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Abstract

Predicting high-fidelity 3D structures of atomic systems is a fundamental yet
challenging problem in scientific domains. While recent work demonstrates the
advantage of generative models in this realm, the exploration of different probability
paths are still insufficient, and hallucinations during sampling are persistently
occurring. To address these pitfalls, we introduce FlowDPO, a novel framework
that explores various probability paths with flow matching models and further
suppresses hallucinations using Direct Preference Optimization (DPO) for structure
generation. Our approach begins with a pre-trained flow matching model to
generate multiple candidate structures for each training sample. These structures are
then evaluated and ranked based on their distance to the ground truth, resulting in
an automatic preference dataset. Using this dataset, we apply DPO to optimize the
original model, improving its performance in generating structures closely aligned
with the desired reference distribution. As confirmed by our theoretical analysis,
such paradigm and objective function are compatible with arbitrary Gaussian paths,
exhibiting favorable universality. Extensive experimental results on antibodies and
crystals demonstrate substantial benefits of our FlowDPO, highlighting its potential
to advance the field of 3D structure prediction with generative models.

1 Introduction

Predicting 3D structures of atomic systems is indispensable in various scientific domains, ranging
from pharmaceutical drug design [1, 17] to materials science [7]. Accurate 3D modeling is not
only crucial for understanding the physical and chemical properties of substances at the atomic
level [2, 18] but also for simulating and predicting their behavior in various environments [3, 26].
Nevertheless, it remains challenging due to the intricate nature of atomic interactions, the vastness of
the conformational space, as well as limited resources of structure data.

Conventional methods typically employ physics-based algorithms to derive structures at local energy
optimum [24, 31, 32]. Recent advancements leverage deep generative model to learn the distribution
of stable structures from available data, showcasing remarkable success across various domains. For
example, DiffAb [20] designs a diffusion-based method for antigen-specific antibody design, which
is further available for antibody structure prediction, and DiffCSP [14] proposes a joint diffusion
framework for crystal structure prediction. Despite these advancements, generative models for
structure prediction are confronted with two primary challenges.

First, existing structure prediction methods predominantly utilize diffusion-based generative models.
While effective, this focus narrows the scope of exploration into other probability paths that could
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Figure 1: Overview of the proposed FlowDPO pipeline. As described in Section 3.1, the process
begins by training a flow matching model, denoted as θref, using an arbitrary pre-defined Gaussian
path. Next, as outlined in Section 3.2, we construct a preference dataset, Dpair, by evaluating the
distances between generated samples x̂ij and the ground structure xi under a given context condition
ci—such as an antibody sequence or crystal composition. These samples are derived from the
reference training set Dref. This dataset is then used to fine-tune the model θopt through the DPO
training objective LDPO, detailed in Section 3.3.

potentially offer substantial benefits. A notable example is the Optimal Transport (OT) path, which
has recently been demonstrated to be particularly effective in the field of molecular generation [28].
Second, current training paradigm frequently leads to hallucinated distribution peaks [1]. Most
generative models are trained through maximizing the likelihood or its lower bound on the ground-
truth structures, which are easily haunted by hallucinations due to the lack of negative samples
during training. In the field of natural language processing or computer vision, Direct Preference
Optimization (DPO) [25, 30] is proposed to align the model with human preferences, which effectively
reduces hallucinations. For 3D structure prediction, such preferences can be naturally extended to
similarity with the reference structure (e.g. RMSD). However, it remains unclear whether the DPO
method is compatible with arbitrary probability paths.

To address the above pitfalls, we introduce FlowDPO, a novel framework that explores flexible
selection of Gaussian paths and enhances the quality of generated structures by alignment with the
reference distribution. Specifically, we approach the structure prediction task via flow matching
models regarding various paths. Given a pre-trained flow matching model, we sample multiple
structures for each entry in the training set, evaluate these candidates against known ground truths to
compute similarity, and construct an automatic preference dataset. Notably, we theoretically derive
the unified objective of DPO for arbitrary Gaussian paths, and leverage the preference to enhance
the performance of the original generative model. Intuitively, such a paradigm not only augment
data with self-distilled samples, but also endow the model with the ability to distinguish between
high-fidelity and hallucinated samples.

In summary, our contributions are threefold:

• We explore multiple accessible probability paths for the 3D structure prediction task, and to
the best of our knowledge, we are the first to theoretically prove the compatibility of DPO
with arbitrary Gaussian paths by deriving a unified objective.

• Based on the theoretical results, we develop a novel framework to encourage better alignment
of flow matching models with desired reference distribution in 3D structure prediction, which
effectively suppresses the probability of hallucinations.

• Our approach yields promising results on antibody and crystal structure prediction tasks,
showcasing the versatility and efficacy of our FlowDPO.
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2 Related Work

Structure Prediction for Atomic Systems. 3D Structure prediction, including predicting con-
formations from molecular topological graphs [34], determining unit cell structures from crystal
compositions [14], or inferring structures based on protein sequences [1], is crucial in computational
chemistry and material science. Traditionally, these predictions have relied on physics-inspired
scoring functions [21, 11] or density functional theory (DFT)-based energy calculations [10] to define
the search space, with subsequent application of search algorithms to identify optimal structures.
Recently, deep generative methods, particularly diffusion models [12, 27], have proven to be highly
effective in this field. These models have been successfully applied across multiple specific do-
mains, including small molecules [34], crystals [14], antibodies [20], complexes [6], and general
biomolecules [1]. The emergence of flow matching models [19], which generalize diffusion paths
to more flexible probability flows, has further enhanced the generative capabilities for geometric
graphs [28]. The goal of our work is to explore structure prediction from the perspective of flow
matching, and align these models towards more accurate predictions.

Aligning Generative Models. In the domain of generative model alignment, recent work has
focused on refining models to better meet human preferences. Direct Preference Optimization (DPO),
introduced by [25], offers a significant advancement over traditional Reinforcement Learning from
Human Feedback (RLHF, [23]) methods by directly optimizing a policy based on human preference
data. This approach has proven effective in aligning large language models (LLMs) with user
expectations. Extending this concept, [30] propose Diffusion-DPO, a novel method that adapts DPO
for text-to-image diffusion models. By reformulating the preference optimization for diffusion model
likelihoods, Diffusion-DPO achieves state-of-the-art performance in generating images that are not
only visually appealing but also closely aligned with textual prompts. Recently, [36] introduces
ABDPO, a DPO-based method tailored for antibody design. Unlike ABDPO, which concentrates on
guiding diffusion models to generate antibody candidates with lower energy, our approach emphasizes
aligning flow models for precise structure predictions.

3 FlowDPO

3.1 Flow Matching for Geometric Graphs

Flow Matching (FM, [19]) is a general paradigm for generative tasks by learning a vector field to
connect the pre-defined prior distribution with the targeted data distribution. Let q denote the data
distribution, x0 is a data point acquired from p0 = q, and x1 is a random sample from the prior
distribution p1. A time-dependent flow ψt is then defined to shift samples from the prior distribution
to the time-dependent distribution pt via the vector field vt, that is

ψ1(x) = x1,
d(ψt(x))

dt
= vt(ψt(x)). (1)

The vector field can be further parameterized by a time-dependent model vθ(xt, t), leading to the
continuous normalizing flows (CNFs, [5]). To avoid numerical ODE simulations to train vθ, FM
simplifies the training target by aligning the model with a pre-defined vector field ut to yield pt, i.e.,

LFM = Et,xt∼pt(xt)[∥vθ(xt, t)− ut(xt)∥
2
2]. (2)

However, as pt is still unknown, we are still unable to sample xt and apply the above objective.
To address this gap, [19] leverages the more accessible conditional vector field ut(xt|x0) and its
corresponding probability path pt(xt|x0), resulting in the following Conditional Flow Matching
(CFM) objective, which is equivalent to LFM in terms of gradients and accessible for sampling:

LCFM = Et,xt∼pt(xt)[∥vθ(xt, t)− ut(xt|x0)∥
2
2]. (3)

Different vector fields lead to different probability paths. For the commonly-used Gaussian distribu-
tion defined as

pt(xt|x0) = N (xt;µt(x0), σ
2
t (x0)), (4)
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the corresponding vector field [19] is calculated as

ut(xt|x0) = µ′
t(x0) +

σ′
t(x0)

σt(x0)
(x− µt(x0)), (5)

where µ′
t, σ

′
t are derivatives of µt, σt w.r.t. t. We consider three lines of Gaussian paths in this paper,

namely the Variance Exploding (VE), Variance Preserving (VP) and Optimal Transport (OT) paths,
which are listed in Table 1.
Table 1: Parameters of different Gaussian paths. VE, VP and OT represent Variable Exploding,
Variable Preserving and Optimal Transport, respectively.

Probability Path Mean Standard Deviation Conditional Vector Field

VE path µt(x0) = x0 σt(x0) = σt ut(xt|x0) = σ′
t

σt
(xt − x0)

VP path µt(x0) = αtx0 σt(x0) =
√

1− α2
t ut(xt|x0) = α′

t

1−α2
t
(αtxt − x0)

OT path µt(x0) = (1− t)x0 σt(x0) = t ut(xt|x0) = 1
t (xt − x0)

Based on these paths, we are capable of designing proper flow models to maintain symmetries for
specific structure prediction tasks. In this paper, we mainly focus on the two typical tasks on atomic
systems: antibody structure prediction and crystal structure prediction. Note that symmtries are
crucial in 3D atomic systems, and we provide more discussions in Appendix B.

Example 1: Antibody Structure Prediction. Antibodies are Y-shaped proteins generated by the
immune system to identify and bind to specific antigens, with the structure depicted in Figure 2.
Researchers mainly center on the variable domains of antibodies, which comprise a heavy chain and
a light chain. Each chain includes three Complementarity-Determining Regions (CDRs) and four
framework regions in an alternating sequence. The six CDRs are volatile and crucial in defining
the binding specificity and affinity, while the framework regions remain conserved. Among them,
CDR-H3, which is the third CDR on the heavy chain, is the most diverse region and the primary
focus of antibody design. Therefore, it is a fundamental yet challenging problem to accurately predict
the structure of the CDRs upon binding.

FR1 H1 FR2 H2 FR3 H3 FR4
Heavy Chain

FR1 L1 FR2 L2 FR3 L3 FR4
Light Chain

Antigen

Figure 2: Graphical depiction of antibody variable domains, which consist of a heavy chain and a light
chain. Each chain is equipped with 4 Framework Regions (FRs) and 3 Complementarity-Determining
Regions (CDRs). The CDRs, especially CDR-H3, are volatile and thus are the key focus.

Task Definition: Let A = {a1,a2, · · · ,aN} denote the sequence of the targeted CDR region with the
length of N , where ai ∈ {0, 1}20 is the one-hot type of the amino acid, and X⃗ = {x⃗1, x⃗2, · · · , x⃗N}
is the corresponding 3D structures with xi ∈ R3×4 as the backbone coordinates including N,Cα, C,
and O. Similarly, the sequence and structure of the context (i.e. framework regions and the antigen)
are defined as AC , X⃗C . The goal is to predict the structure of the CDR region given the context:

X⃗ ∼ p0(X⃗|A, X⃗C ,AC). (6)

Probability Paths and Training Objectives: DiffAb [20] has designed the VP path for the coordinates
of the CDR region as

u⃗t,VP(X⃗t|X⃗0,A, X⃗
C ,AC) =

α′
t

1− α2
t

(αtX⃗t − X⃗0), (7)

where αt is scheduled as αt = e−
1
2

∫ t
0
β(s)ds. After sampling X⃗0 = ϵ⃗ ∼ N (0, I), we have

X⃗t = αtX⃗0 +
√
1− α2

t ϵ⃗. With proper reparameterization, the training objective is defined as

LVP = Et,ϵ⃗

[
∥ϵ⃗θ(X⃗t,A, X⃗

C ,AC)− ϵ⃗∥22
]
, (8)
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which only requires a model θ to predict the denoising term given the current state.

Moreover, it is also practicable to linearly connect the data point X⃗0 and the noisy prior ϵ⃗ via the OT
path as X⃗t = (1− t)X⃗0 + tϵ⃗. The vector field is then defined as

u⃗t,OT(X⃗t|X⃗0,A, X⃗
C ,AC) =

1

t
(X⃗t − X⃗0) = ϵ⃗− X⃗0. (9)

The training objective directly align the model with the simple vector field:

LOT = Et,ϵ⃗

[
∥v⃗θ(X⃗t,A, X⃗

C ,AC)− (ϵ⃗− X⃗0)∥22
]
. (10)

Example 2: Crystal Structure Prediction. Crystal Structure Prediction (CSP), a fundamental
aspect of material science, requires to predict the stable 3D structure of a compound solely from its
composition. Unlike molecules or proteins, which have a finite number of atoms, the uniqueness of
crystals lies in their periodic repetition in infinite 3D space. The infinite crystal structure is typically
simplified by its repeating unit, which is called a unit cell. The key point of CSP is the representation
and generation of the unit cell.

Task Definition: A unit cell is usually characterized by a triplet M = (A,L,F ), where A =
[a1,a2, ...,aN ] ∈ Rh×N represents the one-hot encoded atom types, L = [l1, l2, l3] ∈ R3×3

denotes the lattice matrix with three basis vectors describing the crystal’s periodicity, and F =
[x1,x2, ...,xN ] ∈ R3×N

[0,1) contains the fractional coordinates of the atoms, specifying their positions
relative to the lattice matrix. The goal of CSP is to predict the lattice matrix and the atomic coordinates
based on the given crystal composition as

(L,F ) ∼ p0(L,F |A). (11)

𝒇!
𝒇"

𝒇#

Figure 3: A crystal is the infinite peri-
odic arrangement of atoms, and the re-
peating unit is named as a unit cell.

Probability Paths and Training Objectives: As the lattice
matrix L also lies in the Euclidean space, we can design
similar VP and OT paths as Eq. (7-10). Given ϵL ∼
N (0, I), with Lt = αtL0+

√
1− α2

t ϵL, the loss function
of the VP path is defined as

LL,VP = Et,ϵL

[
∥ϵL,θ(Lt,Ft,A)− ϵL∥22

]
. (12)

Besides, with Lt = (1−t)L0+tϵL, the training objective
of the OT path is similarly defined as

LL,OT = Et,ϵL

[
∥vL,θ(Lt,Ft,A)− (ϵL −L0)∥22

]
.
(13)

The fractional coordinates lie in the torus space of R3×N
[0,1) to inherently reflect the periodicity of the

crystal. Previous works [15, 14] project the VE path to this manifold, and the Gaussian distribution is
changed into the Wrapped Normal (WN) distribution as pt(Ft|F0) = Nw(Ft;F0, σ

2
t I),

pt(Ft|F0) = Nw(Ft;F0, σ
2
t I), (14)

where Nw(x; ·, ·) =
∑∞

i=−∞Nw(x + i; ·, ·). An accessible way to learn this path is to match the
score, i.e. the negative logarithmic gradient, of pt, and the loss function is defined as

LF ,VE = Et,Ft

[
λt∥ϵF ,θ(Lt,Ft,A)−∇Ft log pt(Ft|F0)∥22

]
, (15)

where λt = E−1
[
∥∇ logNw(0, σ

2
t )∥22

]
is the pre-computed weight. If σ1 in Eq. (14) is sufficiently

large, p1 would finally approach the uniform distribution, which can be selected as the prior dis-
tribution. Apart from the VE path, it is also applicable to directly connect the data point and the
prior sample via the shortest path on the manifold. Specfically, given F0 ∼ p0,F1 ∼ p1, where
p1 is defined as the uniform distribution, the shortest path s(F0,F1) can be determined by the
logarithmic map from F0 to F1 as s(F0,F1) = logF0

F1 = w(F1 − F0 + 0.5)− 0.5. Alternatively,
F1 can also be considered as the destination of s(F0,F1) via the exponential map from F0 as
expF0

s(F0,F1) = w(F0 + s(F0,F1)). To eliminate the effect of the overall translation introduced
by the prior, we further normalize F1 as F̂1 = expF0

ŝ(F0,F1) = expF0

(
s(F0,F1)− s̄(F0,F1)

)
,
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where s̄ averages the paths of all atoms. With the path of Ft defined as Ft = expF0

(
tŝ(F0,F1)

)
,

the training objective for the OT path is

LF ,OT = Et,F1

[
∥vF ,θ(Lt,Ft,A)− ŝ(F0,F1)∥22

]
. (16)

Generalized Notations. Overall, the structure prediction tasks aims at generating the targeted
structure x given some condition c, i.e. to learn p0(x|c). And the flow matching objective min-
imizes the Mean Square Error (MSE) of the predicted and pre-defined vector fields with proper
reparameterization or simplification, which can be generalized as

L = Et,x0∼p0,x1∼p1
[MSEt(x0, x1; θ)]. (17)

Hereinafter, we use these generalized notations for simplicity.

3.2 Preference Dataset Construction

Building on the flow paths introduced in § 3.1, we now delve into the details of constructing a
preference dataset, which is pivotal for the application of DPO, as detailed in § 3.3.

Algorithm 1 Candidate Generation
1: Input: N , M , Dref = {(xi, ci)}Ni=1, θref,
d(·, ·), δ

2: Output: Dgen, Dpos, check
3: Initialize: Dgen,Dpos, check ← [], [], []
4: for i = 1 to N do
5: Dgen[i],Dpos[i]← [], []
6: match← False, jpos ← 1
7: for j = 1 to M do
8: Generate x̂ij ∼ p(x|ci; θref)
9: Dgen[i, j]← x̂ij

10: if d(xi, x̂ij) ≤ δ then
11: Dpos[i, jpos]← x̂ij
12: match← True, jpos ← jpos + 1
13: end if
14: end for
15: check[i]← match
16: end for

Algorithm 2 Preference Pairs Construction
1: Input: Dref , Dgen, Dpos, check, N , K,
d(·, ·), r

2: Output: Dpair

3: Initialize: Dpair ← []
4: for i = 1 to N do
5: Dpair[i]← []
6: for k = 1 to K do
7: if k ≤ rK or check[i] = False then
8: xwik ← xi
9: xlik ∼ Dgen,i

10: else
11: xwik ∼ Dpos,i, xlik ∼ Dgen,i

12: Swap if d(xi, xwik) > d(xi, x
l
ik)

13: end if
14: Dpair[i, j]← (xwik, x

l
ik, ci)

15: end for
16: end for

Candidate Generation As shown in Algorithm 1, the construction of the preference dataset
begins with the generation of multiple candidate structures for each sample in our reference dataset,
Dref . Leveraging the pre-trained flow-based generative model θref, we generate M candidate
structures {x̂ij}Mj=1 for each sample (xi, ci) via p(x|ci; θref), ensuring that each generated structure
is contextually relevant and adheres to the geometric constraints discussed previously.

As each candidate is generated, we compute the distance between x̂ij and the original structure xi
using a predefined metric d(·, ·). If this distance is less than or equal to a threshold δ, the candidate is
considered a close match and is added to Dpos, a subset of promising candidates. This step is crucial
for efficiently filtering the generated data to retain only the most relevant candidates for DPO.

Preference Pairs Construction Subsequently, we construct K preference pairs (xwik, x
l
ik) for each

sample i by Algorithm 2, where xwik is preferred over xlik. This preference is determined based on
their proximity to the original structure xi. Apart from sampling pairs from generated structures,
we also use a ratio r to select the ground truth as the preferred sample. Moreover, if all generated
structures for a sample are far from the original, the original structure xi is always preferred. The
other pairs are formed by selecting xwik from the promising subset Dpos and xlik from the broader
set Dgen. This process ensures that the pairs reflect a clear preference based on the closeness to the
original structure, facilitating effective training through DPO, which is explored in the next section.
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3.3 Direct Preference Optimization

To align large language models with human preference, DPO [25] is proposed to replace the
RLHF [23] training objective with directly maximizing the likelihood of the preference. [30] extends
DPO to text-to-image generation task, adapting the DPO target to diffusion models. Given the
preference pair (xw, xl), DPO [25] designs the training objective as

LDPO = −Exw,xl

[
log σ

(
β log

popt(x
w)

pref(xw)
− β log

popt(x
l)

pref(xl)

)]
, (18)

where popt, pref are probabilities yielded by the fine-tuned model θopt and the pre-trained flow model,
and β is a hyperparameter to control the KL divergence of these two distributions.

It is nontrivial to efficiently acquire p(x) via iterative generative models. Inspired by [30], we
uniformly discretize the time interval into T steps, where step i is located at t = i/T . By formulating
the probability from the path x0:T , Eq. (18) can be rewritten as

LDPO = −Exw,xl log σ
(
βExw

1:T ,xl
1:T

[
log

popt(x
w
0:T )

pref(xw0:T )
− log

popt(x
l
0:T )

pref(xl0:T )

])
. (19)

To avoid costly sampling through the entire path, Jensen’s inequality [30] is applied to bound Eq. (19)
as

LDPO ≤ −Exw,xl,i log σ
(
B
[
log

popt(x
w
i−1|xwi )

pref(xwi−1|xwi )
− log

popt(x
l
i−1|xli)

pref(xli−1|xli)
])
, (20)

where B = βT servers as a hyperparameter. As directly sampling xi−1, xi from an arbitrary
intermediate step i is still unfeasible, we can estimate them via the accessible Gaussian paths p in
Table 1 as

LDPO = −Exw,xl,i log σ
(
BEp(xw

i−1|xw
i,0),p(x

w
i−1|xl

i,0)

[
log

popt(x
w
i−1|xwi )

pref(xwi−1|xwi )
− log

popt(x
l
i−1|xli)

pref(xli−1|xli)
])

(21)

= −Exw,xl,i log σ
(
B
[
J (xwi ; p, pref)− J (xwi ; p, popt)− J (xli; p, pref) + J (xli; p, popt)

])
,

(22)

where J (xwi ; p, pθ) denotes DKL

(
p(xwi−1|xwi,0)∥pθ(xwi−1|xwi )

)
and the same for J (xli; p, pθ). As p

and pθ are Gaussian distributions with the same noise scheduler, the KL divergence can be formulated
as

J (xi; p, pθ) =
1

2σ2
i−1|i

∥∥∥µ(xi−1|xi,0)− µθ(xi−1|xi)
∥∥∥2
2
. (23)

According to DDIM [27], if a time-dependent Gaussian path follows the form xi ∼ N (xi; kix0, σiI),
we can further design p(xi−1|xi,0) = N

(
x;µ(xi−1|xi,0), σ2

i−1|i
)
. Given σ2

i−1|i, the mean can be
formulated as

µ(xi−1|xi,0) =
1

σi

√
σ2
i−1 − σ2

i−1|ixi +
(
ki−1 −

ki
σi

√
σ2
i−1 − σ2

i−1|i

)
x0. (24)

Fortunately, all paths defined in Table 1 follows this form. And µθ(xi−1|xi) can be parameterized
similarly as Eq. (24), with estimating x0 via predicted vector field or denoising terms. Hence, we can
approximate J (xi; p, pθ) by MSEi(x0, x1; θ). With sufficiently large T , Eq. (22) can be changed
into an applicable form as follows, which is our final training objective.

LDPO = −Exw
0,1,x

l
0,1,t

log σ
(
B
[
MSEt(x

w
0 , x

w
1 ; θref)−MSEt(x

w
0 , x

w
1 ; θopt)

−MSEt(x
l
0, x

l
1; θref) + MSEt(x

l
0, x

l
1; θopt)

])
, (25)
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Table 2: Cα and bb indicates RMSD calculated on Cα atoms and backbone atoms, repectively. Cα-w
and bb-w averages the RMSDs of the worst generated conformations of each complex.

Model L1 L2 L3
Cα-w Cα bb-w bb Cα-w Cα bb-w bb Cα-w Cα bb-w bb

VP Path [20] 2.71 2.00 2.56 2.06 1.11 0.95 1.08 0.96 1.32 0.99 1.39 1.08
OT Path 2.25 1.77 2.24 1.83 1.13 0.96 1.10 0.96 1.49 1.05 1.45 1.13

VP Path + DPO 2.47 1.91 2.31 1.95 1.09 0.94 1.07 0.94 1.22 0.94 1.30 1.01
OT Path + DPO 2.22 1.74 2.19 1.78 1.09 0.93 1.05 0.93 1.28 0.95 1.34 1.05

Model H1 H2 H3
Cα-w Cα bb-w bb Cα-w Cα bb-w bb Cα-w Cα bb-w bb

VP Path [20] 1.18 0.83 1.14 0.89 1.41 0.92 1.45 1.00 5.01 3.77 4.95 3.78
OT Path 1.31 0.89 1.26 0.94 1.69 1.06 1.60 1.13 4.81 3.66 4.83 3.70

VP Path + DPO 1.13 0.80 1.13 0.86 1.35 0.87 1.37 0.95 4.42 3.44 4.38 3.45
OT Path + DPO 1.23 0.83 1.19 0.89 1.46 0.95 1.41 1.02 4.28 3.32 4.23 3.32

4 Experiments

We validate our method on two distinct domains: antibody structure prediction (§ 4.1) and crystal
structure prediction (§ 4.2).

4.1 Antibody Structure Prediction

Dataset Following previous literature [20], we extract antibody structures from the SAbDab
database [8] for training and utilize the manually curated test set from DiffAb [20], which con-
tains 19 antibody-antigen complexes. We first derive all structures deposited before April 11th, 2024,
and remove those with resolution above 4.0Å or non-protein targets, resulting in 12,428 antibodies.
Subsequently, we use mmseqs2 [29] to cluster the antibodies based on 50% sequence identity for
each CDR, and exclude those in the same clusters as the test set antibodies. The dataset is then split
into training and validation sets at a 9:1 ratio based on the clusters.

Metrics We employ the following metrics for evaluation. RMSDCα
measures the Root Mean Square

Deviation of the generated alpha carbon coordinates with respect to the reference. RMSDbb is the
RMSD calculated on the four backbone atoms including C,Cα, N,O. To better profile the generated
distribution, for each antibody, we generate 20 structures and use two strategies to aggregate the
results across different antibodies. Strategy worst select the worst generated structure per antibody
according to RMSD and then averagse across different antibodies, while strategy mean averages
the RMSD of 20 candidates first, and then across antibodies. Strategy worst measures the furthest
deviation of the generated distribution compared to the reference, while strategy mean is commonly
adopted in previous works [20, 16]. Results aggregated with worst are denoted as Cα-w and bb-w,
while those with mean are denoted as Cα and bb.

Results We evaluate VP path (DiffAb) [20] and OT path [19] with the proposed FlowDPO on
CDR structure prediction. Results in Table 2 illustrate that either using VP path or OT path, further
training with DPO consistently enhances performance across different CDRs. Notably, on the most
challenging part (i.e. CDR-H3), the DPO phase yields the most significant improvement. Metrics
aggregated with strategy worst demonstrate noticeable gains, indicating effective supperssion of
low-quality samples by the DPO phase, which we attribute to the objective of DPO in distinguishing
the prefered samples. Such characteristics are favorable in practical applications where it requires
blind selection of generated structures without prior knowledge of which structures might be more
correct. We also depict the distributions of RMSD and examples of generated CDR-H3 structures
in Figure 4. It shows that the blue curves, yielded by the original flow models, often exhibit a
bimodal distribution. While the first peak at a lower RMSD indicating higher quality generations, the
second peak at a higher RMSD suggests the models experience hallucination, confidently generating
conformations that significantly deviate from the ground truth. DPO effectively suppresses this
erroneous second peak, leading to an overall improvement in the quality of generated samples. On
closer inspection, this correction also addresses physical invalidities, such as the twisted backbone
seen in Figure 4.
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Reference (PDB: 7CHE) VP path VP path + DPO

RMSDC⍺ = 2.09Å
RMSDbb = 2.33Å

RMSDC⍺ = 1.69Å
RMSDbb = 1.67Å

Reference (PDB: 7D6I)

RMSDC⍺ = 1.30Å
RMSDbb = 1.83Å

OT path OT path + DPO

RMSDC⍺ = 1.14Å
RMSDbb = 1.37Å

Figure 4: Examples of generated CDR-H3 structures and the distribution of RMSDCα
for different

antigen-antibody complexes and different probability paths. The visualized samples are the ones with
the lowest RMSD of all the generated counterparts for the corresponding complexes. In addition to
driving the distribution towards lower RMSD, it is also observed that the DPO phase tends to rectify
the physical invalidity (e.g. twisted backbone in the above examples) in the generated samples.

4.2 Crystal Structure Prediction

Dataset We conduct the crystal structure prediction task on three datasets in line with previous
works [33, 14]. Perov-5 [4] includes 18,928 perovskite crystals, each characterized by similar
structures but varying compositions, and exactly 5 atoms per unit cell. MP-20 [13] comprises
45,231 materials from the Materials Project, featuring a wide range of compositions and structures,
with each material containing no more than 20 atoms per unit cell. These materials predominantly
represent crystals that have been synthesized experimentally. MPTS-52 is an advanced version of
MP-20, containing 40,476 structures with unit cells that include up to 52 atoms, presenting a more
complex challenge. For Perov-5 and MP-20, we maintain the conventional 60-20-20 split for training,
validation, and testing. For the MPTS-52 dataset, we use a chronological split, assigning 27,380
crystals for training, 5,000 for validation, and 8,096 for testing.

Metrics For inference, we generate one structure given each composition. The predicted sample is
then matched with the ground truth via the StructureMatcher class in pymatgen [22] with thresholds
stol=0.5, angle_tol=10, ltol=0.3 as applied in previous works [33, 14]. We use Match Rate (MR)
as the proportion of matched structures among the testing set, and the RMSD is averaged over the
matched pairs, and normalized by 3

√
V/N where V is the volume of the unit cell.

Results We compare the results with two generative baselines P-cG-SchNet [9] and CDVAE [33].
The results are shown in Table 3, where we explore three combinations of paths for jointly generating
the lattice and the fractional coordinates: VP+VE, OT+OT, and OT+VE. Notably, the VP+VE path
is previously developed by DiffCSP [14]. We find that the OT path is more effective for lattice
generation, while the VE path provides more accurate predictions of atomic coordinates within the
cell. Overall, the OT+VE combination generally delivers the best performance. Furthermore, DPO
consistently enhances the performance of the model trained on each combination, demonstrating
its capability to refine the predictions to a more precise alignment with experimental structures.
We additionally visualize the RMSD distribution of predicted structures from different Gaussian
paths. Results in Figure 5 reveal a similar pattern to Figure 4, demonstrating that DPO reduces the
probability of low-quality generations.

5 Conclusion

In this work, we propose FlowDPO, a novel framework for 3D structure prediction that integrates flow-
based generative models with Direct Preference Optimization. We achieve 3D structure prediction via
flow matching models with various probability paths, and generalize the DPO training objective to
arbitrary Gaussian paths. To refine the model via DPO, we generate multiple candidate structures and
construct the preference dataset by aligning with ground truth. The results demonstrate substantial
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Table 3: Results on crystal structure prediction task. MR stands for Match Rate.

Perov-5 MP-20 MPTS-52
MR (%) RMSE MR (%) RMSE MR (%) RMSE

P-cG-SchNet [9] 48.22 0.4179 15.39 0.3762 3.67 0.4115
CDVAE [33] 45.31 0.1138 33.90 0.1045 5.34 0.2106

VP + VE Path [14] 52.02 0.0760 51.49 0.0631 12.19 0.1786
OT + OT Path 53.95 0.1508 57.40 0.1185 17.40 0.2405
OT + VE Path 52.29 0.0782 58.94 0.0621 18.91 0.1435

VP + VE + DPO 53.47 0.0762 59.98 0.0622 14.75 0.1780
OT + OT + DPO 55.56 0.1376 59.62 0.0898 22.36 0.1678
OT + VE + DPO 53.94 0.0765 62.47 0.0606 20.27 0.1419

Figure 5: Visualizations on crystal structure prediction results. The left column depicts the RMSD
distribution of the models before (blue) and after (red) DPO. The middle column shows the ground
truth structures, and the right column shows typical high RMSD generations to be suppressed.

improvements in prediction accuracy for both antibody and crystal structures, highlighting the
effectiveness and versatility of FlowDPO in the field of 3D structure prediction.
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A From RLHF to DPO

Given the preference pair (xw, xl) with condition c, the Bradley-Terry (BT) model considers a latent
reward model r(x|c) behind them and formulates the preference as

p(xw ≻ xl|c) = exp(r(xw|c))
exp(r(xw|c)) + exp(r(xl|c))

. (26)

RLHF [23] optimizes the generative model by explicitly training a reward model rϕ, and maximizing
the reward with a KL regularization term to control the model by the original reference pref as

max
popt

Ex∼popt(x)[rϕ(x)]− βDKL[popt(x)∥pref(x)]. (27)

We omit the condition c for simplicity. As Eq. (27) exists a close-form solution p∗θ(x) =

pref(x)e
r∗(x)/β/Z, where Z is the normalization term, we can rewrite the optimal reward model as

r∗(x) = β log
popt(x)

pref(x)
+ βZ. (28)

After introducing Eq. (28) into Eq. (26) and directly maximizing the log likelihood, DPO [25]
simplifies the training objective as

LDPO = −Exw,xl

[
log σ

(
β log

popt(x
w)

pref(xw)
− β log

popt(x
l)

pref(xl)

)]
. (29)

B Required Symmetries of Atomic Systems

The design of flow paths is constrained by the symmetry requirements of specific atomic systems,
which are detailed as follows.

Antibody Structure Prediction The designed vector field should maintain equivariance to any
rotation Q ∈ SO(3) and be invariant to any translation t⃗ ∈ R3:

u⃗t(QX⃗t + t⃗|QX⃗0 + t⃗,A,QX⃗C + t⃗,AC) = Qu⃗t(X⃗t|X⃗0,A, X⃗
C ,AC). (30)

Crystal Structure Prediction Previous works [14, 35] consider the task defined in Eq. (11) as a
joint generation task on L and F . For the generative process, the vector field of the lattice should be
equivariant to an arbitrary rotation Q ∈ SO(3), and that of the coordinates is required to ensure the
periodic translation invariance for any translation vector t. Specfically, we have

uL,t(QLt|QL0,F0,A) = Qu(Lt|L0,F0,A), (31)
uF ,t(w(Ft + t)|L0, w(F0 + t),A) = u(Lt|L0,F0,A), (32)

where the operation w(F ) = F − ⌊F ⌋ ∈ [0, 1)3×N returns the coordinates back to the unit cell.

After maintaining the required symmetries, the proposed flow model is capable of generating equiva-
lent structures under different E(3) transformations. An example of the OT-OT path for the crystal is
shown in Figure 6.

C Implementation Details

C.1 Antibody Structure Prediction

We use the framework of DiffAb [20] to train the flow models. The original denoising network in
DiffAb requires orientation matrices as input, yet the OT path of the SO(3) matrices is not naive
to derive, which is out of our main scope. Therefore, we replace the denoising network with the
multi-channel EGNN proposed in MEAN [16] to avoid this problem. All experiments can be run on
one GeForce RTX 3090 GPU. Detailed hyperparameters for our FlowDPO are presented in Table 4.
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Ground Truth Generated Samples

Figure 6: Visualizations of multiple generated crystals via OT-OT path on MP-20. As the designed
path maintain the symmetries, the model is able to generate structures equivalent to the ground truth
after proper rotations and (periodic) translations.

Table 4: Hyperparameters for the antibody structure prediction task.

CDR Flow Preference Dataset DPO
d L Lr Epoch M K2 δ r Lr Epoch B

VP

L1 128 6 1e-4 500 5 1 1.0 0.1 5e-6 50 200
L2 128 6 1e-4 400 5 1 1.0 0.1 1e-6 20 200
L3 128 6 1e-4 500 5 1 1.0 0.1 5e-6 5 200
H1 128 6 1e-4 500 5 1 1.0 0.1 3e-6 10 200
H2 128 6 1e-4 500 5 1 1.0 0.1 5e-6 10 200
H3 128 6 1e-4 500 5 1 1.0 0.1 5e-6 5 200

OT

L1 128 6 1e-4 500 5 1 1.0 0.1 5e-6 50 200
L2 128 6 1e-4 500 5 1 1.0 0.05 5e-6 20 200
L3 128 6 1e-4 900 5 1 1.0 0.1 5e-6 5 200
H1 128 6 1e-4 900 5 1 1.0 0.0 5e-6 25 200
H2 128 6 1e-4 700 5 1 1.0 0.1 5e-6 50 200
H3 128 6 1e-4 500 5 1 1.0 0.1 5e-6 5 200

C.2 Crystal Structure Prediction

We use the denoising network designed in DiffCSP [14] as the backbone model to train the flow
models. To predict the vector field via the denoising output, for the OT path designed on lattice, we
apply the reparameterization as

vL,θ(Lt,Ft,A) =

0, t = 1,
ϵL,θ(Lt,Ft,A)−Lt

1− t
, 0 ≤ t < 1.

(33)

And for the OT path on the fractional coordinates, we directly use vF ,θ(Lt,Ft,A) =
ϵF ,θ(Lt,Ft,A). We select RMSD defined by StructureMatcher class in pymatgen [22] with thresh-
olds stol=0.5, angle_tol=10, ltol=0.3 as the distance metric to construct the preference dataset.
Specially, the RMSD of the unmatched structure is set as +∞, and such candidates will never be
selected as the preferred sample.

The detailed hyperparameters for the FlowDPO pipeline on each crystal dataset are provided in
Table 5. Each experiment is run on one GeForce RTX 3090 GPU.

D Comparison with Regressive Methods

To further investigate the advantages of the generative paradigm, we employ the same backbone
model (MEAN) for a direct regression task as an additional baseline. The results are presented in
Table 6. Our findings indicate that generative models outperform the regression model in 4 of the 6
CDRs, particularly in the highly variable and functionally critical regions, CDR-H3 and CDR-L3.

2Each time the pair is randomly sampled from the 5 candidates plus the ground truth.
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Table 5: Hyperparameters for the crystal structure prediction task.

Flow Preference Dataset DPO
d L Lr Epoch M K δ r Lr Epoch B

VP+VE Perov-5 256 4 1e-3 3000 5 12 0.3 1/6 1e-3 100 2000
MP-20 512 6 1e-3 1000 5 12 0.3 1/6 1e-3 300 2000

MPTS-52 512 6 1e-3 1000 5 12 0.3 1/6 1e-3 200 2000

OT+OT Perov-5 256 4 1e-3 3000 5 12 0.3 1/6 1e-4 70 2000
MP-20 512 6 1e-3 3000 5 12 0.3 1/6 1e-4 30 2000

MPTS-52 512 6 1e-3 2000 5 12 0.3 1/6 1e-4 100 2000

OT+VE Perov-5 256 4 1e-3 3000 5 12 0.3 1/6 5e-5 5 2000
MP-20 512 6 1e-3 3000 5 12 0.3 1/6 1e-3 300 2000

MPTS-52 512 6 1e-3 2000 5 12 0.3 1/6 1e-3 200 2000

Additionally, we report both the mean and minimum RMSD values across 20 generations for each
generative model. The significantly lower minimum RMSD values demonstrate that generative
models not only yield predictions closer to the observed reference structures but also possess the
capability to generate multiple feasible conformations around the stable state.

Table 6: Results compare to regressive baselines on antibody structure prediction tasks.

CDR Regression FlowDPO (VP, mean) FlowDPO (OT, mean) FlowDPO (VP, min) FlowDPO (OT, min)

RMSDCA RMSDbb RMSDCA RMSDbb RMSDCA RMSDbb RMSDCA RMSDbb RMSDCA RMSDbb

L1 1.03 1.05 1.91 1.95 1.74 1.78 1.44 1.60 1.22 1.33
L2 0.96 0.92 0.94 0.94 0.93 0.93 0.80 0.85 0.83 0.87
L3 1.17 1.18 0.94 1.01 0.95 1.05 0.69 0.82 0.69 0.84
H1 1.68 1.67 0.80 0.86 0.83 0.89 0.53 0.67 0.52 0.67
H2 0.72 0.78 0.87 0.95 0.95 1.02 0.49 0.65 0.57 0.71
H3 3.46 3.48 3.44 3.45 3.32 3.32 2.60 2.64 2.55 2.61

E Limitations

As detailed in § 3.3, the derivation of the rationality of DPO for flow models primarily focuses
on Gaussian paths. However, flow models have the potential to learn mappings from an arbitrary
prior to the data distribution if the probability path is appropriately defined. Therefore, a more
general derivation that does not rely on Gaussian assumptions could be explored in future research.
Additionally, our current evaluation is based predominantly on computational metrics. Conducting
wet-lab experiments would provide a more robust validation of the model’s effectiveness in practical
applications.

F Broader Impacts

The introduction of FlowDPO marks a pivotal advancement in scientific domains such as drug devel-
opment, materials research, and molecular informatics. Recent developments, such as AlphaFold3,
have demonstrated remarkable accuracy in predicting structures across various domains [1]. However,
issues such as hallucinations, like erroneous structural order in inherently disordered regions, remain
a challenge. It is intriguing to explore whether alignment strategies based on DPO can mitigate these
hallucinations and enhance overall prediction accuracy.

G Codes

Our codes are available at https://github.com/jiaor17/FlowDPO.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In abstract and introduction, we summarize our contribution as enabling DPO
for flow-based structure prediction models, constructing preference dataset to align model
predictions with reference, and achieving promising results for antibody and crystal predic-
tion tasks. These claims are detailed and verified by the method (§3) and experiment (§4)
sections.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations of this paper are discussed in Appendix E.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The derivation are provided in §3.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The used datasets and evaluation setups are provided in §4, and we provide
more details in Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our codes are provided in Appendix G.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The hyperparameters are provided in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The dataset used in the experiments are large and the results are relatively
stable. Rerunning the pipeline for multiple times is costly. Instead, we further compare the
prediction results for different models from the perspective of distribution in Figure 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The compute resources are provided in Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This paper definitely follows the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The broader impacts of this paper are discussed in Appendix ??.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets used in this paper have been properly cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

21


	Introduction
	Related Work
	FlowDPO
	Flow Matching for Geometric Graphs
	Preference Dataset Construction
	Direct Preference Optimization

	Experiments
	Antibody Structure Prediction
	Crystal Structure Prediction

	Conclusion
	From RLHF to DPO
	Required Symmetries of Atomic Systems
	Implementation Details
	Antibody Structure Prediction
	Crystal Structure Prediction

	Comparison with Regressive Methods
	Limitations
	Broader Impacts
	Codes

