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A Full Derivation of Self-Attention as Non-Parametric Regression

Recall NW estimator is a non-parametric estimator of the unknown f at any given query q described
by

f(k) = Elo]k] = /

v p(vlk)dv — / Mdv
RD

ro P(k) ,

where the first equality comes from the noise being zero mean, the second equality comes from the
definition of conditional expectation and the final equality comes from the definition of conditional
density. Eqn. 3 implies that if we can just obtain good estimates of the joint density p(v, k) and
marginal density p(k) then we can estimate the required f(q). The Gaussian isotropic kernels with
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bandwidth o are given by

1 1
ﬁo(’vak)zﬁ Z @U(v_vj)%@o(k_kj)v ﬁa(k): N Z @o(k_k’j)a (14)
JE[N]

JE[N]

where ¢, is the multivariate Gaussian density function with diagonal covariance matrix 021 . Given
the kernel density estimators in Eqn. 14, the unknown function can be estimated as

A v - Py (v, k) U'Zje[N] @U(v_vj)@o'(k_kj)
(k) = ——dv = d
o= [ e = > ey 7o (6 — ) v
Zje[N] Pk —kj) [v-pq(v—v;)dv _ Zje[N] vipo(k —kj)
Zje[N] 0ok —kj) Zje[N] po(k —k;)

Then, using the definition of the Gaussian isotropic kernel and evaluating the estimated function at g,
we have

- S vjexp (< g — ky)1%/207)

YV exp(—llg; — k;l2/202)

- SN vjexp [(la@ill? + [Ik;12)/20%] expla] k;/0?)
N exp [=(llg )12 + IIk;112) /202 exp(q] k;/o?)

N T 2
S Viex ko
_ 2 NJ p(il ilo”) = E softmax(q; kj/o?)v;.
25 explai kj/o%) Ry

f(qz)

Remark 6 Note that relaxing the assumption of normalized keys, the standard unnormalized self-
attention score can be written as

T
exp(q; kj/o?) = exp (~lla; — kjl|*/20°) exp (a1 + |IK;1*)/20%)
oc exp (—lg; — k;ll*/20%) ,
which shows that the dot-product self-attention scores are proportional to the NW kernel value with
Euclidean distance. Hence the assumption of key normalization is sufficient to recover exactly the

correspondence between self-attention and NW kernel regression, but not necessary. Analogously,
the unnormalized Elliptical Attention score takes the following form:

exp(q; Mk;/0%) = exp (~d(q;. k;)*/20°) exp ((la:lae + IK;l130)/20%)
oc exp (—d(g;, k;)*/207)

where d(-,-) is the Mahalanobis distance used in Eqn. 7 and || - || is the norm in the transformed
space with metric d. This observation justifies the use of the transformed dot product instead of the
full Mahalanobis distance metric in Eqn. 12 as it preserves the proportionality relationship between
the attention computation and the corresponding nonparametric regression estimator with chosen
distance metric.

B Technical Proofs

In this section, we present the omitted theorem statements and technical proofs in the main body of
the paper.

B.1 Proof of Lemma 1

Let M : RP — RY be the transformed softmax operator as defined in Lemma 1. We wish to find
its Jacobian matrix given by

OM(q) oM (q) OMi1(q)
o @ 24
Ble(q) 8./\/122(11) BMzD(tI)
0 5] te 0
Jm(q) = a I ! )
OMy(q) OMn(a) OMy (q)
Ay x| 2
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to measure the sensitivity of each output dimension to a change in each input dimension. Let
M; : RP — R denote the j" component of the output vector for j € [N], that is, for a vector

qeRP,

exp(q' Mk;)
M;(q) = . (16)
J( ) Ese[N] exp(qTMk:s)
Let qi and k; denote the 7" coordinates of vectors q and k;, respectively. Then,
9 o ( + .
- In(M;(q)) = - g Mk; —In Z exp(q Mks)
dq dq
SE[N]
= mykt — 2se E€[N] dq exp(q ' Mk)
i Zse[N] exp(q" Mk;)
ki m ki exp(q" Mky)
o lse[N] Zs/e[N] exp(q" Mk )
- KM
SE[N]
Since the output of Eqn. 16 consists of only positive components, we have
9] 0
G M@ = 5 (M, (@) - My(a)
=m; [k — Y kM.(q) | M;(g).
SE[N]
Therefore, the triangle inequality gives
a l
@MJ‘((I) - Y KM M;(q)
SE[N]
<my | K (1= Mj@)M;(@+ Y kM @M@ |. a7
s€[N\{j}

We now bound each term individually. Consider the terms j # s first. Since 0 < M(q) < 1, we
can bound them as

kM@ M;(@)] < [k]. (18)
Now recall that the inequality ab < (a + b)?/4 holds for any real numbers a and b with equality
holding at @ = b. Therefore, for the first term, we obtain

i i (1= M;(g) + M;(g)* _ |kl
(1~ M(@)My(a)] < g @M@ B (19)
Combining inequalities 17, 18 and 19, we finally arrive at
0 |kl| i
[T m(@)jil = @Mj(Q) <m; + Y K = R (20)

se[NI\{/j}
foralli € [D] and j € [N], where x,; > 0 denotes the coefﬁcient in the bracket. O

B.2 Proof of Proposition 1

Let us estimate the distance between two output vectors of Elliptical attention mechanism correspond-
ing to clean and contaminated query inputs, namely:

h = Z softmax(q ' Mk;/o?)v; = Z M;(

JEIN] JE[N]
h. = Z softmax((q + €)' Mk;/o%)v Z M; (g +€)v;,
JEIN] JE[N]
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where M is defined as in Lemma 1. We omit the keys and scaling parameter for convenience since
they do not affect the analysis. Then,

Ih =R =] > (Mj(q) — M;(g+e)v

jE[N]

< 3 IMi(@) — Mg+ o) vy
JE[N]

< 3 IVM;@)] el v 21
JE[N]

Yo D Tad@)i) Il el

JEIN] | i€[D]

ST >0 sEm2 vl el (22)

JEIN] | i€[D]

D ETM) v el

JE[N]

where K ; := diag(k1;, k2, . - ., kp;) and k;; is defined as in Eqn. 20. Note that 21 follows from
mean value theorem for some 5 € [0, 1] and ¢ := g + Se while 22 follows from Lemma 1. O

IA

It should be noted that Proposition 1 addresses the impact of noise exclusively on the query vectors.
However, the resulting bound can be extended to account for noise in all tokens by employing
the same technique utilized in the proof. For completeness, we also provide the extension. Let
M :RP xRP x ... x RP — RN be the Elliptical Softmax function defined as

—_———

N
) exp(q" Mk;)
M(qvkla"'ka): T : (23)
. exp(q' Mk; :
Zac M) g7 )
Again, take the difference between output vectors calculated from clean and noisy tokens as follows
h.= Z Mj(g+eg. ki +er,....kn+€;)(vj+e€y), (24)
Je[N]
h= Y Mgk, ... knv;. (25)
JE[N]
Let ||€]| := max{||e,||, ||€x||, ||€s]|} denote the noise with the largest norm among query, key and

value noises. Then,
Hhe 7hH S Z |Mj(q+€q7k1 +6/67"'7k;]\7 +€k) 7M](q7k177kN)|||/U]H

JE[N]
+ > Mj(g+eg by + e, ... kn +en)|e (26)
JE[N]
< | IVeM@I+ D Ve M| | lElllogll + Nl 27)
JE[N] s€[N]
Following the same steps as Lemma 1, one can derive the bound
0 305,
]W | <mi-lgf |( 4”) x m; (28)

for s, j € [N]. Therefore, we obtain

|he — | < 1+Z S (@ 2| el 29)

N]s€[N+1]
where C ; are the diagonal matrices whose elements are the proportionality coefficients in the
derived upper bounds.
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B.3 Proof of Proposition 2

There are two avenues through which to see resistance to representation collapse. In this section, we
provide a proof based on noise propagation through layers, which decreases representation capacity
as representations in deeper layers are increasingly composed of uninformative noise. We refer
the reader to Appendix B.4 for an additional lens on representation collapse, where we show that
Elliptical Attention is more sensitive to the variation and local features of the underlying function.

Let the output at layer ¢ be denoted as h’, the standard self-attention estimator and Elliptical estimator
fitted at layer ¢ be denoted f* and f 5 respectively, where d is the Mahalanobis metric described in
Eqn. 7, and f be the true underlying function described in Eqn. 3. By assumption, f is a higher

variance estimator than f; for any layer. The output for either estimator at layer ¢ can be decomposed
into ground truth and noise as follows:

h' = f'(q") = fg") + € (30)
hg = fi(a") = f(a") +n", 31)
where n° ~ 7(0,V;,), ¢¢ ~ (0, V) are the noise components of the estimate at ¢* and f(g*) is the
ground truth. By assumption of fg being lower variance, V. — V;, is a positive semi-definite matrix.

We first require the following Assumption 1, which is described as:

Assumption 1 (Random Input Noise Causes Estimator Attenuation) . Let f be any estimator of
true function f and let the input x ~ p drawn from marginal p be randomly corrupted by random
noise € ~ (0, V') of some unknown distribution and covariance matrix V. Let ¢ be some constant.
Then, random input noise attenuates the estimator as follows:

ol f(x +€) — ¢l < Eelf(z) — ¢ (32)

Assumption 1 is a well-studied phenomenon in parametric regression, often referred to as attenuation
bias [69], regression dilution [19], or errors-in-variables [34]. In parametric regression, it can be
shown to have an exact form where the estimated gradients of the model are attenuated towards O
proportional to the variance of the noise €. In non-parametric regression, addition of input noise is
often referred to as random smoothing or random input smoothing [46, 10], and is well known to be
used as regularization technique to introduce bias into the model. In non-parametric models, no exact
closed forms exist to express the attenuation bias, but for our purposes we only note the attenuation
exists and provide a general form of it in Assumption 1.

The outputs of 30 and 31 then become the inputs to the following layer after being self-added, normal-
ized, projected, and linearly transformed. For notational simplicity and because these operations do
not change the analysis, we denote the input at the next layer as the previous layer output g‘+! = h’.
We therefore have the following process:

hf"rl _ fz+1(ql+1) — fZJrl(hZ) — f'\€+1('f(q€) + EZ), (33)
————
2
where we see the output h**1 is obtained by fitting f ¢ to input z¢ which is composed of ground truth
f(q") and noise €’ passed through from the previous layer.

The result then follows directly from the fact that in any given layer, the standard self-attention
estimator produces noisier estimates, where that noise is then passed into the subsequent layer as
input noise. This is

E[[R! —c| = B[/ (g — el = B[l f (f(g") + €) — <] (34)
<E|f(f(qd") +n") | (35)
~E|fI(f(g") +n") — (36)
=E|f;" (f(g") — el =EllRS™ —cll, (37

where line 35 follows from combining the fact that ¢ is lower variance with Assumption 1 and line
36 follows from the fact that E|| X || = E||Y|| when X, Y have the same mean and roughly similar
distribution.
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Therefore we obtain at any layer ¢ the following

E[R“T —c|| <E|RST — |, (38)

as required. [
B.4 Edge-preservation Perspective on Representation Collapse

To further substantiate our findings on the mitigation of representation collapse in transformers, we
now present an additional proposition that examines this phenomenon from a different perspective.
In Proposition 4, we show that Elliptical attention reduces representation collapse by retaining the
important local features (bumps etc.) better than the standard self-attention in the case of sparse
piece-wise constant functions.

Proposition 4 (Representation Collapse) Let f : A — RP for A C R be a piece-wise constant
function with f|4,(q) = f; € RP where A =, A; for some (possibly infinite) index I. Let q,
and q4, be the queries lying in any of the adjacent domain pieces with distant function values. Then,
the Elliptical estimates at these queries retain the distance better than the standard self-attention
estimates which is formulated as

E| fa(g) — fa(a1)l| > Ellf(g2) — f (gl (39)

Proof. Assume all output vectors are normalized. Then, the Euclidean distance between two vectors
is determined by their dot product since

la —bl* = [la|® +[|b]* — 2a"b. (40)

Without loss of generality, we take A; and A to be the two adjacent pieces so that f(q;) = f; for
i =1,2. Denote f(q;) = h; and f4(q;) = h;q. Then, Eqn. 39 is equivalent to proving

Ep[h{shsd] < Eplh] hol, 1)

where the expectation is taken over the whole sampling distribution D but the points g, € A; and
g, € A, are fixed as described in the definition. We drop the subscript D as this will be the default

distribution for computing expectation unless specified otherwise. Letrs = cossim(f, f5) = f lT o
be the cosine similarity of the two piece-wise values. By definition of q; and g, and since the
estimates work by averaging the output vectors with a small amount of noise, we have rg <

min {]E[h;rdhgd], E[h] hs] } We now decompose hi4 and hog in terms of components along and

orthogonal to f; and f,, respectively:
hia = (higf)f1+ F1, haa = (hagfa)fs+ fa (42)

where f; fi- = 0. Then, for their dot product, we have

.
highaa = |(hiy 1).f1+fﬂ [(h;—de)fQ‘f‘fﬂ
= (higf1)(hogf2) F1 Fo+ (Riaf ) f1 f2

+ (haaf2) 2 £+ (F0) T fa (43)

The analogous decomposition of thhg can be obtained. By Theorem 2 we have that the Elliptical
estimator is lower variance and so we have E| f, — k4> < E||f; — h;||*. This has the following
implications:

1. 1 >E[h),f;] > E[h; f;]ie. the component of h;q along £, is larger than that of h;, and
hence h, f; is closer to 1.

2. Due to the first implication above, the orthogonal component f f becomes smaller in terms

of magnitude so that f;r j"il and ( fil)T f JL are closer to O for Elliptical compared to the
standard self-attention.

These two arguments, combined with Eqn. 43, imply that in expectation thdhgd is closer to 1 -
(f 1T fa)+0=f 1T fo = rg which, by definition, is the smallest dot product over S, and hence,
rs < E[h{ hoq] < E[h] hy] as desired. (]
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B.5 Proof of Proposition 3

The lemma below encapsulates the necessary calculations that will then be used in the following
proofs.

Lemma 2 Given a normally distributed zero mean random variable & ~ N'(0,a?), the expectation
of a random variable obtained by its absolute value is E|§| = /202 /.

Proof. Since ¢ ~ N(0,0?), by definition of expectation, we have
<zl a?
E|&|l = ——)d
d [oo V2mo? P 202 v
0 2 0 2
—x z x x
= ~2 )4 -2 )a 44
/_OC 52 exp < 202) T +/0 52 exp ( 202) T 44)
2 o x2
\/W/ x exp (_M) dx (45)
0

b5

202

o0

0

)
m
where we used the variable change © < (—=x) in the first integral of 44 to obtain 45. [J
We derive the bounds for the impact of noise in 3, with respect to its variance, on our estimator 10 in
Lemma 3. Henceforth, we omit the factor § in Eqn. 10 since it does not affect the further analysis.
Lemma 3 Given that the noise term in 3 follows a normal distribution with zero mean and variance
o2, the following inequality

m; — E| fi(k") = fi(k")]| < %o (46)
holds for all i € | D], where f; denotes the i*" component of f(k*) = (f1(k), f2(k), ..., fD(k:))T.

Proof. Since all value vectors are taken from the data generating process 3, we have

m; = E o Tt =]
(ve,vz+1)€Xf’Z+1
=E|f; (K™Y — fi(k") 4+ T =€), (47)

where ¢/ and €/! denote the i*" components of the noise terms €’ and €‘*1, respectively. Note
that for real numbers a and b, we have by triangle inequality that |a + b| < |a| 4 |b| and |a + b| =
la — (=b)| > ||la| — |-b]| > |a|] — |b]. Applying these and the linearity of expectation to 47, we
obtain
Efi(7Y) = fi(kO)| = Ele; ™! = ¢f| < mi < EIfi(k™) - fi(k")| +Ele;™ — €] 48)
Recall that €/ ~ N(0, 02) and independent. Now we have that ¢/™' — ¢/ ~ A/(0, 202) as the mean
value does not change while variance accumulates when subtracting two zero-mean normal variables.
Therefore, the Lemma 2 gives that
2
Eleft! — €] = ﬁa.
Plugging this back into the inequalities 48, we get
2
E|fi(K“T) — fi(kY)| — —=0 < my < E[fi("™Y) — fi(kY)] + —=
[fi(k777) = fu(KT)] TR0 S mi S [fi(k) = fil )I+ﬁ0,

which is equivalent to 46 as desired. [

Remark 7 Note that in Lemma 3, we may also take into account the possible noise in the value
vectors. Let ef,v ~ N(0,02) be the noise in the values vectors as m§ = Elvt ™! — vf + ef’tl — efﬂ, .
Then, applying the triangle inequality, we obtain

E[v"! — of| - Ele/T! — € | < m§ <El™ — o[+ Elef T — €.

Now applying Lemma 2 and Lemma 3, we arrive at 7 7
2
m§ —E|f (k") — f(K)]| < S=(0 +00).
LS
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Mean Values by Layer and Epoch Mean Key Perturbations by Layer after 300 Epochs (ImageNet)

Mean Key Perturbation
°
@
&

0.70
0 50 100 150 200 250 300 2 4 6 8 10
Epoch Layer

Figure 5: Left: Evolution of mean values of key perturbations over successive layers. Right: Mean key
perturbations at different layers after 300 epochs. The figures show that as the number of layers increases, mean
key perturbations over layers stabilize around a constant value.

Proof of Proposition 3. We shall first make the following assumptions on the data generating process

Assumption 2 The underlying coordinate system in the feature space X}, is independent, implying
that the function f : RP — RP in Eqn. 3 can be separated as f(k) = (fi(k1),... fp(kp))"

Assumption 3 The noise term in Eqn. 3 has independent components with each component e§
following a normal distribution N'(0, o) for small o, for all j € [D] and ¢ € N

Assumption 4 The magnitude of each component of key perturbations across consecutive layers,
defined as |kar1 - kf , follows a distribution with small, layer-independent mean (§) and variance

(v)

Remark 8 The assumption of layer-independence in Assumption 4, especially for deeper layers, is
supported well empirically, as shown in Figure 5. Given the over-smoothing observed in transformers
[24], where token representations stabilize after initial few layers, it is also practical to assume that
key perturbations across layers have relatively small mean and variance when modelled as a random
process.

Proof. Under the Assumptions 2, 3, 4, we show that || f/|[1,, > [/} ||1,,. implies m; > m; with high
probability where m; is defined as in (10).

Directly from the Lemma 3, we have

£+1 ‘ 2
mi_]E|fi(k+ ) = fi(kO)]] < ﬁa.

Letting 0 — 0 in this inequality, which is feasible under the Assumption 3, one can get with a small
error that

m; ~ E|f;(K") — fi(k")], (49)

which in turn implies that the impact of the noise in (10) is negligible and the error of ignoring them
can be controlled by the bounds given by (46). Now according to the theorem statement,

£l = 1l <= ElTs(k)eills > B[l s(k)e;

—ElT 3J;s]£k)‘ SE| Y 6fs(k)‘
s€[D] ‘ s€[D] J
= E|f{(k:)| > E|fj(k;)| (50)
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where we used the separability of f as given in Assumption 2 which simplifies the Jacobian matrix as

[0fi(k)  O0fi(k) of1(k) Of1(k1) Of1(k1) of1 (k1)
Ok ok T ok Ok, Oko T okp
0f2(k)  9fa(k) 0fa k) 0fa(ks)  0fa(ka) 0fz(k2)
Ok Oko tee Okp Ok, Oko Tt Okp
Jf (k) - N N .. N - . . .. N
ofp(k)  Ofp(k) ofp (k) 9fp(kp)  Ofp(kp) 8fp(kp)
L Oky Oko T okp Ok, ko T okp
fl(k) 0 ... 0
0 filka) ... 0
0 0 ... fhlkp)

so that [J f(k:)]“-_: f1(k;). Using the definition of derivative, the inequality 50 is equivalent to

i(1.0 i(1.0 j (1.4 _ Fi(Et
E |l £ 1) = f1(k) tim LK) = FO) 51)
T—0 T T—0 T

>E

Next, we note that for a small d, the limits in (51) can be approximated with w for

sed{i,j}:
E|f'(k{ +0) = f'(kD)|  EIF (K] +0) = f(k))]

52
é - é (52)
Let us choose 6 = E\kf“ — k¥|. Then, by Chebyshev’s inequality, we have for any ¢ > 0 that
2
v e+l g0
1= <Pk k=g <)
=P —e<|k™ —k|<d+e). (53)

Given that the variance v is sufficiently small as in the Assumption 4, the inequality (53) implies that
kf“ ~ k! 4 § with high probability. Therefore, it follows from (52) with high probability that

EIf (k) = SUROL B O = F (k)

- )

which, due to 49, is equivalent to m; > m,; as desired. ]
B.6 Lipschitz smoothness in (X, d)
Below we show how Lipschitz smoothness of f changes when moving from Euclidean to the

Mahalanobis transformed space. We shall follow similar steps to [29] and [30] but for a more general
class of functions.

Proposition 5 (Change in Lipschitz smoothness for f) Suppose there exists a positive constant
G such that |V f;(k)|| < G, for any k € Xy, and m; > 0 for all i € [D). Then for any q,k € Xy,
the following inequality holds:

G
If@) = rm) < | Y. — | dla.k).
iep) V'

Proof. Let w := H H denote the unit vector pointing from k to q. The fundamental theorem of
calculus implies that

lg—kl lg—kl
f(q)—f(k:):/0 if(k:—i—tw)dt / w'Jp(k +tw)dt,

where J ¢ is the Jacobian matrix of f as usual Starting with the distance between outputs f(q) and
f(k) we have

lg—FK|] llg—Kll
1f(a) — f(F)l ‘/ w' J sk + tw)dt S/ > wiVfi(k + tw)|| dt
0 0 i€[D]
lg—FK|| llg— kH
g/ S Ll [V filk + te)]| di < ch/
0 i€[D] ie[D]
= Y Gilai = kil, (54)

1€[D]
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where, as for all other vectors, ¢; denotes the ith component of vector g. Now note that

lgs — kel < \/ Ly \/(qk)Tﬂ]”L\:I(q k) d%) )

(2

J#i
Combining 54 and 55, we finally attain
G;
— f(k)]| < d(q,k 56
I7(a) = )] < 3 —da. k), (56)

which completes the proof. [J
C Additional Theorems

The following Theorem 1 is a classic result from [70]. We refer the reader to their work for details.
Theorem 1 (Minimax rate for functions of bounded variability [70]) Let F) denote the class of
distributions Px y on X x [0, 1] such that Vi € [d|, the directional derivates of f(x) := E[Y|X = z]

satisfy | f{lsup = supgex, IV fi(q)llsup < A Then for any f € Fy, estimator f, sample size n € N,
there existsa ¢ < 1 independent of n satisfying

inf sup If = 1P = 282/ GHD (@n)>4 )y =2/ ) (57)
fn feF X" Y"

Theorem 2 (Improvement in MSE for approximately sparse functions [30]) Let the norm of the
largest gradient be \ := sup,cp) |V fi(@)||sup and fa be an estimator in metric space (Xy, d) where
d is defined as Eqn. 7. Then,

E|fs— fl3 < infsup E[|f — f[3- (58)
f Fa

Proof. We provide an abridged proof for completeness. We refer the reader to [30] for the full details.
First, the full bound is described as follows:
E|lfa— fl3 < 2022 (CDAad(X))* /#0224 < inf sup E| f — £]3, (59)
‘ f Fa

where d(X) is the d-diameter of X defined as sup,, /¢y d(z,2'), R C [D],1 < Cy.,, < C'(4kg) ",
C and C; are universal constants and Ay > sup; || f7|lsup/+/m:. Let

(© < |R] ife>ep/d(X)
€)= log(d(X)/e . .

D — (D — |R)*ADLED it e < ep/d(X)
For bandwidth €,, r = 7(e,) and let |[R| < r < D. Lete > 0, ¢ be deﬁned as the same ¢ in
Theorem 1, and n € N, define the function v, 4 = Ce~"(9) /n and ¢ ;1 = Cje P /n where
Cy = E(A/CAgd(X))P. Also define () = CQDQ)\Qd( )2 €2,
For any fixed n, let e nd be a solution to 1 /{ = ¢(€). Solving for € d obtains the following lower
bound on the minmax rate of

20(e %{) = 9¢%/2+D)(p))2d/ (2Hd) =2/ (2+4d) (60)

For any n € N there exists a solution €, 4 to the equation v, 4(€) = ¢(e) since r(¢) is nondecreasing.
Therefore it is possible to obtain the following:

Exnyn| foed— fII3 < 26(en,a)- (61)

Since ¢ is independent of n, and both ¢, 4 and ¢, are strictly decreasing functions of n, we have
that €, 4 and €, 4 both tend to 0 as n — oo. Therefore we can define ng such that, for all n > ny,
both €, 4 and € /{ are less than €z/d(X).

Thus, Yn > ng, we have €, 4 < € nd if, for all 0 < € < ex/d(X), Y ale) < ¢nﬁ/(€)’ which
completes the proof [.
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D A Consistent Estimator

In this section, we present a consistent centered difference-based quotient estimator of the coordinate-
wise variability obtained by perturbing the estimated function in the 7*" direction and measuring the
L1 norm of the difference. Similarly, this estimator requires no learnable parameters or gradients.
The estimator is described in the following proposition.

Proposition 6 (Consistent Estimator) Given a function f : R? — RPv with ith directional varia-
tion || f{||1,u,% € [D), the directional variation can be estimated by the quantity

| f(k + tei) — f(k — tei)||y

2t ’
where t is a hyperparameter controlling the degree of locality of the estimator and IE,, denotes the
empirical expectation for n samples.

(62)

T/f\Li = En

Despite 77; in proposition 6’s simple formulation, it is nonetheless a consistent estimator of the
coordinate-wise variation in the underlying function. We utilize a simplified version of a theorem from
[30], adapted to suit our specific needs, as the original formulation is more detailed than necessary
for our purposes.

Theorem 3 (Consistency of Centered Difference-based Estimator for Scalar Function [30])
Let ¢ : RP — R be a smooth scalar function and || @}||1,,, := Ex~,|€;] V| be the coordinate-wise
variability for that scalar function. Then, for any direction i and any 0 < & < 1/2, the following
bound holds with probability of at least 1 — 26:

p(x+te;) — oz —te; —1/24—
Eﬂ'@( )Qt(p( >| . ||90;||1,u < (’)(n 1/2t 11n(2D/5)1/2) (63)

Note that the Theorem 3 is different from our setting by studying a scalar function as opposed to
a vector valued function. However, we show that the result can be generalized to the latter case in
Corollary 1 below via the estimator 62.

Corollary 1 (Consistency of the Estimator (62) for Vector-valued Function) Ler f : RP? —
RDv be a vector valued function and || f||1,,, be defined as in Definition 1. Then, for any direction i
and any 0 < § < 1/2, the following bound holds with probability of at least 1 — 24:

[ = | £{ll1,u] < O™t (2D /6)1/2). (64)

Proof. We first derive the relation between the left hand side of 64 and its coordinate-wise differences

as follows: B -
E [Hf(k +te)) — f(k —tei)lly

s = 1l - | - Buen 170011

_ |fi(k + tei) — fi(k — tey)] T
= |E, Z oF —Ek~p Z le; ij| (65)
J€[D] Jj€[D]

f k + tei — f; k— tei
, t .
Je[D] Je[D]

= Z (mgj) - ||fZ’||§]ZL) (definition of m; and || f{||1,,, for components f;)
J€[D]

Z ’ml(-j) - Hf{HgJL’ (triangle inequality)
jelD]

< O(n~Y?t"'1n(2D/6)Y/?), (Theorem 3)
where line 65 follows from the definition of the ¢; norm, line 66 follows from the linearity of
expectation, the superscript j indicates that the case is reduced to the scalar function case for each j**
summand individually. Note that the probability of the last bound is at least (1 — 25/D)® since each

component-wise bound holds with probability at least 1 — 2§/ D. However, since we can choose &
small enough such that 2§ < 1, by Bernoulli’s inequality (1 — 25/D)? > 1—-2D3§/D =1 —25. O

IN
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Table 9: Evaluation of the performance of our model and DeiT across multiple robustness benchmarks, using
appropriate evaluation metrics for each.

Dataset ImageNet-R  ImageNet-A  ImageNet-C  ImageNet-C (Extra)
Metric Top-1 Top-1 mCE ({) mCE ({)
DeiT 3222 7.33 72.21 63.68
DeiT-Elliptical 32.66 7.63 73.59 65.71

Remark 9 Despite the proven consistency of this estimator, we opt for the efficient estimator pre-
sented in our main body described in Egn 10. This is because the consistent estimator requires
materialising the prediction function — that is, computing a forward pass of the self-attention mecha-
nism — twice per dimension. This makes the consistent estimator unusable in most problem settings.
We present results for the consistent estimator in Appendix F.11.

E Implementation Procedure and Computational Efficiency

Training and Inference. Given Elliptical Attention requires keys and values from the previous
layer in order to compute the required transformation, we can only implement Elliptical Attention
from the second layer on. We incorporate our Elliptical Attention into both training and inference
stages. This is because, firstly, Elliptical Attention is designed to offer improvements to both clean
and contaminated data, and so even in the presence of completely clean train and test data, it is
advantageous to incorporate Elliptical Attention into both stages. Secondly, it is commonplace to
encounter data contamination in test data and indeed also highly possible to encounter it in train data
as well. Therefore, in the interest of robustness as well, we also incorporate Elliptical Attention into
both stages.

Computational Efficiency. Computing the required transformation requires no learnable parame-
ters and is obtained simply by averaging absolute differences in values over layers. These operations
are therefore just of the order O(bhnD) = O(n) for batch size b, head number h, key/value length
n, and dimension D. Hence upper-bound time complexity of the overall Transformer is unaffected.
We provide efficiency analysis in terms of computation speed and max GPU memory allocated (cal-
culated by CUDA max_memory_allocated in Figure 4, which shows that compared with baseline
robust models, Elliptical is the fastest and most memory efficient. Elliptical exhibits no perceptible
slowdown versus DeiT of the same configuration and only a 0.99% increase in max memory allocated,
which is why Elliptical and DeiT are shown as the same data point in the Figure 4.

F Experimental Details and Additional Experiments

F.1 Out-of-Distribution Robustness and Data Corruption on ImageNet-A,R,C

ImageNet-A,R,C are benchmarks capturing a range of out-of-distribution and corrupted samples.
ImageNet-A contains real world adversarially filtered images that fool current ImageNet classi-
fiers. ImageNet-R contains various artistic renditions of object classes from the original ImageNet.
ImageNet-C consists of 15 types of algorithmically generated corruptions with 5 levels of severity
(e.g blurring, pixelation, speckle noise etc). Given that Elliptical Attention learns attention weights
dependant on the transformation M, which is itself dependant on the train data distribution, our
proposed model is not designed for situations in which the test distribution is substantially different
from the train distribution. This then includes OOD robustness and robustness to heavy corruption to
the point where the underlying data distribution is fundamentally different. We nonetheless evaluate
Elliptical Attention on ImageNet-A,R,C to assess these important forms of robustness as well. Table
9 shows that Elliptical Attention is still able to offer improvements over baseline DesT in terms
of OOD robustness, while maintaining approximately the same performance as the baseline for
ImageNet-C. Figure 7 shows for Fog and Pixelate corruptions how Elliptical compares with DeiT
over the 5 severity levels, where we see that at low severity levels Elliptical improves over DeiT,
however as the severity level gets too high Elliptical falls behind. This agrees with our expectation
that as the severity level grows, the distribution is further shifted relative to the train distribution and
so Elliptical Attention is unable to improve performance.

F.2 Representation Collapse

We provide in Figure 6 additional representation collapse results for ImageNet and ADE20K, showing
that across modalities Elliptical Attention resists representation collapse.
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Figure 6: Additional Representation Collapse Results on ADE20K, WikiText-103 and ImageNet. Elliptical
reduces token similarity over layers across a range of modalities

Table 10: Additional Results on Imagenet Increasing Heads But Maintaining Overall Embedding Dimension

Model Num. Heads Head Dim. #Params. Top-1 Accuracy Top-5 Accuracy
DeiT 3 64 M 72.23 91.13
Elliptical 3 64 M 72.36 91.33
DeiT-6head 6 32 M 72.34 91.22
Elliptical-6head 6 32 M 73.00 91.77

F.3 Head Redundancy

We present in Table 18 head redundancy results on the two large-scale tasks, WikiText-103 language
modelling and ImageNet-1K object classification. Mean L, distance between vectorized attention
heads, with the mean taken over a batch of size 1000 and averaged layer-wise. We see that Elliptical
improves head redundancy on WikiText-103 versus the baseline transformer while performing
approxiamtely equally to the DeiT baseline on ImageNet.

Top-1 Accuracies at Different Severity Levels (Fog) Top-1 Accuracies at Different Severity Levels (Pixelate)
60
—— DeiT 60 —— DeiT
DeiT-Elliptical DeiT-Elliptical
55
50
50
-~ .. 40
[ [
e o
245 3
v} v}
< ~ <30
40
20
35
10
1.0 1.5 2.0 2.5 3.0 35 4.0 4.5 5.0 1.0 1.5 2.0 2.5 3.0 35 4.0 45 5.0
Severity Severity

Figure 7: Comparison of DeiT versus Deit-Elliptical accuracies on two types of ImageNet-C corruptions, namely,
Fog (left) and Pixelate (right). The figures show two out of many cases where DeiT-Elliptical outperforms its
counterpart while vanilla DeiT manages to exceed only at higher severity levels.

F.4 Efficiency Results

We present here the comparative efficiency results for DeiT and DeiT-Elliptical in a side-by-side
comparison at tiny, small, and base sizes, along with DeiT-Elliptical compared with other robust
baselines.

F.5 Elliptical Attention in Mixture of Expert Architectures

We additionally evaluate Elliptical Attention within Mixture of Expert architectures. Specifically, we
show in Tables 13, 14, and 15 the performance of Elliptical Attention within the Switch Transformer
[18] and Generalized Language Model (GLaM) backbones [17].
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Table 11: Side-by-side Efficiency comparison of DeiT and DeiT-Elliptical

Model Compute Speed (it/s) Max Memory (K) FLOPs/sample #Params (M)
Tiny

DeiT 0.347 2.08 1.77 5.7

DeiT-Elliptical 0.342 2.12 1.79 5.7

% Change -1.44% 1.92% 1.12% -
Small

DeiT 0.297 4.89 6.91 22.1

DeiT-Elliptical 0.289 4.96 6.99 22.1

% Change -2.69% 1.43% 1.16% -
Base

DeiT 0.132 10.27 26.37 86.6

Deit-Elliptical 0.130 10.54 26.63 86.6

% Change -1.52% 2.63% 0.98% -

Avg. % Change 1.88% 1.99% 1.09% -

Table 12: Efficiency Comparison between Elliptical and baseline robust models

Model Compute Speed (it/s) Max Memory (K) FLOPs/sample #Params (M)
DeiT-MoM 0.331 2.24 1.74 5.7
DeiT-RKDE 0.271 3.12 1.77 5.7
DeiT-SPKDE 0.168 3.35 1.75 5.7
DeiT-RVT 0.292 391 1.89 7.1
DeiT-Elliptical 0.342 2.12 1.79 5.7

F.6 Additional Adversarial Attack Results on DeiT-Small Configuration

We present here additional results for DeiT and DeiT-Elliptical at the Small configuration [78] (22.1M
parameters) under adversarial attack. Table 16 shows the result of Elliptical against PGD, FGSM,
and SPSA. Table 17 shows the results of Elliptical against Auto Attack. Given the larger model size,
we attack with a perturbation budget of 3/255.

F.7 Wikitext-103 Language Modelling and Word Swap Attack

Dataset. The WikiText-103? dataset contains around 268K words and its training set consists of
about 28K articles with 103M tokens. This corresponds to text blocks of about 3600 words. The
validation set and test sets consist of 60 articles with 218K and 246K tokens respectively.

Corruption. Word Swap Text Attack® corrupts the data by substituting random words with a
generic token ’AAA’. We follow the setup of [23] and assess models by training them on clean data
before attacking only the evaluation set using a substitution rate of 2.5%.

Model, Optimizer & Train Specification. We adopt the training regime of [54]. To this end, the
small backbone uses 16 layers, 8 heads of dimension 16, a feedforward layer of size 2048 and an
embedding dimension of 128. We use a dropout rate of 0.1. We trained with Adam using a starting
learning rate of 0.00025 and cosine scheduling under default PyTorch settings. We used a batch size
of 96 and trained for 120 epochs and 2000 warmup steps. The train and evaluation target lengths
were set to 256.

The medium backbone uses 16 layers, 8 heads of dimension 32, a feedforward layer of size 2048 and
embedding dimension of 256. We use a dropout rate of 0.1. We trained with Adam using a starting

2www.salesforce.com/products/einstein/ai-research/the-wikitext-dependency-language-modeling-dataset/
3Implementation available at github.com/QData/TextAttack
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Table 13: Elliptical Switch Transformers Pretrained on WikiText-103 and Finetuned on Stanford Sentiment
Treebank 2 (SST-2)

Model Test PPL (})  Finetune Test Acc. (1)
Switch Transformer-medium 35.33 76.27
Switch Elliptical-medium 34.67 77.32
Switch Transformer-large 31.18 76.79
Switch Elliptical-large 30.56 78.08

Table 14: Elliptical Switch Transformers Pretrained on EnWik8 and Finetuned on Stanford Sentiment Treebank
2 (SST-2)

Model Test BPC ()  Finetune Test Acc. (1)
Switch Transformer 1.153 63.27
Switch Elliptical 1.142 67.75

learning rate 0.00025 and cosine scheduling under default PyTorch settings. We used a batch size of
56 and trained for 100 epochs and 2000 warmup steps. The train and evaluation target lengths were
set to 384.

For Elliptical Attention, we use an Elliptical layer on all possible layers 2 through 16. We use a
constant delta of 1.

Compute Resources. All models are trained and evaluated on two NVIDIA A100 SXM4 40GB
GPUs.

F.8 ImageNet Image Classification and Adversarial Attack

Dataset. We use the full ImageNet dataset that contains 1.28M training images and 50K validation
images. The model learns to predict the class of the input image among 1000 categories. We report
the top-1 and top-5 accuracy on all experiments.

Corruption. We use attacks FGSM [22], PGD [42], and Auto Attack [11] with perturbation budget
1/255 while SPSA [81] uses a perturbation budget 0.1. All attacks perturb under [, norm. PGD
attack uses 20 steps with step size of 0.15.

Model, Optimizer & Train Specification. The configuration follows the default DeiT tiny con-
figuration [78]. In particular, we follow the experimental setup of [23, 54]. To this end, the DeiT
backbone uses 12 layers, 3 heads of dimension 64, patch size 16, feedforward layer of size 768 and
embedding dimension of 192. We train using Adam with a starting learning rate of 0.0005 using
cosine scheduling under default PyTorch settings, momentum of 0.9, batch size of 256, 5 warmup
epochs starting from 0.000001 and 10 cooldown epochs, for an overall train run of 300 epochs. The
input size is 224 and we follow the default AutoAugment policy and color jitter 0.4.

For Elliptical Attention, we use an Elliptical layer on all possible layers 2 through 12. We use a
constant delta of 1.

Compute Resources. We train and evaluate all models on four NVIDIA A100 SXM4 40GB GPUs,
with the exception of the robustness experiments on ImageNet-C which are conducted using four
NVIDIA Tesla V100 SXM2 32GB GPUs.

F.9 LRA Long Sequence Classification.

Dataset. The LRA benchmark consists 5 tasks involving long range contexts of up to 4000 in
sequence length. These tasks consist of equation calculation (ListOps) [50], review classification
(Text) [41], document retrieval (Retrieval) [61], image classification (Image) [32] and image spatial
dependencies (Pathfinder) [37].

Model, Optimizer & Train Specification. We adopt the same experimental setup as [7]. To that
end, the Transformer backbone is set with 2 layers, hidden dimension of 128, 2 attention heads
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Table 15: Test Perplexity of Elliptical GLaM on WikiText-103 Modeling

Model Test PPL
GLAM-small 58.27
GLAM-Elliptical-small 56.69
GLAM-medium 38.27

GLAM-Elliptical-medium 36.34

Table 16: DeiT and DeiT-Elliptical Accuracy on ImageNet Under Adversarial Attacks PGD, FGSM, and SPSA
with Small Backbone Configuration

Method Clean Data PGD | FGSM | SPSA
Topl Top5 | Topl Top5S Topl Top5S Topl Top5

DeiT-small 79.89 95.04 | 21.41 5150 51.57 8212 65.68 91.28
Elliptical-small ~ 79.92  95.06 | 22.39 54.02 51.86 82.87 72.02 9245

Table 17: DeiT and DeiT-Elliptical Accuracy on ImageNet under Auto Attack with Small Backbone Configura-
tion

Method Clean Data APGD-CE | APGD-T | FAB-T \ Square
Topl Top5 | Topl TopS Topl TopS5S Topl Top5 Topl Top5

DeiT-small 79.89  95.04 | 19.18 50.75 1654 63.84 80.66 95.09 4998 89.17
Elliptical-small ~ 79.92  95.06 | 18.88 51.07 17.30 6528 81.64 95.59 55.89 89.36

Table 18: Head Redundancy Results
Model Num. Heads Dim. Head L5 Distance

WikiText-103

Transformer-Small 8 16 5.40 £ 2.21
Elliptical-Small 8 16 6.45 +2.38
ImageNet
DeiT 3 64 511 + 1.67
Elliptical 3 64 498 £ 1.54

of dimension 32, and embedding dimension of 64. We use a dropout rate of 0.1. Built on top of
the standard transformer backbone, Reformer uses 2 hashes, Performer has 256 random feature
dimensions and Linformer uses a projection dimension of 256. We train with Adam using a learning
rate of 0.0001 with linear decay. We use a batch size of 32 for ListOps, Retrieval, and Text and 256
for Image and Pathfinder32. We use 1000, 175, 312, 800, and 1000 warmup steps for ListOps, Image,
Pathfinder32, Retrieval, and Text respectively.

Elliptical places the Elliptical Attention layer on the final layer (as the only one possible) and uses
delta equal to 1.

Compute Resources. All models are trained and evaluated on a single NVIDIA A100 SXM4 40GB
GPU.

F.10 ADE20K Image Segmentation

Dataset. ADE20K [88] contains challenging scenes with fine-grained labels and is one of the
most challenging semantic segmentation datasets. The training set contains 20,210 images with 150
semantic classes. The validation and test set contain 2,000 and 3,352 images respectively.

Model, Optimizer & Train Specification. We follow the experimental setup as in [71]. The
encoder is pretrained on ImageNet following the specification described in F.8 using the setup in
[78, 54]. That is, the encoder is a DeiT backbone using 12 layers, 3 heads of dimension 64, patch

32



Table 19: Perplexity (PPL) of Elliptical and baselines on WikiText-103 under Word Swap data contamination.
Best results are in bold. Our Elliptical method achieve substantially better robust PPL without compromising
performance on clean data.

Model Clean Test PPL ()  Contaminated Test PPL (]
Transformer 34.29 74.56
Performer 33.49 73.48
Transformer-MGK 33.21 71.03
FourierFormer 32.85 68.33
Transformer-SPKDE 32.18 54.97
Transformer-MoM 34.68 52.14
Elliptical 32.00 52.59
Random Ablation 37.84 46.82
Elliptical-Consistent 32.95 54.67
Elliptical-Meanscale 31.94 52.78

size 16, feedforward layer of size 768 and embedding dimension of 192. We train using Adam with a
starting learning rate of 0.0005 using cosine scheduling under default PyTorch settings, momentum
of 0.9, batch size of 256, 5 warmup epochs starting from 0.000001 and 10 cooldown epochs, for an
overall train run of 300 epochs. The input size is 224 and we follow the default AutoAugment policy
and color jitter 0.4. After pretraining the encoder, we then attach as decoder a masked transformer
consisting of 2 layers. Each layer contains 3 heads of dimension 64, embedding dimension of 192
and feedforward dimension of 768. The decoder uses a dropout rate of 0.1. The full segmenter
(encoder and decoder) is then finetuned using SGD with starting learning rate 0.001 and polynomial
scheduling. The batch size is set to 8.

Compute Resources. All models are trained and evaluated on a single NVIDIA A100 SXM4 40GB
GPU.

F.11 Ablation Studies

Ablation Models. We consider the following models in our ablation studies:

* Random Ablation. To validate the efficacy of our proposed estimator given in Eqn. 10, we
consider an alternate model in which M is populated by weights uniformly drawn from the
[0, 1] interval followed by the same maxscaling as in Elliptical.

* Elliptical-Meanscale. We ablate the effect of maxscaling by considering meanscaling of
the estimates m;. That is, each m; < m;/m is scaled by the mean variability estimate
m=Ep [ml}

* Elliptical-Consistent. We consider also the performance of Elliptical when using the
consistent estimator of || f/||1,,, described by Equation 62.

Language Modelling. Results are shown in Table 19. Amazingly, the random ablation model
performs extremely well on contaminated data. In general, this most likely suggests that training
a model with randomness injected into the attention matrix can generate some robustness benefits,
which is intuitive. It does, less surprisingly, come at the cost of clean data performance, where
Random Ablation performs almost 10% worse than baseline transformer.

F.12 Pseudocode

Algorithm 1 presents a pseudocode for implementing Elliptical Attention as given by Eqn. 13 on top
of conventional self-attention.

ImageNet Classification and Attack. Table 21 shows the ablation model’s performance on both
clean ImageNet and under Auto Attack. The ablation model shows a slight improvement over
the DeiT baseline in Top 1 accuracy, however Top 5 accuracy is substantially lower. Reasonable
performance again Auto Attack is overall unsurprising given that the random Random Ablation model
is essentially employing random defence. Nonetheless, it still does not surpass the performance of
Elliptical.
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Algorithm 1 Computation of Elliptical Attention

Require:
1: Tensor Q € RV*P > current layer queries
2: Tensor K € RNV*D > current layer keys
3: Tensor V € RV*P > current layer values
4: Tensor VP ¢ RNxD > previous layer values
5: floatd € R4 > step size
6: integer D € N > head dimension
7: function ELLIPTICAL_ATTENTION(Q, K, V, VP §, D)
8: M « ELLIPTICAL_WEIGHTS(V, VP §) > compute weight matrix M
9: logits < Q x M X KT x % > modify the dot-product computation

10: attention +— SOFTMAX(logits)

11: output < attention x V

12: return output

13: end function

14: function ELLIPTICAL_WEIGHTS(V, VP §)

15: with torch.no_grad() do

16: N + V.size(0) > sequence length

17: value_diff < (V — VP)/§

18: M + % X NORM(value_diff,p = 1,dim = 0) > column-wise average of L1 norms

19: M < DIAG_EMBED(M) > embed the vector into a diagonal matrix

20: return M

21: end function

Table 20: Evaluation of the performance of our model and DeiT across multiple robustness benchmarks, using
appropriate evaluation metrics for each.

Dataset ImageNet-R  ImageNet-A  ImageNet-C  ImageNet-C (Extra)
Metric Top-1 Top-1 mCE ({) mCE ({)
DeiT 25.38 3.65 72.21 63.68
Elliptical 31.37 6.76 73.59 65.71
Random Ablation 30.87 5.85 74.02 65.90
Elliptical-Consistent 31.46 6.71 82.92 71.74
Elliptical-Meanscale 32.66 7.63 72.28 63.79

Table 21: Auto Attack Ablation Study: Top 1 and Top 5 test accuracies on clean ImageNet and under Auto
Attack. The ablation model fails to fit the clean data well and is highly prone to adversarial attack.

G

Method DeiT [78] ‘ DeiT-Elliptical | Random Ablation
Topl TopS5 Topl Top5 | Topl Top 5
Clean Data 7223 9113 7236 9133 | 71.44 91.29
APGD-CE 2775 6648 31.27 68.28 | 27.85 61.74
APGD-T 27.74 7337  29.69 74.39 | 28.60 68.72
FAB-T 71.61 90.54 7174 90.81 | 68.54 89.43
Square 43.55 8096 47.25 81.65 | 47.24 78.87
Average 42.66 77.84 45.00 78.78 | 43.06 74.69
Sequential Attack 26.08 64.18 2745 67.77 | 26.33 60.85

Broader Impacts

Our research offers benefits to both clean data and robust performance. We in particular show
improved results in domains with wide social applicability. These include image segmentation, with
benefits to self-driving cars, and language modeling, with benefits to Al chatbot assistants. We in
particular show strong improvements against contamination by adversarial attack, which we hope
can protect vital Al systems from malicious actors, and competitive performance in contaminated
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language modeling, which we hope can improve language models evaluated on imperfect data as is
often the case in the real world. There is always possibility of misuse of Al systems, however our
research shows substantive improvements in fundamental architectures and theory which we hope
can spur further socially beneficial outcomes.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our paper claims that using a Mahalanobis metric inside of the self-attention
mechanism to produce hyper-ellipsoidal neighborhoods around queries improves both
robustness and representation collapse. We provide a theoretical framework for this with
proofs and a large amount of empirical validation.

Guidelines:

¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We mention in our future work (section 6) that our estimator is noisy. In
Appendix D we provide and prove a consistent estimator but note it is too computationally
expensive, hence we need to opt for our noisier but more efficient estimator. As a result we
do not prove the consistency of our estimator, but just the weaker requirement which is that
it accurately estimates the relative magnitudes of the direction-wise variability. For this we
assume approximate separability of the true function.

Guidelines:

» The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

 If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All theoretical results are numbered and have a referenced section in the
Appendix where all required lemmas and assumptions are stated and proven. All proofs
make each step as clear as possible.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We include in Appendix F all hyperparameters, model configuration, training
and inference specifications, and dataset details. For corruption, we additionally include
all perturbation budgets, steps, step sizes, norm specification, and additional details. We
provide the exact equation for our coordinate-wise variability estimator.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide all code used, packaged into folders for each set of experi-
ments (e.g Wikitext-103). Each folder then contains a bash to run the required result (e.g
run_elliptical.sh or run_baseline.sh). Where possible, we also include bashes to download
the data. Folders also contain readme files providing information on version and package
dependencies.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In Appendix F we provide all dataset details, train and test splits, compute
resources, and other experimental configuration information. We also include citations to
other authors who we compare with for which we adopt the same experimental setting.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
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7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In our head redundancy experiments we report error bars, in particular showing
the difference in performance between DeiT and Elliptical is not statistically significant.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

 The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide an efficiency analysis figure (Figure 4) containing computation
time and memory resources. We also provide in Appenxix F the exact GPU resources used.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research involves no human subjects or privacy concerns. Our research
also has no clear links to discriminatory, unsafe, or harmful outcomes. Rather, as it is in
large part concerned with robustness, particularly to adversarial attack, we hope our research
might be usable to defend vital Al systems from ill-intentioned actors.

Guidelines:
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¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss broader impacts in Appendix G. We see our improved accuracy and
robustness as offering societal benefits, for example with self-driving cars by our improved
image segmentation results or with our adversarially robust vision models to defend against
ill-intentioned actors.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper contains no such models with high risk of misuse such as pretrained
language models, image generators, or scraped datasets. We use widely accepted, stan-
dard benchmark datasets and propose a fundamental and general improvement to a core
architecture.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.
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12.

13.

14.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: In places where code has been borrowed from public repositories or baseline
models have been implemented, we have duly credited.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We include details about training and implementation as well as limitations for
our novel class of Elliptical Attention mechanisms.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We do not use any crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We do not use any crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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