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1 Implementation Details1

We implement the video prediction system using PyTorch [1] and conduct end-to-end training on a2

single NVIDIA A100 GPU. We use AdamW optimizer [2] during the training. The initial learning3

rate is set to 1e−3 and decayed to 1e−5 following a cosine decay scheduler [3]. There are only a few4

hyperparameters to adjust for the system when training on different datasets. The adjustments are5

mainly based on the resolution of the frame. Those hyper-parameters include i) image feature length6

(Image feat.), which is the parameter for the image encoder; ii) Tendency feature length (Tendency7

feat.), which is the length of the tendency feature in node initialization; iii) location feature length8

(Location feat.), which is fixed to 4 for all datasets, indicating the length of the location feature in9

node initialization; iv) the number of graph views, indicating view number in motion graph feature10

learning; v) k, indicates the number of the dynamic vectors embedded in each node, the number11

of the temporal edges per node and the output dynamic vectors per pixel; vi) training epoch is the12

training related parameters; vii) the reconstruction loss, which follows the popular setting of the13

SOTA methods on each dataset. In Table 1, we demonstrate the hyper-parameter setting for each14

dataset.15

Please note that we did not especially tune the parameters for each dataset. When adjusting the16

parameters, we consider more about the training efficiency instead of the performance. Therefore,17

our setting is likely not the optimal choice. For example, in DMVFN [4], the training on Cityscapes18

and KITTI are both 300 epochs, we observe that our system can achieve comparable performance19

with only 100 and 200 epochs respectively, we thus stay with this configuration.20

Dataset Image feat. Tendency feat. Location feat. Number of Graph views k Epoch Loss
UCF Sports 16 16 4 4 10 300 MSE
Cityscapes 16 32 4 4 10 100 L1 + Lpips

KITTI 16 32 4 4 8 200 L1 + Lpips

Table 1: Hyper-parameter setting for each dataset.

2 Network Architecture21

The proposed video prediction system includes three major components, the image encoder, the22

motion graph interaction module, and the motion upsampler. Here we demonstrate the detailed23

architecture of each component for reproduction needs.24

Image Encoder: Figure 1 shows the inner structure of the image encoder in the proposed system.25

Cimg is related to the image feature length in Table 1. Each convolution layer will come with a Leaky26

ReLU layer [5] as the activation layer.27
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Figure 1: Architecture of the image encoder

Motion Graph Interaction Module In Figure 2 we demonstrate the inner structure of the spatial28

and temporal message passing in the motion graph interaction module. Cnode equals the sum of the29

tendency feature length and the location feature length in Table 1.

Figure 2: Inner structure of spatial and temporal block in motion graph interaction module
30

Motion Upsampler Figure 3 illustrates the inner structure of the motion upsampler as well as the31

motion decoder. The implementation of the decoder is a single 2D convolution layer with a kernel32

size of 1.

Figure 3: Inner structure of the motion upsampler and the motion decoder.
33

3 Additional Quantitative Evaluation34

On UCF Sports MMVP split [6], the validation dataset has been divided into three categories: the35

easy (SSIM ≤ 0.9), intermediate (0.6 ≤ SSIM < 0.9), and hard subsets (SSIM < 0.6), which take up36
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66%, 26%, and 8% of the full set respectively. Due to the page limitation, we put the comparison and37

evaluation on each categories here in Table 2.38

Table 2: Performance comparison on the UCF Sports MMVP split.
Method Full set Easy (SSIM ≥ 0.9) Intermediate (0.6 ≤ SSIM < 0.9) Hard (SSIM < 0.6) Model Size↓SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS↓ SSIM ↑ PSNR ↑ LPIPS ↓
STIP [7] 0.8817 28.17 0.1626 0.9491 30.65 0.1066 0.8351 23.97 0.2271 0.4673 15.97 0.4450 18.05M

SimVP [8] 0.9189 29.97 0.1326 0.9664 32.87 0.0584 0.8845 25.79 0.1951 0.6267 18.99 0.5600 3.47M
MMVP [6] 0.9300 30.35 0.1062 0.9674 33.05 0.0580 0.8970 26.29 0.1569 0.7203 20.84 0.3510 2.79M

Ours 0.9314 30.49 0.0823 0.9685 33.23 0.0444 0.8978 26.36 0.1348 0.7264 20.83 0.2320 0.60M

4 Extensive Ablation Study39

In this section, we add two ablation studies to help the audience better interpret the design of the40

motion graph.41

Number of the predicted dynamic vectors per pixel: In the proposed system, we set the number of42

the predicted dynamic vectors per pixel to k, which is identical to the number of the dynamic vectors43

embedded by each node and the temporal edge of each node. This design ensures the flexibility44

of the predicted motion to have multiple modes compared to the optical-flow-based method which45

only allows each pixel to have a single future motion. The comparison between the first two rows46

of Table 3 showcase that allowing multiple predicted dynamic vectors can largely improve the47

performance. Meanwhile, if we control the number of the predicted dynamic vectors, as demonstrate48

by the comparison between the first and third row of the Table 3, we see that when the motion graph49

embeds more past motion modes, the performance will also has significant improvements.50

k Predicted Vectors # Full set Hard (SSIM < 0.6) Memory ↓SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓
1 1 0.8742 26.34 0.1527 0.5394 17.34 0.5032 0.98G
1 10 0.9199 29.87 0.1042 0.6408 19.44 0.3706 1.97G
10 1 0.9212 30.00 0.0877 0.6546 19.63 0.3261 1.38G

Table 3: Ablation study on the number of the predicted vectors. The experiments are conducted on
UCF Sports MMVP splits. The listed results are from the models trained for 100 epochs (models
were all trained for 300 epochs in the main manuscript).

Motion Graph Interaction Module The design of the motion graph interaction module are following51

the intuition that both spatial connection and temporal connection should benefit the graph learning.52

Here we also show the experimental results in Table 4 that both spatial and backward edges are53

beneficial to the final performance.54

Spatial Backward PSNR ↑ MS-SSIM ×100 ↑ LPIPS×100 ↓
× × 21.55 87.06 9.85
✓ × 21.64 87.25 9.83
✓ ✓ 21.71 87.70 9.50

Table 4: Ablation study on graph interaction module. The experiments are conducted on KITTI and
metrics show evaluation on the t+ 1 results.

5 Failure case demonstration55

The video prediction is always a challenging problem. Especially for those video sequences with56

abrupt motion which can be hardly indicated by the previous video frames. The proposed method57

formulates the video prediction as a motion prediction problem and outperforms most of the existing58

methods by using motion graph to better capture the motion hints from the input frames. However,59

when evaluating the qualitative results, we still find some failure cases that require additional research60

efforts to solve. In Figure 4, we showed typical failure cases in UCF Sports dataset. We notice61

that most of the failures cases are in the action of kicking and diving, which usually include fast,62

unpredictable motion that requires stronger video understanding capability of the model.63
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Figure 4: Failure cases in UCF Sports Dataset

6 Node Feature Visualization64

To better understand the initialization of the node embedding, here we visualize the tendency feature65

and the location feature. We first extract the tendency feature and location feature of each node in66

the motion graph and apply a K-means clustering to the extracted features. For the tendency feature,67

we set the cluster number to 2; and for the location feature, we set the cluster number to 4 for better68

visualization.69

From Figure 5, we see that using the learned tendency feature, the system should be able to distinguish70

the dynamic areas from the static areas. If we further enlarge the cluster number, we can see more71

clearly that the tendency features embed the different motion patterns of each feature patch in the72

frame. For the location feature, in the paper, we have shown that removing the location feature from

Figure 5: Tendency feature visualization using KITTI dataset
73
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the node initialization will result in a performance drop. From Figure 6 we observe that the location74

feature may contain information that is related to the camera projection mode. For cityscapes and the75

KITTI, which use wide-range cameras, the clustering pattern of the location feature is very different76

from the UCF Sports whose projection mode is possible to be orthogonal projection.

Figure 6: Locaiton feature visualization on three datasets.
77
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