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1 Week 1: September 23 - 29

1.1 Reading Paper

Polar codes are a mathematical calculation such that with the combination of a specially-devised encoder and decoder, bits
can be either communicated with low error probability or with high probability. It is possible to know which channels are
considered good and which are poor channels so that message bits can be transmitted over the poor channels and random
bits, called frozen bits, can be sent on the poor channels. This guarantees that message bits can be recovered after being sent
on the channel. Bits are first encoded, then sent through a channel which I will simulate with a Binary Symmetric Channel
(BSC), and then decoded upon arriving on the other end of the channel. My MEng project will be to simulate this channel
by implementing the endoder and decoder using ideas within polar codes to obtain a result that is implementable in practice.

1.2 Implementing Encoder

1.2.1 Explanation

The encoder takes an input uN and produces combination of the u bits, denoted xN . The x bits are computed by multiplying
the u bits by the matrix GN , defined mathematically below. BN is a bit reversal matrix, taking a string 0010001 and
producing 1000100. F⊗n is the n-fold produce of the F matrix shown below. Combined, GN is a special matrix that
produces a linear combination of the u bits.

1.2.2 Important Equations

GN = BNF⊗n

where F =

[
1 0
1 1

]
and N = 2n, n ≥ 0 and

A⊗B =

 A11B · · · A1nB
...

. . . vdots
Am1B · · ·AmnB


A⊗n = A⊗A⊗(n−1) for all n ≥ 1 and A⊗0 = [1]

1.2.3 Encoder Code

de f encoding (u ) :
N = len (u)

# Check i f N i s a power o f 2 , a l t e r s the value o f pow
, pow = isPowerOfTwo (N)

# a s s e r t powOfTwo
n = pow # 2ˆn = N

u N = np . z e r o s (N)
f o r i in range ( l en (u ) ) :

u N [ i ] = in t (u [ i ] )
u N = u N . astype ( i n t )

# G N = B N Fˆ(Ox)n
# B N i s permutation matrix = bit=r e v e r s a l
# F = [ [ 1 0 ] , [ 1 1 ] ]
# N = 2ˆn

# Let B N = a permutation matrix => one 1 per column and row
B N = permutation mat (N)
F = np . array ( [ [ 1 , 0 ] , [ 1 , 1 ] ] )

F N = ca l c F (n ,F)

G N = np . matmul (B N , F N)
x N = np . matmul (u N ,G N)
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x N = x N . astype ( i n t )
x N = x N % 2

# convert back to binary b i t s t r i n g
x = ’ ’ . j o i n (map( s t r , x N ) ) # Convert matrix to s t r i n g

# pr in t (”u ’ s : ” , u )
# pr in t (”x ’ s : ” , x )

re turn G N, x

de f isPowerOfTwo (n ) :
pow = 0
i f n==0:

re turn Fal se
whi l e n != 1 :

i f n%2 != 0 :
re turn Fal se

pow += 1
n = n // 2

return True , pow

de f ca l c F (n ,F ) : # count backwards from n
i f n == 0 :

re turn np . ones (1 )
F N = np . kron (F , ca l c F (n=1,F) ) # kronecker product
re turn F N

def permutation mat (L ) :
mat = np . z e r o s ( (L ,L) )
d e s i r e d l e n g t h = len ( bin (L= 1 ) [ 2 : ] )
f o r N indx in range (L ) :

new index = in t ( ’{0 :0{1}b } ’ . format (N indx , d e s i r e d l e n g t h ) [ : : = 1 ] , 2)
mat [ new index ] [ N indx ] = 1

return mat
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2 Week 2: September 30 - October 13

2.1 Implementing Decoder

2.1.1 Important equations:

L
(i)
N (yn1 , û

i−1
1 ) =

W
(i)
N (yN1 , ûi−1

1 |0)
W

(i)
N (yN1 , ûi−1

1 |1)

ûi =

{
0 if L

(i)
N (yN1 , ûi−1

1 ) ≥ 1

1 otherwise

Compute the above recursively:

L
(2i−1)
N (yN1 , û2i−1

1 ) =
L
(i)
N/2

(
y
N/2
1 , û2i−2

1,o ⊕ û2i−2
1,e

)
L
(i)
N/2

(
yN/2 + 1

N
, û2i−2

1,e

)
+ 1

L
(i)
N/2

(
y
N/2
1 , û2i−2

1,o ⊕ û2i−2
1,e

)
+ L

(i)
N/2

(
y
N/2
1 , û2i−2

1,e

)
L
(2i)
N (yN1 , û2i−1

1 ) =
[
L
(i)
N/2

(
y
N/2
1 , û2i−2

1,o ⊗ û2i−2
1,e

)]1−eû2i−1

· L(i)
N/2

(
yNN/2+1, û

2i−2
1,e

)
Down to the recursive case:

L
(1)
1 (yi) =

W (yi|0)
W (yi|1)

2.1.2 Explanation

The decoder converts the y bit string to estimations ûN . Each ûi is computed as two probabilities: the probability of being
a 0 or a 1, and the higher probability is the result that is chosen. Calculating these probabilities is quite involved and has
high computation time, so an alternative is the recursive definition defined mathematically above. This algorithm is O(N2).

3



3 Week 3: October 14 - October 20

3.1 Continued Implementation of Decoder

We chose to send all data indices through the decoder, not taking into consideration whether a certain bit is frozen as we are
not yet sure how to obtain information on whether a bit is flipped.

3.1.1 Decoder Code

de f decoding (y , e p s i l o n ) :
N = len (y )

# Convert b i t s t r i n g to numpy array o f i n t s
y N = np . z e r o s (N)
f o r i in range (N) :

y N [ i ] = in t (y [ i ] )
y N = y N . astype ( i n t )

u hat N = np . z e r o s (N)

f o r i in range (N) :
L i = l i k e l i h o o d (y N , u hat N [ : i ] , e p s i l o n )
i f L i >= 1 :

u hat N [ i ] = 0
e l s e :

u hat N [ i ] = 1

u hat N = u hat N . astype ( i n t )
u hat N = u hat N % 2 # convert back to binary b i t s t r i n g
u hat = ’ ’ . j o i n (map( s t r , u hat N ) ) # Convert matrix to s t r i n g

# pr in t (” uhs : ” , u hat )
re turn u hat N

de f l i k e l i h o o d (y N , u hat , e p s i l o n ) :
N = len (y N)
# pr in t ( y N)
i f N == 1 :

i f y N == 0 : # y N i s a s i n g l e va lue here
re turn (1= ep s i l o n )/ ep s i l o n

e l s e : # y 1 = 1
return ep s i l o n /(1= ep s i l o n )

e l s e :
# y ’ s needed as part o f d e f i n i t i o n o f new r e c u r s i v e l i k e l i h o o d s
f i r s t h a l f y = y N [ :N//2 ]
l a s t h a l f y = y N [N// 2 : ]

u hato = u hat [ : : 2 ] # get only odd rows 1 , 3 , . . .
u hate = u hat [ 1 : : 2 ] # get only even rows 2 , 4 , . . .

# Kronecker sum = add componentwise
new uhat = np . z e ro s ( l en ( u hate ) )
f o r p in range ( l en ( new uhat ) ) :

i f l en ( u hat )%2 == 1 and p == ( l en ( new uhat ) = 1 ) :
# when the l ength o f uhat i s odd

new uhat [ p ] = u hato [ p ]
e l s e :

new uhat [ p ] = ( u hato [ p ] + u hate [ p ] ) % 2
# take the mod 2 to keep 0 s and 1 s
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l i k e 1 = l i k e l i h o o d ( f i r s t h a l f y , new uhat , e p s i l o n )
l i k e 2 = l i k e l i h o o d ( l a s t h a l f y , u hate , e p s i l o n )

i f l en ( u hat ) % 2 == 0 : # Equation 75
return ( l i k e 1 * l i k e 2 + 1) / ( l i k e 1 + l i k e 2 )

e l s e : # i i s even , Equation 76
power = 1 = 2* u hat [ l en ( u hat )=1] # e i t h e r 1 or =1
return ( l i k e 1 )** power * l i k e 2

Must now read other paper to determine if bits are frozen or not

3.2 Simulating BSC and Integration with Encoder and Decoder

3.2.1 BSC Explanation

We simulating passing an length N bit string through N independent BSC’s xi → yi by flipping xi with probability ϵ.

3.2.2 BSC Code

de f bse (x , e p s i l o n ) :
N = len (x )

# Convert b i t s t r i n g to numpy array o f i n t s
x N = np . z e r o s (N)
f o r i in range ( l en (x ) ) :

x N [ i ] = in t (x [ i ] )
x N = x N . astype ( i n t )

y N = np . z e r o s ( l en ( x N ) )
f o r i in range ( l en ( x N ) ) :

y N [ i ] = f l i p ( x N [ i ] , e p s i l o n )

y N = y N . astype ( i n t )
y N = y N % 2 # convert back to binary b i t s t r i n g
y = ’ ’ . j o i n (map( s t r , y N ) ) # Convert matrix to s t r i n g

p r in t (”y ’ s : ” , y )

re turn y

de f f l i p ( elem , ep s i l o n ) :
# random . random c r e a t e s a uni formly d i s t r i b u t e d random f l o a t i n g po int number in [ 0 , 1 )
re turn elem i f random . random ( ) >= ep s i l o n e l s e i n t ( not elem )
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4 Week 4: October 21 - October 27

4.1 Analysis on the index of frozen bit

I randomly generate a u bit string of length N = 2n, for n ∈ [1, 8] as bit strings longer than 28 take too long to run. Through
trials of u bit strings of a certain length N , I set the values of a matrix to count the number of times u[i] = û[i] for a given i.
The goal is to test if the frozen bits are always the same indices throughout the trials. I then divide each value of the matrix
by N so that each entry is the fraction of the time for which u[i] = û[i], and I plotted these values. This is the resulting plots
over 20 trials for each value of N .

4.1.1 ϵ = 0.1

I also recorded the average total number of bits that are correct in a single run of a trial for a given N :

N Value Average Correct Average Fraction Correct

N = 2 1.65 0.83
N = 22 3.2 0.8
N = 23 5.7 0.71
N = 24 12.5 0.78
N = 25 21.5 0.67
N = 26 35.4 0.55
N = 27 69.3 0.54
N = 28 135.4 0.53
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The fraction of good channels is the capacity, which should be 1−Hb(ϵ).

1−Hb(ϵ) = 1 + ϵ log ϵ+ (1− ϵ) log(1− ϵ) = 1 + 0.1 log 0.1 + 0.9 log 0.9 = 1− 0.1 ∗ 3.322− 0.9 ∗ 0.152 = 1− 0.469 = 0.53

This is approximately the fraction correct for all N, and should be the fraction correct as N increases.

4.1.2 ϵ = 0.01

It doesn’t seem that any one particular index is a known frozen bit throughout a bit string of length N , but here does seem
to be a trend that only a couple of bits have low fraction of u[i] = û[i], a few more indices of high fraction of equality, and
most of the other indices hovering over 1

2 . The possible fractional values decrease as N increases.
I also recorded the average total number of bits that are correct in a single run of a trial for a given N :

N Value Average Correct Average Fraction Correct

N = 2 2.0 1.0
N = 22 4.0 1.0
N = 23 7.7 0.96
N = 24 15.95 1.0
N = 25 29.85 0.93
N = 26 54.7 0.85
N = 27 95.85 0.75
N = 28 189.85 0.74

Capacity should be 1−Hb(ϵ).

1−Hb(ϵ) = 1 + ϵ log ϵ+ (1− ϵ) log(1− ϵ) = 1 + 0.01 log 0.01 + 0.99 log 0.99 = 1− 0.01 ∗ 6.644− 0.99 ∗ 0.0145 = 0.92
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Goes below capacity...

4.2 u to û is a single block

u1

u2

u3

...
un

û1

û2

û3

...
ûn

If we apply G−1
N to the left of ui’s and GN to the right of the ûi’s, this should result in a block with x inputs and y outputs.

x = G−1
N u y = ûGN

Append GN-1 and GN to the back and front of the full block
Approximating ϵ = 0.2:

N Value Epsilon Approximation

N = 2 0.0
N = 22 0.0
N = 23 0.0
N = 24 0.19
N = 25 0.19
N = 26 0.23
N = 27 0.31
N = 28 0.25

Approximating ϵ = 0.02:

N Value Epsilon Approximation

N = 2 0.0
N = 22 0.0
N = 23 0.0
N = 24 0.0
N = 25 0.0
N = 26 0.016
N = 27 0.0078
N = 28 0.0195
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5 Week 5: October 28 - November 10

Above doesn’t work just yet, need to figure out which bits are frozen before decoding, since this is necessary information for
the decoder.
Next working on figuring out which channels are good and which are bad. This is complicated to do with the original channel
since it has a large and complex output. Instead, we can degrade the channel and see which indices result in the highest
capacities, meaning they are good channels. A good degraded channel means the original channel is also good.
This requires implementation of Algorithms A and C in paper ’How to Construct Polar Codes’ by Tal and Vardy. We don’t
need information on the upgraded channel right now - unless we want to check if a degraded channel is bad and the actual
channel is good. This could eventually be used for optimization?
Square and circle functions increase the output size of the function to Y 2 and X ×Y 2, respectively, and the degrading merge
procedure decreases the output size. This process occurs for each channel index i as it is broken down to its binary equivalent.
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6 Week 6: November 11 - November 17

6.1 Clean vs Poor Channels Analysis

Getting the code above to work is difficult. Maintaining heaps and making sure each row of a channel always sums to 1 since
this is a probability transition matrix. The square and circle functions preserve this, degrading does not, so just make sure
to rescale after running the degrading merge procedure on the channel.
For N=1024, get this plot of capacities:

Using a cutoff of capacity of 0.5, 658 channels are deamed clean and 366 are seen as poor. Cutoff of 0.75, 631 indices are
clean and 393 indices are poor. Cutoff of 0.9, 601 indices are clean and 423 are poor. Even at high cutoff for calling a channel
clean, more than half are good. This is promising for performance of sending lots of data through. These values are the same
after many runs.
Now to find the indices that are good vs. poor. I will be using the 0.9 cutoff. Each index is always a good channel or always
a bad channel by this criteria, so over 5 trials, the plot looks as follows where each index either has 5 good trials or 0.

6.2 Using channel information to implement decoder

Now I can use the information on which channels are good and which are poor to properly decode to the correct û. I return
the list of indices with information on whether each is a good or bad channel. If a channel i is poor, meaning that noise was
sent on the channel originally, this must be a frozen bit so the ûi prediction is set to original value ui. Otherwise, this is a
message bit and we want to decode it using the likelihood calculations with all yN1 bits and previous ûi−1

1 and epsilon.
With this new involvement of clean and poor channels, my outputs of û are sometimes exactly the same as u, or differ by
a few indices of message bits. These seem to be in batches of consecutive indices. Using randomly generated u’s spanning
from size 32 to 1024, here is the plot of fraction correct for each index in 10 trials:
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import numpy as np
from da t a c l a s s e s import da t a c l a s s
import math
import sys
import matp lo t l i b . pyplot as p l t

# input : An under ly ing BMS channel W, a bound mu = 2*nu on the output
# alphabet s i z e , a code l ength N = 2ˆn and index i with binary r ep r e s en t a t i on
# i = <b1 , b2 , . . . , bm> 2
# output : BMS channel that i s degraded wrt b i t channel W i

# New Data da t a c l a s s
@datac lass
c l a s s Data Element :

a = 0 .0
b = 0 .0
a prime = 0 .0
b prime = 0 .0
d e l t a I = 0 .0
l e f t = None
r i gh t = None
h = 0 # index o f the data element in the heap array

@datac lass
c l a s s MinHeap :

de f i n i t ( s e l f ) :
s e l f . heap = [ ]

de f i n s e r t ( s e l f , item ) :
s e l f . heap . append ( item )
index = len ( s e l f . heap ) = 1
s e l f . h eap i f y up ( index )
s e l f . l e f t r i g h t u p d a t e ( index )

de f l e f t r i g h t u p d a t e ( s e l f , index ) :
item = s e l f . heap [ index ]
# Update l e f t and r i gh t f o r newly i n s e r t e d element
i f index > 0 :

parent index = ( index = 1) // 2
i f index % 2 == 0 : # Right ch i l d

s e l f . heap [ parent index ] . r i g h t = item
e l s e : # Le f t c h i l d

s e l f . heap [ parent index ] . l e f t = item
def ext ract min ( s e l f ) :
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i f l en ( s e l f . heap ) == 0 :
re turn None

i f l en ( s e l f . heap ) == 1 :
re turn s e l f . heap . pop ( )

min value = s e l f . heap [ 0 ]
s e l f . heap [ 0 ] = s e l f . heap . pop ( )

s e l f . heapi fy down (0)

# # Update l e f t and r i gh t o f e lements in heap
# min elem . l e f t = min value
# min elem . r i g h t = None

return min value
de f heap i f y up ( s e l f , index ) :

o r i g i nd ex = index
whi l e index > 0 :

parent index = ( index = 1) // 2
i f s e l f . heap [ index ] . d e l t a I < s e l f . heap [ parent index ] . d e l t a I :

s e l f . heap [ index ] , s e l f . heap [ parent index ]
= s e l f . heap [ parent index ] , s e l f . heap [ index ]

index = parent index
e l s e :

break
# update l e f t and r i gh t
s e l f . l e f t r i g h t u p d a t e ( o r i g i nd ex )

de f heapi fy down ( s e l f , index ) :
o r i g i nd ex = index
whi l e True :

l e f t c h i l d i n d e x = 2 * index + 1
r i g h t c h i l d i n d e x = 2 * index + 2
sma l l e s t = index

i f ( l e f t c h i l d i n d e x < l en ( s e l f . heap ) and
s e l f . heap [ l e f t c h i l d i n d e x ] . d e l t a I < s e l f . heap [ sma l l e s t ] . d e l t a I ) :

sma l l e s t = l e f t c h i l d i n d e x

i f ( r i g h t c h i l d i n d e x < l en ( s e l f . heap ) and
s e l f . heap [ r i g h t c h i l d i n d e x ] . d e l t a I < s e l f . heap [ sma l l e s t ] . d e l t a I ) :

sma l l e s t = r i g h t c h i l d i n d e x

i f sma l l e s t == index :
break

s e l f . heap [ index ] , s e l f . heap [ sma l l e s t ] = s e l f . heap [ sma l l e s t ] , s e l f . heap [ index ]
index = sma l l e s t

# update l e f t and r i gh t
s e l f . l e f t r i g h t u p d a t e ( o r i g i nd ex )

de f get min ( s e l f ) :
i f l en ( s e l f . heap ) == 0 :

re turn None
return s e l f . heap [ 0 ]

de f f i nd i nd ex ( s e l f , d ) :
f o r i , e lement in enumerate ( s e l f . heap ) :

i f e lement . d e l t a I == d . d e l t a I and element . a == d . a and element . b == d . b :
re turn i

# When the element i s not found
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re turn =1
de f update order ( s e l f , index ) :

# dec ide heap i fy up or heapify down based on comparing to parent
Pindex = ( index =1)//2
i f index >= 0 and s e l f . heap [ index ] . d e l t a I < s e l f . heap [ Pindex ] . d e l t a I :

s e l f . h eap i f y up ( index )
e l s e :

s e l f . heapi fy down ( index )
de f update va l s ( s e l f , index , new deltaI , new a prime , new b prime ) :

s e l f . heap [ index ] . d e l t a I = new de l ta I
s e l f . heap [ index ] . a prime = new a prime
s e l f . heap [ index ] . b prime = new b prime

de f s t r ( s e l f ) :
e lements = [ f ” d e l t a I={item . d e l t a I } , l e f t ={item . l e f t } , r i g h t={item . r i g h t } ,

a={item . a } , b={item . b}\n” f o r item in s e l f . heap ]
re turn f ”MinHeap ( [ { ’ , ’ . j o i n ( e lements ) } ] ) ”

de f g e t s i z e ( s e l f ) :
s i z e = 0
f o r in s e l f . heap :

s i z e += 1
return s i z e

# Algorithm A
def degrad ing procedure (W, mu, b ) :

m = len (b)
Q = degrading merge (W,mu)
f o r j in range (0 ,m) :

i f b [ j ] == 0 :
scr ipt W = square (Q)
i f not ohno ( scr ipt W ) : p r i n t (” i s s u e with square ”)

e l s e : # b [ j ] == 1
scr ipt W = c i r c l e (Q)
i f not ohno ( scr ipt W ) : p r i n t (” i s s u e with c i r c l e ”)

Q = degrading merge ( script W ,mu)
i f not ohno (Q) :

p r i n t (” i s s u e in degrading ”)
sys . e x i t ( )

re turn Q

def ohno (W) :
# c a l c u l a t e sum of each row
row sums = W. sum( ax i s=1)

po s a r r = np . a l l (W>= 0)
l e s s 1 = np . a l l (W<= 1)
i f not po s a r r or not l e s s 1 :

p r i n t (” ar r i s not in r i gh t form . . . ” )

# Check i f each row sum i s equal to 1
return a l l (np . i s c l o s e ( row sum , 1 . 0 ) f o r row sum in row sums )

# Arikan channel t rans f o rmat i ons
de f square (W) :

# de f i n e new matrix
new W = np . z e ro s ( (W. shape [ 0 ] ,W. shape [ 1 ] * * 2 ) )
f o r u1 in range (W. shape [ 0 ] ) : # i = 0 ,1

f o r y1 in range (W. shape [ 1 ] ) : # i = 00 ,01 ,10 ,11 or h igher dimension
f o r y2 in range (W. shape [ 1 ] ) :

va l = 0
f o r u2 in [ 0 , 1 ] : # s i n c e W has binary input
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# W(y1 | u1ˆu2 ) W(y2 | u2 )
va l += W[ u1ˆu2 , y1 ] * W[ u2 , y2 ]

s t ry1 = s t r ( bin ( y1 ) [ 2 : ] . z f i l l ( i n t (math . log2 (W. shape [ 1 ] ) ) ) )
s t ry2 = s t r ( bin ( y2 ) [ 2 : ] . z f i l l ( i n t (math . log2 (W. shape [ 1 ] ) ) ) )
ind = bin ( i n t ( s t ry1 + stry2 , 2 ) ) [ 2 : ]
ind = in t ( ind , 2 )

new W[ u1 , ind ] = va l / 2

return new W

def c i r c l e (W) :
new W = np . z e ro s ( (W. shape [ 0 ] , (W. shape [ 1 ] * * 2 ) *W. shape [ 0 ] ) )
f o r u1 in range (W. shape [ 0 ] ) :

f o r y1 in range (W. shape [ 1 ] ) :
f o r y2 in range (W. shape [ 1 ] ) :

f o r u2 in range (W. shape [ 0 ] ) :
# compute W(y1 | u1ˆu2 ) W(y2 | u2 )
va l = W[ u1ˆu2 , y1 ] * W[ u2 , y2 ]

# Convert each u1 , y1 , y2 to s t r & concat to form output index
s t ry1 = s t r ( bin ( y1 ) [ 2 : ] . z f i l l ( i n t (math . log2 (W. shape [ 1 ] ) ) ) )
s t ry2 = s t r ( bin ( y2 ) [ 2 : ] . z f i l l ( i n t (math . log2 (W. shape [ 1 ] ) ) ) )
s t ru1 = s t r ( bin ( u1 ) [ 2 : ] . z f i l l ( i n t (math . log2 (W. shape [ 0 ] ) ) ) )
ind = bin ( i n t ( s t ry1 + st ry2 + stru1 , 2 ) ) [ 2 : ]

ind = in t ( ind , 2 )

new W[ u2 , ind ] = va l / 2
return new W

# Algorithm C
def degrading merge (W,mu) :

# W: X => Y
Y = W. shape [ 1 ]
L = Y // 2

v = mu // 2

# Degraded W i s W i t s e l f
i f L <= v :

re turn W

fo r i in range (1 ,L ) :
d = Data Element ( )
d . a = W[0 , i =1]
d . b = W[1 , i =1]
d . a prime = W[0 , i ]
d . b prime = W[1 , i ]
d . d e l t a I = ca l cDe l t a I (d . a , d . b , d . a prime , d . b prime )
inser tRightmost (d)

l = L

# Here , the heap and l i s t have L=1 e lements each
# Number o f e lements in heap/ l i s t w i l l now be decreased to mu//2 = 1

whi l e l > v :
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d = getMin ( )
a p lu s = d . a + d . a prime
b p lus = d . b + d . b prime
dLeft = d . l e f t
dRight = d . r i g h t
removeMin ( )
l == 1
i f dLeft i s not None :

# Find where dLeft i s in the heap
index = heap . f i nd i nd ex ( dLeft )
new a prime = a p lu s
new b prime = b p lus
new de l ta I = ca l cDe l t a I ( dLeft . a , dLeft . b , a p lus , b p lus )
valueUpdated ( index , new deltaI , new a prime , new b prime )

i f dRight i s not None :
# Find where dRight i s in the heap
index = heap . f i nd i nd ex ( dRight )
new a prime = a p lu s
new b prime = b p lus
new de l ta I = ca l cDe l t a I ( dRight . a , dRight . b , a p lus , b p lus )
valueUpdated ( index , new deltaI , new a prime , new b prime )

# I n i t i a l i z e Q
Q = np . z e ro s ( (W. shape [ 0 ] , heap . g e t s i z e ( ) ) )
min elem = removeMin ( )
i=0
whi le min elem i s not None :

Q[ 0 , i ] = min elem . a
Q[ 1 , i ] = min elem . b
i += 1
min elem = removeMin ( )

# r e s c a l e Q
Q = r e s c a l e (Q)

return Q

def r e s c a l e (W) :
# Sum of each row
row sums = W. sum( ax i s=1)

# Resca le each element o f each row
r e s c a l e d = W / row sums [ : , np . newaxis ]

r e turn r e s c a l e d

# I n i t i a l i z e d e l t a I f i e l d f o r a new data element
de f c a l cDe l t a I ( a , b , a prime , b prime ) :

a p lu s = a + a prime
b p lus = b + b prime
return C(a , b) + C( a prime , b prime ) = C( a plus , b p lus )

# Helper func t i on f o r c a l cDe l t a I ( )
de f C(a , b ) :

i f a + b == 0 :
term1 = 0

e l s e :
term1 = =(a+b)*math . log2 ( ( a+b )/2)

i f a == 0 :
term2 = 0
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e l s e :
term2 = a*math . log2 ( a )

i f b == 0 :
term3 = 0

e l s e :
term3 = b*math . log2 (b)

re turn term1 + term2 + term3

# In s e r t s element as r ightmost element o f l i s t and updates heap acco rd ing ly
de f inser tRightmost (d ) :

l i s t . append (d)
heap . i n s e r t (d)
d . h = len ( l i s t ) = 1

# Returns the data element with sma l l e s t d e l t a I
de f getMin ( ) :

r e turn heap . get min ( )

# Removes the element returned by getMin from both the l i s t and the heap
de f removeMin ( ) :

min elem = heap . get min ( )
i f min elem i s not None :

min elem = heap . extract min ( )
l i s t [ min elem . h ] = 0
# remove element by s e t t i n g equal to 0 == do not a l t e r s i z e o f l i s t
r e turn min elem

e l s e :
r e turn None

# Updates the heap due to a change in d e l t a I r e s u l t i n g from a merge , no change to l i s t
de f valueUpdated ( index , new deltaI , new a prime , new b prime ) :

heap . update va l s ( index , new deltaI , new a prime , new b prime )
heap . update order ( index )

# ====================================================================== #

def execute (N, e , mu) :

m = in t (math . log2 (N) ) # such that N = 2ˆm

# BSC f l i p p i n g p r obab i l i t y
ep s i l o n = e

# i n i t i a l i z e BSC channel with c r o s s ov e r p r obab i l i t y e p s i l o n
W init = np . array ( [ [1= eps i l on , e p s i l o n ] , [ ep s i l on , 1=ep s i l o n ] ] )

# i n i t i a l i z e heap and l i s t to be a l t e r e d g l o b a l l y
g l oba l heap
g l oba l l i s t
heap = MinHeap ( ) # sor t ed accord ing to d e l t a I f i e l d
l i s t = [ ] # ordered accord ing to corre spond ing LR value

capac i ty = np . z e ro s (N)

f o r i in range (N) :
# Binary r ep r e s en t a t i on in l i s t b
b i n i = bin ( i ) [ 2 : ]
s t r b i = s t r ( b i n i )
b = np . z e ro s (m)
f o r ind in range ( l en ( s t r b i )=1 ,=1 ,=1):
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i f s t r b i [ ind ] i s not None :
b [ (m=1)= ind ] = s t r b i [ ind ]

b = np . f l i p (b)

channel = degrad ing procedure (W init ,mu, b)

# pr in t ( ( i , channel ) )

# Compute capac i ty
# H(Y) = 0 .5*H(Y |X=1) = 0 .5*H(Y |X=0)

HY = 0
f o r y in range ( channel . shape [ 1 ] ) :

PY = .5* channel [ 0 , y ] + .5* channel [ 1 , y ]
i f PY != 0 : # us ing 0 log0 = 0

HY += PY * math . log2 (1/PY)

HYX0 = 0
f o r y in range ( channel . shape [ 1 ] ) :

PYX0 = channel [ 0 , y ]
i f PYX0 != 0 :

HYX0 += PYX0 * math . log2 (1/PYX0)

HYX1 = 0
f o r y in range ( channel . shape [ 1 ] ) :

PYX1 = channel [ 1 , y ]
i f PYX1 != 0 :

HYX1 += PYX1 * math . log2 (1/PYX1)

capac i ty [ i ] = (HY = 0 .5*HYX0 = 0 .5*HYX1)

return capac i ty

de f p l o t t i n g ( ) :
N = 1024
capac i ty = execute (N, 0 . 01 , 10)

num poor = 0
num good = 0
f o r elem in capac i ty :

i f elem < 0 . 9 :
num poor += 1

e l s e :
num good += 1

pr in t (” ( good , poor ) =” + s t r ( num good ) +”,”+ s t r ( num poor ) )

# Plo t t i ng now
i v e c t o r = np . arange (N)
p l t . s c a t t e r ( i v e c t o r , capac i ty , s=10)
p l t . t i t l e ( ’BSC Degraded Channel = Channel Capacity f o r each index i ’ )
p l t . x l ab e l ( ’ Index ’ )
p l t . y l ab e l ( ’ Capacity ’ )
p l t . show ( )

numtimesgood = np . z e ro s (N)
f o r n in range ( 5 ) : # w i l l run code 5 t imes

capac i ty = execute (N, 0 . 01 , 10)
f o r i in range (N) :

i f capac i ty [ i ] > 0 . 9 :
numtimesgood [ i ] += 1
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p l t . stem ( i v e c t o r , numtimesgood )
p l t . x l ab e l ( ’ Index ’ )
p l t . y l ab e l ( ’ Index i s good out o f 5 t r i a l s ’ )
p l t . t i t l e ( ’Number o f t imes each index i s a c l ean channel f o r 10 t r i a l s ’ )
p l t . show ( )

de f ge t good ind (N, e , mu) :
m = in t (math . log2 (N) ) # such that N = 2ˆm

# BSC f l i p p i n g p r obab i l i t y
ep s i l o n = e

# i n i t i a l i z e BSC channel with c r o s s ov e r p r obab i l i t y e p s i l o n
W init = np . array ( [ [1= eps i l on , e p s i l o n ] , [ ep s i l on , 1=ep s i l o n ] ] )

# i n i t i a l i z e heap and l i s t to be a l t e r e d g l o b a l l y
g l oba l heap
g l oba l l i s t
heap = MinHeap ( ) # sor t ed accord ing to d e l t a I f i e l d
l i s t = [ ] # ordered accord ing to corre spond ing LR value

capac i ty = np . z e ro s (N)

f o r i in range (N) :
# Binary r ep r e s en t a t i on in l i s t b
b i n i = bin ( i ) [ 2 : ]
s t r b i = s t r ( b i n i )
b = np . z e ro s (m)
f o r ind in range ( l en ( s t r b i )=1 ,=1 ,=1):

i f s t r b i [ ind ] i s not None :
b [ (m=1)= ind ] = s t r b i [ ind ]

b = np . f l i p (b)

channel = degrad ing procedure (W init ,mu, b)

# Compute capac i ty
# H(Y) = 0 .5*H(Y |X=1) = 0 .5*H(Y |X=0)

HY = 0
f o r y in range ( channel . shape [ 1 ] ) :

PY = .5* channel [ 0 , y ] + .5* channel [ 1 , y ]
i f PY != 0 : # us ing 0 log0 = 0

HY += PY * math . log2 (1/PY)

HYX0 = 0
f o r y in range ( channel . shape [ 1 ] ) :

PYX0 = channel [ 0 , y ]
i f PYX0 != 0 :

HYX0 += PYX0 * math . log2 (1/PYX0)

HYX1 = 0
f o r y in range ( channel . shape [ 1 ] ) :

PYX1 = channel [ 1 , y ]
i f PYX1 != 0 :

HYX1 += PYX1 * math . log2 (1/PYX1)

capac i ty [ i ] = (HY = 0 .5*HYX0 = 0 .5*HYX1)
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good ind = np . z e ro s (N)

f o r i in range (N) :
i f capac i ty [ i ] > 0 . 9 :

good ind [ i ] = 1

return good ind

pr in t ( execute (256 , 0 . 01 , 10) )
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7 Week 7: November 18-December 4

Should not need to rescale Q, so I continued debugging my code... Below is my updated code.

import numpy as np
from da t a c l a s s e s import da t a c l a s s
import math
import matp lo t l i b . pyplot as p l t

# input : An under ly ing BMS channel W, a bound mu = 2*nu on the output
# alphabet s i z e , a code l ength N = 2ˆn and index i with binary r ep r e s en t a t i on
# i = <b1 , b2 , . . . , bm> 2
# output : BMS channel that i s degraded wrt b i t channel W i

# New Data da t a c l a s s
@datac lass
c l a s s Data Element :

a = =1.0
b = =1.0
a prime = =1.0
b prime = =1.0
d e l t a I = =1.0
l e f t = None
r i gh t = None
h = =1 # index o f the data element in the heap array

@datac lass
c l a s s MinHeap :

de f i n i t ( s e l f ) :
s e l f . heap = [ ]

de f i n s e r t ( s e l f , item ) :
s e l f . heap . append ( item )
index = len ( s e l f . heap ) = 1

# Update l e f t and r i gh t to be l e f t and r i gh t p r o b a b i l i t i e s
i f index != 0 :

item . l e f t = s e l f . heap [ index = 1 ]
s e l f . heap [ index =1] . r i g h t = item

# do not s o r t yet , w i l l do t h i s a f t e r c r e a t i n g f u l l heap
de f ext ract min ( s e l f , f i x ) :

min elem = s e l f . heap [ 0 ] # minimum element always has index 0 in the heap
heaps i z e = len ( s e l f . heap )

# Fix l e f t and r i gh t f i e l d s i f t h i s i s not the l a s t element o f the heap
# Don ’ t do t h i s when f i l l i n g out Q at the end
i f heaps i z e > 1 and f i x :

i f min elem . l e f t i s None : # l e f t =most element in l i s t
r i ghte l em = min elem . r i g h t
ind = r ighte l em . h
s e l f . heap [ ind ] . l e f t = None
# prev ious . r i g h t now has . l e f t o f None

e l i f min elem . r i g h t i s None : # r ight=most element in l i s t
l e f t e l em = min elem . l e f t
ind = l e f t e l em . h
s e l f . heap [ ind ] . r i g h t = None
# prev ious . l e f t now has . r i g h t o f None

e l s e : # somewhere e l s e in the l i s t
l e f t e l em = min elem . l e f t
Lind = l e f t e l em . h
s e l f . heap [ Lind ] . r i g h t = min elem . r i g h t
# . l e f t now has . r i g h t o f min . r i g h t
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r i ghte l em = min elem . r i g h t
Rind = r ighte l em . h
s e l f . heap [ Rind ] . l e f t = min elem . l e f t
# . r i g h t now has . l e f t o f min . l e f t

s e l f . heap . pop (0 ) # remove min element
i f heaps i z e > 1 and f i x :

s e l f . min sort ( ) # so r t heap a f t e r removing min
return min elem

def min sort ( s e l f ) :
s i z e = len ( s e l f . heap )
i f s i z e == 1 : # no s o r t i n g needed

s e l f . heap [ 0 ] . h = 0

f o r i in range ( s i z e //2 = 1 , =1, =1):
s e l f . heap i fy ( s i z e , i )

de f heap i fy ( s e l f , s i z e , i ) :
minI = i
L = 2* i + 1
R = 2* i + 2

i f minI < s i z e : s e l f . heap [ minI ] . h = minI
i f L < s i z e : s e l f . heap [L ] . h = L
i f R < s i z e : s e l f . heap [R ] . h = R

i f L < s i z e and s e l f . heap [L ] . d e l t a I < s e l f . heap [ minI ] . d e l t a I :
minI = L

i f R < s i z e and s e l f . heap [R ] . d e l t a I < s e l f . heap [ minI ] . d e l t a I :
minI = R

i f minI != i :
# perform the swap
s e l f . heap [ i ] , s e l f . heap [ minI ] = s e l f . heap [ minI ] , s e l f . heap [ i ]

# Update . h va lue s a f t e r the swap
s e l f . heap [ i ] . h = i
s e l f . heap [ minI ] . h = minI

s e l f . heap i fy ( s i z e , minI )
de f get min ( s e l f ) :

i f l en ( s e l f . heap ) == 0 :
re turn None

return s e l f . heap [ 0 ]
de f update va l s ( s e l f , index , new deltaI , new a , new b , new a prime , new b prime ) :

s e l f . heap [ index ] . d e l t a I = new de l ta I
i f new a i s not None :

s e l f . heap [ index ] . a = new a
i f new b i s not None :

s e l f . heap [ index ] . b = new b
i f new a prime i s not None :

s e l f . heap [ index ] . a prime = new a prime
i f new b prime i s not None :

s e l f . heap [ index ] . b prime = new b prime
de f s t r ( s e l f ) :

e lements = [ f ”h={item . h} , d e l t a I={item . d e l t a I } , l e f t ={item . l e f t } ,
r i g h t={item . r i g h t } , a={item . a } , b={item . b} , a ’={ item . a prime } ,
b’={ item . b prime }\n” f o r item in s e l f . heap ]

re turn f ”MinHeap ( [ { ’ , ’ . j o i n ( e lements ) } ] ) ”
de f g e t s i z e ( s e l f ) :

r e turn l en ( s e l f . heap )
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# Algorithm A
def degrad ing procedure (W, mu, b ) :

m = len (b)
Q = degrading merge (W,mu)
f o r j in range (0 ,m) :

i f b [ j ] == 0 :
scr ipt W = square (Q)

e l s e : # b [ j ] == 1
scr ipt W = c i r c l e (Q)

Q = degrading merge ( script W ,mu)

return Q

# Arikan channel t rans f o rmat i ons
de f square (W) :

# de f i n e new matrix
new W = np . z e ro s ( (W. shape [ 0 ] ,W. shape [ 1 ] * * 2 ) )
f o r u1 in range (W. shape [ 0 ] ) : # i = 0 ,1

f o r y1 in range (W. shape [ 1 ] ) : # i = 00 ,01 ,10 ,11 or h igher dimension
f o r y2 in range (W. shape [ 1 ] ) :

va l = 0
f o r u2 in range (W. shape [ 0 ] ) :

# W(y1 | u1ˆu2 ) W(y2 | u2 )
va l += W[ u1ˆu2 , y1 ] * W[ u2 , y2 ]

s t ry1 = s t r ( bin ( y1 ) [ 2 : ] . z f i l l ( i n t (math . log2 (W. shape [ 1 ] ) ) ) )
s t ry2 = s t r ( bin ( y2 ) [ 2 : ] . z f i l l ( i n t (math . log2 (W. shape [ 1 ] ) ) ) )

ind = bin ( i n t ( s t ry1 + stry2 , 2 ) ) [ 2 : ]
ind = in t ( ind , 2 )

new W[ u1 , ind ] = va l / 2
return new W

def c i r c l e (W) :
new W = np . z e ro s ( (W. shape [ 0 ] , (W. shape [ 1 ] * * 2 ) *W. shape [ 0 ] ) )
f o r u1 in range (W. shape [ 0 ] ) :

f o r y1 in range (W. shape [ 1 ] ) :
f o r y2 in range (W. shape [ 1 ] ) :

f o r u2 in range (W. shape [ 0 ] ) :
# compute W(y1 | u1ˆu2 ) W(y2 | u2 )
va l = W[ u1ˆu2 , y1 ] * W[ u2 , y2 ]

# Convert each u1 , y1 , y2 to s t r & concat to form output index
s t ry1 = s t r ( bin ( y1 ) [ 2 : ] . z f i l l ( i n t (math . log2 (W. shape [ 1 ] ) ) ) )
s t ry2 = s t r ( bin ( y2 ) [ 2 : ] . z f i l l ( i n t (math . log2 (W. shape [ 1 ] ) ) ) )
s t ru1 = s t r ( bin ( u1 ) [ 2 : ] . z f i l l ( i n t (math . log2 (W. shape [ 0 ] ) ) ) )
ind = bin ( i n t ( s t ry1 + st ry2 + stru1 , 2 ) ) [ 2 : ]
ind = in t ( ind , 2 )

new W[ u2 , ind ] = va l / 2
return new W

# Algorithm C
def degrading merge (W,mu) :

# W: X => Y
Y = W. shape [ 1 ]
L = Y // 2

v = mu // 2
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# Degraded W i s W i t s e l f i f output s i z e a l r eady <= mu
i f L <= v :

re turn W

# 1 <= LR( y1 ) <= LR( y2 ) <= . . . <= LR( y L )
LR = W[ 0 , :W. shape [ 1 ] / / 2 ] / W[ 1 , :W. shape [ 1 ] / / 2 ]
# compute LR of f i r s t h a l f o f W, second ha l f w i l l be r e c i p r o c a l

# Want to p ick one r e p r e s e n t a t i v e from correspond ing columns in f i r s t
# & second ha lve s but want a l l LR >= 1
ge1 = LR >= 1 # a l l i n d i c e s are TRUE where LR >= 1
W[ : , :W. shape [ 1 ] / / 2 ] [ : , ˜ ge1 ] = W[ : : =1 , :W. shape [ 1 ] / / 2 ] [ : , ˜ ge1 ]
# r ev e r s e columns where LR < 1
new W = W[ : , :W. shape [ 1 ] / / 2 ]

LR1 = new W [ 0 , : ] / new W [ 1 , : ]
LRind = np . a r g s o r t (LR1)

new W = new W [ : , LRind ]

f o r i in range (1 ,L ) :
d = Data Element ( )
d . a = new W[0 , i =1]
d . b = new W[1 , i =1]
d . a prime = new W[0 , i ]
d . b prime = new W[1 , i ]
d . d e l t a I = ca l cDe l t a I (d . a , d . b , d . a prime , d . b prime )
inser tRightmost (d)

# Now that heap i s bu i l t , need to arrange heap accord ing to d e l t a I va lue
heap . min sort ( )

l = L

# Here , the heap has L=1 e lements each
# Number o f e lements in heap w i l l now be decreased to mu=2
whi l e l > v :

d = getMin ( )
a p lu s = d . a + d . a prime
b p lus = d . b + d . b prime
dLeft = d . l e f t
dRight = d . r i g h t
removeMin ( )

l == 1

i f dLeft i s not None :
l i nd = dLeft . h # index o f dLeft in heap
new a prime = a p lu s
new b prime = b p lus
new de l ta I = ca l cDe l t a I ( dLeft . a , dLeft . b , a p lus , b p lus )
valueUpdated ( l ind , new deltaI , None , None , new a prime , new b prime )

i f dRight i s not None :
r ind = dRight . h # index o f dRight in heap
new a = a p lu s
new b = b plus
new de l ta I = ca l cDe l t a I ( a p lus , b plus , dRight . a prime , dRight . b prime )
valueUpdated ( rind , new deltaI , new a , new b , None , None )

# I n i t i a l i z e Q, Y output space o f mu
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heaps i z e = heap . g e t s i z e ( )
Q = np . z e ro s ( (W. shape [ 0 ] ,mu) )

f o r i in range ( heaps i z e ) :
min elem = removeMin ( f i x = 0)
Q[ 0 , i ] = min elem . a
Q[ 1 , i ] = min elem . b
Q[ 0 , (Q. shape [1]=1)= i ] = min elem . b
Q[ 1 , (Q. shape [1]=1)= i ] = min elem . a
i f min elem . r i g h t i s None :

sp ind = mu//2 = 1
Q[ 0 , sp ind ] = min elem . a prime
Q[ 1 , sp ind ] = min elem . b prime
Q[ 0 , sp ind+1] = min elem . b prime
Q[ 1 , sp ind+1] = min elem . a prime

return Q

# I n i t i a l i z e d e l t a I f i e l d f o r a new data element
de f c a l cDe l t a I ( a , b , a prime , b prime ) :

a p lu s = a + a prime
b p lus = b + b prime
return C(a , b) + C( a prime , b prime ) = C( a plus , b p lus )

# Helper func t i on f o r c a l cDe l t a I ( )
de f C(a , b ) :

i f a + b == 0 :
term1 = 0

e l s e :
term1 = =(a+b)*math . log2 ( ( a+b )/2)

i f a == 0 :
term2 = 0

e l s e :
term2 = a*math . log2 ( a )

i f b == 0 :
term3 = 0

e l s e :
term3 = b*math . log2 (b)

re turn term1 + term2 + term3

# In s e r t s element as r ightmost element o f l i s t and updates heap acco rd ing ly
de f inser tRightmost (d ) :

heap . i n s e r t (d)

# Returns the data element with sma l l e s t d e l t a I
de f getMin ( ) :

r e turn heap . get min ( )

# Removes the element returned by getMin from heap
de f removeMin ( f i x = 1 ) :

min elem = heap . get min ( )
i f min elem i s not None :

min elem = heap . extract min ( f i x )
re turn min elem

e l s e :
r e turn None

# Updates the heap due to a change in d e l t a I r e s u l t i n g from a merge , no change to l i s t
de f valueUpdated ( index , new deltaI , new a , new b , new a prime , new b prime ) :

heap . update va l s ( index , new deltaI , new a , new b , new a prime , new b prime )
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heap . min sort ( )

# ====================================================================== #

def execute (N, e , mu) :
m = in t (math . log2 (N) ) # N = 2ˆm
ep s i l o n = e # BSC f l i p p i n g p r obab i l i t y

# i n i t i a l i z e BSC channel with c r o s s ov e r p r obab i l i t y e p s i l o n
W init = np . array ( [ [1= eps i l on , e p s i l o n ] , [ ep s i l on , 1=ep s i l o n ] ] )

# i n i t i a l i z e heap to be a l t e r e d g l o b a l l y
g l oba l heap
heap = MinHeap ( ) # sor t ed accord ing to d e l t a I f i e l d

capac i ty = np . z e ro s (N)

f o r i in range (N) :
# Binary r ep r e s en t a t i on in l i s t b
s t r b i = s t r ( bin ( i ) [ 2 : ] ) . z f i l l (m)
b = l i s t (map( int , l i s t ( s t r b i ) ) )

channel = degrad ing procedure (W init ,mu, b)

# Compute capac i ty H(Y) = 0 .5*H(Y |X=1) = 0 .5*H(Y |X=0)
HY = 0
f o r y in range ( channel . shape [ 1 ] ) :

PY = .5* channel [ 0 , y ] + .5* channel [ 1 , y ]
i f PY != 0 : # us ing 0 log0 = 0

HY += PY * math . log2 (1/PY)

HYX0 = 0
f o r y in range ( channel . shape [ 1 ] ) :

PYX0 = channel [ 0 , y ]
i f PYX0 != 0 :

HYX0 += PYX0 * math . log2 (1/PYX0)

HYX1 = 0
f o r y in range ( channel . shape [ 1 ] ) :

PYX1 = channel [ 1 , y ]
i f PYX1 != 0 :

HYX1 += PYX1 * math . log2 (1/PYX1)

capac i ty [ i ] = (HY = 0 .5*HYX0 = 0 .5*HYX1)

# pr in t ( capac i ty )
re turn capac i ty

de f p l o t t i n g ( ) :
N = 1024
capac i ty = execute (N, 0 . 01 , 16)

num poor = 0
num good = 0
f o r elem in capac i ty :

i f elem < 0 . 9 :
num poor += 1

e l s e :
num good += 1

pr in t (” ( good , poor ) =” + s t r ( num good ) +”,”+ s t r ( num poor ) )
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# Plo t t i ng now
i v e c t o r = np . arange (N)
p l t . s c a t t e r ( i v e c t o r , capac i ty , s=10)
p l t . t i t l e ( ’BSC Degraded Channel = Channel Capacity f o r each index i ’ )
p l t . x l ab e l ( ’ Index ’ )
p l t . y l ab e l ( ’ Capacity ’ )
p l t . show ( )

de f ge t good ind (N, e , mu) :
m = in t (math . log2 (N) ) # such that N = 2ˆm

# BSC f l i p p i n g p r obab i l i t y
ep s i l o n = e

# i n i t i a l i z e BSC channel with c r o s s ov e r p r obab i l i t y e p s i l o n
W init = np . array ( [ [1= eps i l on , e p s i l o n ] , [ ep s i l on , 1=ep s i l o n ] ] )

# i n i t i a l i z e heap to be a l t e r e d g l o b a l l y
g l oba l heap
heap = MinHeap ( ) # sor t ed accord ing to d e l t a I f i e l d

capac i ty = np . z e ro s (N)

f o r i in range (N) :
# Binary r ep r e s en t a t i on in l i s t b
b i n i = bin ( i ) [ 2 : ]
s t r b i = s t r ( b i n i )
b = np . z e ro s (m)
f o r ind in range ( l en ( s t r b i )=1 ,=1 ,=1):

i f s t r b i [ ind ] i s not None :
b [ (m=1)= ind ] = s t r b i [ ind ]

b = np . f l i p (b)

channel = degrad ing procedure (W init ,mu, b)

# Compute capac i ty
# H(Y) = 0 .5*H(Y |X=1) = 0 .5*H(Y |X=0)

HY = 0
f o r y in range ( channel . shape [ 1 ] ) :

PY = .5* channel [ 0 , y ] + .5* channel [ 1 , y ]
i f PY != 0 : # us ing 0 log0 = 0

HY += PY * math . log2 (1/PY)

HYX0 = 0
f o r y in range ( channel . shape [ 1 ] ) :

PYX0 = channel [ 0 , y ]
i f PYX0 != 0 :

HYX0 += PYX0 * math . log2 (1/PYX0)

HYX1 = 0
f o r y in range ( channel . shape [ 1 ] ) :

PYX1 = channel [ 1 , y ]
i f PYX1 != 0 :

HYX1 += PYX1 * math . log2 (1/PYX1)

capac i ty [ i ] = (HY = 0 .5*HYX0 = 0 .5*HYX1)

good ind = np . z e ro s (N)
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f o r i in range (N) :
i f capac i ty [ i ] > 0 . 9 :

good ind [ i ] = 1

return good ind

p l o t t i n g ( )

7.1 Capacity and Guessing Probability – Plots

This results in the capacities plot below for N = 1024, µ = 16, ϵ = 0.01.

µ = 32 takes much more time than µ = 16, so I plotted N = 256 where µ = 16, 32:
µ = 16:

µ = 32:
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These plots look the same... The only difference is the time it takes the algorithm to complete....
To further prove this, I tried µ = 4 with N = 8192.

The fraction of good to bad channels is 881:143 = 86%. This value should approach the capacity of the channel, 1−Hb(ϵ) =
0.92 for ϵ = 0.01. As the number of bits increases over 1024, I expect this to happen. The distinction of good and bad classes
is based on capabity. I will below use an alternative distinction which is the the guessing probability:

m∑
i=1

min p1, qi ·
1

2
≤

m∑
i=1

√
piqi ·

1

2

which computes the probability of getting a bit incorrect. The second equation is Eq. 7 of Arikan’s paper which is Z, defining
the rate of polarization and allowing me to sort the indices into the low noise and high noise.
For a small N = 32 and using a threshold of 0.025 (values less than 0.025 are good channels), I see that the same channels are
denoted good in capacity and in guessing probability. Below is the plot of guessing probability for N = 1024, µ = 16, ϵ = 0.01.
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For this configuration, the fraction of good to bad channels using the guessing probability is 886:138 = ≈ 87%. There does
not seem to be a big difference between capacity and guessing probability distinctions. I will be using guessing probability
from this point on with threshold 0.025.

7.2 Good vs Bad channels in decoder

It doesn’t seem to be true that good channels are actually good, the decoder does provide a û that almost perfectly matches
the input u...

7.3 Simulator

*** INSERT PIC OF CHANNEL ***
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8 Week 8: December 5 - December 8

8.1 Permuting good indices

When I multiplied the indices by BN , the indices array of 1s (good channels) and 0s (bad channels) are largely unchanged.
For small N , this array is entirely unchanged, but for N >= 128, only a few indices are changed. So this does not seem to
be the issue.

8.2 Brute-Force Channel Representation

I wanted to construct the channel for N = 8. For each index i, the channel be of dimensions 2× 2index+N . Each probability
will be as follows:

W
(i)
N = (yN1 , ûi−1

1 |ûi) =
∑

ûN
i+1∈XN−i

1

2N − 1
Wn(y

N
1 |ûN

1 )

where
Wn(y

N
1 |ûN

1 ) = WN (yN1 |uN
1 GN ) = WN (yN1 |x̂N

1 )

and each W (Yi|x̂i) = 1− ϵ if yi = x̂i and ϵ otherwise.
For N = 8, there is not much polarization, but I still calculate and plot the guessing probabilities for this matrix, which is the
smallest value of N for which this can be computed. Using the above equation, I was unable to get the rows of the matrix to
sum to 1, while I know this must be true. For now, I am scaling the rows of the matrix so that they sum to 1. Below are the
plots for the manual channel calculation of guessing probability and the degraded channel calculation of guessing probability.
Manual channel on the left and degraded channel on the right...

8.3 Checking decoder...

There are many likelihoods of 1.0. While some of the misclassified bits have a likelihood of 1.0, there are also some with very
high or very low likelihood calculations, meaning that the decoder is fairly confident that a certain bit of û should be a 1 or
0. But this is not correct...

8.4 Identify subchannels that are the culprit

I want to identify subchannels that are the culprit to getting a û incorrect and run the degraded channel algorithm on just
this subchannel to see if it really should be a good channel as described. Each estimate of ûi relies on all previous values
ûi−1
1 , so a single error can cause many errors in the estimation of the full ûn

1 .

I have noticed that the subchannel culprit, i.e. the first index for which the estimate of ûi ̸= ui, has a likelihood of 1.0
most of the time. Occassionally, the value will be smaller or larger, but only by an order of 3 in either direction (103 or
10−3).
It’s possible that there is an error in the decoder that predicts a likelihood of 1.0 when the calculation is another value...
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9 Week 9: December 9 - December 13

9.1 Updated: Brute-Force Channel Representation

Upon fixing the brute force channel composition code without having to rescale the formed channel rows, I get the same plot
as found by the degraded channel algorithm, shown in the image below.

From these calculations for small N = 8 (large N calculations take too much time), I am confident that the degrading algo-
rithm is selecting the correct channels to classify as ’good’ and performing guess probability calculations correct.

9.2 Decoder

The first fix I made to my decoder is the following line addition:

u hato = ( u hat [ : : 2 ] ) . astype ( i n t ) # get only odd rows 1 , 3 , . . .
u hate = ( u hat [ 1 : : 2 ] ) . astype ( i n t ) # get only even rows 2 , 4 , . . .

i f l en ( u hato ) != l en ( u hate ) :
u hato = u hato [ : l en ( u hato )=1]

# Kronecker sum = add componentwise
new uhat = np . b i tw i s e x o r ( u hato , u hate )

Before, I had an extra entry in the new-uhat array when the size of the original u-hat was odd, so the odd array had one
more element than the even array. The equations in paper [1] actually state that we want to disregard of this element. This
decreased the number of indices in û that were different than u, but this number was still inconsistently 0 and very variable.

The next fix is the following: In the previous meeting, I tried decreasing the threshold that I choose for classification of
a good channel. I originally had 0.001, which led to many incorrect bits in the comparison of û to u. I knew that this
threshold would be too high because the subchannel ’culprit’ that would be the first incorrect bit estimation would have
a likelihood of 1.0, meaning this was more of a decent channel than a ’good’ channel by our necessity. By lowering the
threshold even by a factor of 10 to 0.0001, the number of bits incorrect from û → u is very consistently 0, and sometimes a
small number like 1 or 2. This is for an N = 512. This threshold results in 376 good channels, which is a fraction of 73% of
channels that are being denoted ’good’ vs ’poor’. I expect this number to approach the capacity of 92% (for ϵ = 0.01) when
N is large.

9.3 Quality of each channel - My own analysis

When I increase N = 2048, it seems harder to decrease the threshold to a good value - this threshold will need to be very
small. It would be helpful to know what to set the threshold to based on the value of N .
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I would expect that the probability that a bit channel is incorrect to scale as 1
N but this does not seem to be happening. I

will conduct an experiment where I look at each individual index and set all previous ûi−1
1 to be ui−1

1 to prevent previous
errors to isolate how often a certain index i is correct.

Using a threshold of 0.0001, a total of only 3 trials, and color-coding the plot so that red points denote a good channel
using the threshold and blue points denote a poor channel.

Using a threshold of 1
N , which is what I would expect should work, I get the following plot (also with only 3 trials):

These plots look relatively similar, but number of ’good’ channels that have a low fraction of being correct is greater in higher
N cases. This indicates that the threshold perhaps must be less than 1

N .

Now I want to see the impact of increasing total number of trials to 20 while keeping the threshold as 1
N :

Below is the resulting plot from this experiment, it is still true that the number of ’good’ channels that do not perform well
over the trials is greater for larger N .
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I will now try a threshold of 1
N2 .

I made the threshold very small, 1E-15, and I get a similar plot as earlier:
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The increased amount of errors (misclassied good indices) for large N does not seem to depend on the chosen threshold...
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10 Week 10: December 14 - January 2

At the previous meeting, we noticed that there were runtime warning associated with higher N calculations. In the recursion
of the likelihood calculations, the likelihood values are taking on values as high as 10250 for N = 256, and even higher for
higher N . I attempted to utilize increased overflow to allow larger numbers to be represented in Python, but as N increases,
this value will increase so the highest value to be calculated will blow up.
Since we don’t really need to know the exact value of the likelihood value but rather it’s value compared to 1, I decided to
change the code to instead conduct calculations in terms of the order of magnitude of the number instead of the number
itself. Here is the logic for this new code:

de f decoding (u , y , ep s i l on , mu, thresh ) :
N = len (y )

# Convert b i t s t r i n g to numpy array o f i n t s
u N = np . array ( [ i n t ( b i t ) f o r b i t in u ] , dtype=in t )
y N = np . array ( [ i n t ( b i t ) f o r b i t in y ] , dtype=in t )

u hat N = np . z e r o s (N)

good ind i c e s = f ro z en ind . ge t good ind (N, eps i l on , mu, thresh )

f o r i in range (N) :
i f g ood ind i c e s [ i ] : # This i s an in fo rmat ion b i t

L i = l i k e l i h o o d (y N , u hat N [ : i ] , e p s i l o n )
i f L i >= 0 : # l i k e l i h o o d >= 1 , order o f mag o f l i k e l i h o o d >= 0

u hat N [ i ] = 0
e l s e :

u hat N [ i ] = 1
e l s e : # This i s a f r o z en b i t

u hat N [ i ] = u N [ i ]

# Convert matrix to s t r i n g
u hat = ’ ’ . j o i n (map( s t r , u hat N . astype ( i n t ) ) )

re turn u hat

de f l i k e l i h o o d (y N , u hat , e p s i l o n ) :
N = len (y N)
i f N == 1 :

i f y N == 0 : # y N i s a s i n g l e va lue here
va l = (1= ep s i l o n ) / ep s i l o n
return order mag ( va l )

e l s e : # y 1 = 1
va l = ep s i l o n / (1= ep s i l o n )
re turn order mag ( va l )

e l s e :
# y ’ s needed as part o f d e f i n i t i o n o f new r e c u r s i v e l i k e l i h o o d s
f i r s t h a l f y = y N [ :N//2 ]
l a s t h a l f y = y N [N// 2 : ]

u hato = ( u hat [ : : 2 ] ) . astype ( i n t ) # get only odd rows 1 , 3 , . . .
u hate = ( u hat [ 1 : : 2 ] ) . astype ( i n t ) # get only even rows 2 , 4 , . . .

i f l en ( u hato ) != l en ( u hate ) :
u hato = u hato [ : l en ( u hato )=1]

# Kronecker sum = add componentwise
new uhat = np . b i tw i s e x o r ( u hato , u hate )

l i k e 1 = l i k e l i h o o d ( f i r s t h a l f y , new uhat , e p s i l o n )
l i k e 2 = l i k e l i h o o d ( l a s t h a l f y , u hate , e p s i l o n )
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# l i k e 1 and l i k e 2 w i l l r ep r e s en t the order o f magnitude o f the l i k e l i h o o d c a l c u l a t i o n s

i f l en ( u hat ) % 2 == 0 : # Equation 75
return sa fe compute even ( l i k e1 , l i k e 2 )

e l s e : # i i s even , Equation 76
power = 1 = 2* u hat [ l en ( u hat )=1] # e i t h e r 1 or =1
return safe compute odd ( l i k e1 , l i k e2 , power )

de f order mag ( value ) :
order = round (math . log10 ( abs ( va lue ) ) )
re turn order

de f sa fe compute even ( l i k e1 , l i k e 2 ) :
# ( l i k e 1 * l i k e 2 + 1) / ( l i k e 1 + l i k e 2 )
order1 = l i k e 1
order2 = l i k e 2

# Product o f 2 l i k e l i h o o d va lue s
numerator = order1 + order2

# Add 1 to the sum above
i f order1 + order2 < 1 :

numerator = 1
i f order1 < order2 :

denominator = order2
e l s e :

denominator = order1

# Div i s i on o f numerator and denominator
re turn numerator = denominator

de f safe compute odd ( l i k e1 , l i k e2 , power ) :
# ( l i k e 1 )** power * l i k e 2
i f power == =1:

order1 = = l i k e 1
e l i f power == 1 :

order1 = l i k e 1
order2 = l i k e 2

# Mu l t i p l i c a t i o n o f two terms
return order1 + order2

As a result, here is a replication of the above plots where we do not see that with larger N bad and good channels are
correctly classified with my own calculations of percentage of time correct.:
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I also see my code performing much better for larger N such that ui = ûi with very high probability.

I conducted an experiment to see which threshold suits values of N from 512 to 4096. Below are the results, I plotted
the number of bits that are on average different between u and û (in purple) as well as the number of indices that are
considered good using that threshold (in orange). I kept µ = 4 for the full test.

This is averaged data over 4 trials for the number of different bits. It appears that for the trials conducted, the working
threshold increases with N , and it looks like a threshold smaller by a power of 2 is needed for increasing N . I am still not
sure of the relationship between N and threshold..

I also conducted a test for the value of µ while keeping N = 1024 and threshold=10−7. µ takes on values 4, 8, and 2 log2 N
floored to the nearest power of 2. I ran this 3 times, taking the average of 4 trials each and below are the results:
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We see that as µ increases, the channel is less degraded and the number of indices that are denoted good channels also
increases. This results in an increased number of channels that may be incorrectly classified using the threshold of 10−7. If
we want to use a higher threshold, it is required that we use a smaller threshold for the same results as with a smaller µ.
Trials wilth a larger µ take longer than those with smaller µ.
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11 Week 11: Janurary 3 - January 9

I found that I was rounding too much in my previous code in the log additions and order mag() function. I removed the
rounding step in order mag(). I also altered parts of safe compute even() to treat a number smaller than 10−5 as negligible
as compared to 1 and numbers as off by an order of 5 as negligible as compared to each other. I will test whether 5 is the
correct value to use... This should increase precision in my calculations while not running into overflow or divide by 0 errors.
Below is updated code and updated plots. I changed the plot so that instead of an average of 4 trials for each N , I plot each
of the 4 trials to get a better idea of the output indices that are different between û and u.

## Calcu la te order o f magnitude o f a number = only used in base case o f r e cu r s i on
de f order mag ( value ) :

order = math . log10 ( abs ( va lue ) )
re turn order

# Like l ihood r a t i o f o r even i n d i c e s used in the l i k e l i h o o d func t i on
# Avoids over f l ow us ing a log r ep r e s en t a t i on
de f sa fe compute even ( l i k e1 , l i k e 2 ) :

# ( l i k e 1 * l i k e 2 + 1) / ( l i k e 1 + l i k e 2 )
order1 = l i k e 1
order2 = l i k e 2

# Product o f 2 l i k e l i h o o d va lue s
numerator = order1 + order2

# Add 1 to the sum above
i f numerator < =5:

numerator = 0 # equ iva l en t to log (1 ) s i n c e other term i s smal l
e l i f abs ( numerator ) < 5 :

numerator = math . log10 (1 + 10**numerator )
# numerator > 10**5 => adding 1 i s n e g i g i b l e

i f order1 < order2 = 5 : # order1 much l a r g e r than order2
denominator = order2

e l i f order1 > order2 + 5 : # order1 much sma l l e r than order2
denominator = order1

e l s e :
# log ( order1 + order2 )
# log ( a + b) = log ( a ) + log (1 + b/a )
denominator = order1 + math . log10 (1+10**( order2=order1 ) )

# Div i s i on o f numerator and denominator
re turn numerator = denominator

39



Trying 6 as the order of magitude difference to determine if one number is negligible compared to another.

Trying 4.
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12 Week 12: January 10 - January 17

Making sense of the small nature of the error probability threshold value. As in the above experiments, the value of this
threshold must be very small for large N in order to ensure suitable performance of the decoder, meaning û = u with high
probability for each index i.
I altered one of the previous tests where I looked at each index running independently through the decoder. Here I set the
threshold to 0.1, meaning that the probability of error is 0.1, and the number of trials to 200 so that we would expect the
number of incorrect trials for a certain index under this threshold will be less than 200 × 0.1 = 20. For each value of N , I
choose an index at random that has error probability under this threshold and run the many trials using the same index.

12.0.1 Trials = 200, Thresh = 0.1

Here, we would expect less than 20 trials to be incorrect for each N .

12.0.2 Trials = 1000, Thresh = 0.01

Here, we would expect less than 10 trials to be incorrect for each N .

Note: 1024 does not always have an error, these are just 2 random runs of the test...

Significance of the threshold for error probability:

P(At least one error in string) ≤
n∑

i=1

P(Error at bit index i) ≤ N × thresh

For N = 4096 and thresh = 0.0001, for example:

P(At least one error) ≤ 4096× 0.0001 = 0.4096

For N = 4096 and thresh = 10−7:

P(At least one error) ≤ 4096 · 10−7 = 0.00004096
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With the above calculations, we must think of the threshold as being R(At least one error), and we must select a threshold
value such that the probability of at least one error is small ’enough’. With the two examples above, we would expect that:

1. With 10 trials, a maximum of around 4 trials will have at least one error.

2. With 1000 trials, less than 4 trials will have an error, meaning we should expect no errors in a few trials.

I have an experiment of the last item above, which is contrary to the results we are getting. Using the plots from last week,
we see that a threshold of 10−7 has errors for all 4 of the trials. I also see that as N doubles, the threshold necessary decreases
on the order of 102 instead of by 2, which is suggested by the union bound. When I de-couple the bit indices, ensuring that
the previous bits are always correct when using the decoder, I see results that make more sense, where the probability of a
good channel containing an error is small as expected.
There must be an issue with the decoder since the union bound should still provide an upper bound to the probability of
error for the entire string.
Elements that could potentially invalidate the union bound used in this way:

� Error prob of a channel ⇒ decoder output. Error in decoder calculations is not the same as error in the channels
themselves. Using the recursive algorithm may introduce complication to the union bound calculation.

12.1 Using Degraded Channel as Decoder

To try to find the issue with threshold not matching intuition above, I will try to use the degrading algorithm as a decoder.
In the degrading procedure, I return a large matrix of the degraded channels for each index. I then use this channel to locate
the degraded output section given the string of y bits and preceding û bits and take the quotient of the probability given an
input ui = 0 and an input of 1. This is still a work in progress as I believe I will need to alter the degrading procedure to
include a variable to explain where each normal output is within the degraded channel.
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13 Week 13: January 18 - January 24

13.1 Threshold Test

Instead of the test done in the prior week, I want to compare the error probability and how good each channel is. There is
no need for a global error probability, but instead I want to calculate the error probability for a certain subchannel, and then
simulate the channel many times, equal to 1/error prob. I used a threshold of 10−3 for all trials when deciding whether a
certain channel is good or poor.
I limited the number of trials to 500 since I wanted the code to run fast. The number of incorrect trials over the total number
of trials should a good approximation for the error probability.

N=256 Trials
Number of Trials Error Prob Approx
172 0.005801 0.005814
343 0.0029 0
208 0.0047995 0

N=512 Trials
Number of Trials Error Prob Approx
288 0.00346 0
104 0.00955 0
263 0.003797 0
104 0.00955 0.00962

N=1024 Trials
Number of Trials Error Prob Approx
144 0.006906 0.0069444
104 0.00954 0
278 0.003584 0.003597

N=2048 Trials
Number of Trials Error Prob Approx
451 0.0022157 0.002217
112 0.00888 0

N=4096 Trials
Number of Trials Error Prob Approx
407 0.00246 0
110 0.009058 0

When an index is independently decoded while all preceding û’s are correct, the error probability calculated from the
degraded is a good approximation for the experimental probability of error. Is there an issue in the decoder?

I might’ve fixed the decoder... This is coming from a changed method in the degraded execution code - how to get an
array of the bits of an index. For example index 5 out of 128 bits would be 0000101. After simplifying this, the decoder has
behavior closer to what we would expect using the union bound calculation.The previous code also had an error in calculation
of this matrix, but the new code is correct. Here is the code I substituted in:

f o r i in range (N) :
# Method 1
b i n i = bin ( i ) [ 2 : ]
s t r b i = s t r ( b i n i )
b1 = np . z e r o s (m)
f o r ind in range ( l en ( s t r b i )=1 ,=1 ,=1):

i f s t r b i [ ind ] i s not None :
b1 [ (m=1)= ind ] = s t r b i [ ind ]

b1 = np . f l i p ( b1 )
b1 = np . array ( b1 )
b1 = b1 . astype ( i n t )
b1 = b1 . t o l i s t ( )

# Method 2
s t r b i = s t r ( bin ( i ) [ 2 : ] ) . z f i l l (m)
b2 = l i s t (map( int , l i s t ( s t r b i ) ) )
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Here is a repeated version of the decoder from a few weeks ago:

I tried the same experiment with smaller threshold values:

This looks more like we would expect, with the threshold values from one N to the next power of 2 being off by an order of
2 vs 100 as previously. Because of this, we no longer need to use the degraded procedure as a decoder as that would have
been for debugging this issue.

Questions for this week’s meeting:

� How to decide how many message bits there will be? Can this just be any number of bits less than the number of good
channels?

� Error probability threshold prediction for large N . Suitable thresholds for a variety of N values?

– N = 512: Error prob thresh = 0.01

– N = 1024: Error prob thresh = 0.01
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– N = 2048: Error prob thresh = 0.001

– N = 4096: Error prob thresh = 0.001

– Could use approximately log2(N)/4? This works for the above pattern...

� Simulation: Chosen epsilon for the internal BSC is correctly approximated by the simulator. y 7→ x̂ closely resembles
the chosen epsilon value. What are the next steps?
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14 Week 14: January 25 - February 2

14.1 Speed up Decoder

Sharang implemented an O(N logN) decoder without altering the decoder implementation. The only change is the inclusion
of @cache tools.memoize before the declaration of the likelihood function. This refers to a python code that includes a mem-
oized implementation of the likelihood calculation, using Python’s features in the cache to speed up the recursive likelihood
calculations. The correctness of the code is not compromised as no code was actually altered. According to Sharang’s tests,
the speedup is negligible for small N , up to N = 512 even, but for large N , it is considerable. For example, for N = 8192,
the memoized version was nearly 4× faster.
I conducted the threshold experiment as above with more threshold variations, 10 trials each, and for largerN = 1024, 2048, 4096, 8192.
Here are the results:

14.2 Log Optimization

Sharang also implemented an optimization for the log calculation of log(1 + 10order1 + order2) below:

de f l o g on e p l u s x ( l og x ) :
i f l o g x < =745: ans = 0
e l i f l o g x < =37: ans = np . exp ( l og x )
e l i f l o g x > 37 : ans = log x + np . exp(=1* l o g x )
e l s e : ans = np . l og ( 1 + np . exp ( l og x ) )
re turn ans

de f sa fe compute even ( l o g l i k e 1 , l o g l i k e 2 ) :
# ( l i k e 1 * l i k e 2 + 1) / ( l i k e 1 + l i k e 2 )
#Compute Numerator
l o g l i k e = l o g l i k e 1 + l o g l i k e 2
numerator = l o g on e p l u s x ( l o g l i k e )

#Compute Denominator
max term = max( l o g l i k e 1 , l o g l i k e 2 )
min term = min( l o g l i k e 1 , l o g l i k e 2 )
denominator = max term + l og on e p l u s x ( min term = max term )

return numerator = denominator

I redid the threshold experiment as above with this optimization as it should allow for increased correctness, and therefore
increased performance.
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There does not seem to be a large difference in the results, but I will use the log optimization code from now on.

14.3 Y 7→ X Simulator - Binomial Distribution

The simulator takes an input y and produced x̂ and the below plots run the simulator for N = 2048 for 10 trials and 100
trials, respectively. The BSC transition probability ϵ = 0.4, so the average number of incorrect bits will be 81.92. This is the
center of the plots shown below, and the plots follow a binomial distribution.

Trials = 10, # of bins = 3:
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Trials = 100, # of bins = 20:

Trials = 100, # of bins = 100:
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14.4 Ranking of subchannel - Best to Worst

14.4.1 Y 7→ X Simulator

The above results are with calculation of the good channels by going from index 0 → 2048 and choosing the first p channels.
Instead, I will now rank the subchannels according to their error probability calculated from the degraded channel, where
the lower error probability is the best channel. This will assist in accuracy in calculations. The below plots will redo the
above histogram experiments:

Trials = 10, # of bins = 3:

Trials = 100, # of bins = 20:
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Trials = 100, # of bins = 100:

14.4.2 Rank of subchannels changes with ϵ?

I am testing if the ranking of the subchannels changes with ϵ, the cross-over probability of the BSC. For N = 2048, I chose
ϵ = 0.001, 0.01, 0.05, 0.1. I see that none of the arrays are exactly the same. The value of ϵ changes the number of channels
that are considered good, so as ϵ increases, the number of good channels decreases. However, the ordering is preserved up
until there are no more good channels.
For example, for N = 16, these are the sorted good subchannels corresponding to ϵ = 0.001, 0.01, 0.05, 0.1:
[15, 14, 13, 11, 7, 12, 10, 6, 9, 5, 3, 8, 1, 4, 2]

[15, 14, 13, 11, 7, 12, 10, 6, 9, 5, 3]

[15, 14, 13, 11, 7]

[15]

We see increased performance when using the best subchannels first, as opposed to varying which of the ’good’ channels
are used to send message bits. The histograms have a decreased spread, so the number of bits that are incorrect are more
consistent across trials, and are more aligned with the expected percentage ϵ.

14.5 Try GPU for better performance?

I do not see increased performance with use of a GPU as is, I can try wrapping it in a special way to utilize speedup, but I
don’t think this is necessary at the moment...

14.6 More trials for Decoupled Error Prob Experiment

I want to run many more trials for the decoupled error probability experiment that I ran in the previous week. This will
give more context for the error probability value that I am calculating from the degraded channel to the experimental value.
I ran this on the server so I could run the code concurrently many times and have it run in the background. I used FileZilla
to transfer the files over. The only issue on the server is that for the optimized likelihood calculations, a specific package
is used for the cache tools file, but I need an upgraded Python version to run it. I do not have sudo access, so I have no
way of running the optimized code. These results are the same as I would expect the optimized code to be, except take longer...

I ran 10,000 trials for each, and I made sure that the error probability calculated was less than 0.0001 so that the ex-
periment would yield helpful results. Here are the results from the experiments:
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N=4096 Trials
Error Prob Approx
0.001012 0
0.000144 0
0.006902 0.0015
0.001500 0.0003

The results above show that the approximated error probability is always less than the expected error probability, so the
expected error probability is an upper bound for the experimental results.

14.7 ϵ → # bits to flip

Instead of quantifying randomness as the BSC flipping probability ϵ, I instead want to flip a specific number of bits randomly.
This is the new BSC code:

# BSC to f l i p num f l ip # of b i t s x to form elements y
de f bsc numf l ip (x , num f l ip ) :

N = len (x )

# Form arrays
x N = np . array ( [ i n t ( b i t ) f o r b i t in x ] , dtype=in t )
y N = np . z e r o s ( l en ( x N ) )

# Randomly choose which num f l ip # of b i t s w i l l be f l i p p e d
f l i p i n d s = np . random . cho i c e (N, num fl ip , r ep l a c e=False )

# Fl ip the b i t s found above
x N [ f l i p i n d s ] = x N [ f l i p i n d s ] ˆ 1 # XOR with 1 w i l l f l i p the b i t

y N = x N

# Convert matrix to s t r i n g
y = ’ ’ . j o i n (map( s t r , y N . astype ( i n t ) ) )
re turn y

What value of epsilon ϵ should be used in the the degrading merge procedure AND likelihood calculations (initial channel
involves ϵ)? Should it be the number of bits to be flipped / N? What are the next steps with this formulation?

Using this new definition of randomness, the estimated ϵ computed from number of bits incorrect Y → X in the simu-
lator appears to be exactly ϵ, and if not is a much better approximation for ϵ.
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15 Week 15: February 3 - February 9

15.1 Simulator dependence on ϵ

The simulator results of number of bits incorrect from Y → X should not depend on ϵ, but this number seems to be, on
average, the value of ϵ×N . I ran the experiment below to prove this, where I sweep the ratio of message bits to N from 0 to
1, and I also use 3 values of ϵ and saw that the average number incorrect indeed follows ϵ×N , averaging 2 in the first plot,
20 in the second, and 200 in the third. Here are the data plots:

The plots above seem to suggest that the number of bits chosen as message bits do not make a difference in the number of
bits that are correct on the two ends of the simulator. I should not be expecting an ϵ dependence, so I may be formulating
the simulator incorrectly. There are several usages of ϵ within the simulator code:

1. Generating an initial u sequence at the beginning of the simulator - this may be the issue, and also may not be needed

2. ML likelihood calculation - this shouldn’t depend on the value of ϵ, only if epsilon is < 0.5, but not on the specific
value.

3. Degrading procedure - as I showed last week, the good subchannel indices do not depend on the value of epsilon (other
than the number of them), so this should not impact the code...

As explained in the first bullet, it is not necessary to generate a starting u, then encode to produce an x, and then send
through a BSC to get y. This introduces another unnecessary/incorrect dependence on ϵ. Instead, I randomly generate a y
bit string, and compute û as previously, except frozen indices which I am setting to 0 as these values will not matter.

I am no longer seeing an ϵ dependence in the plots above, here are the updated results where the fraction of incorrect
bits is a function of k, which is the fraction of good channels to N (total channels). This is the median of 3 trials each:
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These are the same results with 10 trials to average over and a wider range of k values, choosing just one value of ep-
silon:

15.2 Running simulator on large N

When I run the simulator for N = 224 = 16777216, I get the following error:

F i l e ”/home/ rsb359 /MEngProject/ f r o z en ind . py” , l i n e 282 , in C
term1 = =(a+b)*math . log2 ( ( a+b )/2)

ValueError : math domain e r r o r

I am certain that the values of a and b are positive (greater than 0 and non-negative), so this may mean that the value of
a+ b is very small and close to 0. I updated by code to take this into consideration:
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# Helper func t i on f o r c a l cDe l t a I ( )
de f C(a , b ) :

i f a + b < 1e=10: # check ing f o r smal l va lue c l o s e to 0
term1 = 0

e l s e :
term1 = =(a+b)*math . log2 ( ( a+b )/2)

i f a < 1e=10:
term2 = 0

e l s e :
term2 = a*math . log2 ( a )

i f b < 1e=10:
term3 = 0

e l s e :
term3 = b*math . log2 (b)

re turn term1 + term2 + term3

This seemed to fix the issue...
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16 Week 16: February 10 - February 16

16.1 Optimizing Degrading Procedure

I am working on optimizing the square and circle functions as there are many loops within the functions. The goal is to
vectorize this code to take less time, making the algorithm run faster for large values of N .
Here are the updated algorithms, which no longer include for loops, improving performance:

# Arikan channel t rans fo rmat ion 1
de f square (W) :

# Or i g ina l channel W i s X=by=Y
num rows , num cols = W. shape
# New channel new W i s X=by=Yˆ2
new W = np . z e ro s ( ( num rows , num cols **2))

u = np . arange ( num rows )
y = np . arange ( num cols )

XORs = u [ : , np . newaxis ] ˆ u [ np . newaxis , : ]

f i r s t t e rm = W[XORs [ : , : , np . newaxis ] , y [ np . newaxis , np . newaxis , : ] ]
secondterm = W[ u [ : , np . newaxis ] , y [ np . newaxis , : ] ]

# Compute W(y1 | u1ˆu2 )*W(y2 | u2 ) , then sum over u2
va l = np . sum( f i r s t t e rm [ : , : , : , np . newaxis ] * secondterm [ : , np . newaxis , : ] , a x i s =1)
va l r e shaped = np . reshape ( val , ( num rows , num cols * num cols ) )

# Convert each y1 , y2 to s t r and concatenate to form the output index
s t ry = np . v e c t o r i z e (np . b ina ry r ep r ) ( y , i n t (math . log2 ( num cols ) ) )
ind = np . array ( [ i n t ( s1 + s2 , 2) f o r s1 in s t ry f o r s2 in s t ry ] )

# Assign va lue s to new W
new W[ u [ : , np . newaxis ] , ind ] = va l r e shaped [ u , : ] / 2

re turn new W

# Arikan channel t rans fo rmat ion 2
de f c i r c l e (W) :

# Or i g ina l channel W i s X=by=Y
num rows , num cols = W. shape
# New channel new W i s X=by=XYˆ2
new W = np . z e ro s ( ( num rows , ( num cols **2)*num rows ) )

u = np . arange ( num rows )
y = np . arange ( num cols )

XORs = u [ : , np . newaxis ] ˆ u [ np . newaxis , : ]

f i r s t t e rm = W[XORs [ : , : , np . newaxis ] , y [ np . newaxis , np . newaxis , : ] ]
secondterm = W[ u [ : , np . newaxis ] , y [ np . newaxis , : ] ]

# Compute W(y1 | u1ˆu2 )*W(y2 | u2 )
va l = f i r s t t e rm [ : , : , : , np . newaxis ] * secondterm [ : , np . newaxis , : ]
v a l f l i p = np . t ranspose ( val , (1 , 0 , 2 , 3 ) )
va l r e shaped = np . reshape ( v a l f l i p , ( num rows , num rows * num cols * num cols ) , order=’F ’ )

# Convert each u1 , y1 , y2 to s t r and concatenate to form the output index
s t ry = np . v e c t o r i z e (np . b ina ry r ep r ) ( y , i n t (math . log2 ( num cols ) ) )
s t ru = np . v e c t o r i z e (np . b ina ry r ep r ) ( u , i n t (math . log2 ( num rows ) ) )
ind = np . array ( [ i n t ( s1 + s2 + u1 , 2) f o r s1 in s t r y f o r s2 in s t r y f o r u1 in s t ru ] )
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# Assign va lue s to new W
new W[ u [ : , np . newaxis ] , ind ] = va l r e shaped [ u , : ] / 2

re turn new W

I also optimized the heap sorting algorithm. I only sort the entire heap when all items are first added to the heap. After
this point, there are different scenarios that can occur. Either the first element of the heap is removed and we have to figure
out where this first item belongs OR the ∆I value of an element changes so this element should either move up or down
within the heap depending if the value increased or decreased.
After implementing these changes, I did not see much of a time difference between the optimized code and the original code,
so the slowdown for large N must be within the decoder algorithm.

16.2 Setting Frozen Bits Randomly

Instead of setting frozen bits to 0 by default, as I was doing previously, I instead want to set these randomly to 0 or 1. The
values of the frozen bits are constant throughout the simulator code.

16.3 Redo Simulation Plots

With the changes to the simulator last week, I am re-running the histogram plots to show how many bits are incorrect in
each run.
The simulator takes an input y and produced x̂ and the below plots run the simulator for N = 2048 for 10 trials and 100
trials, respectively. The fraction of message bits I am using is 0.7 (good channels / total channels). The plots will follow a
binomial distribution.

Trials = 100, # of bins = 20:

Trials = 100, # of bins = 100:
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16.4 Rate vs # bits incorrect

The plot of number bits incorrect vs fraction of bits that are message bits should follow the equation for capacity of the
channel C = H−1

b (1−R). I plotted these on the same graph, and they look very similar.
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I redid this plot using N = 4096 and averaging 3 trials for each number of bits incorrect test.
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17 Week 17: February 17 - February 22

17.1 Degrading to file

I produced the indices for each N from 1024 to 262144 in order of how good of a subchannel each of the indices are. This
means that I will not have to run the degrading procedure anymore for these values of N .

17.2 Simulation Plots for larger N

I will be redoing the plots from last week for N = 4096.The plots will follow a binomial distribution.

Trials = 100, # of bins = 100:

17.3 Rate / # of bits incorrect for larger N

I redid the plot from last week for N = 16384. As N increases, I expect that the gap between this rate vs # of bits incorrect
and the capacity of the channel will decrease. However, I am seeing the opposite to be true:

N = 256, 1024, 2048, 4096, 8192, 16384:
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I am not sure why this is occuring...

Simulator check: Are the agreed frozen bits the same as the frozen-indices of y? Both are randomly generated...
NOT THE SAME!!!

17.4 Vector Quantization

This will be used to simulate a BSC. Currently, my simulator is over a single cell. Next, given an x, fix a d such that d bits
will be flipped at random. This will be simulated over a ball.
What is the difference in the code when simulating over a ball vs a cell? What must change within the simulator?
Will the û bits be flipped as they cross the channel?
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18 Week 18: February 23 - March 1

18.1 Independent Subchannels Test

I re-ran the tests from previously to examine which subchannels are good if they are measured independent of the other
subchannels. Part of the test is to see if my ranking of subchannels also makes sense given the independent experiments,
so I color-coded the plot of fraction of bits correct for each subchannel when examined independently. The ligher the color,
the lower the error probability is and the better the subchannel is. The darker colors represent the worst subchannels. I
received this plot below, showing that indeed the best subchannels are performing the best when subchannels are tested
independently, and the worst channel are not used as much. The results below are for N = 1024, 4096.

From the results above, the subchannels seem to be ranked properly and are not causing the results we see in the simulator.

18.2 Uniform Cell Test

I would expect that for a distinct choice of frozen bits used in the simulator, a unique x̂N will be produced. I set up an
experiment to test this by choosing a small N = 4 and running the simulator on all possible frozen bit inputs and comparing
the outputs x̂N . My results show that the outputs x̂N are unique across all possible possible arrangements of frozen bits, so
this is not an issue.

18.3 Numerical approximations

I looked at the approximations used in the log likelihood calculations, and when I vary the order of magnitude threshold for
which I determine that one number is negligible compared to the other, I do not see an impact in the simulation plot that
does not match capacity. The number of incorrect bits does not change, leading me to believe that this is not the source of
the issue.

18.4 Permute Indices

I tested if permuting the in-order indices as done in the encoder makes a difference in the simulator results. In previous tests
with the decoder, I saw that for small N , whether a subchannel was good or not was preserve when the indices were sent
through the bit reversal matrix BN . However, for large N , this diverged slightly, but mostly held constant.
Since we were seeing simulator results diverge from the expected capacity measurement for large N , I thought this may be
a cause of the issue.
I multiplied the in-order indices by matrix BN , the bit reversal permutation matrix, and I see that the simulator now has
results with 50% of the indices incorrect regardless of the value of k, the fraction of message bits. So this is making the error
worse and is not the solution.
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19 Week 19: 3/2-3/8

19.1 Reproducing plots with alternate encoder & decoder implementation

19.1.1 List size = 0, CRC = 0

External code is found here: https://github.com/tavildar/Polar?tab=readme-ov-file

Below are the resulting using the MATLAB implementation of the code above, the left are the results from my code,
and the right are the results from Sourab’s code using the same test code:
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(These plots are the same for varying ϵ)

All plots are from an average of 3 trials for each value of k [fraction of message bits] and both use the same simulator
code, only the communication encoder and decoder functions are swapped from my implementation and Saurabh’s imple-
mentation. I am using the PolarCode.polar encode() and PolarCode.polar decode() functions for the plots above.
It looks like Saurabh’s results are much further from the capacity curve than mine and the same flattening of the curve occurs
for small values of k.
Is this an effect of an error in my simulator? Or is the capacity curve not a good metric to compare to? I will also continue
to verify my simulator implementations and utilization of Saurabh’s code are correct.

After looking further into the above, I realized that Saurabh’s code is assuming frozen bits are always assumed to be 0.
So, I decided to correct this is in my code. Prior, I was selecting random frozen bits and sending a zero yN . This difference
may be causing the higher error probabilities in the plot above.
When I swap this, always selecting frozen bits to be 0 and sending a random yN , I run into an error in the decoder where a
matrix in the vnop function is sometimes zero for random yN , causing a divide by 0 error. This occurs very often, especially
for larger values of N . Is it possible that my definition of yN is different than the vector that is intended for input here?

Another difference between my and Saurabh’s code is that my code returns decoded bits in order of index i = 0, ..., N − 1
and Saurabh’s code returns decoded bits in order of the message inds = info bits¿ For example, if N = 16, the decoded bits
will be returned in order of indices i = 16, 15, 14, 12, 8, 13, .... However, the PolarCode class function PolarCode.polar decode
is ordered indices i = 0, ..., 16. This should be fine, I just need to account for this difference in my simulator code.

19.1.2 List size = VARIABLE, CRC = 0

I am using the function decode scl pl(obj,p1,p0,list size), where p1 is the input yN , p0 is the binary inverted version of p1,
and list size is the list size as input. The only code that is changing is the simulation encoder:

f unc t i on message uhats = sim encoder ( obj , y N)
p1 = y N ;
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p0 = ˜p1 ;
l i s t s i z e = 10 ;

mes sage uhat s outo fo rde r = obj . d e code s c l p1 (p1 , p0 , l i s t s i z e ) ;
[ ˜ , order ] = so r t ( obj . i n f o b i t s ) ;
message uhats = message uhat s outo fo rde r ( order ) ;

end

This function takes more time that the other decoder algorithm.

The only inputs that work with this code are yN =
−→
0 and yN =

−→
1 , and I chose to evaluate this code with yN =

−→
0 . Here

are the results for list size = 1, 2, 5, 10, 20.
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The list size does not seem to make a significant difference in the performance of the simulator for N = 1024.

I redid this with larger N = 4096 to further see the results:

I still do not see a difference in simulator performance.

19.1.3 List size = 1, CRC = VARIABLE

I altered my matlab simulator code to use the obj object that is defined in the PolarCode class. The following code is added
to change the number of error correction bits to 10, for example.

CRC = 10 ;
i f CRC + p > N

CRC = N=p ;
end
obj = PolarCode (N, p , eps i l on , CRC) ;

I ran this code with N = 1024 and the following plots are CRC = 10, 50, 100:

I see that the addition of error correction bits is decreasing the fraction of bits incorrect from y → x̂, but still is not helping
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in bringing the fraction incorrect curve down to the capacity curve.

I redid the plots with N = 4096 and CRC = 10, 100

I do not see a difference in these plots. When I make the number of error correction bits very large, 1000 for example, I see
the following results:

The performance is better, but is the curve of number of bits incorrect is now below the capacity curve.

19.1.4 Compare ranking of Subchannels

The ranking of subchannels between my code and Saurab’s code is different, and this difference increases with increasing
N . However, many adjacent subchannels are simply swapped. This may be a result of using the degraded channged vs the
Bhattacharya parameters.

19.2 Prefix Condition

I assert the prefix condition by prepending the binary representation of the number of message bits to the actual message
bits as the encoder of these message bits. By doing this, a string of many message bits and their lengths are sent to the
simulator at one time, allowing for a continuous stream of data. The message bits will now be an input to the simulator as
shown in this code here:

# Takes a l i s t o f input s t r i n g s and c r ea t e a s i n g l e s t r i n g with p r e f i x cond i t i on
# l e n g t h b i t s 1 + log2 (N1) + message b i t s 1 + l e n g t h b i t s 2 + log2 (N2) + message b i t s 2 + . . .
de f append pre f ix ( message arr ,N) :

encode s t r = ””
f o r msg b i t s in message arr :

p = len ( msg b i t s )
l ength = s t r ( bin (p ) [ 2 : ] . z f i l l ( i n t (np . log2 (N) ) ) )
encode s t r += length + msg bi t s

re turn encode s t r

# Take an input s t r i n g o f many messages prepended by N b i t s denot ing t h e i r l ength
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# Return a l i s t o f dec iphered b i t s
de f d e c od e b i t a r r ( f u l l m e s s a g e s t r ,N) :

message arr = [ ]
ind = 0
whi le ind < l en ( f u l l m e s s a g e s t r ) :

# Get l ength o f message b i t s
l e n g t h b i t s = f u l l m e s s a g e s t r [ ind : ind + in t (np . log2 (N) ) ]
l ength = in t ( l e ng th b i t s , 2 ) # dec ipher b i t s to get # o f message b i t s
ind += in t (np . log2 (N) )

# Extract message b i t s
curr message = f u l l m e s s a g e s t r [ ind : ind+length ]
message arr . append ( curr message )
ind += length

return np . array ( message arr )

de f s imu l a t i o n p r e f i x (N, eps i l on , mes sage b i t s ) :
p = len ( mes sage b i t s ) # number o f message b i t s

f i l e name = ” i n d i c e s ” + s t r (N) + ” . txt ”
with open ( f i l e name ) as f :

o rde r ed inds = [ i n t ( l i n e ) f o r l i n e in f . r e a d l i n e s ( ) ]

message inds = orde r ed inds [ : p ] # This w i l l hold a l l message i n d i c e s

p r i n t (”# Message b i t s / # t o t a l b i t s : ” + s t r (p) + ”/” + s t r (N) + ”=” + s t r (p/N) )

# Generate y b i t s g iven input mes sage b i t s
y N = np . z e r o s (N)
j = 0
f o r i in message inds :

y N [ i ] = message b i t s [ j ]
j += 1

# randomly a s s i gn f r o z en b i t s
f roz N = np . random . rand int (2 , s i z e=N=p)

# Simulat ion encoder to obta in message b i t s
u hat message N = sim encoder ( message inds , y N , eps i l on , N, f roz N )

# Send message b i t s a c r o s s channel . . .
p r i n t (” Sending u hat message b i t s . . . ” )
# nothing happening in the channel now , w i l l at some point

x hat N = sim decoder ( message inds , u hat message N , N, f roz N )

# Calcu la te num i n c o r r e c t from x hat N to y N elementwise
num incorrect = sum(x != y f o r x , y in z ip ( x hat N , y N ) )

p r i n t (” Frac i n c o r r e c t = ” + s t r ( num incorrect / N) )
p r i n t (”Num in c o r r e c t = ” + s t r ( num incorrect ) )

re turn num incorrect

# Send random s t r i n g s o f b i t s , each o f s i z e N
de f s e nd b i t s (N, p arr , num messages , e p s i l o n ) :

a s s e r t num messages == len ( p a r r )

message arr = [ ]
f o r i in range ( num messages ) :
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message = np . random . rand int (2 , s i z e=p ar r [ i ] )
message arr . append ( ’ ’ . j o i n (map( s t r , message . astype ( i n t ) ) ) )

message arr = np . array ( message arr )

# Append p r e f i x
f u l l s t r = append pre f ix ( message arr ,N)

# Get message b i t s i n d i v i d u a l l y
a l l m e s s a g e b i t s = de c od e b i t a r r ( f u l l s t r ,N)

f o r mes sage b i t s in a l l m e s s a g e b i t s :
s imu l a t i o n p r e f i x (N, eps i l on , mes sage b i t s )

# Example run
s end b i t s (N=1024 , p a r r =[700 ,900 , 500 , 1000 ] , num messages=4, e p s i l o n =0.01)

where the send bits function is the main function to run if you want to send pi message bits, total block length N , and
num messages messages with a given ϵ.

Now that I have code that upholds the prefix condition, there are additional metrics that we can compare to my current
performance.

69



20 Week 20: March 9 - March 15

20.1 Fixed Saurabh’s Code

Last week, I though the input p1 to the decoder can be the same as simulation encoder input yN . However, this is actually a
soft decoding input, meaning I need p1 to represent the input as given by the preceding BSC, which does not appear in the
simulator but is in the communication scheme. Therefore, I have these probability measurements:

P1[i] = Pr(X[i] = 1|Y [i] = y[i]) =

{
1− ϵ if y[i] = 1

ϵ o.w.

P0[i] = 1− P1[i]

I corrected my code with this change, and I have the following plots, where the left column are my plots and the right side
are Saurabh’s results:
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Comparing horizontally, the plots are very similar, seeing the same gradual decrease in number of bits incorrect instead
of a decrease proportional to the capacity. This effect is shown to a further extent in the plots on the right, with the fraction
of incorrect bits hovering around 0.5 until a later value of k, before decreasing towards the capacity plot. My plots have a
slight decrease at first, and then remain around a smaller fraction before returning to the capacity plot. I will test below if
adding error correcting bits and increasing list size has a big impact on these plots.

20.1.1 Variable List Size

I varied the list size for Saurabh’s list decoder where list size = 1, 2, 5, 50 for N = 4096:
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The only difference I see in these plots is that the distance to the capacity plots decreases as list size increases, but only by
a small bit.

20.1.2 Variable CRC bits

The following plots are for N = 4096 and # of error correcting bits = 0, 1, 10, 100, 1000
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I don’t believe that the simulation fraction of bits incorrect should increase with more error correcting bits, so I will continue
to look at this..

20.2 Prefix Code

I obtained the capacity curves from my prefix code last week. The difference is in the x-axis where instead of plotting
# message bits

N , now there are log2 N +message bits sent to the decoder, so the horizontal axis is log2 N+# message bits
N . Below

are the plots for N = 4096, 8192:

These are shifted versions of the previous capacity plots.

20.3 Subchannel Ranking Depends on ϵ?

I ran the degraded algorithm to check if changing epsilon alters the ranking of subchannels, and I found that indeed the
subchannel ranking DOES change with ϵ. For example, here are the first few best subchannels for N = 1024 and varying ϵ:
ϵ = 0.01 : 1023, 1022, 1021, 991, 1020, 990, 831, 759, 507, 503
ϵ = 0.05 : 991, 1015, 1007, 1014, 1011, 1006, 1005, 1003, 999, 990
ϵ = 0.1 : 1023, 1022, 1019, 959, 895, 767, 1021, 1015, 1020, 1018
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21 Week 21: March 16 - March 22

21.1 Fixed ϵ misconception

Last week, I found that the ordering of the subchannels is different when ϵ varies. This gave rise to a discussion during this
week’s meeting that perhaps the value of ϵ is not set prior to the simulation problem, but rather depends on the rate R,
which is the number of message bits. Therefore, the value of epsilon will be the same as the capacity of the plot, which is:

ϵ = H−1(1−R)

Prior, I was setting the value of ϵ = 0.01 always, which is closer to the ϵ that results from larger R. By replacing the
value of epsilon in my experiment with this value dependent on the rate. Here is the resulting plot with N = 1024:

This was a great result as the number of bits incorrect is almost on top of the capacity curve, meaning ϵ in ⇒ ϵ out. Here
are the results with N = 4096:

The curves have less distance between then as N increases, which is expected. We see the results change very drastically as
the value of ϵ is much larger than 0.01 for small rates R, so the subchannel rankings varying greatly. However, for large rates
R, the value of ϵ is around 0.01, so the expected results are shown.
This increases the timing complexity of my code since the degraded algorithm must run each time a new ϵ is used for a new
N , but the results are correct now. I ran this code for N = 4096 and at smaller increments of rate R.
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At this point, I am still using an approximaion for inverse binary entropy, since there is no closed-form expression for this
inverse function. This approximation is:

1

2

(
1−

√
1− (1−R)4/3

)
This is a pretty good approximation, but I see that it is off by around 0.01 for each point. To increase accuracy in my
comparison plots above, I decided to utilize the scipy.optimize package, specifically the minimize scalar function. I then used
the following code:

de f H(p ) :
r e turn =p * np . log2 (p) = (1 = p) * np . log2 (1 = p)

de f inver se H ( ar r ) :
va l s = [ ]
f o r va l in ar r :

# Def ine a func t i on that r e tu rn s the abso lu t e d i f f e r e n c e between H(p) and the de s i r ed value
func = lambda p : abs (H(p) = va l )
# Use min im i z e s ca l a r to f i nd the value o f p that minimizes the abso lu t e d i f f e r e n c e
r e s u l t = min im i z e s ca l a r ( func , bounds=(1e=15, 1=1e=15) , method=’bounded ’ )
va l s . append ( r e s u l t . x )

re turn np . array ( va l s )

This code worked well, giving values for H−1(1−R) that are much closer to the correct value. The only issue is that I wish
to have an inverse value = ϵ that is < 0.5, as this corresponds to my plots. Some of the inverse values are greater than 0.5
since H(x) = H(1 − x) by definition. I added one more line in my code that if H−1 > 0.5, just subtract it from 1 to get
the proper inverse value that I am searching for. This may not be necessary for small N , but it is good for larger N to have
greater accuracy to compare the results of the simulator to. This worked well, and here is the updated plot for N = 4096:
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This curve is closer to the expected capacity curve.
I also ran this code for N = 8192:

The cuve looks a bit closer to the expected capacity curve than for smaller N , but surprisingly there is not a large difference
between these two values of N .
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21.2 Fix on Saurabh’s code

I implemented the same fix above on Saurabh’s code with N = 4096 and for list sizes 1,2,5,10 below:

I see that increasing the list size improved simulator performance, but these blue plots are further from the orange curve
than my blue plots to begin with.
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21.3 Histogram

This is a histogram for N = 4096, k = 0.2 ⇒ ϵ = 0.24:

To compare this to the binomial distribution:

P (x) =

(
n
n

)
pxqn−x

This binomial random variable will have parameters Bin(N, ϵ)

P (x) =

(
n
n

)
ϵN∗ϵ(1− ϵ)n−x

Here is a plot of the resulting histogram and binomial random variable outputs:

The center of these values is slightly off at the moment since the simulator is currently for an approximate BSC. With an
exact BSC simulator, which I will work on next week, and with more trials, these histograms should be the same.
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22 Week 22: March 23 - March 28

22.1 Simulating an exact BSC

Currently, my progrma is simulating an approximate BSC, where the number of bits that are flipped are random but close
to ϵ × N variables . I instead want to simulate an exact BSC since this is a common practice in the field literature. The
randomly generated yN input string contains m ones and N −m zeros, so I will generate random variables k0, k1 to represent
the exact number of 0s and 1s that I want flipped. k0, k1 will be binomial random variables with parameters as follows:

k0 ∼ Bin(n−m, ϵ)

k1 ∼ Bin(m, ϵ)

where n = number of message bits.
The new flipping probability that will be used in the simulation will be

δ =
k0 + k1

N

This is so that the number of flipped bits for both 0,1 are close to k0, k1 to begin with so less time is spent on corrections.
In the simulation decoder, I correct x̂N so that the number of 0s flipped is exactly k0 and the number of 1s flipped is exactly
k1. The value ℓ is the number of bits into x̂N that must be iterated through until the number of flipped 0s = k0 and the
number of flipped 1s = k1.
Some example outputs of num flipped 1, 0 and k0, k1 and corresponding ℓ values for N = 4096, ϵ = 0.24, k = 0.2 are:

num flip0 k0 num flip1 k1 ℓ

109 86 104 105 168
115 119 99 97 21
100 85 115 96 131
106 90 121 108 130
100 96 107 91 154

Here is a histogram for N = 1024, ϵ = 0.24, and 200 trials for an exact BSC:

Here is a histogram for N = 4096, ϵ = 0.24, and 200 trials for an exact BSC:
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