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Abstract

Time-series data in real-world settings typically exhibit long-range dependencies
and are observed at non-uniform intervals. In these settings, traditional sequence-
based recurrent models struggle. To overcome this, researchers often replace
recurrent architectures with Neural ODE-based models to account for irregularly
sampled data and use Transformer-based architectures to account for long-range
dependencies. Despite the success of these two approaches, both incur very high
computational costs for input sequences of even moderate length. To address this
challenge, we introduce the Rough Transformer, a variation of the Transformer
model that operates on continuous-time representations of input sequences and
incurs significantly lower computational costs. In particular, we propose multi-view
signature attention, which uses path signatures to augment vanilla attention and to
capture both local and global (multi-scale) dependencies in the input data, while
remaining robust to changes in the sequence length and sampling frequency and
yielding improved spatial processing. We find that, on a variety of time-series-
related tasks, Rough Transformers consistently outperform their vanilla attention
counterparts while obtaining the representational benefits of Neural ODE-based
models, all at a fraction of the computational time and memory resources.

1 Introduction

Real-world sequential data in areas such as healthcare [65], finance [36], and biology [28] often are
irregularly sampled, of variable length, and exhibit long-range dependencies. Furthermore, these
data, which may be drawn from financial limit order books [8] or EEG readings [85], are often
sampled at high frequency, yielding long sequences of data. Hence, many popular machine learning
models struggle to model real-world sequential data, due to input dimension inflexibility, memory
constraints, and computational bottlenecks. Rather than treating these data as discrete sequences,
effective theoretical models often assume data are generated from some underlying continuous-time
process [53, 66]. Hence, there is an increased interest in developing machine learning methods that
use continuous-time representations to analyze sequential data.

One recent approach to modelling continuous-time data involves the development of continuous-time
analogues of standard deep learning models, such as Neural ODEs [12] and Neural CDEs [45],
which extend ResNets [37] and RNNs [30], respectively, to continuous-time settings. Instead of
processing discrete data directly, these models operate on a latent continuous-time representation
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of input sequences. This approach is successful in continuous-time modelling tasks where standard
deep recurrent models fail. In particular, extensions of vanilla Neural ODEs to the time-series setting
[70, 45] succeed in various domains such as adaptive uncertainty quantification [59], counterfactual
inference [79], or generative modelling [7].

In many practical settings, such as financial market volatility [20, 54] or heart rate fluctuations [35],
continuous-time data also exhibit long-range dependencies. That is, data from the distant past may
impact the system’s current behavior. Deep recurrent models struggle in this setting due to vanishing
gradients, whereas continuous-time analogues of these models have been shown to address this
difficulty [46]. Several recent works [52, 58] also successfully extract long-range dependencies
from sequential data with Transformers [86], which learn temporal dependencies of a tokenized
representation of input sequences. Extracting such temporal dependencies requires a positional
encoding of input data, because the attention mechanism is permutation invariant, which projects data
into some latent space. The parallelizable nature of the Transformer allows for rapid training and
evaluation on sequences of moderate length and it contributes to its success in fields such as natural
language processing (NLP).
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Figure 1: A representation of
the multi-view signature. The
continuous-time path is irregularly
sampled at points marked with a red
x. The local and global signatures of
a linear interpolation of these points
are computed and concatenated to
form the multi-view signature. The
multi-view signature transform con-
sists of L multi-view signatures.

While the above approaches succeed in certain settings, several
limitations hinder their wider applications. On the one hand,
Neural ODEs and their analogues [45, 70] bear substantial
computational costs when modelling long sequences of high
dimension; see [57]. On the other hand, Transformers operate
on discrete-time representations of input sequences, whose rel-
ative ordering is represented by the positional encoding. This
representation may inhibit their expressivity in continuous-
time data modelling tasks [91]. Moreover, Transformer-based
models suffer from a number of difficulties, including (i) in-
put sequences must be sampled at the same times, (ii) the
sequence length must be fixed, and (iii) the computational cost
scales quadratically in the length of the input sequence. These
difficulties severely limit the application of Transformers to
continuous-time data modelling.

Contributions 1) We introduce Rough Transformers, a variant
of the Transformer architecture amenable to the processing of
continuous-time signals, which can be easily integrated into
existing code-bases. The Rough Transformer is built upon
the path signature from Rough Path Theory [51]. We define a
novel, multi-scale transformation which projects discrete input
data to a continuous-time path and compresses the input data
with minimal information loss. Moreover, this transformation
is an efficient feature representation of continuous-time paths,
because linear functionals of path signatures approximate con-
tinuous functions of paths arbitrarily well (see Theorem A.2
in Appendix A).

2) We introduce the multi-view attention mechanism to extract
both local and global dependencies of very long time-series
efficiently. This mechanism operates directly on continuous-
time representations of data without the need for expensive
numerical solvers or constraints on the smoothness of the data
stream. Moreover, the multi-view attention mechanism is
provably robust to irregularly sampled data.

3) We carry out extensive experimentation on long and irregularly sampled time-series data. In
particular, we show that Rough Transformers (i) improve the learning dynamics of the Transformer,
making it more sample-efficient and allowing it to achieve better out-of-sample results, (ii) reduce
the training cost by a factor of up to 25× when compared with vanilla Transformers and more
when compared with Neural ODE based architectures, (iii) maintain similar performance when data
are irregularly sampled, where traditional recurrent-based models suffer a substantial decrease in
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performance [70], and (iv) yield improved spatial processing, accounting for relationships between
different temporal channels without having to pre-define a specific inter-channel relation structure.

2 Background and Methodology

Problem Formulation. In many real-world scenarios, sequential data are time-series sampled
from some underlying continuous-time process, so datasets consist of long, irregularly sampled
sequences of varied lengths. In these settings, the problem of sequence modelling is described as
follows. Let C(R+;Rd) = {g : R+ → Rd | g continuous}, and consider X̂ ∈ C(R+;Rd) which we
call a continuous-time path. A time-series of length L with sampling times TX = {ti}Li=1 ⊂ R+

is defined as X = ((t1, X1), ..., (tL, XL)), where Xi = X̂(ti) ∈ Rd. Now, define a continuous
function on paths f : C(R+;Rd) → Rk. Next define a dataset D =

{
(Xi, f(X̂i))Ni=1

}
. We seek to

approximate the function f from the set D for some downstream task. Importantly, we do not assume
that TX = TY for all X,Y ∈ D, so that D may be irregularly sampled.

Sequence Modelling with Transformers. Transformers are used extensively as a baseline architec-
ture to approximate functions of discrete-time sequential data and are successfully applied to settings
when input sequences are fixed in length, relatively short, and sampled at regular intervals. First, the
Transformer projects input time series X ∈ RL×d to a high-dimensional space X 7→ T (X) ∈ RL×d′

for d′ >> d using some linear positional encoding T : RL×d → RL×d′
. Next, a latent repre-

sentation of the encoded sequence is learned by a multi-headed self-attention mechanism which
splits T (X) into H distinct query, key, and value sequences: Qh = T (X)WQ

h , Kh = T (X)WK
h ,

Vh = T (X)WV
h , respectively, with h = 1, ...,H and weight matrices WQ

h ,WK
h ,WV

h ∈ Rd′×d′
.

The multi-head self-attention calculation for each head is given by

Oh = softmax

(
QhK

⊺
h√

dk

)
Vh , (1)

and the latent representation is projected to the output space Rk using a multi-layer perceptron (MLP).

The input length L of the MLP and the Transformer is fixed by assumption. To evaluate the
Transformer on a time-series X with |TX| ≠ n, one must perform some transformation (interpolation,
extrapolation, etc.) which may degrade the performance of the model. Furthermore, the memory and
time complexity of the Transformer is of order O(L2d), which presents a substantial difficulty in
modelling long sequences.

Rough Path Signatures. Broadly, the difficulties faced by the Transformer in modelling time-
series stem from time-series being sampled from underlying continuous-time objects, while the
attention mechanism underpinning the Transformer is designed to model discrete sequences. To
address these difficulties, Rough Transformers augment standard Transformers by lifting the input
time-series to the space of continuous-time functions and performing the self-attention calculation in
this infinite-dimensional space. To achieve this, we use the path signature from Rough Path Theory.

For a continuous-time path X̂ ∈ C1
b (R+;Rd) and times s, t ∈ R+, the path signature of X̂ from s to

t, denoted S(X̂)s,t, is defined as follows. First, let

Id = {(i1, ..., ip) : ij ∈ {1, ..., d} ∀ j and p ∈ N} (2)

denote the set of all d-multi-indices and In
d = {I ∈ Id : |I| = n}. Next, set S(X̂)0s,t := 1 and for

any I ∈ Id, define

S(X̂)Is,t =

∫
s<u1<...<up<t

˙̂
X

i1
(u1) · · · ˙̂

X
ip
(up) du1 . . . dup , (3)

where ˙̂
X

j

= dX̂j/dt. Abusing notation, define level n of the signature as

Sn(X̂)s,t =
{
S(X̂)Is,t : I ∈ In

d

}
. (4)
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and define the signature as the infinite sequence

S(X̂)ns,t = (S(X̂)0s,t, S(X̂)1s,t, ..., S(X̂)ns,t, ...) . (5)

Finally, define the truncation of the signature S(X̂)≤n
s,t = (S(X̂)0s,t, ..., S(X̂)ns,t), where S(X̂)ns,t

can be interpreted as an element of the extended tensor algebra of Rd:

T ((Rd)) =
{
(a0, ..., an, ...) : an ∈ Rd⊗n

}
. (6)

Analogously, we say that S(X̂)≤n
s,t ∈ T ((Rd))≤n. A central property of the signature is that is

invariant with respect to time-reparameterization [51]. That is, let γ : [0, T ] → [0, T ] be surjective,
continuous, and non-decreasing. Then we have

S(X̂)0,T = S(X̂ ◦ γ)0,T , (7)

which will be crucial to demonstrate the Rough Transformer’s robustness to irregularly sampled data.

In contrast to wavelets or Fourier transforms, which parameterize paths on a functional basis, the
signature provides a basis for functions of continuous paths. Hence, the path signature is well-suited
to sequence modelling tasks in which one seeks to learn a function of the underlying functional. For
a more rigorous presentation of signatures and a description of additional properties, see Appendix A
and Lyons et al. [51].

3 Rough Transformers

Now, we construct the Rough Transformer, a Transformer-based architecture that operates on
continuous-time sequential data by means of the path signature.

Let D be a dataset of irregularly sampled time-series. To project a discretized time-series X ∈ D to
a continuous-time object, let X̃ denote the piecewise-linear interpolation of X.2 Next, for tk ∈ T ,
define the multi-view signature

M(X)k :=
(
S(X̃)0,tk , S(X̃)tk−1,tk

)
. (8)

In what follows, we refer to the components
(
S(X̃)0,tk , S(X̃)tk−1,tk

)
as global and local, respec-

tively; see Figure 1. Intuitively, one can interpret the global component as an efficient representation
of long-term information (see Theorem A.2 in Appendix A), and the local component as a type of
convolutional filter that is invariant to the sampling rate of the signal. Now, define the multi-view sig-
nature transform M(X) = (M(X)1, ...,M(X)L̄) , and denote by M(X)≤n the truncated signature
for a truncation level n. Next, define the multi-view attention mechanism, which uses the multi-view
signature transform to extend the standard attention mechanism to the space of continuous functions
[51]. First, fix a truncation level n ∈ N, and let d̄ ∈ N be such that M(X)≤n

k ∈ Rd̄. For h = 1, ...,H

let W Q̃,K̃,Ṽ
h ∈ Rd̄×d̄′

for some d̄′ ∈ N, and let

Q̃h = M(X)≤nW Q̃
h , K̃h = M(X)≤nW K̃

h , Ṽh = M(X)≤nW Ṽ
h . (9)

Then, the attention calculation is given by

Oh = softmax

(
Q̃hK̃

⊺
h√

d̄′

)
Ṽh . (10)

Notice that the attention calculation is similar to (1), however, we stress that the multi-view attention
is built on continuous-time objects, the signatures, while the standard attention mechanism acts
on discrete objects. The multi-view signature provides a compressed representation of the time
series, minimizing the computational costs associated to quadratic scaling without excessive loss of
representational capacity, see Appendix F.

2Any continuous-time interpolation of X can be used, e.g., splines. However, the signature computation of
piecewise-linear paths is particularly fast; see Appendix A.

4



0 2000 4000 6000 8000 10000
Input Length

0

1000

2000

3000

4000

5000

S
/
E

Transformer

ContiFormer

RFormer (Online)

RFormer (Offline)

NCDE

NRDE

0 2000 4000 6000 8000 10000
Input Length

2−1

23

26

29

212

S
/E

 (
L
o
g
 S

ca
le

)

Transformer

ContiFormer

RFormer (Online)

RFormer (Offline)

NCDE

NRDE

27 28 210 212 213

Input Length (Log Scale)

2−1

23

26

29

212

S
/
E

 (
L
o
g 

S
ca

le
)

Transformer

ContiFormer

RFormer (Online)

RFormer (Offline)

NCDE

NRDE

Figure 2: Seconds per epoch for growing input length and for different model types on the sinusoidal
dataset. Left: Log Scale. Middle: Regular Scale. Right: Log-log scale. When a line stops, it
indicates an OOM error.

3.1 Advantages of Rough Transformers

Computational Efficiency. As demonstrated in Section 4, multi-view attention mechanism can
substantially reduce the computational cost of vanilla Transformers. In particular, the attention
calculation decreases from O(L2 d) in the vanilla case to O(L

2
d), where L << L with Rough

Transformers. This enables both faster wall-clock training time and the ability to process long input
sequences which would otherwise yield out-of-memory errors for the vanilla Transformer, see Figure
2. Moreover, the multi-view attention mechanism does not require backpropagation through the
signature calculation, which can be computed offline. This is significantly more computationally
efficient compared with the complexity of computing signatures batch-wise in every training step.
Finally, the signature of piecewise-linear paths can be computed explicitly, see Appendix A, and
there are a number of Python packages devoted to optimized signature calculation [43, 68].

Variable Length and Irregular Sampling. The multi-view signature transform underpinning Rough
Transformers is evaluated by constructing a continuous-time interpolation of input data and computing
a series of iterated integrals of this interpolation. The bounds of these integrals are a fixed set of
time points, meaning that the sequence length of the multi-view attention mechanism is fixed and
independent of the sequence length of input samples. Furthermore, the following proposition shows
that the output of the Rough Transformer for two (possibly irregular) samplings of the same path is
similar.

Proposition 3.1. Let T be a Rough Transformer. Suppose X̂ : [0, T ] → Rd is a continuous-time
process, and let γ : [0, T ] → [0, T ] denote a time-reparameterization. Suppose X and X′ are
samplings of X̂ and X̂ ◦ γ, respectively. Then T(X) ≈ T(X′).

Proof. By (7), S(X̂)s,t = S(X̂ ◦ γ)s,t for all s, t ∈ [0, T ]. Hence, one has M(X1) ≈ M(X2).
Finally, T(X1) ≈ T(X2) because the attention mechanism and final MLP are both continuous.

Hence, the Rough Transformer is robust to irregular sampling. In many tasks, the sampling times
convey important information about the time-series. In these settings, one may augment the input
time-series with its sampling times, that is, write X = ((t0, X0), ..., (tL, XL)).

Spatial Processing. While an interpolation of input data could be sampled to make vanilla Trans-
formers independent of the length of the input sequence, important locality information could be lost,
see Appendix F.2. Instead, Rough Transformers summarize spatial interactions between channels
by means of the multi-view signature transform. One may notice that in (5), the dimension of
the signature grows exponentially in the level of the signature n. In particular, when Xi ∈ Rd,
|S(X̃)≤n

0,t | =
d(dn−1)

d−1 = O(dn), so the multi-view attention calculation is of order O(L̄2dn). In
many practical time-series modelling problems, however, the value of d is not very large. The
signature terms also decay factorially in the signature level n (see Proposition A.3 in Appendix A),
so in practice, one may take the value of n to be small without sacrificing performance. The majority
of computational savings result from the reduction of the sequence length to L̄, and in practice, we
take L̄ << L.

When the dimension d is large, there are three possible remedies to maintain computational efficiency.
First, instead of computing the signature in M(X)k = (S(X)0,tk , S(X̃tk−1,tk), one may compute
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the log-signature, which is a compressed version of the signature [67]. When the dimension is
large enough such that the log-signature is computationally infeasible, one may instead compute the
univariate signatures of features coupled with the time channel. That is, consider X̂ ∈ C([0, T ];Rd),
with X̂(t) = (X̂1(t), ..., X̂d(t)). Denote the time-added function Xi(t) := (t, X̂i(t)). Then we
define the univariate multi-view signature

M̂(X̂)k =
(
M(X1)k, ...,M(Xd)k

)
. (11)

The attention mechanism in this case is constructed as before. Fixing the maximum signature depth
to be some value n∗, one sees that the number of features in the univariate multi-view signature is
approximately 2n

∗
d. In practice we find that n∗ ≤ 5 provides sufficient performance, so the order

of the attention calculation is O(C L̄2 d) for C ≤ 2n
∗
. Finally, one may use randomized signatures

to reduce dimension by using a Johnson-Lindenstrauss-type projection to a low-dimensional latent
space and computing the signature in this space, as in [21, 19].

4 Experiments
In this section, we present empirical results for the effectiveness of the Rough Transformer, hereafter
denoted RFormer, on a variety of time-series-related tasks. Experimental and hyperparameter details
regarding the implementation of the method are in Appendices C and D. We consider long multivariate
time-series as our main experimental setting because we expect signatures to perform best in this
scenario. Additional experimentation on long-range reasoning tasks on image-based datasets is left
for future work, as these would likely require additional inductive biases.

To benchmark RFormer, we consider both discrete-time and continuous-time models. In particular,
we include as main baselines traditional RNN models (GRU [15]), ODE-based methods designed
for sequential data (Neural-CDE [45]), as well as ODE-based methods explicitly designed for long
time-series (Neural-RDE [57]).3 Furthermore, we compare against a vanilla Transformer [86]
which is the RFormer backbone. Finally, we present comparisons with a recent continuous-time
Transformer model, ContiFormer [13], to highlight the computational efficiency gap between
RFormer and similar continuous-time models. We note that the first two tasks focus on evaluating
the performance improvement of RFormer over the Transformer baseline. For other long-range
tasks, we include comparisons to recent state-space models [31, 62, 81]. In the irregular sampling
regime, we benchmark against state-of-the-art models tailored to that setting [61, 78]. See Appendix
B for additional discussion on related models and more details about our experimental choices.

4.1 Time Series Processing
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Figure 3: Test accuracy per epoch for the frequency
classification task across three random seeds. Left:
Sinusoidal dataset. Right: Long Sinusoidal dataset.

Frequency Classification. Our first exper-
iment is based on a set of synthetically gen-
erated time series from continuous paths of
the form

X̂(t) = g(t) sin(ω t+ ν) + η(t) , (12)

where g(t) is a non-linear trend component,
ν and η are two noise terms, and ω is the
frequency. Here, the task of the model is to
classify the time-series according to its fre-
quency ω. We consider 1000 samples in 100
classes with ω evenly distributed from 10 to
500. Each time-series is regularly sampled
with 2000 times-steps on the interval [0, 1].
This synthetic experiment is similar to others in recent work on time-series modelling [49, 89, 55].
We include an additional experiment in which we alter the signal in (12) so its frequency is ω0 for
t < t0 and ω1 afterward, where the task is to classify the sinusoid based on the first frequency. We
call this dataset the “long sinusoidal" dataset. This extension of the original experiment aims to test
the ability of the model to perform long-range reasoning effectively. Note that for this task, we also
add ODE-RNN [70] to the previously mentioned baselines.

3We only benchmark Neural-CDE models in settings where time series are of relatively short length, due to
the computational demands of this model for longer sequences.
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Table 1: Test RMSE (mean ±
std) computed across five seeds
on the Heart Rate (HR) dataset.

Model HR

RMSE ↓
ODE-RNN⋄ 13.06 ± 0.00
Neural-CDE⋄ 9.82 ± 0.34
Neural-RDE⋄ 2.97 ± 0.45

GRU† 13.06 ± 0.00
ODE-RNN† 13.06 ± 0.00

Neural-RDE† 4.04 ± 0.11
Transformer 8.24 ± 2.24
ContiFormer OOM

RFormer 2.66 ± 0.21

Figure 3 shows that the inclusion of both local and global in-
formation with the multi-view signature enhances the sample
efficiency of the RFormer over the vanilla Transformer model,
even though the attention mechanism is now operating on a much
shorter sequence. When compared with other models, we see that
GRU and ODE-RNN fail to capture the information in the signal, and
are not able to obtain any meaningful performance improvement
throughout the training period. This highlights the shortcomings
of most RNN-based models when processing sequences of mod-
erate length, which are very common in real-world applications.
Both Neural-CDE and Neural-RDE capture some useful depen-
dencies in the time series but fall short compared with both vanilla
Transformer and RFormer.

HR dataset. Next, we consider the Heart Rate dataset from the
TSR archive [83], originally sourced from Beth Israel Deaconess
Medical Center (BIDMC). This dataset consists of time-series
sampled from patient ECG readings, and each model is tasked to
perform a regression by forecasting the patient’s heart rate (HR) at
the sample’s conclusion. The data, sampled at 125Hz, consists of three-channel time-series (including
time), each spanning 4000 time steps. We used the L2 loss metric to assess the performance. Table
1 shows the results, where ⋄ denotes the results from Morrill et al. [57] and † our reproduction.
The sequences in the HR dataset are sufficiently short to remain within memory when running
the Transformer model. The baseline Transformer model improves over GRU, and ODE-RNN,
however, it is less competitive when compared with Neural-RDE, suggesting that the Transformer is
not particularly well-suited for this type of task. However, the RFormer model improves over the
baseline Transformer by 67%. Across all tasks, we see significant improvements in efficiency as
a consequence of the signature computation. We elaborate on this in more detail in the following
subsection.

Long Time Series Classification. We now evaluate the performance of RFormer on five long time
series classification tasks from the UEA time series classification archive [3]. A summary of these
datasets is provided in Table 13 in Appendix E. As previously done in [57], the original train and test
datasets are merged and then randomly divided into new train, validation, and test sets, following a
70/15/15 split. The resulting performance metrics are summarized in Table 2.4

In this setting, we see that RFormer generally matches or slightly outperforms the continuous-time
and SSM baselines. Due to the scaling problems of ContiFormer with respect to sequence length,
we were unable to run this baseline within GPU memory constraints in most cases, and thus no results
are reported (see Appendix G.2 for efficiency comparisons between models). In contrast, RFormer
can cheaply train on the same device (see Section 4.2 for details) due to its ability to take advantage
of the parallel nature of GPU processing and compress the original time series. This is especially
noticeable when compared to continuous-time models (Neural-CDE, Neural-RDE, LogCDE), which
are sometimes orders of magnitude slower than our model and consistently report lower or similar
results. Additional experimental details can be found in Appendix G, as well as some experiments on
hyperparameter sensitivity.

Table 2: Classification performance on various long context temporal datasets from UCR TS archive.
Dataset LRU S5 S6 Mamba NCDE NRDE LogNCDE Transformer RFormer

SCP1 82.6 ± 3.4 89.9 ± 4.6 82.8 ± 2.7 80.7 ± 1.4 79.8 ± 5.6 80.9 ± 2.5 83.1 ± 2.8 84.3 ± 6.3 81.2 ± 2.8
SCP2 51.2 ± 3.6 50.5 ± 2.6 49.9 ± 9.5 48.2 ± 3.9 53.0 ± 2.8 53.7 ± 6.9 53.7 ± 4.1 49.1 ± 2.5 52.3 ± 3.7
MI 48.4 ± 5.0 47.7 ± 5.5 51.3 ± 4.7 47.7 ± 4.5 49.5 ± 2.8 47.0 ± 5.7 53.7 ± 5.3 50.5 ± 3.0 55.8 ± 6.6
EW 87.8 ± 2.8 81.1 ± 3.7 85.0 ± 16.1 70.9 ± 15.8 75.0 ± 3.9 83.9 ± 7.3 85.6 ± 5.1 OOM 90.3 ± 0.1
ETC 21.5 ± 2.1 24.1 ± 4.3 26.4 ± 6.4 27.9 ± 4.5 29.9 ± 6.5 25.3 ± 1.8 34.4 ± 6.4 40.5 ± 6.3 34.7 ± 4.1
HB 78.4 ± 6.7 77.7 ± 5.5 76.5 ± 8.3 76.2 ± 3.8 73.9 ± 2.6 72.9 ± 4.8 75.2 ± 4.6 70.5 ± 0.1 72.5 ± 0.1

Av. 61.7 61.8 62.0 58.6 60.2 60.6 64.3 59.0 64.5

4We note that baseline results for this task were taken from [87].
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4.2 Training Efficiency

Here, we focus on the computational gains of the model when compared with vanilla Transformers
and methods that require numerical ODE solvers.

Attention-based architectures are highly parallelizable on modern GPUs, as opposed to traditional
RNN models which require sequential updating. However, vanilla attention experiences a bottleneck
in memory and time complexity as the sequence length L grows. As covered above in Section 3,
variations of the signature transform allow the model to operate on a reduced sequence length L̄
without increasing the dimensionality in a way that would become problematic for the model. This
allows us to bypass the quadratic complexity of the model without resorting to sparsity techniques
commonly used in the literature [26, 49].

Table 3: Seconds per epoch for all mod-
els considered.

Model Sec. / Epoch

Sine EW HR

GRU 0.12 0.25 1.07
ODE-RNN 5.39 48.59 50.71
Neural-CDE 9.83 - -
Neural-RDE 0.85 5.23 9.52
Transformer 0.77 OOM 11.71

RFormer 0.55 0.11 0.45
Speedup 1.4× - 26.11×

Tables 1-3 show that RFormer is competitive when mod-
elling datasets with extremely long sequences without
an explosion in the memory requirements. RFormer ex-
ploits the parallelism of the attention mechanism to sig-
nificantly accelerate training time, as the length of the
input sequence is decreased substantially. In particular,
we observe speedups of 1.4× to 26.11× with respect to
standard attention, and higher when compared with all
methods requiring numerical solutions to ODEs. The com-
putational efficiency gains of RFormer are attained due to
the signature transform reducing the length of the time-
series with minimal information loss. The effectiveness of
this transformation can be seen from the ablation study car-
ried out in Appendix F. This contrasts with NRDEs [57],
which augment NCDEs with local signatures of input data,
and find that smaller windows often perform better. Fur-
thermore, NRDEs do not experience the same computational gains as RFormer because they must
perform many costly ODE integration steps.

Table 4: Dataset processing times for
training, validation, and testing phases.

Dataset Train Val Test

Eigenworms 1.11 s. 0.19 s. 0.19 s.
HR 4.23 s. 0.84 s. 0.85 s.
Sine (1k) 0.39 s. 0.39 s. 0.39 s.
Sine (5k) 0.51 s. 0.51 s. 0.51 s.
Sine (20k) 1.64 s. 1.64 s. 1.64 s.
Sine (100k) 5.74 s. 5.74 s. 5.74 s.

In Figure 2, we showcase the improvements in computa-
tional efficiency of RFormer compared to vanilla Trans-
formers [86], continuous-time Transformers [13], and other
continuous-time RNNs [45, 57] when processing sequences
from L = 100 samples up to L = 10K. As seen, RFormer
is significantly more efficient than its continuous-time and
vanilla counterparts, even when performing the signature
computation online, which involves computing the signa-
tures for each batch during training, resulting in significant
redundant computation. When signatures are precomputed
just once before training, the computational time of each
epoch remains constant across input all sequence lengths
including L = 10K (see the exact signature computation
times for different datasets in Table 4). We also stress the

fact that RFormer also scales gracefully for extremely long sequences (up to L = 250K) with both
online and offline computation of the signatures, as shown in Appendix G. Finally, we highlight that
ContiFormer has a sample complexity of O(L2d2S), where S represents the normalized number of
function evaluations of the numerical ODE solver, which makes ContiFormer orders of magnitude
more computationally intensive when compared to RFormer and prevents the model from running on
sequences longer than 500 points without running out of memory (see device details in Appendix C).

4.3 Irregular Time Series Classification
So far, we mainly focused on the efficiency and inductive bias afforded to the model through the
use of signatures. However, a key element of RFormer is that it can naturally deal with irregularly
sampled sequences without expensive numerical ODE solvers. This property follows from the fact
that signatures are invariant to time reparameterization, see Proposition 3.1. In this subsection, we
empirically test this property by training the model on the same datasets but randomly dropping a
percentage of the data points. This test intends to find if the model is able to learn continuous-time
representations of the original input time-series. The results can be found in Table 5. We find that
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RFormer consistently results in the best performance, with a small performance drop when compared
to the full dataset. Importantly, this property is achieved in conjunction with the efficiency gains
afforded to the model and without the use of expensive numerical ODE solvers.5 Finally, we perform
an additional set of experiments on the 15 univariate classification datasets from the UEA time series
classification archive and compare our model with recent state-of-the-art models for irregular time
series [61, 78]. Across the board, we find that our model is both faster and more accurate than the
continuous-time benchmark despite having a discrete-time Transformer backbone, as shown in Figure
4, which introduces Continuous Recurrent Units (CRU) [78] as an extra baseline. For more details
and more exhaustive experimentation on random data drops, see Appendix G.

Table 5: Performance of all models under a random 50% drop in datapoints per epoch.

Model 50% Drop Performance

EW (%) ↑ HR ↓ Sine (%) ↑ Sine Long (%) ↑
GRU 35.90 13.06 0.96 1.16
ODE-RNN 37.61 13.06 1.06 1.23
Neural-RDE 60.68 4.67 0.94 0.87
Transformer OOM 12.73 7.37 20.23

RFormer 87.69 2.96 59.57 93.17

5 Reasons for improved model performance
In this final section, we provide explanations for the superior inductive bias of the RFormer model
compared to its vanilla Transformer counterpart, despite its lower computational cost.

5.1 Spatial Processing
First, we highlight that a key reason the model achieves significant compression benefits in the
tasks considered is its ability to jointly account for temporal and spatial interactions through the
self-attention mechanism and signature terms, respectively. In particular, we believe that for certain
datasets, the relationships between different channels of the time series may hold more importance
than the temporal information itself, which can often be redundant. This is exemplified in the
Eigenworms dataset, which experiences a 20% performance drop when employing univariate
signatures, but is able to achieve state-of-the-art performance with a 600× compression rate in the
temporal dimension when signatures are applied across all channels, as shown in Figure 6. To this
end, we draw parallels between the use of signatures and the field of temporal graph processing,
where the use of the signature over all channels can be seen as a fully connected graph, capturing
information from all channels, and the univariate signature would correspond to a graph with only
self-connections between the nodes, as depicted in Figure 5. In our view, this hints towards the idea
of using sparse graph learning techniques [17, 23] to reduce the explosion in signature terms while
retaining the ability to perform effective spatial processing.
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Figure 4: Average performance of all models on
the 15 univariate datasets from the UEA Time Se-
ries archive under different degrees of data drop.

To empirically test these claims, we design a
synthetic experiment using a 2-channel time se-
ries. Each channel contains a signal of the form
sin(ωit+ νi), i = 1, 2, where ωi and νi are ran-
domly sampled from the interval [0, 2π]. For
half of the dataset, the last 1% of temporal sam-
ples in the second channel are set to match the
frequency of the first channel. The task is to
classify whether the samples in this final inter-
val are of the same frequency. As shown in
Figure 5, RFormer demonstrates greater sam-
ple efficiency and achieves higher test accuracy
compared to its vanilla Transformer counterpart,
highlighting the effectiveness of signatures in
spatial processing.

5We use our own reproduction to test the performance of all models in irregularly sampled datasets. Random
dropping requires window sizes larger than 2 because signatures cannot be computed over a single point. The
best step size was chosen in accordance with performance on the validation dataset, see Appendix D.
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5.2 Sequence Coarsening as an Inductive Bias for Transformers

In addition to the benefits of higher-order signature terms, we empirically observe that even using
level-one signature terms resulted in performance improvements when compared to processing
sequences without any transformation. We believe that the reduction in input signal length, achieved
without significant information loss through the signature transform is another important factor in
the improved inductive bias of RFormer. This finding aligns with the concurrent work of [4], which
highlights some of the drawbacks of decoder-only Transformers for long sequences in terms of both
oversquashing and representational collapse.
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Figure 6: Left: Dirichlet energy as a function of window size for the Eigenworms dataset. Right:
Original and hidden representation after signature layer for two examples in the EW dataset.

To measure the degree of coarsening in the sequence, we find that interpreting the temporal sequence
as a path graph and using ideas from the oversmoothing literature [75] serves as a good way to
measure the similarity of the representations being fed to the Transformer. In particular, we compute
the Dirichlet Energy [74], defined in this case as E(X) = 1

N

∑N
i=1 ||Xi −Xi−1||2 of the temporal

sequence resulting from taking increasing window sizes of the global signature. An example of this
is shown in Figure 6 for the Eigenworms dataset, where we compared different numbers of windows
(from 2 to 18k). Interestingly, we found that the "elbow" of the Dirichlet energy corresponded to 30
windows in this dataset, which we found empirically to be one of the most performant settings. This
hints at the idea of the Dirichlet energy being used for signature hyperparameter tuning as well.

6 Conclusion
We introduced the Rough Transformer, a variant of the original Transformer that allows the processing
of discrete-time series as continuous-time signals through the use of multi-view signature attention.
Empirical comparisons showed that Rough Transformers outperform vanilla Transformers and
continuous-time models on a variety of time-series tasks and are robust to the sampling rate of the
signal. Finally, we showed that RFormer provides significant speedups in training time compared to
regular attention and ODE-based methods, without the need for major architectural modifications or
sparsity constraints.
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A Properties of Path Signatures

First, we recall that the path is uniquely determined by its signature, which motivates its use as a
feature map.

Proposition A.1. Given a path X̂ : [0, T ] → Rd, then the map P : [0, T ] → R1+d where
P (t) = (t, X̂(t)) is uniquely determined by it’s signature S(P )0,T .

The proof can be found in Hambly and Lyons [33].

For Rough Transformers, several features of path signatures are important. First, linear functionals
on path signatures possess universal approximation properties for continuous functionals.
Theorem A.2. Fix T > 0, and let K ⊂ C1

b ([0, T ];Rd). Let f : K → R be continuous with respect
to the sup-norm topology on C1

b ([0, T ];Rd). Then for any ϵ > 0, there exists a linear functional ℓ
such that

|f(X)− ⟨ℓ, S(X)0,T ⟩| ≤ ϵ , (13)

for any X̂ ∈ K, where X denotes the time-added augmentation of X̂ .

For a proof of A.2, see Arribas [2]. Even though Theorem A.2 guarantees that linear functionals
are sufficient for universal approximation, linear models are not always sufficient in practice. This
motivates the development of nonlinear models built upon the path signature which efficiently extract
path behavior.

The second feature is that the terms of the path signature decay factorially, as described by the
following proposition.

Proposition A.3. Given X̂ ∈ C1
b ([0, T ];Rd), for any s, t ∈ [0, T ], we have that for any I ∈ In

d

|S(X̂)I0,T | = O (1/n!) . (14)

For a proof of Proposition A.3, see [51]. Hence, the number of terms in the signature grows
exponentially in the level of the signature, but the tail of the signature is well-behaved, so only a few
levels in a truncated signature are necessary to adequately approximate continuous functionals.

A.1 Signatures of Piecewise Linear Paths.

In the Rough Transformer, we use linear interpolation of input time-series to get a continuous-time
representation of the data. As mentioned in Section 3, the signature computation in this case is
particularly simple.

Suppose X̂k : [tk, tk+1] → Rd is a linear interpolation between two points Xk, Xk+1 ∈ Rd. That is,

X̂k(t) = Xk +
t− tk

tk+1 − tk
(Xk+1 −Xk) . (15)

Then the signature of X̂k is given explicitly by

S(X̂k)tk,tk+1
=

(
1, Xk+1 −Xk,

1

2
(Xk+1 −Xk)

⊗2,
1

3!
(Xk+1 −Xk)

⊗3, ...,
1

n!
(Xk+1 −Xk)

⊗n, ...

)
,

(16)

where ⊗ denotes the tensor product. Let X̂k ∗ X̂k+1 denote the concatenation of X̂k and X̂k+1. That
is, X̂k ∗ X̂k+1 : [tk, tk+2] → Rd is given by

X̂k ∗ X̂k+1(t) =

{
X̂k(t) t ∈ [tk, tk+1]

X̂k+1(t) t ∈ (t2, tk+2] .
(17)

The signature of the concatenation X̂k ∗ X̂k+1 is given by Chen’s relation, whose proof is in [51]. To
state this result, we first note that S(X̂)ns,t can be interpreted as an element of the extended tensor
algebra of Rd:

T ((Rd)) =
{
(a0, ..., an, ...) : an ∈ Rd⊗n

}
. (18)
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Proposition A.4 (Chen’s Relation). The following identity holds:

S(X̂k ∗ X̂k+1)tk,tk+2
= S(X̂k)tk,tk+1

⊗ S(X̂k+1)tk+1,tk+2
, (19)

where for elements A,B ∈ T ((Rd)) with A = (A0, A1, A2, ...) and B = (B0, B1, B2, ...) the tensor
product ⊗ is defined

A⊗B =

 k∑
j=0

Aj ⊗Bk−j


k≥0

. (20)

Let X = (X0, ..., XL) be a time-series. Then the linear interpolation X̃ : [0, T ] → Rd can be
represented as the concatenation of a finite number of linear paths:

X̃ = X̂0 ∗ · · · ∗ X̂L−1 . (21)

Hence, the signature is

S(X̃)0,T = S(X̂0)0,t1 ⊗ · · · ⊗ S(X̂L−1)tL−1,T . (22)

B Related Work, Experimental Choices, and Impact Statement

Continuous-time models. Since their introduction in [12], Neural ODEs were extended in various
ways to facilitate modelling continuous time-series data [70, 60, 34, 40, 79]. While Neural ODEs
and their extensions are successful in certain tasks they are burdened with a high computational
cost, which makes them scale very poorly to long sequences in the time-series setting. Various
authors propose methods and augmentations to vanilla Neural ODEs to decrease their computational
overhead [24, 6]. Other approaches to augmenting deep learning methods to modelling continuous
data include implicit neural representations [80, 29], continuous kernel convolutions [69], or Fourier
neural operators [50, 63].

Transformers. First proposed in [86], the Transformer has been exceptionally successful in discrete
sequence modelling tasks such as natural language processing (NLP). Key to the success of the
Transformer in NLP is the attention mechanism, which extracts long-range dependencies. There
are a number of extensions to improve efficiency and decrease the computation cost of the attention
mechanism [49, 88, 22, 41, 16].

Signatures in machine learning. The path signature originates from theoretical stochastic analysis
[51] and has since become a popular tool in machine learning. Path signatures are regarded as effective
feature transformations for sequential data [64, 27, 44]. Additionally, signatures help mitigate the
computational cost of Neural CDEs in long time-series [57] and non-Markovian stochastic control
problems [39]. Other more recent works in this direction include [18, 87]. Approaches such as
randomized signatures [21, 19] and the signature kernel [47, 77] have been developed to mitigate
the curse of dimensionality inherent in path signature computations. Rough Transformers provide
a first step towards incorporating path signatures for continuous-time sequence modelling using
Transformers. 6

We also note that contemporary work [84] employs a Transformer architecture with signature features
for the task of deep hedging. However, our work differs in several key aspects. First, we introduce the
multi-view attention mechanism, which uses signatures to extract both global and local information,
which we found to be necessary in our experimentation, as Transformers are known to struggle in
extracting local information (see Figure 7), whereas their work just uses a global signature. Moreover,
their work computes the signature at every time step, strictly dilating input data. This is particularly
problematic for long, multi-variate sequences, for reasons discussed above, and can actually negatively
impact performance. Our work, however, compresses data using the multi-view signature transform,
and we find that this compressed representation can actually improve performance. Finally, their
work relies on the assumption that data is regularly sampled, as the signature is computed at every
time step, in contrast to our work which is robust to irregular sampling.

6For a preliminary version of this paper, we also direct the reader to [56].
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Long-Range Sequence modelling. A highly relevant line of research related to enhancing recurrent
neural networks’ capability to capture long-term dependencies involves the development of various
models. These include Unitary RNNs [1], Orthogonal RNNs [38], expRNNs [48], chronoLSTM
[82], antisymmetric RNNs [10], Lipschitz RNNs [25], coRNNs [71], unicoRNNs [72], LEMs [73],
waveRNN [42], Linear Recurrent Units [62], and Structured State Space Models [32, 31]. While we
utilize many benchmarks and synthetic tasks from these works to test our model, it is important to
note that our work is not intended to compete with the state-of-the-art in these tasks. Therefore, we do
not directly compare our model with the models mentioned above. Instead, this paper seeks to show
that the baseline Transformer architecture can benefit from the use of signatures by (i) becoming
more computationally efficient, (ii) being invariant to the sampling rate of the signal, and (iii) having
a good inductive bias for temporal and spatial processing. Furthermore, we highlight that RFormer
brings alternative benefits, such as the ability to perform spatial processing effectively, which is a
setting in which long-range sequence models typically struggle.

Efficient Attention Variants. There are several efficient self-attention variants that have emerged
over the years, including Sparse Transformer [14], Longformer [5], Linear Transformers [41], BigBird
[90], Performer [16], or Diffuser [26]. In our setting, we highlight that a central part of this paper is to
showcase how signatures significantly reduce the computational requirements of vanilla attention and
empirically demonstrate that this also results in improved learning dynamics and invariance to the
sampling frequency of the signal. Given the large efficiency gains that we observed with this approach
when employed on vanilla attention, we did not consider that further experimentation on other forms
of “approximate” attention was needed. Since most variants of attention seek to make the operation
more efficient through several approximations (e.g., linearization or sparsification techniques), we
believe that a first attempt at showcasing the power of multi-view signatures on vanilla attention is
already significant. However, other variants of attention (such as the ones outlined before) could be
added on top of the signature representations to obtain even better efficiency gains.

Limitations and Future Work. While we found RFormer to be very performant in our experiments,
much of this performance gain relies on heavy hyperparameter tuning, especially when it comes
to the choice of window sizes and signature level. However, this could be handled using Neural
Architecture Search (NAS) techniques, such as those employed in [76]. Furthermore, despite the
computational gains we achieve for low-dimensional sequences, additional work would be required
to scale this method to larger dimensions. We should also note that the experiments and results
presented in this paper are constrained by the relatively small scale of the models studied.

C Experimental Details

All experiments are conducted on an NVIDIA GeForce RTX 3090 GPU with 24,564 MiB of memory,
utilizing CUDA version 12.3. Hyperparameters used to produce the results in Table 2 are reported in
Tables 6. The timings presented in all tables are obtained by executing each model independently for
each dataset and averaging the resulting times across 100 epochs.

Table 6: Hyperparameters used for Table 2, where G and L refer to the Global and Local signature
components, respectively.

SCP1 SCP2 MI EW ETC HB

Batch Size 20 10 50 5 10 20
Embedded Dim 10 5 20 20 20 5
Multi-View Terms [G] [G] [L] [L] [G] [G, L]
Learning Rate 4.08e-3 1.38e-3 4.08e-3 6.73e-3 1.00e-3 7.72e-3
Num. Heads 3 3 3 1 1 3
Num. Layers 2 3 3 2 1 3
Num. Sig Windows 100 50 200 10 400 30
Sig Level 2 3 2 2 1 2
Univariate true true true false false true
Num. Epoch 110 10 26 39 200 16
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Table 7: Hyperparameters validation on remaining datasets.
Dataset Learning Rate Number of Windows Sig. Depth Sig. Type Univariate/Multivariate Sig.

Sinusoidal 1× 10−3 75 6 Multi-View -
HR 1× 10−3 75 4 Local Multivariate

To prevent excessive growth in signature terms, we use the univariate signature in LOB datasets. As
an alternative, one could employ randomized signatures [19] or low-rank approximations [9, 11] .

D Baselines Validation

This section collects the validation of Step and Depth for the Neural-RDE model. Optimal values are
selected for evaluation on test-set. Early-stopping is used with the same criteria as [57].

Table 8: Validation accuracy on the sinusoidal dataset.

Acc. Val Step Depth Memory Usage (Mb) Elapsed Time (s)
17.26 2 2 778.9 6912.7
12.21 2 3 770.3 1194.43
16.35 4 2 382.2 2702.48
19.27 4 3 386.16 574.97
20.99 8 2 193 1321.36
24.02 8 3 194.17 332.17
17.15 16 2 97.13 136.43
21.59 16 3 98.17 156.93
17.46 24 2 65.96 105.94
20.59 24 3 66.68 98.97

Table 9: Validation accuracy on the long sinusoidal dataset.

Acc. Val Step Depth Memory Usage (Mb) Elapsed Time (s)
11.10 2 2 4017.22 2961.98
9.59 2 3 4008.33 2779.52

10.39 4 2 2001.76 1677.78
10.19 4 3 2006.80 1615.64
14.03 8 2 1004.07 665.55
15.34 8 3 1005.72 723.41
1.61 16 2 503.66 125.85
1.92 16 3 505.28 120.63
1.51 24 2 339.80 58.87
2.12 24 3 341.90 69.35
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Table 10: Validation accuracy on the EW dataset.

Acc. Val Step Depth Memory Usage (Mb) Elapsed Time (s)
84.62 2 2 5799.40 21289.99
87.18 2 3 6484.93 25925.80
79.49 4 2 2891.61 11449.14
82.05 4 3 3240.99 9055.12
82.05 8 2 1446.94 4143.26
76.92 8 3 1624.73 3616.43
82.05 16 2 724.35 1909.69
76.92 16 3 817.04 1924.27
79.49 24 2 483.92 1098.21
74.36 24 3 543.78 987.02

Table 11: Validation loss on the HR dataset.

Acc. Val Step Depth Memory Usage (Mb) Elapsed Time (s)
2.44 2 2 5044.44 56492.33
3.03 2 3 5059.28 39855.19
3.67 4 2 2515.40 10765.58

16.04 4 3 2531.44 7157.20
5.35 8 2 1259.30 3723.94
2.70 8 3 1268.60 18682.82
3.58 16 2 632.08 3518.96
3.64 16 3 636.64 7922.96
3.86 24 2 422.74 3710.95
3.55 24 3 426.83 6567.02

Table 12: Validation loss on the LOB dataset (1K), included as an additional experiment in Appendix
??.

Val Loss Step Depth Memory Usage (Mb) Elapsed Time (s)
0.58 2 2 1253.55 180.79
1.74 2 3 1447.57 308.52
1.58 4 2 623.87 71.18

32.90 4 3 754.05 87.81
2.94 8 2 317.40 61.27
4.84 8 3 406.88 62.71
2.24 16 2 164.70 18.67
6.26 16 3 234.92 24.20
3.82 24 2 112.80 12.69

15.35 24 3 176.68 14.92

E Long Temporal Datasets Details

Table 13 summarises the long temporal modeling datasets from the UEA time series classification
archive [3] used in Section 4.
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Table 13: Summary of datasets used in the long time-series classification task.
Dataset #Sequences Length #Classes #Dimensions
SelfRegulationSCP1 (SCP1) 561 896 2 6
SelfRegulationSCP2 (SCP2) 380 1152 2 7
MotorImagery (MI) 378 3000 2 64
EigenWorms (EW) 259 17984 5 6
EthanolConcentration (ETC) 524 1751 4 3

F Ablation Studies

F.1 Global and Local Signature Components

In this section, we ablate the use of the multi-view signature transform over both global and local
transformations of the input signal. The results for the sinusoidal datasets are shown in Figure 7. In
most cases, the use of both local and global components improves the performance of RFormer. This
choice, however, can be seen as a hyperparameter and will be dataset-dependent.
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Figure 7: Ablation of local and local components of the multi-view signature for the sinusoidal
datasets. Left: Sinusoidal dataset. Right: Long Sinusoidal dataset.

F.2 Signature Level and Naive Downsampling

One of the main points of the paper is that the shorter representation of the time-series endowed by
the signatures helps to significantly reduce the computational cost of the self-attention operation with
minimal information loss (and with improved performance in many of the experiments). By equation
(16), one sees that the first level of the signature of a linear function is the difference between its
endpoints. Hence, using multi-view attention with signature level one operates on the increments of
piecewise-linear interpolated data, which corresponds to naive downsampling. To test that higher
levels of the signature provide improvements in performance, we compare the result of using the
signature on the datasets tested in Table 14 below.

Table 14: Comparative performance of different methods on datasets.

Dataset Linear-Interpolation + Vanilla Rough Transformer with sig level (n) Improvement

EigenWorms 64.10% 90.24% (2) 40.77%
HR 10.56 2.66 (4) 74.81%

There is a significant performance gain in considering higher levels of the signature because one can
capture the higher-order interactions between the different time-series.
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G Additional Experiments and Comparisons

G.1 Random Drop Experiments

Furthermore, we conduct a new set of experiments in which we dropped 30% and 70% of the dataset
for RFormer. Note that even with a 70% drop rate in the EigenWorms dataset, the vanilla Transformer
fails to run due to memory limitations. Therefore, to provide results for the Transformer model on the
EigenWorms dataset, we conduct experiments with an 85% drop rate. This comparison highlights the
performance gap between the vanilla Transformer and our proposed model under these conditions,
with the RFormer model yielding superior results. All results are computed across five seeds and are
summarized in the tables and figure below.

Table 15: Performance of models under various data drop scenarios for EW dataset.

Model Full 30% Drop 50% Drop 70% Drop 85% Drop

Transformer OOM OOM OOM OOM 72.45% ± 3.36
RFormer 90.24% ± 2.15 87.86% ± 3.28 87.69% ± 4.97 83.35% ± 2.86 82.74% ± 2.13

Table 16: Performance consistency of RFormer under data drop scenarios for HR dataset.

Model Full 30% Drop 50% Drop 70% Drop

RFormer 2.66 ± 0.21 2.72 ± 0.19 2.82 ± 0.05 2.98 ± 0.08

Table 17: Epoch-wise performance under different data drop scenarios for the sinusoidal dataset.

Epoch 100 Epoch 250 Epoch 500 Epoch 1000

30% Drop 48.6% 82.5% 91.4% 99.3%
70% Drop 35.7% 56.8% 64.9% 67.8%

Table 18: Epoch-wise performance under different data drop scenarios for the long sinusoidal dataset.

Epoch 100 Epoch 250 Epoch 500 Epoch 1000

30% Drop 39.1% 72.6% 96.2% 98.2%
70% Drop 27.5% 66.7% 78.5% 85.3%
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Figure 8: Test accuracy per epoch for the frequency classification task across three random seeds
for sinusoidal datasets with 50% random drop per epoch. Left: Sinusoidal dataset. Right: Long
Sinusoidal dataset.
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Finally, Table 19 compares CRU and RFormer in an irregularly sampled synthetic data setting,
featuring shorter sinusoids and fewer classes than the experiments in Section 4.1. Additionally, Table
20 presents the hyperparameter validation for CRU (see Table 21 for training time analysis). These
experiments demonstrate that recurrent models perform well with short sequences. Note that despite
RFormer’s superior performance, our model is significantly faster than other continuous-time models,
as shown in Appendix G.2, particularly in Table 21.

Table 19: Comparison of RFormer and CRU (two best and simplest performing instances
[Num.basis/Bandwidth= 20/3]) at different random drop percentages.

L Random Drop RFormer CRU (LSD=10) CRU (LSD=20)

100

0% 100.00% 100% 100.00%
30% 98.60% 65.90% 99.60%
50% 97.80% 34.40% 94.70%
70% 96.10% 43.00% 78.60%
85% 85.50% 32.30% 57.30%

250

0% 100.00% 100.00% 100%
30% 99.90% 42.95% 94.90%
50% 99.40% 43.65% 77.30%
70% 98.30% 45.40% 94.40%
85% 86.20% 38.80% 83.60%

500

0% 100.00% 100.00% OOM
30% 99.90% 47.15% OOM
50% 99.70% 48.80% OOM
70% 99.30% 55.15% OOM
85% 87.70% 46.50% OOM

Table 20: CRU’s hyperparameters (L = 100) (latent state dimension (LSD), number of basis matrices
(Num.basis), and their bandwidth).

LSD Num. basis Bandwidth Acc (30 Epochs)

10

15 3 78%
15 10 -
20 3 100%
20 10 -

20

15 3 81.30%
15 10 91.70%
20 3 100%
20 10 99.90%

40

15 3 99.90%
15 10 97.50%
20 3 100%
20 10 100%

G.2 Additional Efficiency Experiments and Discussion

We conduct additional experiments to compare the runtime of Rough Transformers with other models.
In this experiment, we use the synthetic sinusoidal dataset considered in our paper and compute the
runtime per epoch for varying sequence lengths. We demonstrate results for two variants of RFormer:
“online”, which corresponds to computing the signatures of each batch during training (resulting in
significant redundant computation), and “offline”, which corresponds to computing the signatures in
one go at the beginning of training. We include a recent RNN-based model as a basis for comparison
with high-performing RNN baselines. In addition to the models discussed in Section 4, we introduce
Continuous Recurrent Units (CRU) [78] as a new baseline. See Table 21 for a summary of the results.
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Table 21: Seconds per epoch for growing input length and for different model types on the sinusoidal
dataset.

Model S/E for Varying Context Length ↓
L=100 L=250 L=500 L=1000 L=2500 L=5000 L=7.5k L=10k

NRDE 5.87 11.67 20.27 44.01 103.11 201.21 312.31 467.47
NCDE 42.59 121.82 225.14 458.09 1126.77 2813.42 4199.50 5345.39
GRU 1.56 1.55 1.65 1.63 1.78 2.37 3.65 4.79
CRU 59.22 199.15 789.28 OOM OOM OOM OOM OOM
ContiFormer 61.36 248.31 1165.02 OOM OOM OOM OOM OOM
Transformer 0.75 0.79 0.82 0.95 1.36 5.31 9.32 16.32
RFormer (Online) 0.75 0.88 0.94 1.03 1.28 1.55 1.83 2.35
RFormer (Offline) 0.67 0.64 0.63 0.65 0.60 0.59 0.62 0.60

We remark that previous running times are obtained with a batch size of 10. Further, the ContiFormer
model could be run for L = 1000 if decreasing the batch size to 2 (which significantly affects the
parallelization process), avoiding OOM issues and resulting in 4025 seconds/epoch, which is several
orders of magnitude larger than RFormer. As an additional experiment, we tested the epoch time
(S/E) of RFormer for extremely oversampled sinusoidal time series. We show our results in the table
below.

Table 22: Seconds per epoch for very large input length.

Model S/E for Varying Context Length ↓
L=25k L=50k L=100k L=250k

RFormer (Online) 5.39 9.06 19.95 45.20
RFormer (Offline) 0.60 0.61 0.60 0.63

Thus, the time needed to compute the signature is inconsequential when compared with the time
required to train standard models on the full or even downsampled datasets, since this step has to be
carried out only once. To put this into context with an example, we note that it takes 4s to compute
the signature representations for the HR dataset (which is about half the time it takes for the Vanilla
Transformer to go through one epoch) and results in a 26× increase in computational speed for
RFormer when compared to the vanilla Transformer.

Table 23: Processing times for different sizes on the sinusoidal dataset.
Size 100 250 500 1k 2.5k 5k 7.5k 10k 25k 50k 75k 100k

Time 0.15 s 0.21 s 0.24 s 0.39 s 0.42 s 0.51 s 0.70 s 1.09 s 1.64 s 2.94 s 4.49 s 5.74 s

To showcase that this is the case for not only sequences of moderate length but also extremely long
sequences, we also carry out the following experiment where we compute the signature representation
for the sine dataset, with a progressively increasing number of datapoints. As seen in Table 23, this
does not cause an explosion in computational time.
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Figure 9: Seconds per epoch for growing input length and for different model types on the sinusoidal
dataset for extremely long lengths (up to 250k) Left: Log Scale. Middle: Regular Scale. Right:
Log-log scale. When a line stops, it indicates an OOM error.

G.3 Additional ContiFormer Comparisons

Also, to provide some context of the performance of ContiFormer compared with our method (and
not only results on complexity and training times), we run the model on the sinusoidal classification
task for signals of length L = 100 and L = 250. Due to the slow running time of the ContiFormer
model, we did not consider sequence lengths of L > 250. We evaluate the ContiFormer model
using one head. However, given the subpar results we obtain, we also test it with four heads, using the
hyperparameters originally used in the paper for their irregularly sampled time series classification
experiments. By contrast, all variations of RFormer tested in this paper for this experiment employ
only one head, but reported significantly better results.

Table 24: Model performance for L = 100.

Model Epoch 100 Epoch 250 Epoch 500

ContiFormer (1 Head) 2.3% 2.8% 3.1%
ContiFormer (4 Heads) 8.5% 17.3% 20.0%
Transformer (1 Head) 13.7% 40.1% 82.8%
RFormer (1 Head) 38.7% 81.1% 92.3%
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much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Yes, the limitations ae discussed in Appendix B.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The paper contains only one theoretical result, and a complete and correct
proof is provided.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All experimental details are in Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: All datasets used are publicly available and the associated code can be found
in the following anonymized repo: https://anonymous.4open.science/r/rformer_
submission-2546.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All details are specified in Appendices C and D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All experiments are run with several seeds, and the standard deviation is
reported alongside the average results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All experiments were conducted on an NVIDIA GeForce RTX 3090 GPU with
24,564 MiB of memory, as outlined in Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We conform with the NeurIPS code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The societal impact statement is included in Appendix B.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not involve the release of data or models that have a high risk
for misuse. However, as mentioned in our impact statement included in Appendix B, we
acknowledge potential misuses of our advancements in time series analysis and advocate for
ethical application and regulatory oversight.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The owners of the datasets and packages used are acknowledged in the code
and in the manuscript.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not introduce new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not include any experiments involving crowdsourcing or
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not include any research involving human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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