
Supplimentary material

A Visualization of Mask Generator

We have visualized some masks generated by the trained mask generator in Figure 11. It can be seen
that the mask generator can dispatch suitable mask granularity to proper speech granularity to some
extent. With more semantics utterance around, the mask becomes more meticulous, with the slices
being distributed accordingly.

“i want a coffee” “remind me the day before my car is due” show me nearby musical events mention   event   in   calendar   with   others

Figure 11: Illustration of the generated masks on audios selected randomly from SLURP. Local
utterances are efficiently disrupted according to different transcripts patterns as highlighted within.

B Additional Experiments

Active Inpainting Attacks. We have implemented two active reconstruction adversaries and
demonstrated our efficiency in defending against them. U-Net is a traditional inpainting model
based on convolutional U-Net structure, commonly used in literature to reconstruct missing audio
signals. We utilize the SLURP training set and their masked counterparts to train the inpainting
model from scratch to reconstruct the missing audio. CQT-Diff is a neural diffusion model with
an invertible Constant-Q Transform (CQT) to leverage pitch-equivariant symmetries, allowing it to
effectively reconstruct audio without retraining. The reconstructed audio is sent to Whisper for au-
tomatic recognition. The visualizations of reconstructed waveforms are shown in Figure 12. The
updated evaluation results under attacks are summarized in the table below.
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Figure 12: The reconstructed waveforms of different active inpainting attacks. Dataset: SLURP.

Detailed analysis of FSC dataset. We conducted further experiments on the Fluent Speech Com-
mands (FSC) dataset, another widely used dataset for spoken language understanding research. The
FSC dataset includes 97 speakers and 30,043 relevant utterances. We split the data, using 20% for
testing and the remaining 80% for training. The results are shown in Table 2. The table shows
that SILENCE achieves 99.1% SLU accuracy, with a 81.4% WER-ASR, outperforming all baselines.
The results are consistent with the SLURP dataset, demonstrating the robustness of SILENCE across
different datasets.
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AllOffloaded VAE PPSLU Local Random SILENCE
ACC-SLU (%) 99.7 98.3 99.2 99.7 86.4 99.1
WER-ASR (%) 1.2 65.5 78.5 100 76.6 81.4

Table 2: Evaluation of privacy preservation and SLU performance on FSC dataset.

Integration with conventional SLU methods. We applied our algorithm to conventional modu-
larized SLU models. The experimental results, shown in Table 3, demonstrate that when both the
ASR and NLU modules are fine-tuned as required, the conventional modularized SLU model can
recognize intent correctly when fed with masked audio. The detailed results are summarized in the
table below:

Plaintext VAE PPSLU NLU only (Ours) Decoupled SLU (Ours) E2E SLU (Ours)
SLU-ACC (%) 87.2 72.5 74.5 12.6 89.1 81.1

Table 3: System performance on conventional modularized SLU.

Effect of mask granularity at various speech granularity. We included two more fine-grained
speech understanding tasks: action and the combined intent (scenario_action) recognition. There
are 18 different scenarios and 46 defined actions, resulting in 828 possible combinations for intend.
As shown in Table 4, our method can recognize speech intent at different granularities. For example,
we can correctly recognize 76.8% of the combined intent. In comparison, disentanglement-based
methods need to re-entangle representations for different semantic granularities. Thus, the classifier
used for scenario classification cannot be applied to other intents, and these methods are not de-
signed to preserve the sensitive information within command audios. This emphasises a significant
advantage of our approach, as it does not require retraining the model for different intent granulari-
ties.

AllOffloaded VAE PPSLU OnDevice Ours
ACC-Scenario (%) 88.2 72.8 73.9 88.2 80.2
ACC-Action (%) 77.1 / / 77.1 76.4
ACC-Intent (%) 83.3 / / 83.3 76.8
WER-SLU (%) 14.7 / / 100 68.6
WER-ASR (%) 12.3 69.3 75.3 100 68.1

Table 4: Comparison between Privacy-preservation and SLU performance at different speech gran-
ularities. ‘/’ means not supported. Local leaks no words as nothing is uploaded.
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