
A Appendices

A.1 Exponential moving average

We compute the network’s neuronal instantaneous spike rates as exponential moving averages
(EMAs), which accumulate spikes over time (see Eq. 9). EMAs are utilized to track recent neuronal
activity levels. Concurrently, lifetime average values are also calculated using EMAs, which are
crucial for maintaining homeostatic stability. This method helps stabilize the neural network by
adjusting neuronal properties or synaptic strengths to sustain consistent activity levels over time.

xj(t) = (1− ζ)xj(t− 1) + ζ · zj(t), (9)

where ζ = 1− e−
1
10 , indicating that the 10 ms is a temporal window of the moving average weighted

with exponential decay. The initialization of xj is 0. The exponential moving average is calculated
dynamically and updated along with synaptic weights.

⟨xj⟩ := (1− ξ) · ⟨xj⟩+ ξ · xj , (10)
where ξ = 1− e−1. It is dynamically updated to ensure the sum of the weights remains constant over
time.

A.2 Detailed parameters and connectivity settings for the model

Detailed neural dynamics: The feed-forward connection, labeled FF(image→E)
ij , links pixel Xj of

the whitened image patch to excitatory (E-) neuron i. W (K∗→K)
ij signifies the synaptic weight from

neuron j of neuron class K∗ to neuron i of neuron class K, with its sign determined by the connection
type, described as β(K∗→K)

ij (the neuron receives E-connections, set as +1; conversely, the neuron

receives inhibitory (I-) connections, the sign is set as -1). z
(K∗)
j (t) indicates the spike output of

neuron j at time t . Upon reaching the spike threshold θ (initialized as 2), a spike is emitted, z(K
∗)

j (t)
is set to 1, then the membrane potential is reset to 0 mV, remaining so until the refractory period (3
ms) concludes. Within primary visual cortex (V1), homeostatic plasticity [34, 55] ensures neural
activity stability by dynamically adjusting the firing threshold θ. This adjustment is based on the
deviation of the current firing rate pi (t) from the target rates p(K)

i (p(E) = 2, p(I) = 4), as outlined
in Eq. 6 [55]. We assign τ (E) = 10 ms for E-neurons and τ (I) = 5 ms for I-neurons. To enhance
computational efficiency, we set the time step to 1 ms.

Hyperparameters: For the synaptic plasticity, learning rates are ηFF = 0.2 (image to E-neurons),
ηEE = 0.01 (E- to E-neurons), ηEI = 0.7 (I- to E-neurons), ηII = 1.5 (I- to I-neurons), and ηIE = 0.7
(E- to I-neurons), while the neural connectivity parameters are αmax,E = 1.0 (E- max weight),
αmax,I = 0.5 (I- max weight), σEE = 3.5 (E-E coupling range), σEI = 2.9 (E-I coupling range),
σIE = 2.6 (I-E coupling range), and σII = 2.1 (I-I coupling range).

Neural connectivity within 2D cortical area: E- and I- neurons are arranged symmetrically on
a two-dimensional lattice, as illustrated in Fig. 5b. Periodic boundary conditions are employed to
mimic the large number of neurons in the actual V1 cortical surface. Specifically, neurons at the
boundary are connected to neurons at corresponding symmetric positions on the opposite boundary.
The initial connection weights between neurons are modeled by a Gaussian function of their distance
(see Fig. 5c), which can be expressed as:

WK∗→K
0 (i, j) = αK∗ × exp

(
−d (i, j)

2

2σK∗
2

)
. (11)

In this equation, d(i, j) represents the Euclidean distance from neuron i to neuron j in a grid, α
determines the maximum connection weight, which is set to αEE = 1, αEI = 1, αIE = 0.5, αII = 0.5,
and σ governs the rate at which the weight decays with distance. The synaptic types predominantly
determine the parameters for this connection weight distribution function. To accurately replicate
the neuronal architecture of V1 in macaques. The connectivity radiuses, denoted by σ, are set to
σEE = 3.5, σEI = 2.9, σIE = 2.6, σII = 2.1. These values are based on anatomical data indicating
that the axon length scales of E- and I-neurons are approximately 200 µm and 100 µm, respectively,
while the dendrite length scales are around 150 µm for E-neurons and 75 µm for I-neurons in the V1
[62, 63, 64]. We prune any connection strengths below a threshold of 0.01 to maintain computational
efficiency and biological plausibility.
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A.3 Anatomical data integration

Neural connection data

The experimental subjects include six adult cats with unknown genders, with data sourced from
research by Armen Stepanyants et al.[63]; and eight macaques, aged 5-11 years, including six males
and two females, with data sourced from research by Joseph Amatrudo et al.[64].

Neuronal synaptic plasticity

The subjects are rats aged 14-16 days, with unknown gender and quantity, with data sourced from
research by Holmgren et al.[57]; transgenic mice, with unknown quantity and gender, with data
sourced from research by Hofer et al. [47].

Retinal-V1 topological projection data

Receptive field (RF) data: V1 neuron counts for macaques, cats, tree shrews, ferrets, mice, rats, and
gray squirrels respectively come from Tehovnik et al. [69] (subjects: 3 macaques, unknown gender
and age), Scholl et al. [50] (subjects: cats, unknown gender and age), Veit et al.[70] (subjects: 9 male
and 7 female tree shrews, aged 3-8 years), Huberman et al.[71] (subjects: 8 ferrets, unknown gender
and age), Niell et al.[53] (subjects: mice, aged 2–6 months, unknown gender), Foik et al.[72](subjects:
21 rats, unknown gender and age), and Hall et al.[73] (subjects: 17 gray squirrels, unknown gender
and age). V1 neuron density: Neuron density data for macaques, cats, mice, rats, and gray squirrels
come from Srinivasana et al.[52] (subjects: unknown gender and age); tree shrew, ferret, and gray
squirrel density data respectively come from Weigand et al.[74].

Cortical magnification factor

Cortical magnification factor (CMF) data for macaques, cats, tree shrews, ferrets, mice, rats, and
gray squirrels are sourced from Tehovnik et al.[69] (subjects: 3 macaques, unknown gender and age),
Veit et al.[70](subjects: cats, unknown gender and age), Bosking et al.[48] (subjects: tree shrews,
unknown gender and age), Rockland et al. [75] (subjects: 9 ferrets, female, unknown age), Beest et
al.[54] (subjects: 28 mice, 11 males and 17 females, ages 2-14 months), Keller et al.[76] (subjects:
male rats, age 3 months), and Hall et al.[73] (subjects: 17 gray squirrels, unknown gender and age).

Additionally, the anatomical data concerning inter-ocular distances are obtained from Najafian et al.
[7].

A.4 Unveiling species-specific factors distinguishing pinwheels and salt-and-peppers

A.4.1 Anatomical data suggests RFs density underlying V1 organizations

Table 3: Comparative anatomical data of the retina and V1 across species.

a. Species
(mean)

b. Retina
(mm2)

c. V1 size
(mm2)

d. V1 neurons
density

(neurons/mm2)

e. V1 RF
size in area

centralis (deg)

f. RFD
((c)× (d)/(b))
(RFs/mm2)

Macaque 636[6] 1,090[33] 243,000[33] 0.2[52] 416,462.26
Cat 510[6] 380[6, 33] 99,200[33] 1.0[50] 73,913.73
Tree shrew 122[6, 77] 73[6, 33] 192,800[74] 2.0[70] 115,363.93
Ferret 83[6, 75] 78[33] 95,813[74] 3.0[71] 90,041.13
Mouse 15[6] 2.5[33] 86,600[33] 4.0[53] 14,433.33
Rat 52[6, 78] 7.1[33] 90,800[33] 3.0[72] 12,397.69
Gray squirrel 205[6] 32[6] 84,213[74] 2.0[73] 13,145.44

We analyzed anatomical data from seven species, including primates (e.g., macaques) and non-
primates (e.g., mice, rats, cats, tree shrews, gray squirrels, and ferrets), as detailed in Table 3. We
first find that V1 RFs density (RFD) (ρRF) acts as a linear classifier (y = 4.42× 104x), effectively
distinguishing species with pinwheel structures from those with salt-and-pepper organizations. In
this classifier, species like macaques, cats, tree shrews, and ferrets, which have higher RFD, are
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Figure 6: A linear classifier based on RFD (y = 4.42 × 104x) effectively differentiates species
with salt-and-pepper organizations (rats, mice, gray squirrels) from those with pinwheel structures
(macaques, ferrets, cats, tree shrews). a. This classifier reflects variations in V1 organizations across
species. b. A plot categorizing species by the ratio of V1 neuron number to retina size acts as a
divider, implying a critical ratio for the formation of pinwheel structures.

associated with pinwheel structures (light red area in Fig. 6) and exceed the classification threshold.
In contrast, species with lower RFD, such as mice, rats, and gray squirrels, are linked to salt-and-
pepper organizations (light blue area in Fig. 6). Thus, V1 RFD serves as a predictive metric for V1
organizational patterns across species. The ρRF is calculated as follows:

ρRF =
n′

s′r
∝ n

[(sRF − ε) (
√
n− 1) + sRF]

2 , (12)

where n′ denotes the total number of neurons in V1, s′r indicates the retinal surface area. We have
n′ = sV1 × ρV1, where sV1 corresponds to the V1 2D surface area, and ρV1 signifies the neuronal
density within V1. The variable ε quantifies the degree of visual input overlap among adjacent
neurons, n denotes the total number of neurons, and sRF represents the RF size in the self-evolving
spiking neural network (SESNN). Referring to Eq. 12 and anatomical data (Table 3), the overlap ε
positively correlates to V1 RFD ρRF and is a main factor influencing V1 RFD. We discuss the overlap
as the variable of V1 organizations in the main text.

A.4.2 SESNN reveals neuronal connection range influencing V1 clusters

The anatomical data in Table 3d for seven species show variability in V1 neuronal density (ρV1),
which influences inter-neuronal spacing and connection strength. We explore how V1 cortical
orientation patterns form by adjusting the lateral connection range, impacting axon reach among
E- and I-neurons, as depicted in Fig. 7. We modulate axonal arborization through parameter σ to
adjust the connection range, allowing us to simulate neuronal connections in areas with varying
densities. This setup enables the SESNN model to predict changes in cortical patterns (Fig. 7). Our
observations indicate that increasing axon lengths, thereby extending the connection range, enlarges
hypercolumn sizes within pinwheel structures (Fig. 7d), reduces the overall number of pinwheels
(Fig. 7b), and increases the nearest-neighbor pinwheel distance (NNPD) (Fig. 7c). These findings
underscore the critical role of neural synaptic connection range in organizing orientation maps.

A.5 Relationship between maximum values of local pixel entropy and local geometrical
entropy for various shapes

To address the limitations of using local pixel entropy (LPE) with sliding windows alone to capture
complex geometric properties, we conduct a new analysis comparing the maximum values of LPE
with local geometrical entropy (LGE) across various shapes. These shapes include lines, angles, and
junctions (L-, T-, X-junctions), as well as jagged edges. Both LPE and LGE values were normalized
to the range [0,1] for consistency.

Let P = {v1, v2, . . . , vn} be a polygon with vertices vi = (xi, yi), where i = 1, 2, . . . , n. The edges
of the polygon are the line segments between consecutive vertices, denoted as ei = ∥vi+1 − vi∥,
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Figure 7: Neuronal connection range within V1 contributes to the formation of pinwheel structures. a.
Modifying the synaptic connection range reshapes the dimensions of pinwheel structures. b-d. The
relationship between the synaptic connection range (σ) and the number of pinwheels, NNPD (mm),
and hypercolumn size (mm). The scale bar: 1 mm in V1 cortical surface. Color scheme: orientation
preference. Lines: mean. Shaded area: SD.

where ∥ · ∥ represents the Euclidean distance. The angle θi between two consecutive edges ei and
ei+1 can be computed using the dot product:

θi = cos−1

(
ei · ei+1

∥ei∥∥ei+1∥

)
. (13)

With the set of edge lengths {e1, e2, . . . , en} and angles {θ1, θ2, . . . , θn}, we calculate the entropy
for both distributions. The entropy H of a discrete distribution X with probability mass function p(x)
is given by:

H(X) = −
∑
x∈X

p(x) log p(x). (14)

For the edge lengths and angles, the probability mass function is estimated by normalizing the
frequency of occurrence of each unique edge length and angle in the polygon:

H(Lengths) = −
n∑

i=1

p(ei) log p(ei), (15)

H(Angles) = −
n∑

i=1

p(θi) log p(θi). (16)

To enhance the sensitivity of geometrical entropy to structural complexity, particularly in differen-
tiating shapes that have similar edge lengths and angles but different structural arrangements, we
introduce a scaling factor based on the logarithm of the number of vertices n. The defined geometrical
entropy (GE) with the scaling factor is thus defined as:

GE = (H(Lengths) +H(Angles))× log(n). (17)
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This modification allows GE to capture additional complexity arising from intersections and the
global arrangement of vertices, providing a more comprehensive assessment of the shape’s structural
intricacies.

Our results, summarized in Table 4, show that while LPE can reflect the complexity of certain patterns,
it does not fully capture the geometric variations seen in more intricate shapes. For instance, the LPE
values for line structures remain relatively low compared to those for jagged edges, which have the
highest LPE and LGE values due to their high structural complexity. This comparison highlights the
added value of incorporating LGE to better characterize local geometric structures, providing a more
nuanced measure of complexity that includes both intensity distribution and spatial organization.

Table 4: Relationship between maximum values of LPE and LGE for various shapes. Both metrics
are normalized to the range [0,1].

Various shapes Max local pixel entropy Max local geometrical entropy
Line 1 0.56 0.43
Line 2 0.56 0.43
Angle 1 0.81 0.87
Angle 2 0.79 0.86
Angle 3 0.77 0.87
L-junction 0.78 0.74
T-junction 0.78 0.64
X-junction 0.78 0.84
Jagged edges 1.00 1.00

A.6 Pinwheel centers response to different orientation bandwidths

Probability distribution of preferred adjusted acute 
angles in PCs

20 30 40 50 60 70 80 90
Adjusted acute angle (degrees)

0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ilit

y

a b

Figure 8: PCs in V1 prefer orientations and ablation study. a. Probability distribution of preferred
acute angles in PCs. b. Ablation study on normalized complexity across response onset latencies.
Data: mean ± SD.

Understanding the tuning of pinwheel centers (PCs) in V1 to edges, corners, and junctions is essential.
In Fig. 4e, we show that PCs exhibit broader orientation tuning curves than IODs when using star-like
patterns as stimuli, potentially enabling the detection of T-junctions and corners, as demonstrated by
Li et al. [13] and Koch et al. [12]. We further examine the distribution of PCs’ tuning curves using
gratings as inputs, specifically analyzing acute angles formed by the primary and secondary peaks
(Fig. 8a). This analysis reveals that PCs are more frequently associated with larger acute angles,
closer to orthogonal (90°), suggesting a preference for orthogonal junctions. However, this result does
not differentiate between L- and T- junctions based solely on angle. We propose that such high-order
feature extraction be deferred to higher visual cortices, like V2 and V4, which are involved in texture
detection, as noted by Wang et al. [79] and Roe et al. [80].

A.7 Ablation study

We present a mechanism of multiple orientation tuning that is essential for processing complexity. Our
analysis of PCs’ preferred acute angles (Fig. 8a) suggests that their broad tuning enables the detection
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of complex junctions, such as T- and L-junctions, likely due to variations in local connectivity within
and between iso-orientation domains.

To test this, we conduct an ablation study by disrupting local connectivity and shuffling the spatial
arrangement of orientation-tuned RFs in the pinwheel orientation map, while keeping other properties
constant (Fig. 8b). The control group (red) maintains higher complexity over time, whereas shuffling
connections—especially both feed-forward and lateral—resulted in a decline in complexity. This
highlights the importance of structured connectivity in preserving complex neural responses in V1
and supports the conclusion that structured connectivity underlies enhanced saliency detection by
pinwheels.

A.8 Computing infrastructure

Table 5: Computing infrastructure

CPU Intel® Xeon® Gold 6348 CPU @ 2.60GHz
GPU A100

Memory 512 GB
Operating system Ubuntu 20.04.6 LTS

Simulation platform MATLAB R2023a and Python 3.9

The simulations and analyses in this study are performed on a high-performance computing infras-
tructure to ensure efficient processing of large datasets and complex models. The system is powered
by an Intel® Xeon® Gold 6348 CPU running at 2.60 GHz and an NVIDIA A100 GPU, providing
robust computational power for intensive tasks. The system includes 512 GB of memory, which
supports handling memory-intensive applications and large-scale simulations. The operating system
used is Ubuntu 20.04.6 LTS, known for its stability and compatibility with scientific software. The
simulations are conducted using MATLAB R2023a and Python 3.9, both of which are widely used
in scientific computing and neural modeling, enabling effective implementation and analysis of the
models presented in this study.
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