A Properties of Path Signatures

First, we recall that the path is uniquely determined by its signature, which motivates its use as a
feature map.

Proposition A.1. Given a path X : [0,T] — R then the map P : [0,T] — R where
P(t) = (t, X(t)) is uniquely determined by it’s signature S(P)o .

The proof can be found in Hambly and Lyons [33].

For Rough Transformers, several features of path signatures are important. First, linear functionals
on path signatures possess universal approximation properties for continuous functionals.

Theorem A.2. Fix T > 0, and let K C C}([0,T];RY). Let f : K — R be continuous with respect

to the sup-norm topology on C}([0,T];R?). Then for any € > 0, there exists a linear functional {
such that

[f(X) = (6. S(X)or)| <, (13)
for any XekK , where X denotes the time-added augmentation of X.

For a proof of see Arribas [2]]. Even though Theorem guarantees that linear functionals
are sufficient for universal approximation, linear models are not always sufficient in practice. This
motivates the development of nonlinear models built upon the path signature which efficiently extract
path behavior.

The second feature is that the terms of the path signature decay factorially, as described by the
following proposition.

Proposition A.3. Given X € CL([0,T); RY), for any s,t € [0,T), we have that for any I € I}
(Xl =0 (1/nl) . (14)

For a proof of Proposition see [51]. Hence, the number of terms in the signature grows
exponentially in the level of the signature, but the tail of the signature is well-behaved, so only a few
levels in a truncated signature are necessary to adequately approximate continuous functionals.

A.1 Signatures of Piecewise Linear Paths.

In the Rough Transformer, we use linear interpolation of input time-series to get a continuous-time
representation of the data. As mentioned in Section 3] the signature computation in this case is
particularly simple.

Suppose X ko [tk ter1] — R? is a linear interpolation between two points Xy, Xx11 € R<. That is,
t— 1t

Xilt) = Xie+ try1 — tk

(Xht1 — X) - (15)

Then the signature of X & 1s given explicitly by

~

1 1 . 1
S(Xk)ty ter = <1>Xk+1 = X 5 (Xh1 = Xi)®2, 3y (Xkt1 — Xip)®%, 1 (X1 = X5)®",) :
(16)
where ® denotes the tensor product. Let X L ¥ X k-1 denote the concatenation of X 1 and X k+1- That
is, Xp * Xpg1 : [te, theo] — R is given by
):(k(t) t € [ty try]

17
Xk+1(t) te (t2,tk+2]. 17

X,)A(kﬂ(t) = {

The signature of the concatenation X JRES X k+1 1s given by Chen’s relation, whose proof is in [51]. To
state this result, we first note that S(X)7, can be interpreted as an element of the extended tensor
algebra of R%:

T((RY) = {(ag, ..., an,...) : a, € R*®"} . (18)

16

Proposition A.4 (Chen’s Relation). The following identity holds:

S()/(:k *)/(:k+1>tk7tk+2 = S(}?k>tk7tk+l ® S()?k+1)tk+17tk+2) (19)

where for elements A, B € T((R?)) with A = (Ag, A1, As,...) and B = (By, By, Ba, ...) the tensor
product ® is defined

k
A@B= > A;®Bi_; : (20)
=0

k>0

Let X = (X, ..., X1) be a time-series. Then the linear interpolation X : [0,7] — R can be
represented as the concatenation of a finite number of linear paths:

X=Xo#-%X1_1. 1)

Hence, the signature is

~ ~

S(X)OT ZS(Xo)o’tl ®..-®S(X\-L71)tL—1,T' (22)

)

B Related Work, Experimental Choices, and Impact Statement

Continuous-time models. Since their introduction in [[12], Neural ODEs were extended in various
ways to facilitate modelling continuous time-series data [[70, |60} 34} 140, [79]. While Neural ODEs
and their extensions are successful in certain tasks they are burdened with a high computational
cost, which makes them scale very poorly to long sequences in the time-series setting. Various
authors propose methods and augmentations to vanilla Neural ODEs to decrease their computational
overhead [24} 16]]. Other approaches to augmenting deep learning methods to modelling continuous
data include implicit neural representations [80} 29], continuous kernel convolutions [69], or Fourier
neural operators [50} 63]].

Transformers. First proposed in [86], the Transformer has been exceptionally successful in discrete
sequence modelling tasks such as natural language processing (NLP). Key to the success of the
Transformer in NLP is the attention mechanism, which extracts long-range dependencies. There
are a number of extensions to improve efficiency and decrease the computation cost of the attention
mechanism [49] 88,122, 141, |16].

Signatures in machine learning. The path signature originates from theoretical stochastic analysis
[51] and has since become a popular tool in machine learning. Path signatures are regarded as effective
feature transformations for sequential data [64, 27, 44]. Additionally, signatures help mitigate the
computational cost of Neural CDEs in long time-series [57] and non-Markovian stochastic control
problems [39]. Other more recent works in this direction include [18, [87]. Approaches such as
randomized signatures [21} [19]] and the signature kernel [47, [77] have been developed to mitigate
the curse of dimensionality inherent in path signature computations. Rough Transformers provide
a first step towards incorporating path signatures for continuous-time sequence modelling using
Transformers.

We also note that contemporary work [84] employs a Transformer architecture with signature features
for the task of deep hedging. However, our work differs in several key aspects. First, we introduce the
multi-view attention mechanism, which uses signatures to extract both global and local information,
which we found to be necessary in our experimentation, as Transformers are known to struggle in
extracting local information (see Figure[7), whereas their work just uses a global signature. Moreover,
their work computes the signature at every time step, strictly dilating input data. This is particularly
problematic for long, multi-variate sequences, for reasons discussed above, and can actually negatively
impact performance. Our work, however, compresses data using the multi-view signature transform,
and we find that this compressed representation can actually improve performance. Finally, their
work relies on the assumption that data is regularly sampled, as the signature is computed at every
time step, in contrast to our work which is robust to irregular sampling.

SFor a preliminary version of this paper, we also direct the reader to [56].

17

Long-Range Sequence modelling. A highly relevant line of research related to enhancing recurrent
neural networks’ capability to capture long-term dependencies involves the development of various
models. These include Unitary RNNs [[1], Orthogonal RNNs [38]], expRNNs [48], chronoLSTM
[82]], antisymmetric RNNs [10], Lipschitz RNNs [25]], coRNNs [[71]], unicoRNNs [72], LEMs [[73]],
waveRNN [42]], Linear Recurrent Units [62]], and Structured State Space Models [32,|31]]. While we
utilize many benchmarks and synthetic tasks from these works to test our model, it is important to
note that our work is not intended to compete with the state-of-the-art in these tasks. Therefore, we do
not directly compare our model with the models mentioned above. Instead, this paper seeks to show
that the baseline Transformer architecture can benefit from the use of signatures by (i) becoming
more computationally efficient, (ii) being invariant to the sampling rate of the signal, and (iii) having
a good inductive bias for temporal and spatial processing. Furthermore, we highlight that RFormer
brings alternative benefits, such as the ability to perform spatial processing effectively, which is a
setting in which long-range sequence models typically struggle.

Efficient Attention Variants. There are several efficient self-attention variants that have emerged
over the years, including Sparse Transformer [[14], Longformer [5]], Linear Transformers [41], BigBird
[90], Performer [16], or Diffuser [26]. In our setting, we highlight that a central part of this paper is to
showcase how signatures significantly reduce the computational requirements of vanilla attention and
empirically demonstrate that this also results in improved learning dynamics and invariance to the
sampling frequency of the signal. Given the large efficiency gains that we observed with this approach
when employed on vanilla attention, we did not consider that further experimentation on other forms
of “approximate” attention was needed. Since most variants of attention seek to make the operation
more efficient through several approximations (e.g., linearization or sparsification techniques), we
believe that a first attempt at showcasing the power of multi-view signatures on vanilla attention is
already significant. However, other variants of attention (such as the ones outlined before) could be
added on top of the signature representations to obtain even better efficiency gains.

Limitations and Future Work. While we found RFormer to be very performant in our experiments,
much of this performance gain relies on heavy hyperparameter tuning, especially when it comes
to the choice of window sizes and signature level. However, this could be handled using Neural
Architecture Search (NAS) techniques, such as those employed in [76]. Furthermore, despite the
computational gains we achieve for low-dimensional sequences, additional work would be required
to scale this method to larger dimensions. We should also note that the experiments and results
presented in this paper are constrained by the relatively small scale of the models studied.

C Experimental Details

All experiments are conducted on an NVIDIA GeForce RTX 3090 GPU with 24,564 MiB of memory,
utilizing CUDA version 12.3. Hyperparameters used to produce the results in Table[2] are reported in
Tables[6] The timings presented in all tables are obtained by executing each model independently for
each dataset and averaging the resulting times across 100 epochs.

Table 6: Hyperparameters used for Table E, where G and L refer to the Global and Local signature
components, respectively.

SCP1 SCP2 MI EwW ETC HB

Batch Size 20 10 50 5 10 20
Embedded Dim 10 5 20 20 20 5
Multi-View Terms [G] [G] [L] [L] [G] [G, L]
Learning Rate 4.08e-3 1.38e-3 4.08e-3 6.73e-3 1.00e-3 7.72e-3
Num. Heads 3 3 3 1 1 3
Num. Layers 2 3 3 2 1 3
Num. Sig Windows 100 50 200 10 400 30
Sig Level 2 3 2 2 1 2
Univariate true true true false false true
Num. Epoch 110 10 26 39 200 16

18

Table 7: Hyperparameters validation on remaining datasets.

Dataset Learning Rate Number of Windows Sig. Depth Sig. Type Univariate/Multivariate Sig.

Sinusoidal 1x1073 75 6 Multi-View -
HR 1x1073 75 4 Local Multivariate

To prevent excessive growth in signature terms, we use the univariate signature in LOB datasets. As
an alternative, one could employ randomized signatures [[19] or low-rank approximations [9} [11]] .

D Baselines Validation

This section collects the validation of Step and Depth for the Neural-RDE model. Optimal values are
selected for evaluation on test-set. Early-stopping is used with the same criteria as [57].

Table 8: Validation accuracy on the sinusoidal dataset.

Acc. Val Step Depth Memory Usage (Mb) Elapsed Time (s)

17.26 2 2 778.9 6912.7
12.21 2 3 770.3 1194.43
16.35 4 2 382.2 2702.48
19.27 4 3 386.16 574.97
20.99 8 2 193 1321.36
24.02 8 3 194.17 332.17
17.15 16 2 97.13 136.43
21.59 16 3 98.17 156.93
17.46 24 2 65.96 105.94
20.59 24 3 66.68 98.97

Table 9: Validation accuracy on the long sinusoidal dataset.

Acc. Val Step Depth Memory Usage (Mb) Elapsed Time (s)

11.10 2 2 4017.22 2961.98
9.59 2 3 4008.33 2779.52
10.39 4 2 2001.76 1677.78
10.19 4 3 2006.80 1615.64
14.03 8 2 1004.07 665.55
15.34 8 3 1005.72 723.41
1.61 16 2 503.66 125.85
1.92 16 3 505.28 120.63
1.51 24 2 339.80 58.87

2.12 24 3 341.90 69.35

19

Table 10: Validation accuracy on the EW dataset.

Acc. Val Step Depth Memory Usage (Mb) Elapsed Time (s)

84.62
87.18
79.49
82.05
82.05
76.92
82.05
76.92
79.49
74.36

LW W W W WD

5799.40
6484.93
2891.61
3240.99
1446.94
1624.73
724.35
817.04
483.92
543.78

21289.99

25925.80
11449.14
9055.12
4143.26
3616.43
1909.69
1924.27
1098.21

987.02

Table 11: Validation loss on the HR dataset.

Acc. Val Step Depth Memory Usage (Mb) Elapsed Time (s)

2.44
3.03
3.67
16.04
5.35
2.70
3.58
3.64
3.86
3.55

W WD WD WD WN

5044.44
5059.28
2515.40
2531.44
1259.30
1268.60
632.08
636.64
422.74
426.83

56492.33
39855.19
10765.58
7157.20
3723.94
18682.82
3518.96
7922.96
3710.95
6567.02

Table 12: Validation loss on the LOB dataset (1K), included as an additional experiment in Appendix

22.

Val Loss Step Depth Memory Usage (Mb) Elapsed Time (s)

0.58
1.74
1.58
32.90
2.94
4.84
2.24
6.26
3.82
15.35

2
2
4
4
8

8
16
16
24
24

LN LW WM W W

1253.55
1447.57
623.87
754.05
317.40
406.88
164.70
234.92
112.80
176.68

180.79
308.52
71.18
87.81
61.27
62.71
18.67
24.20
12.69
14.92

E Long Temporal Datasets Details

Table T3 summarises the long temporal modeling datasets from the UEA time series classification

archive [3]] used in Section 4]

20

Table 13: Summary of datasets used in the long time-series classification task.

Dataset #Sequences Length #Classes #Dimensions
SelfRegulationSCP1 (SCP1) 561 896 2 6
SelfRegulationSCP2 (SCP2) 380 1152 2 7
MotorImagery (MI) 378 3000 2 64
EigenWorms (EW) 259 17984 5 6
EthanolConcentration (ETC) 524 1751 4 3

F Ablation Studies

F.1 Global and Local Signature Components

In this section, we ablate the use of the multi-view signature transform over both global and local
transformations of the input signal. The results for the sinusoidal datasets are shown in Figure[7] In
most cases, the use of both local and global components improves the performance of RFormer. This
choice, however, can be seen as a hyperparameter and will be dataset-dependent.

1.0f 1.0f°
0.8 0.8
50_6 gO.G p
3 5
<04 204
m— Multi-View
0.2 m—— (}lobal 0.2
| Local
0.0t: 7 T 0.0 . .
0 500 1000 0 500 1000
Epoch Epoch

Figure 7: Ablation of local and local components of the multi-view signature for the sinusoidal
datasets. Left: Sinusoidal dataset. Right: Long Sinusoidal dataset.

F.2 Signature Level and Naive Downsampling

One of the main points of the paper is that the shorter representation of the time-series endowed by
the signatures helps to significantly reduce the computational cost of the self-attention operation with
minimal information loss (and with improved performance in many of the experiments). By equation
(16), one sees that the first level of the signature of a linear function is the difference between its
endpoints. Hence, using multi-view attention with signature level one operates on the increments of
piecewise-linear interpolated data, which corresponds to naive downsampling. To test that higher
levels of the signature provide improvements in performance, we compare the result of using the
signature on the datasets tested in Table[I4] below.

Table 14: Comparative performance of different methods on datasets.

Dataset Linear-Interpolation + Vanilla Rough Transformer with sig level (n) Improvement
EigenWorms 64.10% 90.24% (2) 40.77%
HR 10.56 2.66 (4) 74.81%

There is a significant performance gain in considering higher levels of the signature because one can
capture the higher-order interactions between the different time-series.

21

G Additional Experiments and Comparisons

G.1 Random Drop Experiments

Furthermore, we conduct a new set of experiments in which we dropped 30% and 70% of the dataset
for RFormer. Note that even with a 70% drop rate in the EigenWorms dataset, the vanilla Transformer
fails to run due to memory limitations. Therefore, to provide results for the Transformer model on the
EigenWorms dataset, we conduct experiments with an 85% drop rate. This comparison highlights the
performance gap between the vanilla Transformer and our proposed model under these conditions,
with the RFormer model yielding superior results. All results are computed across five seeds and are
summarized in the tables and figure below.

Table 15: Performance of models under various data drop scenarios for EW dataset.

Model Full 30% Drop 50% Drop 70% Drop 85% Drop

Transformer OOM OOM OOM OOM 72.45% + 3.36
RFormer 90.24% 4+ 2.15 87.86% =+ 3.28 87.69% + 4.97 83.35% +2.86 82.74% =+ 2.13

Table 16: Performance consistency of RFormer under data drop scenarios for HR dataset.

Model Full 30% Drop 50% Drop 70% Drop
RFormer 2.66 £0.21 2.72+0.19 2.824+0.05 2.98 £0.08

Table 17: Epoch-wise performance under different data drop scenarios for the sinusoidal dataset.

Epoch 100 Epoch 250 Epoch 500 Epoch 1000

30% Drop 48.6% 82.5% 91.4% 99.3%
70% Drop 35.7% 56.8% 64.9% 67.8%

Table 18: Epoch-wise performance under different data drop scenarios for the long sinusoidal dataset.

Epoch 100 Epoch 250 Epoch 500 Epoch 1000

30% Drop 39.1% 72.6% 96.2% 98.2%
70% Drop 27.5% 66.7% 78.5% 85.3%

0.6 1
0.8 :
Transformer

o 0.4F RFormer 1 & 0.61 1
Q
g NRDE ‘é
5 === NCDE I3 0.4}]
< s ODE-RNN <V

0.2r 1

e
o
:

.

0.0t" ——0.0[: -
0 500 1000 0 500 1000
Epoch Epoch

Figure 8: Test accuracy per epoch for the frequency classification task across three random seeds
for sinusoidal datasets with 50% random drop per epoch. Left: Sinusoidal dataset. Right: Long
Sinusoidal dataset.

22

Finally, Table [I9 compares CRU and RFormer in an irregularly sampled synthetic data setting,
featuring shorter sinusoids and fewer classes than the experiments in Section[d.I, Additionally, Table
[20 presents the hyperparameter validation for CRU (see Table 21 for training time analysis). These
experiments demonstrate that recurrent models perform well with short sequences. Note that despite
RFormer’s superior performance, our model is significantly faster than other continuous-time models,

as shown in Appendix [G.2] particularly in Table [21]

Table 19: Comparison of RFormer and CRU (two best and simplest performing instances
[Num.basis/Bandwidth= 20/3]) at different random drop percentages.

L Random Drop RFormer CRU (LSD=10) CRU (LSD=20)

0% 100.00% 100% 100.00%
30% 98.60% 65.90% 99.60%
100 50% 97.80% 34.40% 94.70%
70% 96.10% 43.00% 78.60%
85% 85.50% 32.30% 57.30%
0% 100.00% 100.00% 100%
30% 99.90% 42.95% 94.90%
250 50% 99.40% 43.65% 77.30%
70% 98.30% 45.40% 94.40%
85% 86.20% 38.80% 83.60%
0% 100.00% 100.00% OOM
30% 99.90% 47.15% OOM
500 50% 99.70% 48.80% OOM
70% 99.30% 55.15% OOM
85% 87.70% 46.50% OOM

Table 20: CRU’s hyperparameters (L = 100) (latent state dimension (LSD), number of basis matrices
(Num.basis), and their bandwidth).
LSD Num. basis Bandwidth Acc (30 Epochs)

15 3 78%
15 10 i
10 20 3 100%
20 10)
15 3 81.30%
2% 15 10 91.70%
20 3 100%
20 10 99.90%
15 3 99.90%
0 15 10 97.50%
20 3 100%
20 10 100%

G.2 Additional Efficiency Experiments and Discussion

We conduct additional experiments to compare the runtime of Rough Transformers with other models.
In this experiment, we use the synthetic sinusoidal dataset considered in our paper and compute the
runtime per epoch for varying sequence lengths. We demonstrate results for two variants of RFormer:
“online”, which corresponds to computing the signatures of each batch during training (resulting in
significant redundant computation), and “offline”, which corresponds to computing the signatures in
one go at the beginning of training. We include a recent RNN-based model as a basis for comparison
with high-performing RNN baselines. In addition to the models discussed in Section[d] we introduce
Continuous Recurrent Units (CRU) [/8]] as a new baseline. See Table|[21|for a summary of the results.

23

Table 21: Seconds per epoch for growing input length and for different model types on the sinusoidal
dataset.

Model S/E for Varying Context Length |

L=100 L=250 L=500 L=1000 L=2500 L=5000 L=7.5k L=10k
NRDE 5.87 11.67 20.27 44.01 103.11 201.21 31231 46747
NCDE 42,59 121.82 225.14 458.09 1126.77 2813.42 4199.50 5345.39
GRU 1.56 1.55 1.65 1.63 1.78 2.37 3.65 4.79
CRU 59.22 199.15 789.28 OOM OOM OOM OOM OOM
ContiFormer 61.36 248.31 1165.02 OOM OOM OOM OOM OOM
Transformer 0.75 0.79 0.82 0.95 1.36 5.31 9.32 16.32

RFormer (Online) 0.75 0.88 0.94 1.03 1.28 1.55 1.83 2.35
RFormer (Offline) 0.67 0.64 0.63 0.65 0.60 0.59 0.62 0.60

We remark that previous running times are obtained with a batch size of 10. Further, the ContiFormer
model could be run for L = 1000 if decreasing the batch size to 2 (which significantly affects the
parallelization process), avoiding OOM issues and resulting in 4025 seconds/epoch, which is several
orders of magnitude larger than RFormer. As an additional experiment, we tested the epoch time

(S/E) of RFormer for extremely oversampled sinusoidal time series. We show our results in the table
below.

Table 22: Seconds per epoch for very large input length.

Model S/E for Varying Context Length |
L=25k L=50k L=100k L=250k

RFormer (Online) 5.39 9.06 19.95 45.20
RFormer (Offline) 0.60 0.61 0.60 0.63

Thus, the time needed to compute the signature is inconsequential when compared with the time
required to train standard models on the full or even downsampled datasets, since this step has to be
carried out only once. To put this into context with an example, we note that it takes 4s to compute
the signature representations for the HR dataset (which is about half the time it takes for the Vanilla

Transformer to go through one epoch) and results in a 26X increase in computational speed for
RFormer when compared to the vanilla Transformer.

Table 23: Processing times for different sizes on the sinusoidal dataset.
Size 100 250 500 1k 25k S5k 75k 10k 25k 50k 75k 100k
Time 0.15s 021s 024s 039s 042s 051s 0.70s 1.09s 1.64s 294s 449s 5.74s

To showcase that this is the case for not only sequences of moderate length but also extremely long
sequences, we also carry out the following experiment where we compute the signature representation

for the sine dataset, with a progressively increasing number of datapoints. As seen in Table 23, this
does not cause an explosion in computational time.

24

912

2 12
5000
— 9 9
4000 2 2

@ 3000
=

@
2000 =
523
1000 |
i
0

96

" L

9-1 e —y
50000 100000 150000 200000 250000 27 29 of ot ot

Input Length (Log Scale)

S/E (Log Scale
%
”

S/E (Log Scale)

0

-~
0 50000 100000 150000 200000 250000
Input Length

) =%= NCDE
)

NRDE

Figure 9: Seconds per epoch for growing input length and for different model types on the sinusoidal
dataset for extremely long lengths (up to 250k) Left: Log Scale. Middle: Regular Scale. Right:
Log-log scale. When a line stops, it indicates an OOM error.

G.3 Additional ContiFormer Comparisons

Also, to provide some context of the performance of ContiFormer compared with our method (and
not only results on complexity and training times), we run the model on the sinusoidal classification
task for signals of length L = 100 and L = 250. Due to the slow running time of the ContiFormer
model, we did not consider sequence lengths of L > 250. We evaluate the ContiFormer model
using one head. However, given the subpar results we obtain, we also test it with four heads, using the
hyperparameters originally used in the paper for their irregularly sampled time series classification
experiments. By contrast, all variations of RFormer tested in this paper for this experiment employ
only one head, but reported significantly better results.

Table 24: Model performance for L = 100.

Model Epoch 100 Epoch 250 Epoch 500
ContiFormer (1 Head) 2.3% 2.8% 3.1%
ContiFormer (4 Heads) 8.5% 17.3% 20.0%
Transformer (1 Head) 13.7% 40.1% 82.8%
RFormer (1 Head) 38.7% 81.1% 92.3%

25

