reproduce the experimental results is provided in444

appendix and supplementary materials.445

7. Experiment Statistical Significance446

Question: Does the paper report error bars suitably and correctly defined or other appropriate447

information about the statistical significance of the experiments?448

Answer: [Yes]449

Justification: For experiments that involved randomness like our Teach-Random algorithm,450

we showed error bars in the plot.451

8. Experiments Compute Resources452
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Question: For each experiment, does the paper provide sufficient information on the com-453

puter resources (type of compute workers, memory, time of execution) needed to reproduce454

the experiments?455

Answer: [Yes]456

Justification: We performed our experiments on a Apple Macbook M1 laptop with 16GB457

and our code can be run on any standard machine.458

9. Code Of Ethics459

Question: Does the research conducted in the paper conform, in every respect, with the460

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?461

Answer: [Yes]462

Justification: Our algorithm is intended to help learners to speed up learning and we do not463

envision safety or privacy concerns with our work.464

10. Broader Impacts465

Question: Does the paper discuss both potential positive societal impacts and negative466

societal impacts of the work performed?467

Answer: [NA]468

11. Safeguards469

Question: Does the paper describe safeguards that have been put in place for responsible470

release of data or models that have a high risk for misuse (e.g., pretrained language models,471

image generators, or scraped datasets)?472

Answer: [NA]473

12. Licenses for existing assets474

Question: Are the creators or original owners of assets (e.g., code, data, models), used in475

the paper, properly credited and are the license and terms of use explicitly mentioned and476

properly respected?477

Answer: [NA]478

13. New Assets479

Question: Are new assets introduced in the paper well documented and is the documentation480

provided alongside the assets?481

Answer: [Yes]482

Justification: We provide details about our code and how to run it in the readme file.483

14. Crowdsourcing and Research with Human Subjects484

Question: For crowdsourcing experiments and research with human subjects, does the paper485

include the full text of instructions given to participants and screenshots, if applicable, as486

well as details about compensation (if any)?487

Answer: [NA]488

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human489

Subjects490

Question: Does the paper describe potential risks incurred by study participants, whether491

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)492

approvals (or an equivalent approval/review based on the requirements of your country or493

institution) were obtained?494

Answer: [NA]495
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7 Appendix496

Given a finite set of vectors X = {xi ∈ Rd : i ∈ [n]}, we define the primal cone generated by this497

set as498

cone(X ) =

{∑
i∈X

λixi, λi ≥ 0, ∀i ∈ X

}
. (4)

Given any set U , we define the dual cone as499

cone∗(U) := {y | yTx > 0, ∀x ∈ U, x ̸= 0}. (5)

In particular, if the finite set X has xi ̸= 0 for all i ∈ [n], we have500

cone∗(X ) := {y | yTxi > 0, i = 1, 2, . . . , n}. (6)

We prove some basic properties about cones in Rd.501

Proposition 9. For any finite sets U, V s.t. U ⊆ V ⊂ Rd, we have that,502

1. cone∗(U) = cone∗(cone(U)).503

504

2. cone∗(U) ⊇ cone∗(V ).505

506

3. cone(U) = cone(V ) =⇒ cone∗(U) = cone∗(V ).507

508

Proof. 1 For any w ∈ cone∗(U), ⟨w, ui⟩ > 0, ∀ui ∈ U =⇒ ∀i, λi ≥ 0,
∑
i λiui ̸=509

0, ⟨w,
∑
i λiui⟩ > 0 =⇒ w ∈ cone∗(cone(U)). For the opposite direction, let ∀λi ≥510

0,
∑
i λiui ̸= 0, ⟨w,

∑
i λiui⟩ > 0. For a fixed i, choose λi = 1 and λj = 0, ∀j ̸= i. Then,511

we have ⟨w, ui⟩ > 0,∀ui ∈ U , thus, w ∈ cone∗(U).512

2 Now, for second part of the proposition, let x ∈ cone∗(V ) i.e. ⟨x, v⟩ > 0, ∀v ∈ V . Since, U ⊆ V ,513

this implies ⟨w, ui⟩ > 0,∀ui ∈ U . Thus, x ∈ cone∗(U), thus proving the statement.514

3 Finally, for the third part, we have that cone∗(U) = cone∗(cone(U)) = cone∗(cone(V )) =515

cone∗(V ), where the first and third equality follows from part 1 of this proposition and second516

equality follows from the premise.517

7.1 Finding extreme rays of primal cone518

In the remainder, we assume that the finite set X = {xi ∈ Rd : i ∈ [n]} contains all nonzero vectors,519

and recall the definitions of cone (4) and dual cone (6). Our problem is to find a set X ∗ ⊂ X of520

minimum cardinality such that cone∗(X ∗) = cone∗(X ).521

Note that by realizability, we have that cone∗(X ) is nonempty. We can define cone∗(X ) alternatively522

as follows523
cone∗(X ) := {αz |α > 0, z ∈ P (X )}

where P (X ) := {z | zTxi ≥ 1, i ∈ X}.
(7)

Proof. Any z satisfying (7) clearly has zTxi > 0 for all i ∈ X , so z ∈ cone∗(X ). Conversely, given524

any y with yTxi > 0 for all i ∈ X , we set α = mini∈X yTxi > 0 and z = y/α to get α and z525

satisfying (7).526

The key element of the algorithm is an LP of the following form, for some xj ∈ X :527

LP(xj ,X/{xj}) : min
w

wTxj

subject to wTxi ≥ 1 ∀i ∈ X/{xj}.
(8)

Note that this problem can be written alternatively, using the notation of (7), as528

min
w

wTxj subject to w ∈ P (X/{xj}). (9)
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The dual of (8) will also be useful in motivating and understanding the approach:529

LP-Dual(xj ,X/{xj}) : max
λi,i∈X/{xj}

∑
i∈X/{xj}

λi

s.t.
∑

i∈X/{xj}

λixi = xj , λi ≥ 0 for all i ∈ X/{xj}.
(10)

We prove a lemma with several observations.530

Lemma 10 (Proof of Lemma 3). Suppose that X is not empty. Let xj ∈ X . We have the following.531

(i) When (8) is unbounded, (10) is infeasible, so xj /∈ cone(X/{xj}). Furthermore, ∃w ∈ Rd532

s.t. w ∈ cone∗(X/{xj}) but w /∈ cone∗(X ).533

(ii) if (8) has a solution, the optimal objective value must be positive.534

(iii) When (8) has a solution with a positive optimal objective, then xj ∈ cone(X/{xj}).535

Proof. (i) From LP duality, when (8) is unbounded, then (10) is infeasible, giving the first part536

of the result. For the second part, we note by the feasibility condition of 8 that the optimal537

solution w∗ ∈ cone∗(X/{xj}) but since w∗Txj < 0, that is, w∗ /∈ cone∗(X ), giving us538

the result.539

(ii) If (8) were to have a solution with optimal objective 0, then by LP duality, the optimal540

objective of (10) would also be zero, so the only possible value for λ is λi = 0 for all541

i ∈ X/{xj}. The constraint of (10) then implies that xj = 0, which cannot be the case,542

since we assume that all vectors in X are nonzero.543

(8) cannot have a solution with negative optimal objective value, because by LP duality,544

(10) would also have a solution with negative objective value. However, the value of the545

objective for (10) is non-negative at all feasible points, so this cannot happen.546

(iii) When (8) has a solution with positive optimal objective, then LP duality implies that (10)547

has a solution with the same objective. Thus, there are nonnegative λi, i ∈ X/{xj}, not all548

0, such that the constraint in (10) is satisfied, giving the result.549

550

Lemma 11. Let U and V be finite sets with U ⊆ V ⊆ Rd and cone∗(V ) is non-empty. Then551

cone(U) = cone(V ) and cone∗(U) = cone∗(V ) if and only if U contains at least one vector on552

each of the extreme rays of cone(V ).553

Proof. For the sufficiency direction, we note that for a set U ⊆ V , if U contains at least one vector554

on each of the extreme rays of cone(V ) then cone(U) = cone(V ) (since all the vectors in a cone can555

be expressed as a conic combination of extreme vectors of the cone). Furthermore, by Proposition 3,556

we have cone∗(U) = cone∗(V ).557

For necessity direction, suppose that U does not contain any vector on a certain extreme rayR of V .558

Then U ⊆ V/R. Thus cone(U) ⊆ cone(V/R) ⊊ cone(V ) and thus cone∗(U) ⊇ cone∗(V/R). Let559

r ∈ R ⊂ V . Then LP-Dual(r, U) will be infeasible, so LP(r, U) is either infeasible or unbounded.560

But LP(r, U) is feasible because pointedness of cone(V ) means that cone∗(V ) is nonempty, so561

cone∗(U) ⊃ cone∗(V ) is also nonempty and so the constraints of LP(r, U) are guaranteed to562

hold for some w. We conclude that LP(r, U) is unbounded, so there is a direction w such that563

wTx > 0 for all x ∈ U but wT r < 0. This vector w belongs to cone∗(U) but not to cone∗(V ), so564

cone∗(U) ⊊ cone∗(V ), as required.565

Lemma 12 (Proof of Lemma 2). For successful teaching using T ⊆ S, the teacher needs to cover566

each extreme ray of cone(Ψ(DS)) using the feature difference vectors induced by teaching π∗ on T .567

Proof Sketch. Teaching is successful if the learner can recover a non-empty subset of target consistent568

version space i.e. for a teaching subset of states T ⊆ S,V(DT ;H) = V(DS ;H). We also have that569

V(DT ;H) ⊇ V(DS ;H) by Definition 1 and hence for successful teaching, the teacher has to induce570
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complete V(DS ;H) on the learner. From Lemma 11, teaching is successful i.e. the learner recovers571

the complete V(DS ;H) = cone∗(Ψ(DS)) if and only if the teacher is able to cover(induce at least572

one vector on) each extreme ray of cone(Ψ(DS)).573

Theorem 13 (Proof of Theorem 4). Given an optimal teaching problem instance (M, ϕ, π∗) 2,574

our teaching algorithm TIE 1 correctly finds the optimal teaching set D∗ and achieves the teaching575

dimension TD(C).576

Proof. Lemma 12 tells us that for valid teaching, the teacher must induce at least one feature577

difference vector on each of the extreme rays of cone(Ψ(DS)). Since S,A is finite, there are only a578

finite number of extreme rays possible. The iterative elimination procedure in MinimalExtreme in579

Algorithm 1 first finds unique representatives for each extreme ray of cone(Ψ(DS)). This follows580

from lemma 10. LetX be the surviving set of vectors at the start of an iteration where xj is considered.581

We have that if xj ∈ cone(X/{x}) it will get eliminated by the extreme ray test 3 and on the other582

hand if xj is unique representative for an extreme ray in X , we have xj /∈ cone(X/{x}) and thus xj583

will not get eliminated. At every iteration, we either eliminate a vector in Ψ(DS) or that vector is a584

unique representative for an extreme ray of cone(Ψ(DS)) and cannot be eliminated. Thus, at the end585

of the iterative elimination procedure, we recover a set of unique representative vectors Ψ∗ for each586

extreme ray of cone(Ψ(DS)).587

The next step involves finding a smallest subset of states T ⊆ S that can cover all the extreme rays.588

This is done by a set cover problem defined on lines 4-7 of the OptimalTeach procedure in Algorithm589

1. The set of unique representatives of extreme rays forms the universe to be covered and each state590

defines a subset of representatives for extreme rays that it can cover. The minimum number of subsets591

that can cover the entire universe is the minimum number of states that covers all the extreme rays592

giving us T ∗ ⊆ S as an optimal solution for teaching problem. For instance with |A| = 2, every593

state can induce at most one extreme ray so picking one state for each extreme rays gives the optimal594

teaching set.595

Theorem 14 (Proof of Corollary 5). Assuming cone(Ψ(DS)) is a closed convex cone with finite596

extreme rays and the teacher knows the feature representation mapping, our algorithm TIE 1 correctly597

finds the optimal teaching set D∗.598

Proof. Since the convex cone cone(Ψ(DS)) is closed, we know that extreme rays must be contained599

in it. Furthermore, an extreme ray must be induced by one of the states. The teacher knows the states600

that induce each extreme ray or a subset of it and can construct set cover problem to solve the optimal601

teaching problem.602

Theorem 15 (Proof of NP-Hardness in Theorem 7). Finding an optimal teaching set for a linear603

version space BC learner is a NP-hard for instance with action space size |A| > 2.604

Proof. We provide a poly-time reduction from the set cover problem to the optimally teaching version605

space BC learner problem 3. Since the set cover is an NP-hard problem, this implies that optimal606

teaching is NP-hard to solve as well. Let P = (U, {Vi}i∈[n]) be an instance of set cover problem607

where U is the universe and {Vi}i∈[n] is a collection of subsets of U . We transform P into an instance608

of optimal teaching problem Q = (M, ϕ, π).609

Construction: For each subset Vi of P , we create a state si of Q. For each element k in the universe610

U of P , we create an extreme ray vector ψk of feature difference vectors in Q. The complete611

construction is given as follows :612

1. S = [n],A = [A] where A = maxi∈[n] |Vi|+ 1.613

2. The target policy is π∗(s) = A, ∀s ∈ S.614

3. Ψ = {ψk = (cos( 2πkn ), sin( 2πkn ), 10) : k ∈ [|U |]}.615

4. for each s ∈ S we construct feature vectors {ϕ(s, a) : a ∈ A} such that the feature616

differences map to extreme rays ψ’s. Enumerating over element of Vs := {Vs1, · · · , Vs|Vs|},617
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we define the induced feature difference vectors as,618

ψsAb = ψVsb
, ∀b < |Vs| − 1 (11)

ψsAb = ψVs|Vs| , ∀|Vs| − 1 ≤ b ≤ A− 1 (12)

Figure 7: An reduction example from a set cover problem to optimal teaching LBC problem

Claim 16. A solution of optimal teaching LBC instance (S,A, π∗, ϕ) gives a solution to the set cover619

problem (U, {Vi}i∈[n]) and vice versa.620

Finding a collection of subsets {Vi}i∈[n] of smallest size that covers all elements in universe U is621

equivalent to selecting a subset of states S of smallest size that covers all the extreme rays defined by622

Ψ.623

For a solution {Vj}j∈T∗ s.t. T ∗ ⊆ [n] to the set cover instance (U, {Vi}i∈[n]), the set of states624

indexed by T ∗ ⊆ S is a solution to the optimal teaching instance (S,A, π∗, ϕ) and vice versa. The625

argument follows from a direct translation between two instances. See Figure 7.626

8 More Experimental Results627

8.1 Polygon Tower628

Let the state space be S = {2, . . . , n}, the action space be A = [n + 1], the feature function be629

ϕ : S ×A → R3 given by630

ϕ(s, a) =

{
[0, 0, s] if a = n+ 1[
−s · cos( 2πas ),−s · sin( 2πas ), 0

]
otherwise

(13)

We note that for a fixed state s, the feature vectors for actions 1 . . . n lie on a polygon of radius s631

centered around the origin on the xy plane.632

Target Policy The teacher wants to teach the target policy π† where ∀s ∈ S, π†(s) = n+ 1. The633

policy is realizable: for example, w = [0, 0, 1] induces this policy. The feature difference vectors634

induced by π† on S is given as Ψ(DS) = {[s · cos( 2πas ), s · sin( 2πas ), s] : s ∈ S, a ̸= n+ 1}. These635

difference vectors lie on elevated polygons as shown in Figure 8(a). In particular, state s induces636

a s-gon of radius s centered at (0, 0, s). Figure 8(b) shows the top view of the extreme rays of the637

primal cone cone(Ψ(DS)). The extreme rays are shown as dots and the states that cover each extreme638

ray are labeled.639

Optimal Teaching The polygon tower problem has an interesting structure that allows us to640

characterize the minimum demonstration set.641

Proposition 17. The optimal teaching set T ∗ of the polygon tower consists of all states in S that are642

not divisible by any other states in S.643

Proof. For any pair of states s, s′ such that s′ > s and s′ mod s = 0, then s′ fully covers the induced644

difference vectors of the characteristic of s so teaching state s is not required if s′ is taught. For645

example, state 6 in Figure 8(b) covers all the extreme rays induced by states 2, and 3. Conversely, if a646

state s is not a factor of any other states in S then it must be taught because s induces the extreme ray647

[s · cos( 2πs ), s · sin(
2π
s ), s] that can only be covered by s.648
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Figure 8: Polygon Tower. a) All feature difference vectors for n = 6. b) Top-down view of the
extreme vectors of the primal cone for n = 6. c) TIE running time on polygon tower with increasing
n. d) The teaching dimension (optimal) vs. the demonstration set size found by TIE. They overlap.
In fact, TIE finds the exact correct optimal teaching sets on polygon tower.

We run TIE with greedy set cover on a family of polygon towers with n ∈649

{3, 4, 5, 6, 7, 8, 12, 16, 20, 24, 32, 44}. We verify TIE’s solution to the ground truth minimum demon-650

stration set established in Proposition 17.651

We observe that TIE always recovers the correct minimum demonstration set. This can be observed652

from the overlap curve of the optimal size of the teaching set (shown in orange) and the size of the653

teaching set found by TIE (shown in green) in Figure 8(d).654

We also observe that TIE runs quickly. We plot the running time of TIE over instance size n in a655

log-log plot in Figure 8(c). For each n, we average the running time over 3 independent trial runs.656

The straight line of this log-log plot shows that our algorithm indeed runs in polynomial time. The657

empirical estimate of the slope of the linear curve (after omitting the first three outlier points for658

small n) turns out to be 4.67 implying a running time of order O(n5) on this family of instances.659

Our algorithm has a worst-case running time of order O((|S||A|)3) and for |S| = |A| = n as in this660

example, it is O(n6).661

8.2 Pick the Right Diamond662

The MDP M = (S,A, R, P, γ, µ) that describes the Block Programming problem is defined as663

follows :664

1. A state s ∈ S is specified by an n size board where the cells are indexed {1, · · · , n}. Each665

cell contains one of the four diamonds or be empty leading to a total of 5n − 1 states of666

non-empty boards.667

2. The action space is given as A = {1, · · · , n} where each action a represents picking an668

object at location a and removing it from board.669

3. The learner receives a reward of −1 for picking the rightmost diamond with the largest edge670

and −2 for all other actions on a non-empty board. Once the board is empty it receives a671

reward of 0. The disocunt factor γ is 0.9.672

4. The environment transitions deterministically to update the board if agent picked the right673

object, i.e., the rightmost object with largest edge otherwise it remains the same. The initial674

state distribution µ is uniform on S.675

The optimal policy defined by the reward structure above is to pick the diamond in order of decreasing676

number of edges. In case of ties, the rightmost diamond should be picked.677

8.3 Visual Block Programming in Maze with Repeat Loop678

The MDP M = (S,A, R, P, γ, µ) that describes the Block Programming problem is defined as679

follows :680

1. A state s ∈ S is specified by an n× n board with a turtle cell and a goal cell ∈ [n2]× [n2]681

and a turtle orientation ∈ {L,R,U,D} denoting whether the turtle is facing left, right, up682

and down, refer to figure 6 for an example state. There is also a partial code of upto a683

constant size c, giving us a total of 4c(n4 − n2) states.684
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Figure 9: Performance of TIE compared to other baselines on visual programming task with local(on
the left) and global features(on the right).

2. The abstract action space is given as A = {TL, TR, MV} ∪ {Rk-MV : k ∈ {3, · · · , n− 1}}685

where TL, TR, MV represent simple code block that when executed allows the turtle to turn686

left, right and move forward actions respectively and Rk-MV represents a complex block687

of repeat loop that allows the turtle to move forward by k-step. In total, we have n actions688

where taking an action meaning adding the corresponding code block to the partial code in689

the state.690

3. The learner receives a reward of −1 for using a simple code block action i.e. action691

a ∈ {TL, TR, MV} and −2 for taking complex action Rk-MV. The disocunt factor γ is 0.9.692

4. The environment transitions deterministically to update the orientation/position of the agent693

based on its chosen action. The initial state distribution µ is uniform on S.694

The goal of the teacher is to teach the optimal policy to write a succint piece of code which when695

executed helps to lead the learner to the goal cell. The teacher has to do this by showing smallest size696

of (state, action) demonstration dataset.697

Local vs Global Features: We compared teaching multiple learner using different feature functions.698

In particular, we use two features representation : 1) a local feature representation, and 2) a global699

feature representation. We find that teaching a learner with local feature representation requires700

significantly less teaching dataset to teach the target policy. Furthermore, this dataset is also very701

human intuitive. In both scenarios, our teacher is significantly better when compared to the Teach-702

Random and Teach-All teaching baselines as shown in figure 9.703

9 Feature Representation for Visual Programming704

9.1 Local Feature Representation705

This feature representation effectively captures the spatial relationship between the turtle and the706

goal, as well as the impact of different actions.707

9.1.1 State and Action description708

• board: A 2D array representing the game board with cells indicating the agent’s orientation709

(U for up, D for down, L for left, R for right).710

• agent_pos: A tuple (x, y) representing the agent’s current position on the board.711

• goal_pos: A tuple (x, y) representing the goal’s position on the board.712

• action: A string representing the specific action taken by the agent (e.g., ’TL’, ’TR’, ’MV’,713

’Rk-MV’ etc.).714

9.1.2 Feature Vector Construction715

1. Relative Quadrant of Goal: Compute the relative quadrant of goal from agent’s orientation.716
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2. Forward Distance: Compute the distance from the agent to the goal in the direction the717

agent is facing.718

We refer the interested readers to the supplementary material for the code.719

9.2 Global Feature Representation720

This feature representation captures the essential spatial and action-related aspects of the maze from721

global perspective.722

9.2.1 State and Action description723

• board: A 2D array representing the game board, where each cell indicates the agent’s724

orientation (U for up, D for down, L for left, R for right).725

• agent_pos: A tuple (x, y) representing the agent’s current position on the board.726

• goal_pos: A tuple (x, y) representing the goal’s position on the board.727

• action: A string representing the specific action taken by the agent (e.g., ’TL’, ’TR’, ’MV’,728

’Rk-MV’ etc.).729

9.2.2 Feature Vector Construction730

1. Position Comparison:731

• x_comp: Comparison of the agent’s x-coordinate with the goal’s x-coordinate.732

• y_comp: Comparison of the agent’s y-coordinate with the goal’s y-coordinate.733

2. Orientation Index:734

• Mapping of agent’s orientation to an index (0 for U, 1 for D, 2 for L, 3 for R).735

3. Forward Distance:736

• The distance from the agent to the goal in the direction the agent is facing.737

The size of the feature vector is 3× 3× 4× (n− 1)× k, where n is the size of the maze, and k is738

the number of possible actions.739

Refer to supplementary materials for the code.740

10 Compute Resources741

We ran all our experiments on an Apple Macbook M1 laptop with 16GB ram.742
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