Appendices

Here, we provide an overview of the Appendix. In particular, the proofs of the main results are
presented and backed by supporting lemmas and propositions.
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A Limitations

The limitations of our work are two-fold:

1. The client unavailability dynamics are assumed to be independent and strictly positive across
clients and rounds. While deriving guarantees is generally challenging without assuming indepen-
dence and positivity (see Section 3), it is interesting to explore how to relax the client unavailability
dynamics, where the probabilities can potentially have arbitrary trajectories.

2. Our study focuses on heterogeneous and non-stationary client unavailability in federated learn-
ing, which may vary greatly due to its inherent uncontrollable nature. Although we have
shown FedAWE provably converges to a stationary point of even non-convex objectives, an inter-
esting yet challenging future direction is to incorporate variance reduction techniques for a more
robust update.

B Broader Impacts

Federated learning has become the main trend for distributed learning in recent years and has
empowered commercial industries such as autonomous vehicles, the Internet of Things, and natural
language processing. Our paper focuses on the practical implementation of federated learning systems
in the real world and has significantly advanced the theory and algorithms for federated learning
by bringing together insights from statistics, optimization, distributed computing and engineering
practices. In addition, our research is important for federated learning systems to expand their
outreach to more undesirable deployment environments. We are unaware of any potential negative
social impacts of our work.

C Nomenclatures

In this section, we provide the notations and nomenclatures used throughout our proofs for a
comprehensive presentation. However, it is worth noting that all notations have been properly
introduced before their first use. We next articulate the missing definitions and equation formulas.

Table 3: Notation table

|lvl]l,  The ly norm of a given vector v.

|Allr  The Frobenius norm of a given matrix A.

Ft The sigma algebra generated by randomness up to round ¢.

A2(A)  The second largest eigenvalue of a square matrix A.

R4 A d-dimensional vector space, where d denotes the dimension.
[m] Aset{k|keNke[l,m]}.

l¢ey  Anindicator function of event &, i.e., I;gy = 1 when event £ occurs, but Igy =0
otherwise.

N

f(n) < g(n), if there exists a constant ¢, > 0 and an integer ng € N, f(n) < c,g(n)
for all n > nyg.

f(n) =< g(n), if there exists a constant cg > 0 and an integer ng € N, f(n) = cog(n)
for all n > ng.

X

Missing definitions and equation formulas.
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Table 4: Algorithmic nomenclature table

At The set of active clients in round ¢.
wt A doubly stochastic matrix to capture the information mixing error. Its definition can
be found in (4).
7;(¢) 7i(t) £ sup{t’ | ¥ < t,i € A"} defines client i’s most recent active round. In
particular, 7;(0) = —1 for all ¢ € [m].
x! The real model at client ¢ at the beginning of round ¢ in Algorithm 1.
z! The auxiliary model at client ¢ at the beginning of round ¢. Refer to Definition 1 for
more details. The sequence is for analysis only and is not computed by any clients.
x e aggregated real model at the end of round £ — 1 in orithm 1.
¢ The aggregated real model at the end of dt —1in Algorithm 1
¢ The auxiliary model at the end of round ¢ — 1.
:EZT, The real model of an active client 7, and auxiliary model of an active client 7 after s-step
o local computation in round ¢, respectively. Refer to Algorithm 1 for more details.
3
wgt’T) The real model at client ¢ after r-step local computation.

Ttz The real and auxiliary model mean over all clients in a distributed system and in round
t, respectively.

F;(x)  The local objective function at client ¢, which is assumed to be non-convex.
F(z)  The global objective function defined in (1): F(z) £ >/~ | F;(z)/m.

V¢;(x) The local stochastic gradient function at client ¢ taken with respect to x.

VF;(x) The local true gradient function at client ¢ taken with respect to x.

D; Client 7’s local data distribution.

& An independent stochastic sample drawn from client ¢’s local distribution D;.

Table 5: Variable table

L Lipschitz constant in Assumption 2.
o? The upper bound of the stochastic gradient variance.
(8, ¢) Parameters that capture the averaged gradient dissimilarity between global and local
objectives.
P The spectral norm of a stochastic matrix in expectation.
S The number of local computation steps.
m The number of clients in the federated learning system.

The iterate of z; wheni € A' L,

s—1
1 _ t—1,r t,r
v =TIDY < DA LIC s )>>
r=0
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e 2 =20 Y (VRE) T v g ) as)

jeAt—1 r
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Local parameter innovation G" of the auxiliary sequence.

Gi £ Lieaty [fﬂ ZW ) <t1n(t>>vm<m?‘”“>]

+ ]l{igAt}SVFi (mzl(t)Jrl)
s—1

r=0

T (£)+1

where the last equality holds because ! = x] and re-grouping.

Decomposition in the Proof of Lemma 6.  The local parameter innovation of the auxiliary sequence
G* can be decomposed as G £ A! + At + sVFL. Detailed definitions can be found below.

o A 2 Npean (t = m() 2o2p (Va5 ) = VE ("))
* (AT 2 e (t = 7)) 22g (VA@!) - V(@)
* [VF;]i £ VFi(x)).

D Useful Inequalities

For completeness and for ease of exposition, we present some common inequalities that will be
frequently used in our proofs.

The followings hold for any a; € R? and any i € [m).

1. Jensen’s inequality.

2
- <= ; < ill5 -
mzal = mZ”a1”2 and —mZ”alHQ (20)
=1 2 =1 =1
2. Young’s inequality (a.k.a. Peter-Paul inequality).
2 2

(a1,aq) < lax lz + € ||a2\|2’ for any € > 0. (21)

2e 2

Equivalently, we have
las + asll; = llall; + lazl; + 2 (a1, az)
1

< (1-&-6) ||a1||§+(l+e)\|a2||3, for any € > 0. (22)

3. Smoothness corollary. Given Assumption 2, it holds that
1
F(a1) — F(as) = <a1 - ag,/ VF(as+7(a; — ag))d7'>
0

= (VF(a3),a; — as) +/0 (a1 —as,VF(as + 7(a1 —as)) — VF(az))dr

(a) 1
< (VF(a2),a1 — az) + L/ 7 |lar — azll, [[(@1 — a2)|l, d7
0

L
<(VF(a2),a1 —az) + 3 la; — a2, (23)

where (a) follows from Cauchy-Schwartz inequality and Assumption 2.
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E Descent Lemma (Lemma 3)

In this section, we first present a bound on multi-step local computation. Then, we apply the bound
to the analysis of descent lemma.

E.1 Multi-step perturbation

Lemma 5. For s > 1 and under Assumption 2, 3 and n; < 1/(4sL) , we have
s—1 2
S VE (@) - VEi(a}) ’ Ft| < 4281207 + 16025 L2 |V Fy(
2

Dll;

Proof of Lemma 5. The proof shares a similar road map to [61, Lemma 2], but the objective is
instead to show an upper bound with respect to ||V F;(x!) H;

For s > 1, it holds that

2
") — VF,(x!) ’]—‘t (<sZE[HVF (") — VF(x )E‘}‘*}
2 r=0
s—1
(QSLQZE {Hm“” — z]ft}, (24)
r=0

where inequality (a) holds because of Jensen’s inequality, inequality (b) holds because of Assump-
() _ |2 | F*]. In what follows, we use V/\“*) to denote
Vi (x gt k)) and VFi(t *) as VF;(x E ’k)), respectively, for ease of presentation.

2 ) 2
o fo = ] 5 et

~F [Hm (Ve D =R gl gt (VESTY - VE 4 V)

tion 2. It remains to bound E[||z;

17|

c — r— 2 1 T T 2
© 2R [ngt’r b -vEt Y| ’]-'t +E[ 2"V —al oy (VED — VE 4+ V) uft]
(
<m1E[Hw”1 VF”IH ‘}'t
1 _ 2 T I —_ 2
(gl =] it v on| 7]
2 ] I
<m1EMw<“ b VFi(t’T_l)” ‘ft]
2
1 (1 (e 2 ] [ r— ?
+(1+2_1)1E om0 —at| | 7| + asnpr ||| VE Y - v Qlf‘} +dsn? | VE|;
© 5 5 2 t)2
< nfo’ + 4sni || VE/],
1 e 2 r— 2
(i g e o] e o -]
2s —1 2 2
2 2 2 )2 1 2,2 (t,r—1) ¢l t
=njo” +4sm; HVFiHQ+ 1+28_1+45Lm E Hw’ _ml2’]: ’

where equality (c) holds because Vﬁl(-t’k) is an unbiased estimator of VFi(t’T)
because of Young’s inequality, inequality (e) holds because of Assumption 2.

By n < it holds that

, inequality (d) holds

4L’
Jr1< 2
—92s—1 4s — 2s—1"

4sL>n?
551 TSk =
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Unroll the recursion, we have

r—1 k
el -] < 5 (1 ) Gt ot o)

<3 (145) (it s 9E])

2 s—3% 2 H 2 2 2 Ak

1+2s—1 1+2s—1 -1 (mg + s HvﬂH?)
(f) 2 2 2 t||2
< 577 [\[6*1} (7710 + 4sn; HVF1||2)

(%) 4577120'2 + 165277l2 HVF;H; ,

where inequality (f) holds because of (1 + 1/z)* < exp(1l), inequality (g) holds because of
V3 exp(1) — 1 < 4. Plug it back into (24), we have the desired result

2

ZVF 00 = VE@h|| | 7| < P12 + 160 L VR[5

2
O
E.2 Descent lemma
Proof of Lemma 3. By Assumption 2 and inequality (23), we have
L
F(z) - F(2') < (VF(2"), 27 - 2) + 2 || - 2.
—_——
(A) (B)
The one-round innovation of Z can be rewritten as
A PG R W)
m 1 K3 m 1 1
IEAt i At
1 m t—1
t,r t,r
= D gicany [ mngs D VE(@F) —mng(t — 7t ng )
i=1 k=ri(t)+1
NS N
- mq Z Liigary VE; ()
i=1
a 1 m r r
= Zﬂ{zeA*}mng (t—1-n)VE(z;) - — Zﬂ{zeAt}nmg (t—mi(t ng )

=1 21

mngs

i=1
m s—1
2D ey (= () Y (V) - Vi)
i=1 r=0
m s—1
I L Lpean(t = n(0) 3 (VE(ah) - VAl
r=0

MinNg$s ¢
_ 1e” E VF,
(x

i=1

21



where equality (a) using the fact that ¥ = @ for all &k such that 7;(t) + 1 < k < t, and equality (b)
is obtained by adding and subtracting V/;(x!; flgt’r)) and by the fact that (]].{ieAt} + ]l{igAt}) =1.

Bounding (A).

(A) = (VF(z"), 2"t - 2')

s—1
= g < Z Liicany Z T t)=py(t —p) (VFi(wgt’r)) _ V&(mgt”’);gz@”)))>
p=-1 r=0
(A.T)
s—1
771779 Z]l{zeAf Z Ler t)=p) <VF (t — Z (VF (mz(h)))>
p=-—1 —
(A1)

Mngs % =t t t iy 1 - t
— E F Fi(z;) — VF;(x;)) — F , — g Fi(z; .
+ m P <v (z )7v /(zz) \4 (:1:7)> Mngs <v (z ) m P \Y (z )>

(A.III) (A.IV)

Bounding (A.T)

E [(A.I) ‘]—'t]

@ g E [E

s—1
< Zl{’LE.At} Z I{Tl(t p} t, )Z (VFi(mgt,'r)) o vei(mgt,'r);é-gt,r)))> x,

p=—1 r=0

(b) _
= ming (VF(2"),

t:| ’]_.t:|
;inn;E []1{"6“‘“ ] Z Liriy=py (t — )Z [IE [(VFi(ccl(.t’r)) — Wi(wit’”;gﬁ”)) ]

L, t t
20 ]>
p=—1

where equality (a) holds because of the law of total expectation, equality (b) holds because 1 f;c 4
is by definition independent of others and Assumption 3.

=0,

Bounding (A.II)

2

(A.I) ””’9 Zn{,e#} Z L=y | = ||VF |2+ — VE (")

p=—1

"777
lq Zﬂ{ze#} IVF(E)|;

2

2

77”7 (t r)
— Zﬂ{zeAt} Z L= p} Fy(z™")

p=—1

2
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where inequality (c) holds because of Young’s inequality. It follows that

[AH ‘ft} nmg IVEEII; + Sngms Lo i i Lz (y=p) (t = p)?
i=1p=—1

32 $SL2 N
Wh > Z Lir =y (t = 2)* | VEs (D)5

i=1p=—1

nmg 8ngnl 2202 &

IvFEh); + > Z Lir(n=p} (t = P)°
i=1 p=—1

3277g7715 L? Z Z ]l{,,-l (- p} t— HVF p+1)‘2’

i=1 p=—1

where inequality

(d) holds because of Lemma 5, the last equality using the fact that =¥ = x! for all
k such that 7;(t) + 1 <

<k<t

Bounding (A.III).

(AIID) = ’”:Zf N (VF(2'), VE(z]) — VEi(z})) < Y 77”7-" IVF(Y| + MZHz — |2,

i=1 i=1

where inequality (e) follows from Young’s inequality and Assumption 2. It holds that,
t 77l7lg 277l77g3L t_ gt 2
E[(A.III)‘]—"] IVF(z"|5 + ZH i, -
Bounding (A.IV)

(A1V) = 2 ||VE([; +

1 m
— ; VF;(zt

1 m
F(zh — o > V(2!
=1

2 2

where the equality follows from the identity in Appendix D (3). It holds that

2

E[(a1v)|F] = 222 ||vre =

ZVF

1 & ~ 1 &
~ ;vm(zt) -— ;vmzt

2

|VF(z

ZVF

o Mg
2

2,
Wznzwfuz
=1

Putting (A) together,

E [(A)‘]—"t] nlng HVF ||2 8775'7718 L?0? Z Z T p} (t— )

i=1p=—1

2mimgsL? 2 mmnysL?
+ = = Al E:Ht—ztllg
i=1

2
ZVF

32n,mPs3 L2 - 2
+ 77977[ Z Z ]l{'rl(t p} t_ QHVFZ(wf'i‘l)Hz
2 i=1 p=—1

77l 77g
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Bounding (B).

2

2,2 s—1
(B) < 20T J(t =)D (VE@) - V@)
r=0 2
(B1)
2
2 _
m? i=1 r=0 2
(B.II)
2
1 m
+2L”l "9 Z |VEi(@l) — VE |5+ 2Lninzs? | > VEi(z])
=1 2
(B.11I) (B.IV)

Bounding (B.I) Recall that dyax £ SUP;e () re (7 Pl- It holds that,

E[®D|F] L 2Lm "‘7 Z]E [Lican|F

1]

Jomrtor S [eret) - veet

(9) 277 n 25 LOmax0>
S Y Z L= (t = )%,
i=1p=-—1
where equality (f) holds by the law of total expectation and by the independence of event {i € A’},
inequality (g) holds because of Assumption 3 and by definition p! < §yax.

Bounding (B.II) We have,

2 m
E[(B.1m)|F] < szT:Z" 3 Z 1 ()=py (t — ) 24025  L20

i=1p=—1
,,72772 m
lmgz]l{n )=n} Z (t = p)*1607s L |V Fy(=h)]|;
p=-1
877173L32m = 32nn4L3m -
Oty 8 L7~ 3 Z L () (£ — p)% + 02 2 [ 3 Z Lo (t— p HVF p+1)‘2
i=lp=-1 i=1 p=—1

where the last equality using the fact that ¥ = @ for all k such that 7;(t) + 1 < k < ¢.
2 292 3 m
Bounding (BIII). E {(B.IH)‘P} < 2L sm it ot

Putting (B) together, we get

2021125 Lomax0? A 8ng m ' L20% IS ¢
E[B)F] < T Y et - ) =Y S Lniron ¢
p=—1 i=1p=—1
32,'7 77;1 4L3 m 1 2
LA 3 DR TNt Lot
=1 p=—1
2
277 25713 1 &
+ TS ot — 2+ 2Lupns? | — S0 Vi
i=1 i=1 2
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Now, everything:
E[F(z0) - F(z4)| 7] < -2 ||vr(en|,

2
MNGS 1 &
_ ?9 (1 —4Lmngs) o ;VFl(zf) 2
2 L5m <07
n 77177513 ax0” 221{71 _at—p p)?
i=1p=—1
8ngnf s> L (1 + ngmsL) 0% <~
+ Ng™y S (m NgTls )U Z Z ]l{n(t)zp}(t*p)z
i=1 p=—1
1 & L?
o+ 2mgsL? (14 mmgsL) - 3 et — =t + H = ZH = -2
i=1
ll m t—1 9
+ 32007 s° L (Lt ngmsL) — > >~ Lin(=p (t = )* HVFz-(w?“)‘L
i=1p=—1
2 Lém&x -
< I o[ 4 L SR
i=1p=—1
9 2L2 2 m
ngnl > Z Lir = (t = p)°
i=1 p=—1
2 1 - t_ Lt 7717795L t_ st
+2.2mmgsL?— > [l — 2|, + ZH I5
i=1
1 m  t—1
+35ngnf’33L2EZ Z 1ir,t)=p}(t —p HVF p“)’ 0
i=1p=—1
where the last inequality holds because 17y < 1507 and that | -1 3" VF(z H2 O
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F Intermediate Results

In this section, we present the intermediate results that serve as handy tools in building up our proofs
afterwards.

F.1 Bounding local and global dissimilarity

Proposition 3. For any t, it holds that

*ZHVF <2 ZHt—"H2+3(ﬁ2+1)HVF )5 +3¢%
i=1

Proof of Proposition 3.

—ZHVF ||2 %ZHVFi(zf)—VFi(it)—kVFi(Zt)—VF(z)+VF |\2

3 — 3 —
<= Z IVE(=) = VEE 5 + = Y [[VE() - VE(E)|; + 3| VE(*
L =1

a>3L
Z||t—’t||2+3ﬁ2||VF Mz +3¢ 43|V

i=1
3L
Z =t = 2[5 +3 (8> + 1) [IVF(1) 5 + 3¢,
i=1
where inequality (a) follows from Assumptions 2 and 4. O

F.2 Weight re-equalization (Proposition 1)

Proof of Proposition 1. We show Proposition 1 by induction.
When 7 = 1and i € A%, we have Z?:o Tcany (t—7i(t) = Lica0y (0 — 73(0)) = 1. Therefore,
the base case holds.

The induction hypothesis is that ZtK:f)l Liicary (t — 7(t)) = K holds for i € A¥~1. Next, we
focus on K + 1:

K—1
Zﬂ{iGA‘} (t—TZ Z ]l{zG.Af t—Ti(t»—f—]l{ieAK} (K—Tl(K)) (25)
t=0 t=0
Now, we have two cases:

* Suppose i € AX~1, then we simply have 7;(K) = K — 1. It follows that Eq. (25) ) K +1,
where (a) follows from induction hypothesis.
* Suppose i ¢ AK-1
n (K)

K
D ey (t—milt Z Lieary (= 7i(t) + Lgeary (K — 7i(K))
t=0

:Ti(K) +1+(K—-7(K)=K+1,
where (b) follows because 1 ;¢ 4¢} = 0 for 7;(K) < ¢t < K — 1 and induction hypothesis that
S L eany (t — (1) = Ti(K) + 1 fori € AT,
O

F.3 Unavailable statistics (Lemma 2)

Proof of Lemma 2.

E [t —7(t ZIP’{t—n )>rh=> 1:[ (1fp§1)§Z(175)’“§%,

r=0ri=t—r r=0
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From [15, Section 12, Theorem 12.3 (i)], we know that
B0 =90+ [ §/@P{X >a}da,
0

where X is a non-negative random variable, and g a non-negative strictly increasing differentiable
function. It follows that,

]E[X2]§O+2/ zIP’{X>x}dx:2Z/ 2P{X >z} dzx
0 n=17n-1

(a) & "
§2Zn/ P{X > z}dx
n—1 n—1

§22n]P’{X>n—1}/ dm:22n]P’{X>n—1},
n=1 n—1 n=1

where inequality (a) holds because © < n, Vo € (n — 1,n], inequality (b) holds because

CCDF P{X > z} is non-increasing. In particular, for a discrete random variable, we have
P{X >n-1} =P{X >n}.

Therefore,

E [(t - Ti(t))ﬂ < 2§nP{t () >n) < 2§n(1 B 532

F.4 Auxiliary sequence construction and properties (Proposition 2)

Proposition 4. For any t > 0, when i ¢ A, it holds that 't — 2It1 = nmys(t — 7,(t +
1))VFi(a:Z"(t+1)+1); when i € A, it holds that 21 = ®!t 2tT1 = g!+1 and 2! = !+,

Proof of Proposition 4. The proof is divided into two parts: i ¢ A* and i € A?,

When i ¢ A’. It holds that

t

t+1 t+1 _  mi(t+1)+1 7 (t+1)+1 k

T -z =, — |z — MNgS E VF;(z;)
k=T;(t+1)+1

t
(g) le(t+1)+1 _ w;’i(t+1)+1 — migs Z VFZ'(ZB;i(t+1)+1)
k=7;(t+1)+1
= mngs(t — 7i(t + 1)) VE (] TV,

where equality (a) follows from Definition 1 for inactive clients.

When i € A'. Note that if 2/™t = x!™" for each i € A, then by the aggregation rules,
we know 't = (1/|AY) Y, el = (1/|AY) Y 27T = 2'T1. Then, we know that

xit! = 2171 Vi € A'. Hence, to show the Proposition, it is sufficient to show z! ™" = x!™* holds
for i € A?, which can be shown by induction.

Whent =0,

200 =20 10— (mz(O,O) _ wZ(O,s)) =20~ (mZ(O,O) _ 1'1('0’8)) = 20+t
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Thus, the base case holds. The induction hypothesis is that z/T" = &l ™" Vi € A is true for all
t > 0. Now, we focuson t + 1.

t
2D Z VE (@) — (t+1 -1t +1)) (ml(t+170) _ mgt-ﬁ-l,s))
k:TL(tJrl)Jrl
t+1 p— s(t — 7i(t + 1))V Ey(a] Ti t+1)+1) (t+1—7(t+1) (w£t+1,o) _ w£t+1,s))

W nDH st — it + 1) — 1+ DV F (] DT

Fmgs(t — 7i(t + D))VE (@] T — (41— r(t 4+ 1)) (mgt“’o) - mgt“""))
_ zin(t+1)+1 (1Tt + 1)) (IL’EtJrl’O) _ wEtJrl,s))

© grH D+ 1=yt 1 1)) (mgt+170> - a;gt“vs))

7

t+1
:931('+ I+

where equality (a) follows from the auxiliary updates z;, and equality (b) holds because of the
induction hypothesis and the fact that 7;(t + 1) < t + 1 and i € AT(+1), O

Proof of Proposition 2. From Propositions 4, we have

|t — 2|2 < [Jmmgs (t — 7i(t) — 1) VE(2)]|2

t—1
2
= Y L (=2 =1 | VE)|
p=—1

Take expectation over all the randomness

(@)
E (||t - 2ll;] < ninys” Z E [Liro=p] (t=p—1)° {HVF p“)M

p_fl

Lot S 0-p- e =) 2| [vreEr ]

p=—1

2
where inequality (a) follows because by definition 11, )—, is independent of HVF, (x? H)’

2
inequality (b) follows because 2"

= 2P from Proposition 4.

H

e DI [ERETH oD DED DD DESCIC R TN Sy e ||vecr)

if
o
<
I
X
o~
i
o
<
I
X
i

\
L

2 1 2
< (52) (415 E [vawuz} w5 ) ¢

where inequality (c) follows from re-1ndex1ng, 1nequahty (d) from Lemma 2. O
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F.5 Consensus error of the auxiliary sequence

Lemma 6 (Consensus error of zf). Assuming that n; < §/(20sL), and mn, < 6(1 —
VP)/(L0sL(\/p + 1)), under Assumption 2, 3 and 4, it holds that

m T—1 m
1 1 . 2 3,08771 e 2
Ez ZE[sz -z ||2} = \f)252
i=1 T 1=0 i=1
40ps?n? ng 9
(1—/p)?
40ps?n? ng ([32 + 1
E[ VF(z }
) L)
Proof of Lemma 6. When ¢t = 0, Z° = [20,- .- | 2°], which immediately leads to

Z°T-J) =2, 20 - [2°--- 2% =0.

For t > 1, recall that W®) is a doubly stochastic matrix to characterize the information mixture, and
G, defined in (19), captures the local parameter changes in each round. It can be seen that

A (Z(t—l) _ mngét—l) w1
Expanding Z, we get

ZOMX-3)= (2" -y, G Hwt=H (1 -17)

t—1 t—1 t—1
N VLA R T Y=Th Y At
=0 q=0 l=q

where the last follows from the fact that all clients are initiated at the same weights. Note that
o WOL=TZ, W and [, W©®J = J. Thus,

t—1 t—1 t—1 t—1 t—1
2002 (Twa) w3 (Two ) = S (TEwe s
£=0 q=0 {=q q=0 l=q

where the last equality holds because that Z° = [2°, - - - | 2°], which immediately leads to

t—1
0 (HWE—J> =[2%- 2% - [2%--- 2 = 0.
=0

Let matrix notations Af, At and V F. define as follows:

s—1 s—1
G = Lgean(t =) Y (VA :6") = VE @) + Liean (t = m0) Y (VE(("") - VE(al))
r=0 r=0
[At]; [At];
+sVF(z!).
[V,
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It follows that
t—1 t—1
120 @-3) |2 =Y (A7 + A7+ VFY) (H W - J) I3
q=0 l=q
t—1 t—1 t—1 t—1
=) A (H W — J) 3+ (AY+ VFY) (H W — J) I3
q=0 l=q t=q

q=0

q=0

t—1 t—1 t—1
+2<Zﬁq (HW“)—J > (AT 4 VFY) HW“ >
q=0 l=q

F

Take expectation with respect to randomness in stochastic gradients, denote by E¢ [-]:

-1 - t—1 -
Ee 120 @ 3) 2] = Be |13 A TTw® 3 ) 13| +Be |13 a7+ vED ([Tw® -3 112
= ¢ q=0 t=q

t—1 t—1 t—1 t—1
+ 2E;¢ <Z&1 [[we-3).> ar+vEh) [ W -3 >
q=0 q=0

l=q t=q F

t—1 t—1 t—1 t—1
=E¢ ([ A (H WO =T 5| +Ee 1D (A + VE]) (H W -3 |
q=0 l=q 9= l=q

|
=]

l=q q=0

<Z]EE A1) (HW“)—J) ti A"+ VF) (HW@— )>F

< E¢

t—1 t—1
1A (H W — J) ||%] +E
q=0 t=q

t—1 t—1
1Y (AT + VFY) (H W — J) II%] ;
q=0 t=q

where the last inequality holds because E¢ [3‘1] = 0. Next, we take expectation over the remaining
randomness.

t—1 t—1 t—1 t—1
E||Zz® (I—J)H%} <E|[|Y A? (HW“) —J> B +E (1> A+ VE) [ [[W? —J> &
q=0 l=q l=q

q=0
t—1 _ t—1
<o DA T[WE -3 I
q=0 l=q
M

t—1 —1
+ 2y | YA [Tw® -3 | I

(I

t—1 t—1
+2n7n2s* | Y VFY (H w J) 7 (26)
q=0 t=q

(I11)
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Bounding E [(I)]

t—1 t—1
D= E|IAT([Jw® -T2
q=0 l=q

t—1 t—1 N t—1 N t—1
+Y > E <AP [Mw©-3] A J[w® -3 >
t=q

9=0p=0,p7#q t=p

(@) 24 -
< Yo E [IAY] )
q=0

where inequality (a) holds because of Assumption 3. It remains to bound E {Hﬁq ||12;] .

2

g—1 s—1
Z T y=py(@—p Z( q7r)§§¢(q7r)) VF;(x qr)))
r=0

p=—1

|A)E = Z]l{zeA‘l}
i=1

2

_ m q—1 s—1 9
Ee [HA"H%] = lpeasy Y Lnw=ppla—p)* ) Ee [HVfi(-’ng’r);ép’r)) - VFi(fBEq’T))HJ

i=1 p=—1 r=0
q—1

< so® Z]l{zeAq Z Lir,(t)=p} (7 — P)*.
i=1 p=—1

Take expectation over the remaining randomness:

~ . m q—1 )
E (A7) = B[ [IA%3]] < 50> 3B [Lucan] Y E[Linw—n] @ —p)° < Qm%
i=1 =1

Therefore,

| A

1 m T-—1 9
2

i=1 t=0 p>

Bounding E [(IT)]

t—1 t—1
1> Al (H w - J) ||%]
q=0 l=q
t—1 t—1 t—1  t—1 t—1 t—1
:ZE [|AY (HW(f) -J ||% +Z Z E <AP (HW(K) —J|,A9 (HW(Z)_J >
q=0 = l=p l=q

q=0 p=0,p#q
t—1 t—1
sz copfanl S Sk [l (TIwe - a) jelar TTwe ) s
q= q=0 p=0,p#q l=p l=q
t—1 t—1  t—1
<SoEaR]+ Y Y B[S Ia+ L g
q=0 q=0 p=0,p#q

31



Next, we bound the second term, choose € = p%,

2t—p—q t—1 t—1 2t—p—q
Z}jf B2 + a3 < 33 Y2 [l + |a%3)
q=0 p=0,p#q g=0 p=0
t—1 t—p t—1
D _
S R ] T v q+2*f E (1A% 3 vA
p=0 q=0 p=0
t+1 t—1
o {/’; th "E [I|A7IF] - (28)

Plugging the upper bound in (28) into (27), we get
t—1

t—1 o t+1 —
<> ﬁ“”% VFE[IaYE) € Y {fﬂf] A
q=0 =0

2\/5 - t—q 2
S E [1A%]%], 29)
. ﬁqizjo\/ﬁ [1a712]

where inequality (b) follows because that \/,Bt_q < /pforany ¢ <t —1,and that \/ﬁ”r1 > 0.1t
remains to bound E [||Aq H%} . Take expectation with respect to randomness in stochastic gradients:

m q—1
Ee [|AYF] <40’ LD > ir(q)=py (g —p)°0”
i=1 p=—1
m gq—1
2
+ 167 L2 D Mir =y (a — ) | VE(2])]5,
i=1p=—1

where the inequality holds due to Lemma 5. Next, we take expectation over the remaining randomness
and plug back into (29):

9 t—1 .
E [(I)] < 1_\(% q:zo Vo E [[|A7E]

<8 (2> 253 L2mo?
62
(1-vp)

32\/» 4 ) m t—1 T—-1-t )
+ = ( ) L ZZE[HVF ] Z NG
\[ i=1 ¢q=0
8p (2)232 2 32p () 42mt1
<—— | 5 |nis"LPmo” + ——— L E ||VFi(z
(1=vp)" \7* (t=vp)’ 2 2= lIvrele]
where the last inequality holds because of re-index and grouping. Therefore,
T-1
1 8p 2 B3I202
Bl P (2 iper
mT 5 (1= yp)" \9*
32p ( ) 54 2 1 S
+—— L Z Z]E |VE(x
(1*\/7 i=1 [ }
8p <2)2322 64p <2) 44T IS t_ t||?
<——l= Lo+ ——— L — > E||x; — z;
(1—\/5)2 52 ) s Lo (1_\[)2 g m; [Hw z H2:|
64p (2> 2 m
+— s'L E || VFi(z
o P SEline]
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Bounding E [(IIT)] Use a similar trick as in bounding E [(IT)] , and we get

t—1

20/F w1
(T1T)] HZVFq T[we -3 <1_\(p/ﬁz\/ﬁt “E [|VE2|2],
l=q q=0
sothat
1 — 2\/5 T-—1 T—1-t
— ()] € ———— [IVE,| P!
TR e PR D
2p 1 -1 m
<% LSS s |vne)
(1— \/5)2 mT ; ; [ }
4pL2 1 T—1 m 5 1 T—1 m
<= E |||z} - 2| — E ||VFi(z
(1 _ \/5)2 mT — ; [ 2} (1 _ 2mT po ; [
Putting them together
1 — spins [ 2
L (t) 1 Mlg 2,272\ 2
mTt_oE[”Z -3 < q ﬁ)2(2>(1+16msL)a
8ps®L*n}n; 9 9.9 (2 11 & 2
+(1\/ﬁ)2(1+16nl8L (52>)th_;mzzzlﬂﬂ“$l—zz“2}
8ps*nin; 2 272 ( 2 11
ey (1+16ms L (52>) > E;E INzEDIHE
Plug in Proposition 2.
1T21E[||z<f> (I—J) |2 ] < S =) (1 + 200252 L?) 02
mT & = (1-p)2 vs
8ps~ning 2 2,272
+(1_\/ﬁ)(1+16n (52>) (Hmn L Z ;E[VF }

LO0Bpstn (2 9ps*ning 1~ 1 2
< - 9 = v 9 - _
Sa-vr &) tazseT 1mZE“VF )

where the last inequality holds because 1, < 6/(20sL) and mn, < ¢/(10sL). Next, plug in
Proposmon 3.

2,2 2
L Z]E [HZ(t) 1-J ” ] 10503’% 779 <2> o 2TpsTmmyg

NERCE (1- m?
27ps*nin (6° + 1)1 = 27P5 L277 779 t
a-yr 1 2 B IVPE] - 5= Z ;wpr

t=

<-2

It follows that

1 = ® 3psnin?
i ]E[Zt I-J 2}<7g 2
i S E[120 091 < .

— /D)26?
40p82’l712’/]§ 9
(1= /p)?
40ps* 2+1) 1
ps*n; ng (ﬁ E [HVF 2]
(1= =
. . 1-p
which is due to the fact that nyn, < TSIy )" O
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F.6 Spectral norm upper bound (Lemma 4)

Lemma 4 adapts from [58], we present its proof here for completeness.

Proof of Lemma 4. For ease of exposition, in this proof we drop time index ¢. We first get the
explicit expression for E [W?, | A # ]. Suppose that A # (). We have

szj’ = Z ijWj/k = Wijj/j + Wjj/Wj/j’ + Z ijWj’k~
k=1 ke[m\{s,5'}
When k # j and k # j', we have
1
WieWijik = i Ljeanlyealiveay-

In addition, we have W;,;W;.; = |j\2 TjeayLyjrcay, and Wi Wi = \j|2 15 1jrcay- Thus,

 For j # j', we have

¢ 1
Wi = WiWjn = m]l{jEA}]l{j’eAH
k=1
e For j = j/, we have

1
W3, = A Luea * (1-Tgea)-

In the special case where A = (), we simply have W = I by the algorithmic clauses. Therefore,
E [W;; | A= 0] > 0 holds for any pair of j, j* € [m]. It follows, by the law of total expectation and
for all j, j' € [m], that

EW;j ] =E[Wjj | A=0P{A=0}+E[W;; | A#0]P{A# 0}
>E[W;; | A# 0 P{A#0}.
e For j # j', it holds that

E W}, | A# 0] =1E{1

(a) 1
|A|ﬂ{j€f‘}]l{j’€f‘}’““ 7 4 > E [mﬂ{jeA}ﬂ{j’eA}’A # @} -

where inequality (a) holds because |A| < m ;
e For j = j/, it holds that

1
E[W}|A#0] =E {wﬂ{jeA} + (1= 1geay) ’A # @}

P;Dj
m

Y

1
E [m Mgeay + (1= Tgeay)] |4 # 9} =
Recall that M = E [W2] Next, we show that each element of M is lower bounded.
52 m
M >E[W2, |A;£®]IP’{A;£(Z)}2E[1—(1—5) ].
We note that p(t) = A\a(M), where ), is the second largest eigenvalue of matrix M. A Markov chain
with M as the transition matrix is ergodic as the chain is (1) irreducible: M ;1 > f—i N-1-0">
0 for j, 7/ € [m] and (2) aperiodic (it has self-loops). In addition, W matrix is by definition doubly-
stochastic. Hence, M has a uniform stationary distribution 7w = 17 /m. Furthermore, the irreducible

Markov chain is reversible since it holds for all the states that 7; M;; = 7; M;;. The conductance ®
of a reversible Markov chain [19] with a transition matrix M can be bounded by

Siesjes My _ (£)* -1 -0")ISI|S| _2[1-(1-9"] 4

®(M)=__min > S|,
Zies 7"7'5% ZiES T % m | |
where |5| = m — |S| > 7. From Cheeger’s inequality, we know that % < O(M) <
v/2 (1 = X9). Finally, we have
P I R ) KL ) L | [y R s L
s> PI=0=0" 5 R0 -9
m 2
D2(M §41—(1—8)"]?
Thus, p(t) = Ao <1 — TM <9 TRZ0ZOT O
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G Convergence Error of z' (Theorem 1)

In the sequel, we recall and assume the following learning rate conditions in (11):
(1-v3)e e ;
80s(L+1)(vp+1) V(B +1)(1+L2) "~ 200sL/(B% + 1) (1 + L?)

Recall that dimax 2 maX;e () ter) P and F* £ ming F ().

Ming <

Proof of Theorem 1. Take expectation over all the randomness, plug in Lemma 6 and Proposition 2.
By telescoping sum, it holds that

|
—

E[F* — F(2°) migs 1 x= 2 20212 S LOmax0? ~m O &
[ T l<- T Z IvFE3] + = T Z B [1rw=m] (0 =
t= t=0 i=1 p=-—1
2 9 oT—-1 m t-—1
# L LSS S B Lm0
t=0 i=1 p=—1
I —w— 2
+ 2.2m, L —— > ;;EUM}—ﬁm] (30)
L 2 T—1 m
o 2 > Bl - 2] @y
t=0 i=1
| 35nynPs°L? = 2
Y S E[8on] (-0 {HVFi(wf“)HQ]- (32
t=0 i=1 p=-—1
Next, we bound (30), (31) and (32), respectively. First, we show that
T—1 m
mT Z ZE [ |VF }
t=0 i=1
T—-1 o T—1 m
<32 +8(8 +1) 1 S E[IVFE)Z + 2 SO S B [+t - ]
t=0 T ==
40ps*nin; L? ) 40ps*nin2L? | 1 2 9psnins L?
<3|+ o ¢ +3(82+1) +(17 TZ]E[HVF }+(70

(33)
where the last inequality follows from Lemma 6.

For (30), we have

2.2mmgsL —Z ZE[ tH ] 4477”798 L1 Z ZE“VF }

=0
Sl 1Mm3%2< 4meﬁﬁ>@

=2 7 52 (1— )
Ldnpnss® L2 2 40m;n; ps* L 1 —
— (B2 +1 ++ E||VF(z
7 |0+ | 7 L El

where the last inequality holds due to (33). For (31), we similarly have

ﬂzngSL ot 15P5 Wi 77ng 2 20ps°n; ngL2 2
2mT EZE[Hz z”} —e’ Yo ¢

2 2
+20”“§;”‘JL ) LS s iorele).
t=0

35

1— /p)26?

p)’
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For (32), we have

i 2
3507 s* L2 Z Z Z E [1{r,(t)=py] (¢ — p)°E [HVFZ-(:cf“)HJ

zlp_—l
70 32 m
T S ke
140, P s3 L~ 140 312
M0ngmi o7 ZZE ot — 21]2] + 0o L ZZEUVF 1]
t=0 1

t=0 i=1

in2sL?\ [ 2\ 70 sp2 Tl
(1+"”752)(52 AR 3 e (Rl
1
0 i=

t=0 i=1
(a) ( ) 7177q77l 2 T—
<
> 52

t=

IA

m

S E[|[VEE);)

1

(b) 426n,n3s3 L2 40ps*n?n? L? 426n,n3s3L2 40ps2n2n2r2| 1 =1
2 779772l=9 P 77177 . 2 77g77218 (ﬂ2+1) 1 P 77177 - E[||VF(Zt)||
4 (1—/p) 4 (1—/p) L
33722
Ng7;'s Lo
T

where inequality (a) holds because of (11), inequality (b) holds because of (33).
Putting (30), (31) and (32) together and plugging them back into the telescoping sum, it holds that

E [F* - F(2°)]
T

<_ (nmgs 4(B2+1)n} 3 sPL? (1+ L2) 20ps3n; 779L2 (B2+1)

4 52 (1-/p)? ) ZE[”VF }

- <426ngnfs3L2 (82 +1) (1+L?) ) -

? > & [|vre]

t=0

+ 4nl277§s-[/5max02 4 uh 773 21202 n ].5p8 n; ’]73L2 NgMi 36312452
mo? 262 (1—/p)26° o’ 252
1o s*L2¢? N 20psnin3L? el 430m,m3 P L2
62 (]_ _ \[)2 52

””7-"51 ZE“VF }

n AningsLomaxo® LM Pnes?L?o® N 1.5ps?n; 773L2U ngnPs® L0
mo? 242 (1— /p)262 952
15y L2¢2  20ps™ ng’LQC 430n,m3 P L2
02 (1 \/*)2 52 ’

where the last inequality holds because of (11).
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Combining the above and rearranging the terms, we get

1= 2] 6(F(2%) — F)
- ;E [IvEEI] < g

2L20.2

+ 247’7l"7g[/6max0-2 + 377l277§SL20-2 9p877I2773L2 0_2 377[25
mo? 02 (1—/p)262 02
9077?7]352L2C2 120p32nl2n§L2 2y 2580n7s2 L2 (>
52 (1—-/p)? 02
6 (F(z°) — F*) N 24mg Lomaxo®  15min2s*L20?  2800n7n2s*L2¢?
mngsT mo? (1—/p)262 02(1 — /p)?

where the last inequality holds because p < 1. In terms of asymptotics, we have

(F(ZO) - F*) n nmgL02 Omax 9 9

1 T—1 )
- ]E[ VF(z } <
T; [VF(z"],| < nngsT

m

where we use the convention that 7, > 1 for ease of presentation.
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H Convergence Rate of z' (Corollary 1)

H.1 Convergence error of Algorithm 1

Corollary 2 (Convergence error of @!). Suppose learning rates conditions in (11) are met for m; and
g, and Assumptions 1, 2, 3 and 4 hold for T’ > 1, it holds that

T-1 - i .
EZE[HVF(@)H;} < (F@) = F) iy Lo? duna T <§2<,+C>

T < mngSsT m 02 (1,\/5)2
Proof of Corollary 2.
1 T—1 3 T—1 ) 3 T—1 )
=S E[|VE@);] < 2 S E[IVF@) - VEE);] + o S E[IVEE)]
t=0 t=0 t=0
(a) 3L2 T—1 - B 3 T—1
< SRl - 2] + 57 Y E[IVEE]
t=0 t=0
(b) 3L2 T—l 1 m 3 T 1
<Y Y E[fel - ]+ on S E[IVFE])]

t=0 i=1 t=0
2L2 T-1 m

T
T-1
<3(3) X L I9RGE] + 5 B IvFel]

t=0

where inequality (a) follows from Appendix D 2, inequality (b) follows from Assumption 2.
Further plug in Proposition 3,

1= 3 — 2 2
=S E[IVF@)[3] < 55 D E[IVFE] +9n?n352L2( > (82 +1) ZE IvF(")
t=0 t=0

2\ 1141 & 5 2
ot st (5 ) 1 3 S B[t - ] onigene () ¢

Finally, plug in Lemma 6.

T—

Z [|VF } (3+9m772 QLQ(;)(,BQ 802) i [||VF }

t=0 t=0

982222 222 9X9022222
+ 802 ——n;n,sL (52>U + 9nPn2s?L nys L7C

2 2L2

IA
’ﬂ\w

sL? 77 n2 ninzs
’” l g02+ 1 C +52L2771277§C2

B [V &

L (F(ZO) — F*) N 48771779L(5maX02 3ninls®LPo® N 5600n7n2s® L*¢?
mngsT mo? (1—/p)2é2 (1—/p)262

where the last inequality holds because p < 1. In terms of asymptotics, we have

1! 2] o (FE°) = F*) g Lo? Smax 0%+ (2
T Z_:]E {HVF(mt)H?} s mngsT * in 92 gL () ,

where we use the convention that 7, > 1 for ease of presentation. O
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H.2 Convergence rate of Algorithm 1

Proof of Corollary 1. Choose step-size as n; = ﬁ, 1y = Vv s0m such that learning rate condi-
tions in (11) are met, it holds that

1 — 21 _ L(F(&°) — F*) 5 sm [ o+ (2
_ E VF —t < . max 2 ddid <> )
T tz:; [H @ )HQ} ~ VsomT - (55\/smTU * T \d(1—/p)?
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I Additional Results and Interpretations

I.1 Consensus error of Algorithm 1

Corollary 3 (Consensus error of ). Suppose learning rates conditions are met in (11) for n; and
g, and Assumptions 1, 2, 3 and 4 hold for T' > 1, it holds that

m - —F* L26max
P ape et < (DS

2 2
+?7222L2<0;<)1+p2]a
(1—=v?)
Proof of Corollary 3.
1 T-1 1 m ) m B
I RIS Z R R
t= =1
(a)1T713m 1T713m. -
SR DR I IRl e Ezvfﬂszﬁw s
t=0 =1 t=0 =1
(b)lelgm 1T713m m
DD ] FEE=D DD L ZEZHZf—wa;
t=0 =1 t=0 =1 t=0 =1
1T—16 m 1T—l3 m
DR DI IS DR I FE] 14

where inequalities (a) and (b) follow from Jensen’s inequality. Plug in Proposition 2 and take
expectation over all the randomness, we get

fz * 3 et - o] < “Wgw%nTg[WF\u

36222 36 22L2 1m1
P S (04 BRI LS50 S ot -2

i=1 t=0

36120252 36
< 7’3;79 (% +1) = ZE“VF ;] 77”79 42

237 ZEWffM

where the last 1nequa11ty holds because of learning rate condition in (11). Next, plug in Lemma 6:
T—1

_ 36m;n 1
TZ ZEMttu e 7 Y E[I9RE]
2 m
+36771779 Z ]E|:|z —itH :|
=1 t=0
36 2,22 1 T-1 1 T-1
< =g+ 07 LE[IVFEI] + 7 B [I9rE)l]
= t=0
3677?77352 ) 12P5771 779 N 160ps> 77177
52 a—vper’ T a- \/5)2
1 — 2 12psipn? ., 36072 160ps2772
S o7 2 E [HVF<Z >H2} + 1- \/ﬁ)z(gza 52 1—/p)?
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Finally, we plug in Theorem 1

T—1 m -0 * 2 2,2 272 2,2.272
1 1 3(F(x2”)—-F 12 Lémax 28s L 1600 s L
1S L3R [let - o) < 2EEL L) Bl | FIGEo | I e,
; MingsT md 5*(1 = /p) 6%(1 = /p)
where we use the fact that 20 = z° and p < 1, and the convention that 5, > 1 and L > 1 for ease of
presentation.
In terms of asymptotics, we have

SRR o * 2 2 2
l l t At 2} < (F(-’B )—F ) MNgLo® dmax 2272 i
T ; m ;E [Hwi =) = wngsT om0 s L 2(1-yp?)

O

L2 Orders of the asymptotic rates

From Theorem 1, Corollary 2, Corollary 3, it is easy to see from the theorem statements that they are
all of the same asymptotic order, i.e.,

_ m T-1
*ZEHVF E%;Z ! - 2'13) = 7. 3 BV F()13)

In addition, by applying learning rate conditions in (11) to Lemma 6 and Proposition 2, we can also
see that

’ﬂ

T—

*Z ZEFE — z13] Z ZEIIZ 212 = = STE[IVEEY]3).

t:O

._.

Therefore, we conclude that (12), (14) and (15) hold.
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Table 6: Neural network architecture, loss function, learning rate scheduling, training steps and batch size
specifications

Datasets SVHN CIFAR-10 CINIC-10
Neural network CNN CNN CNN
C3,32)-R-M- C(3,32)-R-M-
8823?2)__1{1{_1\41\/[_ C(32,32)-R-M C(32,32)-R-M
Model architecture™ - LEl28) “R- - L(256) - R - -D-L(12)-R-
L(10) L(64)-R - D-L(256)-R-
L(10) D -L(10)
Loss function Cross-entropy loss
Local learning rate _
scheduling n = Vo where ¢ denotes the global round.
Number of local steps s 10
Number of global rounds T’ 2000
Batch size 128

* C(# in-channel, # out-channel): a 2D convolution layer (kernel size 3, stride 1, padding 1); R: ReLU
activation function; M: a 2D max-pool layer (kernel size 2, stride 2); L: (# outputs): a fully-connected
linear layer; D: a dropout layer (probability 0.2).

J Numerical Experiments

J.1 Code

The code for reproducing our experiments is available at https://github.com/mingxiangl2/
FedAWE.

J.2 Experimental setups

Hardware and Software Setups.

* Hardware. The simulations are performed on a private clus- 1] °o
ter with 64 CPUs, 500 GB RAM and 8 NVIDIA A5000 GPU el . e
cards. nie 12 H

* Software. We code the experiments based on PyTorch 1.13.1
[40] and Python 3.7.16.

Neural Network and Hyper-parameter Specifications. Ta-
ble 6 specifies details of the structures of the convolu- —

tional neural network and training. We initialize CNNs Data (el class
using the Kaiming initialization. The initial local learn- Figure 4: An example of data het-
ing rate 7o and the global learning rate 7, are searched, erogeneity using Dirichlet(a = 0.1)
based on the best performance after 500 global rounds, distribution with 20 clients. z-axis de-
over two grids {0.1,0.05,0.01,0.005,0.001,0.0005} and notes the categories of images, while
{0.5,1,1.5,5,10,50}, respectively. The results are presented y-axis denotes the client index. The
in Table 7. size of a circle refers to the proportion

. . . of pictures in a given class. The color
The difference between FedAvg over active clients of a circle distinguishes images with

and FedAvg over all clients is that the latter counts the different categories.

contributions of unavailable clients as 0’s. We set 3 = 0.001

for F3AST [44], which is tuned over a grid of {0.1,0.05,0.01, 0.005, 0.001, 0.0005}. In addition, as
recommended by [55], we choose K = 50 in FedAU without further specification. We train CNN’s
on all datasets for 2000 rounds. Fig. 3 adopts the same hyperparameter setups, yet with only 1000
training rounds.

° .

° °

1 °

° T e
L 2

Client Index

6 7 8 9

Datasets and Data Heterogeneity.

Datasets. All the datasets we evaluate contain 10 classes of images. Some data enhancement tricks
that are standard in training image classifiers are applied during training. Specifically, we apply
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Table 7: Initial learning rate 7y and global learning rate 1,

FedAvg FedAvg FedAvg
active known all

Algorithms FedAU F3AST FedAWE MIFA FedVARP

SVHN To Ng 7o Mg 7o Mg Mo ur Mo Mg 7o Ng Mo Mg To Mg
0.05 1.0 0.1 1.0 005 10 005 10 005 10 01 10 005 1.0 005 1.0

CIFAR-10 Tlo Ng Tlo Mg No Mg Mo Ng Tlo Mg Tlo Ng Mo Mg Tlo Mg
1.0 0.1 1.0 005 10 005 1.0 005 10 01 10 005 1.0 005 1.0

CINIC-10 Mo Ng Mo Ng 7o Mg Mo Mg Mo Mg Mo Ng Mo Mg Mo Mg
0.05 1.0 0.1 1.0 005 10 005 10 005 10 01 10 005 1.0 005 1.0

random cropping and gradient clipping with a max norm of 0.5 to all dataset trainings. Furthermore,
random horizontal flipping is applied to CIFAR-10 and CINIC-10.

One full set of experiments takes about 6 hours on SVHN and CIFAR-10 datasets, while about 10
hours on CINIC-10 dataset.

* SVHN [37]. The dataset contains 32x32 colored images of 10 different number digits. In total,
there are 73257 train images and 26032 test images.

* CIFAR-10 [26]. The dataset contains 32x 32 colored images of 10 different objects. In total, there
are 50000 train images and 10000 test images.

* CINIC-10[12]. The dataset contains 32x32 colored images of 10 different objects. In total, there
are 90000 train images and 90000 test images.

Data heterogeneity. Fig. 4 visualizes an example of 20 clients, the size of each circle corresponds to
the relative proportion of images from a specific class. The larger the circle, the greater the share of
images associated with that particular class. Moreover, « controls the heterogeneity of the data such
that a greater « entails a more non-i.i.d. local data distribution and vice versa.

J.3 Non-stationary client unavailability dynamics

Client unavailability dynamics and visualizations. As
specified in Section 7, we consider a total of four client
unavailable dynamics in the form of p! = p; - f;(t), where
p; = (vi, @), v; ~ Dirichlet(«) and ¢ is the distribution
to characterize the uneven contributions of each image g

N
class. In detail, each element [¢)].. is drawn from a uniform 6l
distribution Uniform(0, ®.). We set ®. = 1 for the first o
five image classes and ®. = 0.5 for the remaining five 5]
image classes. Fig. 5 plots one resulting p;’s example, ol
wherein p;’s are heterogeneous across clients. 02 O ropabiypy 10

Next, we formally introduce f;(t)’s under each dynamic.  Figure 5: A histogram of one generated p;’s

example with a total of m = 100 clients.

: .or A 1.
* Statlonar.y. f Z(t) - L . . It can be seen that the majority of p;’s are
* Non-stationary with staircase trajectory: below 0.5.

fi(t) £ Liicitoto+Pr2)y 04 Liseporp/2,to+P)}
where P defines a period, to € {0, P,2P,3P,...}.
* Non-stationary with sine trajectory:
fi(t) £ ysin(2r/P ) + (1 - ),
where +y signifies the degree of non-stationary.
* Non-stationary with interleaved sine trajectory:

Jilt) = gi(t) - Lip,g.()>60}

where g;(t) £ 7 sin(2r/P-t)+(1—7) and dp = 0.1 defines a cutting-off lower bound. Specifically,
do cuts off the sine curve and brings in a period of zero-valued probabilities. As different clients
have different p;’s, the cut-off points are not synchronized among clients, leading to additional
availability heterogeneity.
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Figure 6: Examples of client unavailability with probabilistic trajectories. The first row in each
sub-figure plots the probabilistic trajectory of each dynamics. The second row visualizes the simulated
client availability by using a colored box to denote a client is available in that round. The y-axis is
the base probability p; to construct pt. In other words, more blank space means that a client is more
scarcely available. We simulate the cases where p; € {0.1,0.5,0.9}. The detailed construction of p!
can be found in Appendix J.3

Table 8: The first round to reach a targeted test accuracy under non-stationary of sine trajectory over 3 random
seeds. We study the first round to reach 1/4, 1/2, 3/4 and 1 of the best test accuracy of each dataset in Table 2,
which is rounded up to the nearest 10% below for ease of presentation. In addition, we sample the mean of
test accuracy every 20 global rounds to mitigate noisy progress. Some algorithms may never attain the targeted
accuracy due to their inferior performance, where we use “~” as a placeholder.

Datasets | SVHN | CIFAR10 | CINIC10
Quarters | V4 12 3/4 1 | 114 12 34 1 | 114 12 34 1
Test accuracy | 20% 40% 60% 80% | 15% 30% 45% 60% | 10% 20% 30% 40%
FedAWE (ours) 40 120 200 820 | 20 60 200 1360 | 0 20 120 540
FedAvg over active clients | 20 80 160 900 10 20 120 1060 | O 20 40 800
FedAvg over all clients 100 420 960 - 20 60 520 - 0 20 200 -
FedAU 60 100 160 840 10 20 100 960 0 20 80 460
F3AST 40 120 200 1080 | 20 40 160 1300 | O 20 60 540
FedAvg with known p!’s 20 40 100 320 10 20 140 620 0 20 40 400
MIFA (memory aided) 20 80 140 600 10 20 80 700 0 20 40 240

We choose v = 0.3 and P = 20 for all non-stationary dynamics. Next, we visualize the probability
trajectories along with sampled client availability in Fig. 6. The plots confirm the intuition that
interleaved dynamics is the most difficult one, e.g., no clients are available in the case of 0.1 therein.

J.4 Additional results

Staleness studies. Table 8 illustrates the first round to reach a targeted test accuracy under non-
stationary client availability with sine trajectory. Specifications can be found in the caption. It
can be easily checked that, during the initial stage (the first three quarters), FedAWE slightly lags
behind FedAvg over active clients. However, when reaching the final stage (the last quarter),
FedAWE attains the target accuracy in a comparable or lower number of rounds to FedAvg over
active clients in the evaluations on SVHN and CINIC-10 datasets. The slowdown of FedAWE on
CIFAR-10 dataset is worth further investigation. In general, we arrive numerically at the conclusion
that the staleness incurred by implicit gossiping in FedAWE is mild.

Training curves. In this part, we show the training curves of FedAvg over active
clients, FedAWE and MIFA. In particular, the presented results of FedAWE are after exponential moving
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(d) Evaluation results on CINIC10 dataset

Figure 7: Missing training curves under non-stationary client unavailability dynamics with sine curve

average [5] under a parameter 0.99. Note that this is to ease down the noisy progress, and for a
neat presentation only, the reported results in the main text and ablation studies are all from raw
data. Fig. 7a plots the train loss and test accuracy from raw data. For example, when compared
with Fig. 7b, EMA eases down the fluctuations but does not change either the trend or the order of
algorithm performance results. All train losses are plotted on a logarithmic scale. The results are
consistent with Table 2.

Impact of system-design parameters. In this part, we study the impact of system-design parameter
including the degree of non-stationarity v and data heterogeneity o under non-stationary with sine
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Table 9: Results after different parameter . p} = p; - (ysin(27/P - t) + (1 — 7)).

Unavailable Datasets v=0.3 v=0.2 v=0.1

Dynamics Algorithms Train Test Train Test Train Test
Non-stationary FedAWE (ours) 85.7+09% 856+09% | 8.7+05% 85.7+05% | 858+06% 857+0.7%
(Sine) FedAvg over active 821+11% 820+13% | 820+12% 819+12% | 823+09% 822+1.0%
FedAvg over all 713+25% 713+28% | 73.2+25% 732+28% | 740+£21% 749+24%
1;5/\/\/\/\ FedAU 825+14% 825+13% | 83.5+03% 834+04% | 83.7+03% 83.6+03%
F3AST 823+10% 823+1.0% | 823+09% 826+08% | 829+07% 829+0.6%
0 FedAvg with known pi’s | 86.3+1.0% 86.0+1.0% | 86.2+12% 86.0+14% | 864+09% 86.0+0.8%
MIFA (memory aided) 8424+04% 841+04% | 84.6+01% 845+01% | 84.6+01% 844+0.1%

Table 10: Results after different Dirichlet parameter . p} = p; (ysin(27/P - t) + (1 — 7).

Unavailable Datasets a=0.05 a=0.1 a=1.0

Dynamics Algorithms Train Test Train Test Train Test
Non-stationary FedAWE (ours) 825+21% 825+24% | 8.7+09% 856+09% | 90.6+02% 89.7+03%
(Sine) FedAvg over active 789+16% 785+18% | 82.1+1.1% 82.0+13% | 883+0.1% 87.5+01%
FedAvg over all 585+30% 585+38% | 71.3+£25% 713+28% | 82.0+07% 81.9+06%
pﬁ/\/\/\/\ FedAU 7195+1.6% 795+17% | 825+14% 825+13% | 884+0.1% 87.6+02%
F3AST 789+13% 789+13% | 823+1.0% 823+1.0% | 87.6+0.1% 87.0+0.1%
0 FedAvg with known pl’s | 8424+10% 835+1.0% | 86.3+£1.0% 860+1.0% | 91.5+£03% 90.5+0.1%
MIFA (memory aided) 826+0.1% 826+00% | 842+04% 841+04% | 84+0.1% 875+0.1%

trajectory. The results are in Table 9 and Table 10. Overall,

algorithms not assisted by memories or known statistics.

FedAWE keeps outperforming the

In Table 10, clients’ local data becomes more heterogeneous when « increases. We can see a
clear increase trend in accuracy. However, FedAWE remains to attain the best accuracies both train
and test when compared to the algorithms not aided by memory or known statistics. Moreover, it
outperforms MIFA, which consumes a lot of storage space, when o = 0.1 and 1.0. The observations
confirm the practicality of FedAWE.
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NeurlIPS Paper Checklist

1.

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have faithfully stated our contributions in both the abstract and introduction.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to Appendix A for details.

. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The regulatory assumptions are stated in Section 6. Due to space limitations,
we are unable to present all the missing proofs and intermediate results in the main text.
They are deferred to Appendix. Please refer to Table of Contents for details.

. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed experimental and the hyperparameter setups in Section 7
and Appendix J.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our evaluations are based on open-accessed datasets that are publically avail-
able. An official implementation code is provided through a GitHub link.

. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental setting/details are important parts of reproducing our results. We
provide the details in Section 7 and Appendix J to the best of our ability.

. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Our results are averaged over multiple random seeds and accompanied by error
bars

. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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Answer: [Yes]

Justification: Please find the software/hardware specifications in Appendix J.2.

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The NeurIPS code of ethics is strictly enforced throughout our research.
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed broader impacts in Appendix B. We are unaware of any
negative impacts.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The existing assets used in this paper has been adequately cited or credited to.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have documented the experiment details in Section 7 and Appendix J.2. In
addition, we provide our code with clear details and examples.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects
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