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Abstract

The pre-trained point cloud model based on Masked Point Modeling (MPM) has ex-
hibited substantial improvements across various tasks. However, these models heav-
ily rely on the Transformer, leading to quadratic complexity and limited decoder,
hindering their practice application. To address this limitation, we first conduct a
comprehensive analysis of existing Transformer-based MPM, emphasizing the idea
that redundancy reduction is crucial for point cloud analysis. To this end, we pro-
pose a Locally constrained Compact point cloud Model (LCM) consisting of a lo-
cally constrained compact encoder and a locally constrained Mamba-based decoder.
Our encoder replaces self-attention with our local aggregation layers to achieve
an elegant balance between performance and efficiency. Considering the varying
information density between masked and unmasked patches in the decoder inputs
of MPM, we introduce a locally constrained Mamba-based decoder. This decoder
ensures linear complexity while maximizing the perception of point cloud geometry
information from unmasked patches with higher information density. Extensive
experimental results show that our compact model significantly surpasses existing
Transformer-based models in both performance and efficiency, especially our LCM-
based Point-MAE model, compared to the Transformer-based model, achieved
an improvement of 1.84%, 0.67%, and 0.60% in average accuracy on the three
variants of ScanObjectNN while reducing parameters by 88% and computation by
73%. Code is available at https://github.com/zyh16143998882/LCM.

1 Introduction

3D point cloud perception, as a crucial application of deep learning, has achieved significant success
across various areas such as autonomous driving, robotics, and virtual reality. Recently, point cloud
self-supervised learning [1, 58, 60], capable of learning universal representations from extensive
unlabeled point cloud data, has gained much attention. Among which, masked point modeling
(MPM) [8, 37, 60, 62, 65, 66], as an important self-supervised paradigm, has become mainstream in
point cloud analysis and has gained immense success across diverse point cloud tasks.

The classical MPM [37, 60, 65], inspired by masked image modeling [2, 22, 59] (MIM), divides
point clouds into patches and uses a standard Transformer [46] backbone. It randomly masks some
patches in the encoder input and combines the unmasked patch tokens with randomly initialized
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masked patch tokens in the decoder input. It predicts the geometric coordinates or semantic features
of the masked patches from the decoder output tokens, enabling the model to learn universal 3D
representations. Despite the significant success, two inherent issues of Transformers still limit their
practical deployment.

The first issue is that the Transformer architecture leads to quadratic complexity and huge model
sizes. As shown in Figure 1 (a) and (b), MPM methods like Point-MAE [37] based on standard
Transformer [46] require 22.1M parameters and complexity exponentially grows with an increase in
the length of input patches. However, in practical point cloud applications, models are often deployed
on embedded devices such as robots or VR headsets, where strict constraints exist regarding the
model’s size and complexity. In this context, lightweight networks such as PointNet++ [40] are more
popular in practical applications due to their lower parameter requirement (only 1.5M) even though
they may have inferior performance.

(a) Model Accuracy and Parameters (b) Complexity growth curve
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Figure 1: Comparison of our LCM and Trans-
former in terms of performance and efficiency.

Another issue is that when Transformers [46]
are used as decoders in Masked Point Modeling
(MPM), their potential to reconstruct masked
patches with lower information density is lim-
ited. In the decoder input of MPM, randomly
initialized masked tokens with lower informa-
tion density are typically concatenated with un-
masked tokens with higher information density
and fed into the Transformer-based decoder. The
self-attention layers then learn to process these
tokens of varying information density based on
loss constraints. However, relying solely on the
loss to learn this objective is challenging due
to the lack of explicit importance guidance for
different densities. Additionally, in Section 5.1, we further explain from an information theory
perspective that the self-attention mechanism, as a higher-order processing function, can limit the
model’s reconstruction potential.

To address the above issues, as shown in Figure 2, we first conducted a comprehensive analysis of the
effects of different top-K attention on the performance of the Transformer model, emphasizing the
idea that redundancy reduction is crucial for point cloud analysis. To this end, we propose a Locally
constrained Compact point cloud Model (LCM), consisting of a locally constrained compact encoder
and a locally constrained Mamba-based decoder, to replace the standard Transformer. Specifically,
based on the idea of redundancy reduction, our compact encoder replaces self-attention with our
local aggregation layers to achieve an elegant balance between performance and efficiency. The
local aggregation layer leverages static local geometric constraints to aggregate the most relevant
information for each patch token. Since static local geometric constraints only need to be computed
once at the beginning and are shared across all layers, it avoids dynamic attention computations in
each layer, significantly reducing complexity. Furthermore, it uses only two MLPs for information
mapping, greatly reducing the network’s parameters.

In our decoder design, considering the varying information density between masked and unmasked
patches in the inputs of MPM, our decoder introduces the State Space Model (SSM) from Mamba [13,
16, 19, 30, 71] to replace self-attention, ensuring linear complexity while maximizing the perception of
point cloud geometry information from unmasked patches with higher information density. However,
as discussed in Section 5.4, the directly replaced SSM layer exhibits a strong dependence on the
order of input patches. Inspired by our compact encoder, we migrate the idea of local constraints
to the feedforward neural network of our Mamba-based decoder, proposing the Local Constraints
Feedforward Network (LCFFN). This eliminates the need to explicitly consider the sequence order of
input in SSM layers because the subsequent LCFFN can adaptively exchange information among
geometrically adjacent patches based on their implicit geometric order.

Our LCM is a universal point cloud architecture designed based on the characteristics of the point
cloud to replace the standard Transformer. It can be trained from scratch or integrated into any
existing pretraining strategy to achieve an elegant balance between performance and efficiency. For
example, the LCM model pre-trained based on the Point-MAE strategy requires only 2.7M parameters,
which is about 10 × efficient compared to the original Transformer with 22.1M. Furthermore, in
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(a) OBJ-BG (b) OBJ-ONLY (c) PB-T50-RS

Figure 2: The effect of using top-K attention in feature space and geometric space by the Transformer
on the classification performance in ScanObjectNN, all results are the averages of ten repeated
experiments.

terms of performance, compared to the Transformer, the LCM shows significant improvements of
1.84%, 0.67%, and 0.60% in average classification accuracy of three variants of ScanObjectNN [44].
Additionally, in the detection task of ScanNetV2 [6], there are also significant improvements of
+5.2% on AP25 and +6.0% on AP50.

We summarize the contributions of our paper as follows: 1) We propose a locally constrained compact
encoder, which leverages static local geometric constraints to aggregate the most relevant information
for each patch token, achieving an elegant balance between performance and efficiency. 2) We
propose a locally constrained Mamba-based decoder for masked point modeling, which replaces
the self-attention layer with Mamba’s SSM layer and introduces a locally constrained feedforward
neural network to eliminate the explicit dependency of Mamba on the input sequence order. 3)
Our locally constrained compact encoder and locally constrained Mamba-based decoder together
constitute the efficient backbone LCM for masked point modeling. We combine LCM with various
pretraining strategies to pre-train efficient models and validate our model’s superiority in efficiency
and performance across various downstream tasks.

2 Related Work

Point Cloud Self-supervised Pre-training. Point cloud self-supervised pre-training [47, 54, 55, 58,
60] has achieved remarkable improvement in many point cloud tasks. This approach first applies
a pretext task to learn the latent 3D representation and then transfers it to various downstream
tasks. PointContrast [58] and CrossPoint [1] initially explored utilizing contrastive learning [36, 43]
for learning 3D representations, which achieved some success; however, there were still some
shortcomings in capturing fine-grained semantic representations. Recently, masked point modeling
methods [37, 60–62] demonstrated significant improvements in learning fine-grained point cloud
representations through masking and reconstruction. Many methods [4, 8, 21, 41, 66] have attempted
to leverage multimodal knowledge to assist MPM in learning more generalized representations,
yielding significant improvements. After obtaining a pre-trained point cloud model, many works [18,
64, 67, 70] remain to explore parameter-efficient fine-tuning methods to better adapt these pretrained
models to a variety of downstream tasks. While the pre-trained models mentioned above have
achieved tremendous success, they all rely on the Transformer architecture. In this paper, we focus
on designing a more efficient architecture to replace the Transformer in these methods, significantly
reducing computational and resource requirements.

3 Methodology

3.1 Observation of Top-K Attention
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Figure 3: Point heatmap.

Standard Transformer [46] architecture requires computing the cor-
relation between each patch with all input patches, resulting in
quadratic complexity. While this architecture performs well in lan-
guage data, its effectiveness in point cloud data has been under-
explored. Not all points are equally important. As illustrated in Fig-
ure 3, the key points for aircraft recognition are mainly distributed
on the wings, while for vase recognition, they are primarily located
on the bottom of the vase. Therefore, directly skipping the attention computation for less important
points provides a straightforward solution.
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Figure 4: The pipeline of our Locally Constrained Compact Model (LCM) with Point-MAE pre-
training. Our LCM consists of a locally constrained compact encoder and a locally constrained
Mamba-based decoder.

We first replaced the computation of global attention for all patch tokens with calculations top-K
attentions in both feature and geometric space. As shown in Figure 2, our empirical observations
indicate that: 1) In self-attention, it is often more effective to use attention weights based on the top-K
most important patch tokens rather than using all patch; 2) Compared to using top-K attention in a
dynamic feature space, employing top-K attention in a static geometric space yields nearly identical
representational capacity and offers the advantage of a smaller K value. Although this naive method
of masking out unimportant attention still exhibits quadratic complexity, this redundancy reduction
idea not only brings performance improvements but also provides a direction for further optimizing
computational efficiency.

3.2 The Pipeline of Masking Point Modeling with LCM

The overall architecture of our Locally constrained Compact Model (LCM) is shown in Figure 4. The
specific process is as follows.

Patching, Masking, and Embedding. Given an input point cloud PC ∈ RL×3 with L points, we
initially downsample a central point cloud C ∈ RN×3 with N points by farthest point sampling (FPS).
Then, we perform K-Nearest Neighborhood (KNN) around C to get point patches P ∈ RN×K×3.
Following this, we randomly mask a portion of C and P , resulting in masked elements CM ∈
R(1−r)N×3 and PM ∈ R(1−r)N×K×3 and unmasked elements CV ∈ RrN×3 and PV ∈ RrN×K×3,
where r denotes the unmask ratio. Finally, we use MLP-based embedding layer (Embed) and position
encoding layer (PE) respectively to extract semantic tokens E0 ∈ RrN×d and central position
embedding Ep ∈ RrN×d for the unmasked patches, where d is the feature dimension.

Encoder. We employ our locally constrained compact encoder T to extract features from the
unmasked features E0. It consists of n stacked encoder layers, each layer incorporating a local
aggregation layer and a feedforward neural network, detailed in Figure 4. For the input feature Ei−1

of the i-th layer, after adding its positional embedding Ep, it feeds to the i-th encoding layer Ti to
obtain the feature Ei. Therefore, the forward process of each encoder layer is defined as:

Ei = Ti(Ei−1 +Ep), i = 1, ..., n (1)

Decoder. In the decoding phase, although various MPMs have different decoding strategies, they
can generally be divided into feature-level or coordinate-level reconstruction, and their decoders
mostly rely on the Transformer architecture. Here, we illustrate the decoding process of our locally
constrained Mamba-based decoder using the coordinate-level reconstruction method Point-MAE [37]
as an example.

We first concatenate unmasked tokens En ∈ RrN×d before the randomly initialized masked tokens
Q ∈ R(1−r)N×d to obtain the input T0 ∈ RN×d for the decoder. Then, we separately calculate the
positional encoding for unmasked patches T p

V ∈ RrN×d and masked patches T p
M ∈ R(1−r)N×d,

and then concatenate them together to obtain the positional embeddings T p ∈ RN×d, shared by
all layers of the decoder. Finally, for the input feature Ti−1 of the i-th decoder layer, after adding
their positional embeddings T p, they are passed into the i-th decoder layer Di to compute the output
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(a) Structure of the i-th Compact Encoder Layer.  (b) Structure of the i-th Mamba-based Decoder Layer.  

Figure 5: The structure of i-th locally constrained compact encoder layer (a) and i-th locally
constrained Mamba-based decoder layer (b).

features Ti. Therefore, the forward process of each decoder layer is defined as:

Ti = Di(Ti−1 + T p), i = 1, ...,m, (2)

Reconstruction. We utilize the features R = Tm[rN :] decoded by the decoder to perform the 3D
reconstruction. We employ multi-layer MLPs to construct coordinates reconstruction head H and
our reconstruction target is to recover the relative coordinates RM = H(R) of the masked patches.
We use the l2 Chamfer Distance [9] (CD) as reconstruction loss. Therefore, our loss function L is as
follows

L = CD(RM ,PM ) (3)

3.3 Locally Constrained Compact Encoder

The classical Transformer [46] relies on the self-attention mechanism to perceive long-range corre-
lations among all patches globally and has achieved great success in language and image domains.
However, there remains uncertainty about whether directly transferring a Transformer-based encoder
is suitable for point cloud data. Firstly, applications of point clouds are more inclined towards
practical embedded devices such as robots or VR headsets. The hardware resources of these devices
are limited, imposing higher limits on the model size and complexity, and the Transformer-based
backbone demands significantly more resources than traditional networks, as illustrated in Table 1.
Secondly, extensive research [34, 40, 50] and our empirical observation as illustrated in Figure 2
also indicate that the perception of local geometry in point cloud data far outweighs the need for
global perception. Therefore, the computation of long-range correlations in self-attention leads to
a considerable amount of redundant calculations. To address these practical issues, we propose a
locally constrained compact encoder.

Our compact encoder consists of n stacked compact encoder layers, each layer comprising a local
aggregation layer (LAL) and a feed-forward network (FFN), as shown in Figure 5 (a). For the i-th
encoder layer, the output (Ei−1) of the preceding layer, added with the positional embedding and
normalized by layer normal, is initially fed to the Local Aggregation Layer (LAL) for aggregating
local geometric. Afterward, the result is added to the input residual, passed through layer normaliza-
tion, and finally fed into a Feed-forward Network (FFN) to obtain the ultimate output feature (Ei).
This process can be formalized as follows,

Ei = Ei−1 + li(n
1
i (Ei−1),Cu) (4)

Ei = Ei + fi(n
2
i (Ei)) (5)

where li(·) represents the LAM, n1
i (·) and n2

i (·) represents layer normalization, and fi(·) represents
the FFN.

In the local aggregation layer, we first use the k-nearest neighbors algorithm based on the central
coordinates Cu of the features Ei−1 to find the k nearest neighbors feature En

i−1 ∈ RrkN×d for
each token in Ei−1. We then replicate each token of Ei−1 k times and concatenate them with
their corresponding neighbors to obtain Ec

i−1 ∈ RrkN×2d. Next, Down MLP performs a non-linear
mapping on all local neighboring features to capture local geometric information. Subsequently, local
max pooling is applied to aggregate all local features for each patch. Finally, Up MLP maps all patches
to obtain locally enhanced features Ei ∈ RrN×d. Our LAL consists of only two simple MLP layers,
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significantly reducing the network’s parameters. Additionally, since static local geometric constraints
only need to be computed once at the beginning and are shared across all layers thereafter, it avoids
dynamic attention computations in each layer, significantly reducing computational requirements. It
uses only two MLPs for information mapping, greatly reducing the network’s parameters.

3.4 Locally Constrained Mamba-based Decoder

The decoder for mask point modeling needs to recover information about masked patches based
on the features En extracted from unmasked patches by the encoder. A common approach is to
concatenate the features En of unmasked patches before randomly initialized features Q of masked
patches as the input to the decoder, as shown in Figure 4. However, at this point, there is a significant
difference in information density between features En and Q. The Transformer architecture and our
local aggregation layer both treat each token in the input as equally important initially, it works well
when the information density of all tokens is similar. It does not adapt well to cases where there is a
large difference in information density in the input.

To efficiently extract more geometric priors from unmasked features En, we were inspired by the
Mamba [13] model in time sequence and proposed using a Mamba-based decoder. This decoder can
extract more prior information from the preceding tokens in the sequence based on the input order
to aid the learning of subsequent tokens. Initially, we simply replaced the self-attention layer in the
original Transformer-based [46] decoder with the state space model (SSM) layer from Mamba. We
also sorted the input sequence based on the order of each patch’s center point coordinates, creating a
naive Mamba-based decoder. Our experiments in Section 8 revealed that although this naive decoder
is efficient enough, the simple sorting method cannot effectively model the complex spatial geometry
of point clouds and leads to a strong dependence on the order of input patches.

To ensure that the SSM fully perceives the spatial geometry of point clouds, we further introduced
the concept of local constraints from the local aggregation layer into the feedforward neural network
layer of our decoder, getting the Local Constraints Feedforward Network (LCFFN). By feeding the
tokens outputted by the SSM layer into the LCFFN, the LCFFN can implicitly exchange information
between geometrically adjacent patches based on their central coordinates. This eliminates the
limitation in the SSM layer where explicit sequential input fails to perceive complex geometry fully.
Finally, in Section 5.1, we also qualitatively explain from an information theory perspective that this
Mamba-based architecture has greater reconstruction potential compared to the Transformer.

Our Mamba-based decoder consists of m stacked decoder layers, each layer comprising a Mamba
SSM layer and a local constraints feedforward network (LCFFN), as shown in Figure 5 (b). For the
i-th decoder layer, we first add the output (Ti−1) of the previous layer with the positional embeddings
(T p) and normalize it through layer normalization. Then, we use the Mamba SSM layer (si(·)) to
perceive geometry from unmasked features and predict masked features. Finally, in the LCFFN
(f l

i (·)), we further perceive shape priors based on the central coordinates of each token from its
geometrically adjacent tokens. This process can be formalized as follows:

Ti = Ti−1 + si(n
1
i (Ti−1)) (6)

Ti = Ti + f l
i (n

2
i (Ti),C) (7)

4 Experiments

4.1 Pre-training

We pre-training our LCM using five different pretraining strategies: Point-BERT [60], MaskPoint [28],
Point-MAE [37], Point-M2AE [65], and ACT [8]. For a fire comparison, we use ShapeNet [3] as
our pre-training dataset, encompassing over 50,000 distinct 3D models spanning 55 prevalent object
categories. For the hyperparameter settings during the pretraining phase, we used the same settings
as previous methods.

4.2 Fine-tuning on Downstream Tasks

We assess the performance of our LCM by fine-tuning our models on various downstream tasks,
including object classification, scene-level detection, and part segmentation.
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Table 1: Classification accuracy on real-scanned point clouds (ScanObjectNN). We report the overall
accuracy (%) on three variants. "#Params" represents the model’s parameters and FLOPs refer to the
model’s floating point operations. GPT, CL, and MPM respectively refer to pre-training strategies
based on autoregression, contrastive learning, and masked point modeling. ◦ is the reported results
from the original paper. • is the result reproduced in our downstream settings.

Method Pretrain #Params(M) FLOPs(G)
ScanObjectNN

OBJ-BG OBJ-ONLY PB-T50-RS

Supervised Learning Only

◦PointNe [39] ✘ 3.5 0.5 73.3 79.2 68.0
◦PointNet++ [40] ✘ 1.5 1.7 82.3 84.3 77.9
◦PointMLP [32] ✘ 12.6 31.4 - - 85.2
◦Transformer [46] ✘ 22.1 4.8 86.75 86.92 80.78
◦PointMamba [27] ✘ 12.3 - 88.30 87.78 82.48
◦SFR [63] ✘ - - - - 87.80
•Transformer [46] ✘ 22.1 4.8 91.95 91.39 86.65
•LCM (Ours) ✘ 2.7(↓ 88%) 1.3(↓ 73%) 92.77(↑ 0.82) 91.54(↑ 0.15) 87.75(↑ 1.10)

Self-Supervised Learning

◦Point-BERT [60] MPM 22.1 4.5 87.43 88.12 83.07
◦MaskPoint [28] MPM 22.1 4.5 89.30 88.10 84.30
◦Point-MAE [37] MPM 22.1 4.8 90.02 88.29 85.18
◦Point-MAE w/ IDPT [64] MPM 23.3 7.1 91.22 90.02 84.94
◦Point-MAE w/ DAPT [70] MPM 22.7 5.0 90.88 90.19 85.08
◦ Inter-MAE [29] MPM 22.1 4.8 88.70 89.60 85.40
◦Point-M2AE [65] MPM 12.9 7.9 91.22 88.81 86.43
◦ACT [8] MPM 22.1 4.8 93.29 91.91 88.21
◦PointGPT-B [5] GPT 120.5 36.2 93.60 92.50 89.60
◦PointMamba [27] MPM 12.3 - 93.29 91.91 88.17
•Point-BERT [60] MPM 22.1 4.5 92.48 91.60 87.91
•MaskPoint [28] MPM 22.1 4.5 92.17 91.69 87.65
•Point-MAE [37] MPM 22.1 4.8 92.67 92.08 88.27
•Point-M2AE [65] MPM 12.9 7.9 93.12 91.22 88.06
•ACT [8] MPM 22.1 4.8 92.08 91.70 87.52
•Point-BERT w/ LCM MPM 3.1 (↓ 86%) 2.5 (↓ 44%) 93.55 (↑ 1.07) 92.43 (↑ 0.83) 88.57 (↑ 0.66)
•MaskPoint w/ LCM MPM 3.1 (↓ 86%) 2.5 (↓ 44%) 93.31 (↑ 1.14) 91.98 (↑ 0.29) 87.75 (↑ 0.10)
•Point-MAE w/ LCM MPM 2.7 (↓ 88%) 1.3 (↓ 73%) 94.51 (↑ 1.84) 92.75 (↑ 0.67) 88.87 (↑ 0.60)
•Point-M2AE w/ LCM MPM 2.5 (↓ 81%) 6.7 (↓ 15%) 93.83 (↑ 0.71) 92.41 (↑ 1.19) 88.38 (↑ 0.32)
•ACT w/ LCM MPM 3.1 (↓ 86%) 2.8 (↓ 42%) 94.13 (↑ 2.05) 92.66 (↑ 0.96) 88.57 (↑ 1.05)

4.2.1 Object Classification

We initially assess the overall classification accuracy of our pre-trained models on both real-scanned
(ScanObjectNN [44]) and synthetic (ModelNet40 [57]) datasets. ScanObjectNN is a prevalent dataset
consisting of approximately 15,000 real-world scanned point cloud samples from 15 categories.
These objects represent indoor scenes and are often characterized by cluttered backgrounds and
occlusions caused by other objects. For the ScanObjectNN dataset, we sample 2048 points for each
instance and report results without voting mechanisms. We applied simple scaling and rotation data
augmentation of previous work [8, 37] in the downstream setting of ScanObjectNN. We reported
the results of different models under our downstream setting, with •marking the results. For the
ModelNet40 dataset, due to space limitation, we will further analyze its results in Section 5.4.

To ensure a fair comparison, we conducted our experiments following the standard practices in the
field (as used in previous work [8, 28, 37, 60, 65]). For each point cloud classification experiment,
we used eight different random seeds (0-7) to ensure the robustness and reliability of our results. The
performance reported in Table 1 represents the average accuracy achieved across these eight trials
for each model configuration.

As presented in Table 1, our model has many exciting results. 1) Lighter, faster, and more powerful.
When trained from scratch using supervised learning only, our LCM model demonstrates performance
improvements of 0.82%, 0.15%, and 1.10% across three variant datasets compared to the Transformer
architecture. Similarly, after pre-training (e.g., Point-MAE), our model outperformed the standard
Transformer by 1.84%, 0.67%, and 0.60% across the three variants of the ScanObjectNN dataset.
Notably, these improvements are achieved despite an 88% reduction in parameters and a 73%
reduction in FLOPs. This improvement is exciting as it indicates that our architecture is better suited
for point cloud data compared to the standard Transformer. Additionally, due to its extremely high
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Table 2: Object detection results on ScanNetV2.
We adopt the average precision with 3D IoU
thresholds of 0.25 (AP25) and 0.5 (AP50) for the
evaluation metrics. † is our reproduction results,
due to the lack of detection code in their paper.

Methods Pretrain AP25 AP50

Supervised Learning Only

VoteNet [38] ✘ 58.6 33.5
3DETR [34](baseline) ✘ 62.1 37.9
Transformer [46] ✘ 60.5 40.6
LCM (Ours) ✘ 63.8 (↑ 3.3) 46.4 (↑ 5.8)

Self-Supervised Learning

PointContrast [58] CL 58.5 38.0
STRL [25] CL - 38.4
Point-BERT [60] MPM 61.0 38.3
PiMAE [4] MPM 62.6 39.4
Point-MAE† [37] MPM 59.5 41.2
Point-M2AE† [65] MPM 60.0 41.4
ACT [8] MPM 63.8 42.1
DepthContrast [69] CL 64.0 42.9
MaskPoint [28] MPM 64.2 42.1
Point-BERT [60] w/ LCM MPM 65.3 (↑ 4.3) 47.3 (↑ 9.0)
Point-MAE [37] w/ LCM MPM 64.7 (↑ 5.2) 47.2 (↑ 6.0)
Point-M2AE [65] w/ LCM MPM 63.5 (↑ 3.5) 44.0 (↑ 2.6)
ACT [8] w/ LCM MPM 65.0 (↑ 1.2) 45.8 (↑ 3.7)
MaskPoint [28] w/ LCM MPM 65.3 (↑ 1.1) 46.3 (↑ 4.2)

Table 3: Part segmentation results on the
ShapeNetPart. The mean IoU across all cate-
gories, i.e., mIoUc (%), and the mean IoU across
all instances, i.e., mIoUI (%) are reported.

Methods Pretrain mIoUc mIoUI

Supervised Learning Only

PointNet++ [40] ✘ 81.9 85.1
DGCNN [50] ✘ 82.3 85.2
Transformer [46] ✘ 83.9 86.0
LCM (Ours) ✘ 84.6 (↑ 0.7) 86.3 (↑ 0.3)

Self-Supervised Learning

Transformer-OcCo [48] CL 83.4 85.1
PointContrast [58] CL - 85.1
CrossPoint [1] CL - 85.5
Point-BERT [60] MPM 84.1 85.6
IDPT [64] MPM 83.8 85.9
MaskPoint [28] MPM 84.4 86.0
Point-MAE [37] MPM 84.2 86.1
ACT [8] MPM 84.7 86.1
PointGPT-S [5] MPM 84.1 86.2
PointGPT-B [5] MPM 84.5 86.4
Point-M2AE [65] MPM 84.9 86.5
Point-BERT [60] w/ LCM MPM 85.0 (↑ 0.9) 86.5 (↑ 0.9)
MaskPoint [28] w/ LCM MPM 85.1 (↑ 0.7) 86.6 (↑ 0.6)
Point-MAE [37] w/ LCM MPM 85.1 (↑ 0.9) 86.6 (↑ 0.5)
Point-M2AE [65] w/ LCM MPM 85.0 (↑ 0.1) 86.5 (-)
ACT [8] w/ LCM MPM 85.0 (↑ 0.3) 86.7 (↑ 0.6)

efficiency, it provides strong support for the practical deployment of these pre-trained models. 2)
Universal. We have replaced the original Transformer architecture with our LCM model in five
different MPM-based pre-training methods. All experimental results are exciting as our model
achieved universal performance improvements with fewer parameters and computations, highlighting
the versatility of our model. In the future, we will further adapt to additional pre-training methods.

4.2.2 Object Detection

We further assess the object detection performance of our pre-trained model on the more challeng-
ing scene-level point cloud dataset, ScanNetV2 [6], to evaluate our model’s scene understanding
capabilities. Following the previous pre-training work [8, 28], we use 3DETR [34] as the base-
line and only replace the Transformer-based encoder of 3DETR with our pre-trained compact
encoder. Subsequently, the entire model is fine-tuned for object detection. In contrast to previous
approaches [4, 8, 28], which necessitate pre-train on large-scale scene-level point clouds like Scan-
Net, our approach directly utilizes models pre-trained on ShapeNet. This further emphasizes the
generalizability of our pre-trained models.

Table 2 showcases our experimental results, our compact model has shown significant improvements
in scene-level point cloud data, such as Point-MAE [37] achieving a 5.2% improvement in AP25 and
a 6.0% improvement in AP50 compared to the Transformer. This improvement is remarkable, and
we believe this is primarily due to the presence of a large number of background and noise points
in the scene-level point cloud. Using a local constraint modeling approach effectively filters out
unimportant background and noise, allowing the model to focus more on meaningful points.

4.2.3 Part Segmentation

We also assess the performance of LCM in part segmentation using the ShapeNetPart dataset [3],
comprising 16,881 samples across 16 categories. We utilize the same segmentation setting after the
pre-trained encoder as in previous works [37, 65] for fair comparison. As shown in Table 3, our
LCM-based model also exhibits a clear boost compared to Transformer-based models. These results
demonstrate that our model exhibits superior performance in tasks such as part segmentation, which
demands a more fine-grained understanding of point clouds.
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Table 4: Effects of the Network Structure of the
Locally Constrained Compact Encoder.

Local Local MLPs FFN Param(M) ScanObjectNN

A ✘ ✘ ✔ 1.4 85.45
B ✘ ✔ ✔ 2.3 85.74
C ✔ ✔ ✘ 1.8 87.77
D ✔ ✔ ✔ 2.7 88.06

Table 5: Effects of Locally Constrained
Mamba-based Decoder.

Decoder ScanObjectNN

Transformer 88.76
LAL 88.38
Mamba 88.62

Transformer w/ LCFFN 88.79
LAL w/ LCFFN 88.51
Mamba w/ LCFFN 89.35

4.3 Ablation Study

Effects of Locally Constrained Compact Encoder. We explore the performance of our locally
constrained compact encoder by comparing it with a Transformer-based encoder in classification,
detection, and part segmentation. The results from Tables 1, Table 2, and Table 3, obtained solely
through supervised learning from scratch, clearly demonstrate the advantages of our LCM encoder
over the Transformer-based encoder in terms of performance and efficiency, particularly in detection
tasks, with an improvement of up to 6.0% in the AP50 metric.

This substantial improvement is attributed to the compact encoder’s focused attention on the most
crucial information for each point patch, such as local neighborhoods while disregarding unimportant
details. This is similar to a redundancy-reducing compression concept, which is crucial for point cloud
analysis, especially in large-scale scene-level point clouds where significant redundancy and noise
points often exist. Our local constraint approach enables the model to focus on critical areas, leading
to a combined improvement in efficiency and performance. Moreover, this redundancy-reducing
concept helps our model avoid overfitting the training dataset. We provide detailed explanations of
this phenomenon in the Section 5.5.

Effects of the Network Structure of the Locally Constrained Encoder. As shown in Figure 5(a),
each layer of our locally constrained compact encoder consists primarily of three parts: a locally
constrained unit based on k-NN, MLPs mapping unit composed of Down MLP and Up MLP, and
the final FFN layer. We explore the effects of each unit separately. Specifically, we train Encoders
with different structures from scratch on the ScanObjectNN [44] dataset and test their classification
performance. As shown in Table 4, comparing A and B reveals that a simple two-layer MLP without
local aggregation does not substantially improve the network’s performance. In contrast, the results of
C and D compared to A and B demonstrate a significant performance improvement. This improvement
is mainly attributed to the introduction of local geometric perception and aggregation. Comparing
the results of C and D, the introduction of FFN brings a slight improvement. Therefore, FFN is not
indispensable in our compact encoder, but we choose to incorporate FFN to further perform mapping.
These experiments further indicate the necessity of local geometric perception and aggregation for
point cloud feature extraction.

Effects of Locally Constrained Mamba-based Decoder. We further compared the impact of
different decoder designs during the pre-training phase. Specifically, we compared the vanilla
Transformer-based decoder, our LAL-based decoder, and the vanilla Mamba-based architecture, as
well as their performance after incorporating LCFFN. As shown in Table 5, the results indicate that
the Vanilla Transformer slightly outperforms the Vanilla Mamba in terms of performance, likely due
to the limitation imposed by the simple geometric sequential input sequences on the Vanilla Mamba’s
capabilities. After incorporating LCFFN, the Mamba decoder exhibits a significant improvement due
to the introduction of implicit geometric order. In contrast, the Transformer’s improvement is slight
because the geometric order is already implicitly captured by self-attention.

4.4 Limitation

Our current model does have limitations in handling dynamic importance perception and long-range
dependency modeling. Our design prioritizes efficiency, which can be at odds with the increased
complexity required for capturing dynamic importance and long-range dependencies. This focus on
efficiency led us to simplify the model in certain aspects, and as a result, we did not fully integrate
mechanisms for dynamic importance perception and long-range dependency modeling in this version
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of our model. Despite these constraints, the current model has demonstrated significant improvements
in performance across various tasks. Nevertheless, we also acknowledge that incorporating dynamic
importance perception and long-range dependency modeling could further enhance the model’s
capabilities, particularly in more complex scenarios. We are actively exploring methods to address
these limitations in future work.

4.5 Conclusion

In this paper, we propose a compact point cloud model, LCM, specifically designed for masked point
modeling pre-training, aiming to achieve an elegant balance between performance and efficiency.
Based on the idea of redundancy reduction, we propose focusing on the most relevant point patches
ignoring unimportant parts in the encoder, and introducing a local aggregation layer to replace the
vanilla self-attention. Considering the varying information density between masked and unmasked
patches in the decoder inputs of MPM, we introduce a locally constrained Mamba-base decoder to
ensure linear complexity while maximizing the perception of point cloud geometry information from
unmasked patches. By conducting extensive experiments across various tasks such as classification
and detection, we demonstrate that our LCM is a universal model with significant improvements in
efficiency and performance compared to traditional Transformer models.
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5 Appendix

5.1 An Information Theoretic Perspective of Our Mamba-based Decoder for MPM.

𝑿𝟏

Decoder 𝝓 

𝑿𝟐

𝒀𝟏 𝒀𝟐
Figure 6: A simple illustration
of information processing of
MPM decoder.

Here, we provide an information-theoretic perspective for our de-
coder design, using mutual information to qualitatively demon-
strate that the Mamba-based SSM can perceive more information
from unmasked patches to predict masked patches compared to a
Transformer-based self-attention. The mutual information between
random variables X and Y , I(X;Y ), measures the amount of in-
formation that can be gained about a random variable X from the
knowledge about the other random variable Y . Therefore, based
on the decoder input’s different information densities, we can sim-
ply divide the input into X1, representing unmasked patches with
higher information density, and X2, representing randomly initial-
ized masked patches with lower information density. As illustrated
in Figure 6, after being processed by the decoder, X1 and X2 respec-
tively yield outputs Y1 for unmasked patches and Y2 for masked patches. We reconstruct the masked
points based on Y2.

Ideally, Y2 needs to perceive sufficient geometric priors from both X1 and X2 to recover the masked
points, more mutual information represents more recovery potential. Therefore, we would like to
maximize the mutual information I(Y2;X1, X2). In what follows, we demonstrate that the mutual
information preserved by our proposed Mamba-based decoder is larger than that of the standard
transformer decoder.
Theorem 1. Let Y M

1 , Y M
2 and Y T

1 , Y T
2 denote the outputs of the Mamba-based and Transformer-

based decoders respectively, I(Y M
2 ;X1, X2) denote the mutual information preserved by the

Mamba-based decoder, and I(Y T
2 ;X1, X2) denote that of the Transformer-based decoder. We

have I(Y M
2 ;X1, X2) ≥ I(Y T

2 ;X1, X2).

Proof. The first step is to formalize the input-output relation of the two decoding structures. For the
Mamba decoder, as defined in [13, 16], the output can be expressed as:

Y M
2 = CĀB̄X1 + CB̄X2

= AX1 +BX2.

For the Transformer decoder, the attention mechanism can be expressed in the following matrix form:[
X⊤

1 W⊤
q WkX1 X⊤

1 W⊤
q WkX2

X⊤
2 W⊤

q WkX1 X⊤
2 W⊤

q WkX2

] [
WvX1

WvX2

]
=

[
Y T
1

Y T
2

]
.

Thus,
Y T
2 = X⊤

2 W⊤
q WkX1 ·WvX1 +X⊤

2 W⊤
q WkX2 ·WvX2.

Compared with the linear relation captured by Y M
2 , Y T

2 models higher-order interactions of the
input variables. So for any given Mamba parameters A and B, there exists Transformer parameters
Wk,Wq,Wv and a function g, such that Y T

2 = g(Y M
2 ).

As Y T
2 is a function of Y M

2 , (X1, X2) → Y M
2 → Y T

2 forms a Markov chain. So (X1, X2) and Y T
2

are independent when conditioned on Y M
2 , i.e., p(Y T

2 , X1, X2|Y M
2 ) = p(Y T

2 |Y M
2 )p(X1, X2|Y M

2 ).
According to the definition of conditional mutual information, this implies

I(X1, X2;Y
T
2 |Y M

2 ) = 0.

On the other hand, by the chain rule of mutual information we have

I(X1, X2;Y
M
2 , Y T

2 ) = I(X1, X2;Y
M
2 ) + I(X1, X2;Y

T
2 |Y M

2 )

= I(X1, X2;Y
T
2 ) + I(X1, X2;Y

M
2 |Y T

2 ).

Since we already show that I(X1, X2;Y
T
2 |Y M

2 ) = 0, and mutual information is non-negative, we
have

I(X1, X2;Y
M
2 ) = I(X1, X2;Y

T
2 ) + I(X1, X2;Y

M
2 |Y T

2 ) ≥ I(X1, X2;Y
T
2 ).
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5.2 Additional Related Work

Deep Network Architecture for Point Cloud. With the development of deep learning, various deep
neural network-based models [7, 10, 12, 13, 23, 46, 52, 53, 68] have become the mainstream approach
for 3D point cloud analysis. PointNet [39], a pioneer in point cloud analysis, introduced an MLP-based
network to address the disorder of point clouds. Subsequently, PointNet++ [40] further proposed
adaptive aggregation of multiscale features on MLPs and incorporated local point sets for effective
feature learning. DGCNN [50] introduced the graph convolutional networks dynamically computing
local graph neighboring nodes to extract geometric information. PointMLP [32] suggested efficient
point cloud representation solely relying on pure residual MLPs. Recently, many Transformer-based
models [20, 34, 37, 62], benefiting from attention mechanisms, have achieved notable improvements
in point cloud analysis. However, this led to a significant increase in model size, posing considerable
challenges for practical applications. PointMamba [27] first attempted to introduce the Mamba
architecture based on the state space model to point clouds, but it still has high complexity and
parameters. In this paper, we focus on designing more efficient point cloud architectures specific to
pre-training models.

State Space Models. State Space Models [14–17, 42] (SSMs) originate from classical control
theory and have been introduced into deep learning as the backbone of state space transformations.
They combine the parallel training capabilities of CNNs with the fast inference characteristics of
RNNs, capturing long-range dependencies in sequences while maintaining linear complexity. The
Structured State-Space Sequence model [16] (S4) is a pioneer work for the deep state-space model in
modeling the long-range dependency. S5 [42] proposed based on S4 and introduces MIMO SSM
and efficient parallel scan. GSS [33] leverages the gating structure in the gated attention unit to
reduce the dimension of the state space module. Recently, Mamba [13] with efficient hardware design
and selective state space, outperforms Transformers [46] in terms of performance and efficiency.
Subsequent works [11, 26, 30, 31, 35, 49, 71] have attempted to introduce Mamba into the visual
domain, achieving significant improvements. For example, Vision Mamba [71] and VMamba [30]
directly apply Mamba to image processing and design corresponding scanning methods tailored for
image data. As for point cloud, PointMamba [27] is the first to introduce Mamba into point cloud
analysis, traversing the input sequences from the x, y, and z geometric directions. In this paper, we
introduce Mamba into the decoder for masked point modeling and discuss its advantages from an
information-theoretic perspective. Additionally, we propose a locally constrained feedforward neural
network for Mamba block to adaptively exchange information among geometrically adjacent patches
based on their implicit geometry.

5.3 Implementation Details

Top-K Attention Settings in Observation. In Figure 2, we replace the global attention computation
of all patch tokens in Self-Attention with top-K attention computation in both feature space and
geometric space to demonstrate the significant amount of redundant computation in the vanilla
Transformer. Specifically, after computing all global attention, we further compute a mask matrix.
We then add negative infinity to the attention values that need to be masked. After that, we calculate
the softmax, where the attention values that were set to negative infinity will become 0, ensuring
that the sum of the attention values of the unmasked top-K patches equals 1. We compute different
top-K values in both feature space and geometric space, and pretrain the corresponding models.
Subsequently, we fine-tune these pretrained models on the three variants of ScanObjectNN using the
same top-K attention algorithm, evaluating their accuracy on classification tasks. To minimize error,
we report the average accuracy over 10 repeated experiments.

Positional Encodings. To complement the 3D spatial information, we apply positional encodings
to all encoder and decoder layers. As shown in Figure 4, we first use the Encoder Positional Encoding
(EPE) to compute the positional encoding Ep for CV , which is then shared across all layers of the
encoder. In the decoding stage, we use the Decoder Positional Encoding (DPE) to calculate the
positional encoding for the unmasked CV and the masked patches CM . These positional encodings
are concatenated to form decoder positional encodings T p, which is shared across all layers of the
decoder. Following previous work [37, 60], we utilize a two-layer MLP to encode its corresponding
3D coordinates CV ∈ RrN×3 or CM ∈ R(1−r)N×3 into d-channel vectors Ep ∈ RrN×d or
T p ∈ RN×d, and element-wisely add them with the token features before feeding into the attention
layer.
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Token Embedding. We follow the approach of previous works [37, 60] and use a simple Point-
Net [39] to map the point patches PV ∈ RrN×K×3 from coordinate space to feature space
Es ∈ RrN×d. For Point-BERT [60], MaskPoint [28], Point-M2AE [65], and ACT [8], we use
the exact same embedding structures as described in their original papers. For Point-MAE [37],
we further simplify the embedding, using only a two-layer MLP with dimensions 3-128-384 as the
embedding, which further reduces the parameters and computational complexity, as shown in Table 1.

Object Classification. Due to significant differences in the settings used for downstream fine-tuning
tasks of point cloud classification on the ScanObjectNN [44] dataset in previous self-supervised
learning methods [8, 28, 37, 60, 65] , such as input point quantity, data augmentation, and the input
of the classification task head, we conducted extensive experiments to obtain a performance-friendly
downstream fine-tuning setting. Furthermore, we re-evaluated most of the previous methods under
our setting, while also conducting a fair comparison between our LCM model and the previous
Transformer model under our setting. We mark the results of our downstream fine-tuning setting with
an "• " in Table 1.

It can be observed that, compared to the results reported in the original paper, the fine-tuning results
using our downstream settings have achieved significant performance improvements. For instance,
Point-BERT has shown improvements of 5.34%, 3.62%, and 4.99% on the three variants of the
ScanObjectNN dataset, respectively. This improvement is surprising, indicating that there is further
potential to be explored in earlier self-supervised learning methods such as Point-BERT, Point-MAE,
etc.

Experiments Compute Resources. Due to the surprisingly lightweight and efficient of our LCM
model, we were able to complete the pre-training tasks using just a single 24GB NVIDIA GeForce
RTX 3090 GPU. For downstream classification and segmentation tasks, we used a single RTX 3090
GPU for each. For detection tasks, to accelerate training, we utilized four parallel RTX 3090 GPUs.

3D Object Detection. We pre-train and fine-tune Point-MAE for 3D object detection both on
ScanNetV2 [6]. In our detection experiments on ScanNetV2, we evaluate our model’s understanding
of scene-level tasks. Specifically, in the downstream detection fine-tuning experiments, we use
3DETR [34] as the baseline model and replace 3DETR’s pre-encoder and encoder with our embed
layer and compact encoder, respectively, while keeping all other training settings identical to 3DETR.
Unlike many previous methods [8, 28, 65] that require retraining models on ScanNet, we initialize
the embed layer and compact encoder with models pre-trained directly on ShapeNet [3]. While
this may result in some loss of performance due to the gap between ShapeNet and ScanNet data, it
demonstrates the universality of our pre-trained models.

5.4 Additional Experiments

Object Classification on ModelNet40. ModelNet40 [57] is a well-known synthetic point cloud
dataset, comprising 12,311 meticulously crafted 3D CAD models distributed across 40 categories.
Following previous work [37, 60, 65], for the ModelNet40 dataset, we sample 1024 points for
each instance and report overall accuracy with voting mechanisms. In ModelNet40, we no longer
differentiate between the results reported in the paper and our results, as we use the exact same
downstream fine-tuning settings as previous methods [8, 28, 37, 65]. Table 6 presents our experimental
results, and the overall conclusions are consistent with Section 4.2.1. Our LCM model outperforms
the Transformer architecture in terms of both efficiency and performance, indicating the superiority
of our model.

Effects of Locally Constrained K Value. We further explore the impact of using different numbers
of neighbors K in local constraints on performance and efficiency. K=1 indicates no consideration
of neighboring information. As K increases, the consideration of local geometry for each point
patch also increases, but so does the computational complexity. We train object classification from
scratch on the PB-RS-T50 variant of ScanObjectNN, and Figure 7 presents our ablation results. The
area of the circle represents the computational floating-point operations (FLOPs). We found that a
smaller K, such as 5, is sufficient to achieve satisfactory results in terms of performance and efficiency.
Performance initially increases slowly, but when K exceeds a certain threshold, it tends to decline.
This is mainly due to larger K values introducing excessive redundancy, thereby limiting the learning
capacity.
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Table 6: Classification accuracy on synthetic (ModelNet40) point clouds. In ModelNet40, following
previous work, we report the overall accuracy (%) with voting mechanisms. For a fair comparison,
we used the same downstream task settings as in previous studies.

Method #Params(M) FLOPs(G) ModelNet40

Supervised Learning Only

PointNet [39] 3.5 0.5 89.2
PointNet++ [40] 1.5 1.7 90.7
DGCNN [50] 1.8 2.4 92.9
PointMLP [32] 12.6 31.4 94.5
P2P-HorNet [51] 195.8 34.6 94.0
Transformer [27] 22.1 4.8 92.3
PointMamba [27] 12.3 - 92.4
Transformer [27] 22.1 2.4 92.3
LCM (Ours) 2.7 0.6 93.6

Self-Supervised Learning

Point-BERT [60] 22.1 2.3 93.2
CrossNet [56] 1.8 2.4 93.4
Inter-MAE [29] 22.1 2.3 93.6
MaskPoint [28] 22.1 2.3 93.8
Point-MAE [37] 22.1 2.4 93.8
Point-M2AE [65] 12.8 4.7 94.0
ACT [8] 22.1 2.4 93.7
PointGPT-S [5] 29.2 2.3 94.0
PointGPT-B [5] 120.5 18.1 94.2
PointMamba [27] 12.3 - 93.6
Point-BERT w/ LCM 3.1 1.3 93.8
MaskPoint w/ LCM 3.1 1.3 94.1
PointM2AE w/ LCM 2.5 1.7 94.1
ACT w/ LCM 3.1 1.4 93.9
Point-MAE w/ LCM 2.7 0.6 94.2

Figure 7: Effects of locally constrained K value.

Table 7: Effects of K-NN Space.

K Feature K-NN Geometry K-NN

1 85.70 85.81
5 87.65 88.06

10 87.51 88.17
20 87.20 88.20

Effects of K-NN Space. We further explored the impact of performing K-NN based on Euclidean
distance in both the feature space and the geometric space of our compact encoder. Geometric K-NN
in the geometric space imposes explicit geometric constraints, serving as a static importance measure
that greatly benefits point cloud analysis. Searching for K-NN based on feature Euclidean distance in
the feature space can be considered a simple form of dynamic importance. We analyzed the effect
of this approach on point cloud classification from scratch on ScanObjectNN, evaluating geometric
K-NN and feature K-NN at different K values.

As shown in Table 7, we found that feature K-NN performed consistently lower than geometric K-NN
in almost all cases. This result suggests that the naive idea of assigning dynamic importance to point
patches based on Euclidean distance in the feature space does not lead to substantial improvements.
Efficient computation of dynamic importance for each point patch remains an area for further
exploration.

Effects of Patch Order and LCFFN for Mamba-based Decoder. The ordering of input patches
significantly impacts our Mamba-based Decoder. To more effectively illustrate this effect on Mamba’s
SSM model, we analyze the issue from a different perspective. Specifically, we use our Mamba-
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(a) The Effect of Sequence Order on Mamba Model (b) Times of Different Sequence Lengths

Figure 8: Training and testing curves for different encoders trained from scratch. We present the
training and testing curves for both the classification task on ScanObjectNN and the detection task on
ScanNetV2. All encoders were not pretrained.

based Decoder as an Encoder to directly extract features from the input point cloud and perform
classification on ScanObjectNN. This substitution is straightforward, as our Mamba-based Decoder
can also be viewed as an Encoder.

We trained our Mamba-based encoder from scratch for the classification task on the PB-RS-T50
variant of ScanObjectNN without using any data augmentation strategies, and we took the average of
ten repeated experiments as the final result. We first experimented with a naive Mamba-based decoder
using a traditional FFN to illustrate the impact of different sequence orders on the original Mamba.
We selected four different patch ordering methods: sorting by the center point of the patch along the
x-axis (X), y-axis (Y), and z-axis (Z), and Hilbert curve [24] ordering (H), as shown by the orange
curve in Figure 8 (a). Furthermore, we also conducted experiments with combinations sequences,
combining these four orderings "H+X+Y+Z (HXYZ)", "X+Y+Z+H (XYZH)", "Y+Z+H+X (YZHX)",
and "Z+H+X+Y (ZHXY)", as shown by the green curve in Figure 8 (a). Finally, based on the single-
order sequence, we used our proposed LCFFN to demonstrate the performance of Mamba with added
implicit geometric constraints, as shown by the yellow curve in Figure 8 (a). The experimental results,
as illustrated in Figure 8, lead us to the following conclusions:

1) The performance of the Mamba model is greatly influenced by the different orders of input patches.
The orange line represents the results for individual sequences, highlighting that different sequences
have a significant impact on the final model performance. For example, the Y-order achieves the
highest classification accuracy at 82.34%, while the Hilbert order performs the worst at 80.65%,
resulting in a difference of 1.69%.

2) The more combinations of sequences, the better the representation of point cloud geometry, result-
ing in improved performance, but also increased computational complexity. The green line represents
the combinations sequences. While different combinations sequences do affect the final model
performance, the impact is relatively minor. This indicates that the Mamba model can compensate for
information across different sequences, allowing it to capture nearly complete geometric information
for each patch. Consequently, this significantly enhances the model’s performance. However, this
approach leads to a significant increase in computational complexity due to the increase in the length
of the input sequence, as shown in Figure 8 (b). The processing time for the sequences of the four
orders is approximately 3× longer than that of a single order.

3) Introducing LCFFN allows for better perception of point cloud geometry through implicit local
geometric constraints, thereby mitigating the dependence on sequence order. The yellow line
represents the experimental results of using LCFFN to replace FFN for single-order input. It can be
observed that the overall classification accuracy is significantly improved, surpassing the combinations
sequence in the y-order and showing only slight differences from the combinations sequence in other
orders. Moreover, in terms of runtime efficiency, as shown in Figure 8 (b), our single-order + LCFFN
method exhibits a considerable improvement compared to the combinations sequence, indicating the
superiority of our design.
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5.5 Additional Visualization

Effects of the Compact Encoder from the Perspective of Overfitting. While our compact encoder
has fewer parameters compared to Transformer-based encoders, its performance surpasses that of
Transformer-based encoders [46], as analyzed in Section 4.2.1. One significant reason for this lies
in the reduced risk of overfitting in downstream tasks due to the redundancy reduction. Given the
challenging nature of acquiring point cloud data, existing point cloud datasets for downstream tasks
are often small, such as ScanObjectNN [44] and ModelNet40 [57], each comprising just over 10,000
point clouds, and ScanNetV2 [6] with only 1,000 scenes. These dataset sizes are much smaller than
those commonly found in image and language tasks. Therefore, fine-tuning in these size-limited
datasets can be more prone to overfitting when considerable redundancy exists in the computation.

We visualize the training and testing curves for different encoders on the classification task in
ScanObjectNN and the detection task in ScanNetV2 in Figures 9 and 10. Figure 9 illustrates
the classification and detection curves for our compact encoder and a Transformer-based encoder
after pretraining. It can be observed that during training, the classification accuracy and AP25
metric of the Transformer-based encoder are significantly higher than those of our compact encoder.
However, during testing, our compact encoder exhibits superior performance compared to the
Transformer encoder. This starkly indicates that the Transformer-based encoder tends to overfit the
training set, demonstrating poorer generalization. Conversely, our compact encoder displays stronger
generalization capabilities, indicating the superiority of the design of our compact encoder.

Train:   Transformer Encoder > Compact Encoder

Test: Compact Encoder > Transformer Encoder 

Figure 9: Training and testing curves of different pre-trained encoders. We present the training and
testing curves for both the classification task on ScanObjectNN and the detection task on ScanNetV2.
All encoders are pre-trained.

Figure 10 displays the classification and detection curves of our compact encoder and the Transformer-
based encoder trained from scratch. In comparison to its counterpart in Figure 9, although it shows a
slower convergence, the overfitting issue of the Transformer-based encoder still emerges in the late
stages of training, reaffirming our conclusion. Meanwhile, the phenomenon of slow convergence in
Figure 10 is reasonable as it is an encoder trained from scratch without a better initialization.

t-SNE Visualization. We further used t-SNE [45] to visualize the feature distributions extracted by
our LCM model and the Transformer. In Figure 11, we visualized the two-dimensional (2D) feature
distributions of the two models, pretrained using Point-MAE, when directly transferred to the test set
of the ModelNet40 [57] dataset without downstream fine-tuning. In Figure 12, we visualized the 2D
feature distributions of the two pre-trained models after fine-tuning on the most challenging variant
of the ScanObjectNN [44] dataset, PB-RS-T50, using its test set.

In the 2D t-SNE visualizations, instances from the same category tend to be distributed in relatively
clear and tight clusters. The compactness of the feature distributions of different instances from
the same category can be viewed as the model’s ability to represent features of the same category.
A more compact distribution indicates a stronger modeling capability. As shown in Figure 11 and
Figure 12, our LCM model achieves more compact feature distributions for instances of the same
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Train:   Transformer Encoder > Compact Encoder

Test: Compact Encoder > Transformer Encoder 

Figure 10: Training and testing curves for different encoders trained from scratch. We present the
training and testing curves for both the classification task on ScanObjectNN and the detection task on
ScanNetV2. All encoders were not pretrained.

category compared to the Transformer model in most cases, indicating that our LCM model has a
stronger ability to model the general representations of the same category.

Label 7 Label 0

Label 35

LCM (Ours) Transformer

Figure 11: The feature distribution visualization
of the pre-trained models on the test set of Mod-
elNet40.

Label 3

Label 4

LCM (Ours) Transformer

Label 13

Figure 12: The feature distribution visualiza-
tion of the fine-tuned models on the test set of
ScanObjectNN.

5.6 Broader Impacts and Safeguards

Our designed compact point cloud network will greatly facilitates the deployment of existing point
cloud pre-training models on resource-constrained devices, which would significantly advance
existing point cloud applications. However, the proliferation of more point cloud applications may
lead to privacy data leaks, such as personal housing layout point cloud leaks, and human feature point
cloud leaks. Therefore, we advocate for the implementation of strict security measures during the
actual deployment of applications to prevent malicious access or tampering of data. Below are some
corresponding measures:

1) Access Control: Implement stringent access control policies to restrict data access to authorized
users or systems only.

2) Data Encryption: Utilize robust encryption algorithms to encrypt sensitive point cloud data during
transmission and storage, ensuring its security against unauthorized access.

3) Anonymization: Anonymize sensitive information whenever possible to reduce the risk of data
leaks. For instance, remove or blur identifiable information, retaining only essential data for analysis.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our abstract and introduction illustrate our contribution and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations in Section 4.4.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

22



Justification: Our assumptions and proofs are in Section 5.1.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We discuss the experimental information in section 4 and 5.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We have provided the complete code, checkpoints, and running instructions.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all the experimental training and test details in Section 4 and 5.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We report the average of the experiment results and therefore do not report
error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We detail the compute resources in Section 5.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research of our study complies with the NeurIPS ethical guidelines in all
aspects.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We illustrate this impacts in 5.6

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: We illustrate some solution in 5.6
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have correctly cited the assets used in the paper and adhered to their
licenses.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [No]
Justification: We will release all newly generated assets from the paper, including code and
models, after the paper is accepted.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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