
Supplementary Material

Gaspard Goupy1, Pierre Tirilly1, and Ioan Marius Bilasco1

1Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

1 Overall Algorithm

We present, in Algorithm 1, the pseudo-code for training a spiking classification layer with S2-
STDP+NCG. We omitted early stopping for clarity, as well as how we handle intra-class inhibition if
several neurons fire at the same time.

Algorithm 1 Training of a spiking classification layer with S2-STDP+NCG.

1: Input:
2: Number of samples D ∈ Z+;
3: Number of input neurons F ∈ Z+;
4: Number of output neurons N ∈ Z+;
5: Number of neurons per class M ∈ Z+;
6: Number of classes C ∈ Z+;
7: Firing threshold Vth ∈ R;
8: Maximum firing time Tmax ∈ R+;
9: Initial weight normal distribution of mean µ ∈ R and std σ ∈ R+

0 ;
10: Minimum and maximum weight value wmin ∈ R and wmax ∈ R;
11: S2-STDP time gap g ∈ R+;
12: STDP learning rates A+ ∈ R+

0 and A− ∈ R−0 ;
13: STDP annealing β ∈ R+

0 ;
14: Threshold learning rate ηth ∈ R+

0 ;
15: Threshold annealing βth ∈ R+

0 ;
16: Matrix of spike-encoded extracted features X ∈ [0, Tmax]

D×F ;
17: Vector of class labels Y ∈ ZD.
18: Output: Matrix of trained weights W ∈ RF×N .
19: Define C NCGs of M neurons
20: For each NCG, label M − 1 neurons as target and 1 as non-target
21: Map each neuron nj to a class cj ∈ Z based on its NCG (j from 1 to N )
22: Initialize matrix of weights W ∼ N (µ, σ2)
23: Initialize vector of test thresholds θ ∈ RN , θj := Vth (j from 1 to N )
24: Initialize vector of training thresholds θ′ ∈ RN , θ′j := Vth (j from 1 to N )
25: Compute vector of weight normalization factors w ∈ RN , wj :=

∑
iWij (j from 1 to N )

26: for each epoch do
27: Reset θ′j to θj (j from 1 to N ) . Reset training thresholds to test thresholds
28: for each x, y in X,Y do . For each sample of data x and class y

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



29: // Forward propagation
30: Convert x ∈ [0, Tmax]

F into an ordered vector of input spike times tI ∈ [0, Tmax]
F

31: Initialize vector of output spike times tO ∈ [0, Tmax]
N
, tOj := Tmax (j from 1 to N )

32: // Tmax = no spike
33: Initialize vector of membrane potentials V ∈ RN , Vj := 0 (j from 1 to N )
34: Initialize vector of active flags A ∈ {0, 1}N , Aj := 1 (j from 1 to N )
35: for each tIk ∈ tI do . For each ordered input spike time
36: for each nj where Aj = 1 do . For each active neuron
37: Vj := Vj +Wkj . Integrate input spike, Eq. 1 in main
38: if Vj ≥

(
θj if cj 6= y else θ′j

)
then . Threshold depends on sample class

39: tOj := tIk . nj fires at tIk
40: Ap := 0, for each np in the NCG of nj . Intra-class inhibition
41: end if
42: end for
43: end for
44: // Weights and thresholds update
45: T := mean

{
t ∈ tO|t < Tmax

}
, T ∈ R . Average firing time of non-inhibited neurons

46: for each NCG do . One update per NCG
47: Get the first nj∗ to fire within the NCG . Non-inhibited neuron
48: if nj∗ is target and cj∗ = y then . Target update
49: ej∗ := tOj∗ −

(
T − C−1

C g
)
, ej∗ ∈ R . Eq. 5 in main

50: for each np in the NCG where np is target do . Competition regulation
51: if p = j∗ then . Non-inhibited target neuron
52: θ′p := max

{
θp, θ

′
p + ηth · M−2M−1

}
. Eq. 6 in main

53: else . Inhibited target neurons
54: θ′p := max

{
θp, θ

′
p − ηth · 1

M−1

}
. Eq. 6 in main

55: end if
56: end for
57: else . Non-target update
58: ej∗ := tOj∗ −

(
T + 1

C g
)
, ej∗ ∈ R . Eq. 5 in main

59: end if
60: for k ∈ [1, F ] do . Update weights of nj∗ with error-modulated STDP
61: if tIk ≤ tOj∗ then . Long-term potentiation
62: Wkj∗ :=Wkj∗ + ej∗ ·A+ . Eq. 3 in main
63: else . Long-term depression
64: Wkj∗ :=Wkj∗ + ej∗ ·A− . Eq. 3 in main
65: end if
66: end for
67: Wkj∗ :=Wkj∗ ·

wj∗∑
x |Wxj∗ |

(k from 1 to F ) . Weight normalization
68: Clip weights of nj∗ in [wmin, wmax]
69: end for
70: end for
71: A+ := A+ · β, A− := A− · β . STDP learning rate annealing
72: ηth := ηth · βth . Threshold learning rate annealing
73: end for

2



2 Experimental Details

2.1 Classification Pipeline

We present, in Figure 1, the classification pipeline used in our experiments. Our classification system
consists of an unsupervised feature extractor followed by a spiking classification layer.

Figure 1: Pipeline of our classification system. Training is performed in a layer-wise fashion. First,
the convolutional layers of the feature extractor are trained on the input images using an unsupervised
Hebbian-based learning rule. Then, a fully-connected spiking classification layer is trained on the
extracted features using a supervised STDP rule. Spike encoding occurs before feature extraction for
spike-based feature extractors or afterward for non-spike-based extractors.

2.2 Unsupervised Feature Extractors

STDP-CSNN comprises a spiking convolutional layer trained with STDP and a spiking max-pooling
layer. First, images are preprocessed with on-center/off-center coding [1] for MNIST and Fashion-
MNIST, and with hardware-friendly whitening [2] for CIFAR-10/100. Then, preprocessed images
are encoded into spikes with latency coding [3] (a form of first-spike coding) and transmitted to
STDP-CSNN for unsupervised training. Latency coding converts each normalized pixel x into a
single spike timestamp as follows: T (x) = 1− x. Each output feature consists of a floating-point
spike timestamp in [0, 1], which is inherently compatible with the classification layer. We use the
hyperparameters reported in [4]. The base code is available at https://gitlab.univ-lille.fr/
bioinsp/falez-csnn-simulator, under the CeCILL-B license.

SoftHebb-CNN comprises three convolutional layers trained with SoftHebb. Each convolutional
layer includes a succession of batch normalization, convolution, pooling (max-pooling for the first
two layers, average-pooling for the last one), and a Triangle [5] activation function. Images undergo
no preprocessing. The extracted output features of each sample are rescaled in [0, 1] and encoded into
spike timestamps with latency coding (see supra). For all the datasets, we use the hyperparameters
employed for the CIFAR-10 task in the original paper [6]. The base code is available at https:
//github.com/NeuromorphicComputing/SoftHebb. No license information is available.

2.3 Spiking Classification Layers

The maximum firing time in the layer is Tmax = 1, which corresponds to the maximum possible
firing timestamp from input neurons. We initialize weights with a normal distribution of mean µ
and standard deviation σ, and we clip them in [wmin, wmax] after each update. For SSTDP and
S2-STDP models, we use values from [4]: µ = 0.5 for SSTDP and µ = 0.3 for S2-STDP, σ = 0.01,
wmin = 0, and wmax = 1. For R-STDP models, we use values from [7]: µ = 0.8, σ = 0.01,
wmin = 0.2, and wmax = 0.8. Weight normalization is employed with S2-STDP models [4] to keep
a similar weight average (of µ = 0.3) across neurons during learning. We decrease the learning rates
after each epoch by a factor β = 0.98. All the other hyperparameters (including firing threshold,

3

https://gitlab.univ-lille.fr/bioinsp/falez-csnn-simulator
https://gitlab.univ-lille.fr/bioinsp/falez-csnn-simulator
https://github.com/NeuromorphicComputing/SoftHebb
https://github.com/NeuromorphicComputing/SoftHebb


learning rates, and method-specific hyperparameters) are optimized with gridsearch. To ensure a fair
comparison between methods, we performed extensive gridsearch optimization (from 600 to 1, 440
runs, depending on the number of hyperparameters) for each model (except on CIFAR-100 where we
used hyperparameters optimized on CIFAR-10). Optimized values and gridsearch ranges are located
in the config/ folder of our source code.

2.4 Computing Resources

We conducted our experiments on private servers as well as the Grid’5000 testbed [8], providing
clusters of servers. Since our models rely on floating-point values to represent firing timestamps,
we cannot benefit from GPU parallelization of operations. Therefore, we exclusively used CPUs,
primarily Intel Xeon W-2245, Intel Xeon Gold 5218, Intel Xeon Gold 6126, Intel Xeon Gold 6130,
Intel Xeon Platinum 8358, AMD EPYC 7343. The servers ranged from 16 to 128 CPU cores and
64 to 768 GiB of RAM. The entire experimentation process spanned over five months and resulted
in over 70, 000 runs (i.e. training of a single model), including gridsearch runs, K-fold runs, and
unreported experiments. The average duration of a single run varies depending on several factors,
such as the number of input features and the dataset. On CIFAR-10, training a classification layer
with S2-STDP+NCG (total of 50 output neurons) using pre-extracted features requires approximately
1 hour with STDP-CSNN (for ∼ 1.4 GiB of RAM) and 4 hours with SoftHebb-CNN (for ∼ 8.9 GiB
of RAM). On CIFAR-100, the same training (total of 500 neurons, as ten times more classes) requires
approximately 8 hours with STDP-CSNN (for∼ 1.3 GiB of RAM) and 48 hours with SoftHebb-CNN
(for ∼ 8.7 GiB of RAM). Note that the amount of RAM needed is mainly influenced by the number
of input features. Also, the computational overhead of NCGs scales linearly with both the number of
neurons and the number of input features.

2.5 Datasets

MNIST is available at http://yann.lecun.com/exdb/mnist/ under the CC BY-SA 3.0 license.
Fashion-MNIST is available at https://github.com/zalandoresearch/fashion-mnist under
the MIT license. CIFAR-10 and CIFAR-100 are available at https://www.cs.toronto.edu/
~kriz/cifar.html under the MIT license.

3 Additional Experiments

3.1 Impact of the Non-Target Neuron

Table 1: Accuracy of S2-STDP+NCG with various numbers of target and non-target neurons.

Dataset Non-target
neurons

Target
neurons

Accuracy (Mean±Std %)
STDP-CSNN SoftHebb-CNN

MNIST

1 1 98.62± 0.07 99.18 ± 0.05
0 4 98.79± 0.07 99.05± 0.07

0 5 98.82± 0.05 99.08± 0.08

1 4 98.92 ± 0.07 99.17± 0.07

Fashion-MNIST

1 1 87.45± 0.16 91.33± 0.21

0 4 87.73± 0.24 91.34± 0.17

0 5 87.76± 0.16 91.33± 0.22

1 4 88.72 ± 0.23 91.86 ± 0.14

CIFAR-10

1 1 62.94± 0.17 78.33± 0.18

0 4 64.85± 0.16 78.54± 0.26

0 5 65.51± 0.26 78.78± 0.15

1 4 66.41 ± 0.17 79.55 ± 0.23

In [4], the accuracy of a classification layer trained with S2-STDP is improved by using two neurons
per class with intra-class WTA competition. The authors show that this accuracy gain is attributed

4

http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html


to implicit neuron specialization toward target or non-target samples. In S2-STDP+NCG models,
we take advantage of this mechanism by explicitly labeling one neuron of each NCG as non-target,
whereas the others are labeled as target. To evaluate the impact of such labeling, we compare, in
Table 1, the accuracy of S2-STDP+NCG with various numbers of target and non-target neurons.
When using one target and one non-target neuron (similarly to [4] but with explicit labeling), the
classification layer cannot learn various patterns per class but the accuracy is still improved through
neuron specialization. We tend to obtain similar or better accuracies with multiple target neurons
and no non-target neurons by learning various patterns per class. When combining multiple target
neurons and a non-target neuron, we reach optimal performance. Preliminary experiments with
multiple non-target neurons and competition regulation did not yield improvements in accuracy. We
believe that a single non-target neuron is enough to benefit from the specialization effect.

3.2 Impact of the Number of Neurons

3 5 10 15

Neurons per class

97.8

98.2

98.6

99.0

A
cc

u
ra

cy

MNIST

3 5 10 15

Neurons per class

86.0

86.9

87.8

88.7
A

cc
u

ra
cy

Fashion-MNIST

3 5 10 15

Neurons per class

61

63

65

67

A
cc

u
ra

cy

CIFAR-10

S2-STDP S2-STDP+NCG S2-STDP+NCG (w/o competition regul.)

Figure 2: Accuracy against the number of neurons per class in the classification layer trained with
S2-STDP+NCG. The features are extracted with STDP-CSNN.

3 5 10 15

Neurons per class

96.0

96.5

97.0

97.5

A
cc

u
ra

cy

MNIST

3 5 10 15

Neurons per class

85.0

85.9

86.8

87.7

A
cc

u
ra

cy

Fashion-MNIST

3 5 10 15

Neurons per class

60.0

61.6

63.2

64.8

A
cc

u
ra

cy

CIFAR-10

SSTDP SSTDP+NCG SSTDP+NCG (w/o competition regul.)

Figure 3: Accuracy against the number of neurons per class in the classification layer trained with
SSTDP+NCG. The features are extracted with STDP-CSNN.

We analyze the impact of varying the number of neurons per class (M ) on the performance of NCGs.
Figures 2 and 3 present the accuracy achieved by S2-STDP+NCG and SSTDP+NCG using different
numbers of neurons, with and without competition regulation. First, competition regulation is crucial
to maximize performance with NCGs, especially for complex datasets. With competition regulation,
increasing the number of neurons per class does not always result in better performance. For simpler
datasets (MNIST, Fashion-MNIST), this increase often leads to either a plateau in accuracy or a
decline when M > 5. Conversely, for harder datasets (CIFAR-10), using larger values (M = 10)
improves the results from the main paper (which uses M = 5). Hence, the optimal number of
neurons per class depends on the complexity of the task and intra-class pattern variations. It should
be optimized as a hyperparameter. It is important to recall that the number of parameters in the

5



classification layer scales with the number of neurons. Hence, NCGs improve the performance of
a classification layer at the cost of an increased number of parameters. Figures 2 and 3 show that
significant accuracy gains can usually be achieved with only three neurons per class. This reveals that
our method remains effective even with a minimal number of additional parameters. When selecting
the value of M , the tradeoff between optimizing accuracy and minimizing parameter cost must be
considered.

3.3 Impact of Hyperparameters

We study the impact of the threshold learning rate (ηth) and the threshold annealing (βth), introduced
by our competition regulation mechanism, on the accuracy. Figures 4 and 5 provide results for
S2-STDP+NCG with STDP-CSNN and SoftHebb-CNN, respectively. Figures 6 and 7 provide results
for SSTDP+NCG with STDP-CSNN and SoftHebb-CNN, respectively. Without annealing (βth = 1),
selecting an appropriate learning rate is crucial to obtain optimal performance. This is attributed to the
increased difficulty in achieving convergence when employing higher learning rates that remain fixed
during the entire training process. With annealing (βth < 1), the performance of S2-STDP+NCG
tends to be near-optimal regardless of the selected learning rate and annealing values. SSTDP+NCG
is less robust to hyperparameters and requires more tuning to achieve optimal performance. This
behavior may occur because SSTDP without NCG also exhibits lower hyperparameter robustness
compared to S2-STDP [4]. However, the accuracy of SSTDP is still improved regardless of the
hyperparameter values (when βth < 1). Overall, annealing the threshold learning rate is not essential
for benefiting from balanced competition, but it does offer better robustness against the selected value
and can further improve performance.

0.1 1 5 10 15

ηth

97.7

98.1

98.5

98.9

T
es

t
ac

cu
ra

cy

MNIST

0.1 1 5 10 15

ηth

85.8

86.8

87.8

88.8

T
es

t
ac

cu
ra

cy

Fashion-MNIST

0.1 1 5 10 15

ηth

61.0

62.8

64.6

66.4

T
es

t
ac

cu
ra

cy

CIFAR-10

βth = 1 βth = 0.9 βth = 0.5 βth = 0.1 S2-STDP

Figure 4: Accuracy of S2-STDP+NCG with different threshold annealing βth against the threshold
learning rate ηth. The features are extracted with STDP-CSNN.

0.1 1 5 10 15

ηth

98.8

99.0

99.2

T
es

t
ac

cu
ra

cy

MNIST

0.1 1 5 10 15

ηth

90.6

91.0

91.4

91.8

T
es

t
ac

cu
ra

cy

Fashion-MNIST

0.1 1 5 10 15

ηth

76.9

77.9

78.9

79.9

T
es

t
ac

cu
ra

cy

CIFAR-10

βth = 1 βth = 0.9 βth = 0.5 βth = 0.1 S2-STDP

Figure 5: Accuracy of S2-STDP+NCG with different threshold annealing βth against the threshold
learning rate ηth. The features are extracted with SoftHebb-CNN.

6



0.1 1 5 10 15

ηth

96.3

96.7

97.1

97.5

T
es

t
ac

cu
ra

cy

MNIST

0.1 1 5 10 15

ηth

84.7

85.7

86.7

87.7

T
es

t
ac

cu
ra

cy

Fashion-MNIST

0.1 1 5 10 15

ηth

59.6

61.2

62.8

64.4

T
es

t
ac

cu
ra

cy

CIFAR-10

βth = 1 βth = 0.9 βth = 0.5 βth = 0.1 SSTDP

Figure 6: Accuracy of SSTDP+NCG with different threshold annealing βth against the threshold
learning rate ηth. The features are extracted with STDP-CSNN.

0.1 1 5 10 15

ηth

98.5

98.7

98.9

T
es

t
ac

cu
ra

cy

MNIST

0.1 1 5 10 15

ηth

89.3

89.9

90.5

91.1

T
es

t
ac

cu
ra

cy

Fashion-MNIST

0.1 1 5 10 15

ηth

76.1

77.0

77.9

78.8

T
es

t
ac

cu
ra

cy

CIFAR-10

βth = 1 βth = 0.9 βth = 0.5 βth = 0.1 SSTDP

Figure 7: Accuracy of SSTDP+NCG with different threshold annealing βth against the threshold
learning rate ηth. The features are extracted with SoftHebb-CNN.

3.4 Ablation Study

Table 2: Ablation study on SSTDP+NCG. M is the number of neurons per class, CR is competition
regulation with 1 or 2 thresholds, and Drop is dropout.

(a) Fashion-MNIST

Method Accuracy (Mean±Std %)
STDP-CSNN SoftHebb-CNN

M-1 85.26± 0.17 89.36± 0.24
M-5 85.13± 1.20 91.02± 0.14

M-5+CR-1 86.79± 0.14 90.92± 0.22
M-5+CR-2 87.59 ± 0.11 91.06 ± 0.10

M-5+Drop 86.40± 0.27 90.90± 0.14

(b) CIFAR-10

Method Accuracy (Mean±Std %)
STDP-CSNN SoftHebb-CNN

M-1 60.87± 0.53 76.57± 0.58
M-5 62.33± 0.14 77.51± 0.23

M-5+CR-1 63.50± 0.28 78.09± 0.34
M-5+CR-2 64.05 ± 0.48 78.53 ± 0.32

M-5+Drop 62.46± 0.19 78.12± 0.22

In the main paper, we conduct an ablation study on S2-STDP+NCG to show the individual accuracy
gain brought by each component of our methods. We provide, in Table 2, a similar study on
SSTDP+NCG. M-1 and M-5 represent SSTDP+NCG with M = 1 (one neuron per class, which
is similar to SSTDP) and M = 5, without competition regulation. CR-1 denotes our competition
regulation mechanism with a single threshold per neuron (i.e. θ′ = θ). Thresholds are not clipped nor
reset between epochs, and the learned values are used for inference. CR-2 denotes our competition
regulation with two-compartment thresholds. Drop is dropout on the output neurons (an alternative
competition regulation mechanism used with R-STDP). Neuron labeling is not employed because

7



SSTDP uses error clipping, and neuron specialization is only relevant without error clipping [4].
Overall, these results are consistent with the study conducted on S2-STDP+NCG. Competition
regulation improves class separation (cf. M-5), except on Fashion-MNIST with SoftHebb-CNN,
where the accuracy improvement is solely attributed to intra-class WTA. Our competition regulation
mechanism (cf. CR-2) outperforms the existing threshold adaptation with one threshold (cf. CR-1),
as well as dropout (cf. Drop).

3.5 Impact of Competition Regulation

5 4 3 2 1

5
4

3
2

1

Class 0

5 4 3 2 1

5
4

3
2

1

Class 1

5 4 3 2 1

5
4

3
2

1

Class 2

5 4 3 2 1

5
4

3
2

1

Class 3

5 4 3 2 1

5
4

3
2

1

Class 4

5 4 3 2 1

5
4

3
2

1

Class 5

5 4 3 2 1

5
4

3
2

1

Class 6

5 4 3 2 1

5
4

3
2

1

Class 7

5 4 3 2 1

5
4

3
2

1

Class 8

5 4 3 2 1

5
4

3
2

1

Class 9

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Neuron

N
eu

ro
n

(a) w/o competition regulation

5 4 3 2 1

5
4

3
2

1

Class 0

5 4 3 2 1

5
4

3
2

1

Class 1

5 4 3 2 1

5
4

3
2

1

Class 2

5 4 3 2 1

5
4

3
2

1

Class 3

5 4 3 2 1

5
4

3
2

1

Class 4

5 4 3 2 1

5
4

3
2

1

Class 5

5 4 3 2 1

5
4

3
2

1

Class 6

5 4 3 2 1

5
4

3
2

1

Class 7

5 4 3 2 1

5
4

3
2

1

Class 8

5 4 3 2 1

5
4

3
2

1

Class 9

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Neuron

N
eu

ro
n

(b) w/ competition regulation

Figure 8: Heatmap of intra-class weight cosine similarities, after S2-STDP+NCG training on CIFAR-
10. The features are extracted with STDP-CSNN.

In the main paper, we suggest through t-SNE visualizations that competition regulation enables
the learning of various patterns per class. In this section, we further analyze the weights learned
with and without competition regulation to support this claim. Figure 8 illustrates intra-class weight
cosine similarities, after S2-STDP+NCG training on CIFAR-10. Without competition regulation, the
neuron with the lowest score (such as neuron 2 of class 0) is the neuron receiving the majority of the
target updates during training (see Figure 9a). All the other neurons exhibit high scores, indicating
significant similarity in their weights. Competition regulation successfully decreases the similarity

8



score between neurons of each NCG (i.e. class), which provides further evidence that it enables the
learning of various class-specific patterns.

We present additional figures to show that competition regulation is crucial for ensuring balanced
competition. Figures 9 and 10 illustrate the number of target weight updates received by neurons
trained with S2-STDP+NCG on CIFAR-10 and Fashion-MNIST, respectively. Figures 11 and 12
present similar plots with SSTDP+NCG. Without competition regulation, one neuron of each NCG
(i.e. class) receives the majority of the target updates. Our competition regulation mechanism
successfully balances the number of updates received by neurons, which promotes, through intra-
class WTA, the learning of various patterns per class. Note that competition for some classes is not
completely balanced, particularly on Fashion-MNIST. However, absolute balance in the competition
is not expected, given that the training set does not necessarily ensure equal representation of all
different patterns.

0 10 20

0

2500

5000
Class 0

0 10 20

0

2500

5000
Class 1

0 10 20

0

2500

5000
Class 2

0 10 20

0

2500

5000
Class 3

0 10 20

0

2500

5000
Class 4

0 10 20

0

2500

5000
Class 5

0 10 20

0

2500

5000
Class 6

0 10 20

0

2500

5000
Class 7

0 10 20

0

2500

5000
Class 8

0 10 20

0

2500

5000
Class 9

n1 n2 n3 n4 n5

(a) w/o competition regulation

0 10 20
0

1000

2000
Class 0

0 10 20
0

1000

2000
Class 1

0 10 20
0

1000

2000
Class 2

0 10 20
0

1000

2000
Class 3

0 10 20
0

1000

2000
Class 4

0 10 20
0

1000

2000
Class 5

0 10 20
0

1000

2000
Class 6

0 10 20
0

1000

2000
Class 7

0 10 20
0

1000

2000
Class 8

0 10 20
0

1000

2000
Class 9

n1 n2 n3 n4 n5

(b) w/ competition regulation

Figure 9: Number of target weight updates per epoch received by neurons of each class on CIFAR-10,
with S2-STDP+NCG training. n1 to n4 are labeled as target neurons and n5 is labeled as non-target.
The features are extracted with STDP-CSNN.

9



0 10 20

0

3000

6000
Class 0

0 10 20

0

3000

6000
Class 1

0 10 20

0

3000

6000
Class 2

0 10 20

0

3000

6000
Class 3

0 10 20

0

3000

6000
Class 4

0 10 20

0

3000

6000
Class 5

0 10 20

0

3000

6000
Class 6

0 10 20

0

3000

6000
Class 7

0 10 20

0

3000

6000
Class 8

0 10 20

0

3000

6000
Class 9

n1 n2 n3 n4 n5

(a) w/o competition regulation

0 10 20
0

1250

2500
Class 0

0 10 20

0

1250

2500
Class 1

0 10 20
0

1250

2500
Class 2

0 10 20
0

1250

2500
Class 3

0 10 20
0

1250

2500
Class 4

0 10 20
0

1250

2500
Class 5

0 10 20
0

1250

2500
Class 6

0 10 20
0

1250

2500
Class 7

0 10 20
0

1250

2500
Class 8

0 10 20
0

1250

2500
Class 9

n1 n2 n3 n4 n5

(b) w/ competition regulation

Figure 10: Number of target weight updates per epoch received by neurons of each class on Fashion-
MNIST, with S2-STDP+NCG training. n1 to n4 are labeled as target neurons and n5 is labeled as
non-target. The features are extracted with STDP-CSNN.

10



0 10 20 30

0

2500

5000
Class 0

0 10 20 30

0

2500

5000
Class 1

0 10 20 30
0

2500

5000
Class 2

0 10 20 30

0

2500

5000
Class 3

0 10 20 30

0

2500

5000
Class 4

0 10 20 30

0

2500

5000
Class 5

0 10 20 30

0

2500

5000
Class 6

0 10 20 30

0

2500

5000
Class 7

0 10 20 30

0

2500

5000
Class 8

0 10 20 30

0

2500

5000
Class 9

n1 n2 n3 n4 n5

(a) w/o competition regulation

0 10 20 30
0

1000

2000
Class 0

0 10 20 30
0

1000

2000
Class 1

0 10 20 30
0

1000

2000
Class 2

0 10 20 30
0

1000

2000
Class 3

0 10 20 30
0

1000

2000
Class 4

0 10 20 30
0

1000

2000
Class 5

0 10 20 30
0

1000

2000
Class 6

0 10 20 30
0

1000

2000
Class 7

0 10 20 30
0

1000

2000
Class 8

0 10 20 30
0

1000

2000
Class 9

n1 n2 n3 n4 n5

(b) w/ competition regulation

Figure 11: Number of target weight updates per epoch received by neurons of each class on CIFAR-10,
with SSTDP+NCG training. The features are extracted with STDP-CSNN.

11



0 10 20 30

0

3000

6000
Class 0

0 10 20 30

0

3000

6000
Class 1

0 10 20 30

0

3000

6000
Class 2

0 10 20 30

0

3000

6000
Class 3

0 10 20 30

0

3000

6000
Class 4

0 10 20 30

0

3000

6000
Class 5

0 10 20 30

0

3000

6000
Class 6

0 10 20 30

0

3000

6000
Class 7

0 10 20 30

0

3000

6000
Class 8

0 10 20 30

0

3000

6000
Class 9

n1 n2 n3 n4 n5

(a) w/o competition regulation

0 10 20 30
0

1000

2000
Class 0

0 10 20 30

0

1000

2000
Class 1

0 10 20 30
0

1000

2000
Class 2

0 10 20 30
0

1000

2000
Class 3

0 10 20 30
0

1000

2000
Class 4

0 10 20 30
0

1000

2000
Class 5

0 10 20 30
0

1000

2000
Class 6

0 10 20 30
0

1000

2000
Class 7

0 10 20 30
0

1000

2000
Class 8

0 10 20 30

0

1000

2000
Class 9

n1 n2 n3 n4 n5

(b) w/ competition regulation

Figure 12: Number of target weight updates per epoch received by neurons of each class on Fashion-
MNIST, with SSTDP+NCG training. The features are extracted with STDP-CSNN.

12



3.6 Application to Gradient-Based Learning Rules

Table 3: Accuracy of S2-STDP+NCG, with and without long-term depression.

Dataset Long-term
depression

Accuracy (Mean±Std %)
STDP-CSNN SoftHebb-CNN

MNIST no 98.71± 0.14 99.15± 0.05

yes 98.92 ± 0.07 99.17 ± 0.07

Fashion-MNIST no 88.36± 0.12 91.54± 0.21

yes 88.72 ± 0.23 91.86 ± 0.14

CIFAR-10 no 65.91± 0.38 79.57 ± 0.24
yes 66.41 ± 0.17 79.55± 0.23

To train the spiking classification layers, we employ an error-modulated additive STDP in which the
weight change is the product of the error and the learning rate (see Equation 3, page 4, in the main
paper). The learning rate is positive for long-term potentiation (i.e. when the input neuron fires before
the output neuron) and negative for long-term depression (i.e. when the input neuron fires after the
output neuron). Given the simplicity of this STDP model, the weight updates, if long-term depression
is ignored, resemble a gradient-based rule or delta rule1. To better understand the relevance of STDP
with respect to these types of rules, we examine, in Table 3, the accuracy of S2-STDP+NCG with
and without long-term depression. Results indicate that incorporating long-term depression generally
leads to a slight improvement in accuracy. This improvement may be due to STDP considering input
spikes that reach the neuron both before and after the output spike. In addition, long-term depression
enables faster training convergence by increasing the number of weight updates per sample. The
number of epochs with long-term depression is reduced by an average of 15% for STDP-CSNN
and 4% for SoftHebb-CNN. As a result, S2-STDP enables more effective training of the NCGs
than a gradient-based rule that uses a squared error loss function and the same method for defining
the desired firing times. However, it should be noted that the method for computing the errors
(specifically, the desired firing times) is more important than the method for updating the weights
(gradient-based or STDP-based).

Table 4: Accuracy of spiking classification layers trained with a gradient-based method, on top of
Hebbian-based unsupervised feature extractors.

Dataset Method Neurons
per class

Accuracy (Mean±Std %)
STDP-CSNN SoftHebb-CNN

MNIST S4NN 1 97.86± 0.11 98.86± 0.14

S4NN+NCG (ours) 5 98.33 ± 0.10 98.99 ± 0.09

Fashion-MNIST S4NN 1 86.55± 0.13 90.38± 0.32

S4NN+NCG (ours) 5 87.87 ± 0.24 90.98 ± 0.14

CIFAR-10 S4NN 1 57.86± 0.15 76.92± 0.26

S4NN+NCG (ours) 5 62.55 ± 0.20 77.62 ± 0.27

CIFAR-100 S4NN 1 24.38± 0.44 38.51± 1.00

S4NN+NCG (ours) 5 28.68 ± 0.61 39.84 ± 0.54

To provide additional evidence that NCGs can be trained with gradient-based rules, we conducted
another experiment using S4NN [9], an established rule for single-spike neurons. S4NN uses the
stochastic gradient descent algorithm (with gradient approximations) to minimize a squared error
loss function, and computes the desired firing times based on the first output firing time. Table 4
presents the accuracy achieved by this rule, with and without NCGs, across various datasets and

1The delta learning rule must employ the same method for computing the errors and a Heaviside function to
convert input spikes into a continuous signal.

13



feature extractors. NCGs consistently improve the performance of S4NN, aligning with the results
from the main paper on STDP-based rules. Yet, further research is required to evaluate the impact of
the method for computing the errors (and the desired firing times) on the effectiveness of NCGs.

4 Comparison with SOTA Methods

SOTA methods for direct training of SNNs [10, 11, 12] rely on backpropagation through time
(BPTT) [13] and surrogate gradient [14]. These methods usually allow multiple spikes per neuron
and support the training of very deep networks using global supervised learning. In this work, we
allow one spike per neuron, train all layers with local learning (limiting our networks to shallow
architectures), and use a semi-supervised training strategy, where only the last layer is trained with
supervision. In terms of performance, our methods lag behind fully-supervised SOTA methods. For
instance, [12] report an accuracy of 96.44% on CIFAR-10 (our best model achieves 79.55%) and
81.65% on CIFAR-100 (our best model achieves 53.49%). This decrease in accuracy can partially be
attributed to the number of layers employed (4 against 19) and the use of supervision limited to the
last layer. In terms of computational and memory costs, BPTT is extremely inefficient since these
costs scale with the latency (i.e. the number of time steps), whereas the costs of our methods are
independent of the latency. Also, a backward pass with BPTT adjusts all synapses in the network,
whereas our methods adjust only the synapses of neurons that have fired. In terms of energy efficiency,
our single-spike strategy may limit the number of generated spikes significantly compared to multiple-
spike methods, which reduces power consumption in both training and inference. In terms of hardware
suitability, BPTT is challenging to implement on neuromorphic hardware because it relies on non-
local learning [15]. BPTT-based SNNs must be trained on GPUs, which is energy-intensive [16, 17],
and can be deployed on chip for inference only. To fully exploit the energy-efficient capabilities of
SNNs, both training and inference should be performed on chip. We target, for instance, memristive-
based chips [18] for hardware implementation of our methods. They are excellent candidates for
ultra-low-power applications, potentially reducing energy consumption by several orders of magnitude
compared to GPUs [19, 16]. Also, STDP is inherently implemented in memristor circuits [20, 21],
which facilitates on-chip training [22, 23]. There are still several challenges to address before our
work can be implemented on this type of chip, such as the need for a digital module to calculate the
error. This should be the focus of future work.

References
[1] Pierre Falez, Pierre Tirilly, Ioan Marius Bilasco, Philippe Devienne, and Pierre Boulet. Multi-

Layered Spiking Neural Network with Target Timestamp Threshold Adaptation and STDP. In
International Joint Conference on Neural Networks, 2019.

[2] Pierre Falez, Pierre Tirilly, and Ioan Marius Bilasco. Improving STDP-based Visual Feature
Learning with Whitening. In International Joint Conference on Neural Networks, 2020.

[3] Simon Thorpe, Arnaud Delorme, and Rufin Van Rullen. Spike-Based Strategies for Rapid
Processing. Neural Networks, 14:715–725, 2001.

[4] Gaspard Goupy, Pierre Tirilly, and Ioan Marius Bilasco. Paired Competing Neurons Improving
STDP Supervised Local Learning in Spiking Neural Networks. Frontiers in Neuroscience, 18,
2024.

[5] Adam Coates, Andrew Ng, and Honglak Lee. An Analysis of Single-Layer Networks in
Unsupervised Feature Learning. In International Conference on Artificial Intelligence and
Statistics, pages 215–223, 2011.

[6] Adrien Journé, Hector Garcia Rodriguez, Qinghai Guo, and Timoleon Moraitis. Hebbian Deep
Learning Without Feedback. International Conference on Learning Representations, 2023.

[7] Milad Mozafari, Saeed Reza Kheradpisheh, Timothee Masquelier, Abbas Nowzari-Dalini, and
Mohammad Ganjtabesh. First-Spike-Based Visual Categorization Using Reward-Modulated
STDP. Transactions on Neural Networks and Learning Systems, 29:6178–6190, 2018.

14



[8] Franck Cappello, Frédéric Desprez, Michel Daydé, Emmanuel Jeannot, Yvon Jégou, Stephane
Lanteri, Nouredine Melab, Raymond Namyst, Pascale Primet, Olivier Richard, Eddy Caron,
Julien Leduc, and Guillaume Mornet. Grid’5000: A Large Scale, Reconfigurable, Controlable
and Monitorable Grid Platform. In International Workshop on Grid Computing, 2005.

[9] Saeed Reza Kheradpisheh and Timothée Masquelier. Temporal Backpropagation for Spiking
Neural Networks with One Spike per Neuron. International Journal of Neural Systems, 30,
2020.

[10] Chaoteng Duan, Jianhao Ding, Shiyan Chen, Zhaofei Yu, and Tiejun Huang. Temporal Effective
Batch Normalization in Spiking Neural Networks. Advances in Neural Information Processing
Systems, 35, 2022.

[11] Man Yao, JiaKui Hu, Zhaokun Zhou, Li Yuan, Yonghong Tian, Bo Xu, and Guoqi Li. Spike-
driven Transformer. Advances in Neural Information Processing Systems, 36, 2023.

[12] Yuhang Li, Tamar Geller, Youngeun Kim, and Priyadarshini Panda. SEENN: Towards Temporal
Spiking Early Exit Neural Networks. Advances in Neural Information Processing Systems, 36,
2023.

[13] Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-Temporal Backpropagation for
Training High-Performance Spiking Neural Networks. Frontiers in Neuroscience, 12, 2018.

[14] Emre O. Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate Gradient Learning in
Spiking Neural Networks: Bringing the Power of Gradient-Based Optimization to Spiking
Neural Networks. Signal Processing Magazine, 36:51–63, 2019.

[15] Friedemann Zenke and Emre Neftci. Brain-Inspired Learning on Neuromorphic Substrates.
Proceedings of the IEEE, 109:935–950, 2021.

[16] Jiwei Li, Hui Xu, Sheng-Yang Sun, Nan Li, Qingjiang Li, Zhiwei Li, and Haijun Liu. In Situ
Learning in Hardware Compatible Multilayer Memristive Spiking Neural Network. Transactions
on Cognitive and Developmental Systems, 14:448–461, 2022.

[17] Shiya Liu, Nima Mohammadi, and Yang Yi. Quantization-Aware Training of Spiking Neural
Networks for Energy-Efficient Spectrum Sensing on Loihi Chip. Transactions on Green
Communications and Networking, 2023.

[18] Doo Seok Jeong, Kyung Min Kim, Sungho Kim, Byung Joon Choi, and Cheol Seong Hwang.
Memristors for Energy-Efficient New Computing Paradigms. Advanced Electronic Materials, 2,
2016.

[19] Peng Yao, Huaqiang Wu, Bin Gao, Jianshi Tang, Qingtian Zhang, Wenqiang Zhang, J. Joshua
Yang, and He Qian. Fully Hardware-Implemented Memristor Convolutional Neural Network.
Nature, 577:641–646, 2020.

[20] Damien Querlioz, Olivier Bichler, and Christian Gamrat. Simulation of a Memristor-Based
Spiking Neural Network Immune to Device Variations. In International Joint Conference on
Neural Networks, pages 1775–1781, 2011.

[21] Catherine D. Schuman, Thomas E. Potok, Robert M. Patton, J. Douglas Birdwell, Mark E.
Dean, Garrett S. Rose, and James S. Plank. A Survey of Neuromorphic Computing and Neural
Networks in Hardware. ArXiv, arXiv:1705.06963 [cs.NE], 2017.

[22] Sylvain Saïghi, Christian G. Mayr, Teresa Serrano-Gotarredona, Heidemarie Schmidt, Gwendal
Lecerf, Jean Tomas, Julie Grollier, Sören Boyn, Adrien F. Vincent, Damien Querlioz, Selina
La Barbera, Fabien Alibart, Dominique Vuillaume, Olivier Bichler, Christian Gamrat, and
Bernabé Linares-Barranco. Plasticity in Memristive Devices for Spiking Neural Networks.
Frontiers in Neuroscience, 9, 2015.

[23] Lyes Khacef, Philipp Klein, Matteo Cartiglia, Arianna Rubino, Giacomo Indiveri, and Elisabetta
Chicca. Spike-Based Local Synaptic Plasticity: A Survey of Computational Models and
Neuromorphic Circuits. Neuromorphic Computing and Engineering, 3, 2023.

15


	Overall Algorithm
	Experimental Details
	Classification Pipeline
	Unsupervised Feature Extractors
	Spiking Classification Layers
	Computing Resources
	Datasets

	Additional Experiments
	Impact of the Non-Target Neuron
	Impact of the Number of Neurons
	Impact of Hyperparameters
	Ablation Study
	Impact of Competition Regulation
	Application to Gradient-Based Learning Rules

	Comparison with SOTA Methods

