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Abstract

Despite the multifaceted recent advances in interventional causal representation
learning (CRL), they primarily focus on the stylized assumption of single-node
interventions. This assumption is not valid in a wide range of applications, and
generally, the subset of nodes intervened in an interventional environment is fully
unknown. This paper focuses on interventional CRL under unknown multi-node
(UMN) interventional environments and establishes the first identifiability results
for general latent causal models (parametric or nonparametric) under stochastic in-
terventions (soft or hard) and linear transformation from the latent to observed space.
Specifically, it is established that given sufficiently diverse interventional environ-
ments, (i) identifiability up to ancestors is possible using only soft interventions,
and (ii) perfect identifiability is possible using hard interventions. Remarkably,
these guarantees match the best-known results for more restrictive single-node
interventions. Furthermore, CRL algorithms are also provided that achieve the iden-
tifiability guarantees. A central step in designing these algorithms is establishing the
relationships between UMN interventional CRL and score functions associated with
the statistical models of different interventional environments. Establishing these
relationships also serves as constructive proof of the identifiability guarantees.

1 Introduction

Causal representation learning (CRL) is a major leap in causal inference, moving away from the
conventional objective of discovering causal relationships among a set of variables and learning the
variables themselves. By combining the strengths of causal inference and machine learning, CRL
specifies data representations that facilitate reasoning and planning [1]. CRL is motivated by the
premise that in a wide range of applications, a lower-dimensional latent set of variables with causal
interactions generates the usually high-dimensional observed data. Therefore, CRL’s objective is to
use the observed data and learn the latent causal generative factors, which include the causal latent
variables and their causal relationships.

CRL objectives. Formally, consider a set of latent causal random variables Z ∈ Rn and a directed
acyclic graph (DAG) G that encodes the causal relationships among Z. The latent variables are
transformed by an unknown function g to generate the observed random variables X ∈ Rd, where
X ≜ g(Z). CRL aims to use X to recover the latent causal variables Z and the causal structure G.

Two central questions of CRL pertain to identifiability, which refers to determining the conditions
under which Z and G can be recovered, and achievability, which refers to designing CRL algorithms
that can achieve the foreseen identifiability guarantees. Identifiability has been demonstrated to
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be inherently under-constrained [2], prompting the development of diverse methodologies that
incorporate inductive biases to enable identifiability. Interventional CRL is one direction with
significant recent advances in which interventions on latent causal variables are used to create
statistical diversity in the observed data [1, 3–6].

Unknown multi-node interventions. Despite covering many aspects of interventional CRL, such as
parametric versus nonparametric causal models, parametric versus nonparametric transformations,
and intervention types, the majority of the existing studies assume that the interventions are single-
node, i.e., exactly one latent variable is intervened in each environment [3–10]. This assumption,
however, is restrictive in some of the application domains of CRL such as biology and robotics in
which generally the subset of nodes intervened in an intervention environment can be fully unknown.
For instance, biological perturbations in genomics are imperfect interventions with off-target effects
on other genes [11, 12], or interventions on robotics applications are likely to affect multiple causal
variables [13]. Hence, realizing the promises of CRL critically hinges on dispensing with the
assumption of single-node interventions.

In this paper, we address the open problem of using unknown multi-node (UMN) stochastic interven-
tions to recover the latent causal variables Z and their causal graph G, wherein each environment an
unknown subset of nodes are intervened. We consider a general latent causal model (parametric or
nonparametric) and focus on the linear transformations as an important class of parametric transfor-
mation models. We establish identifiability results and design algorithms to achieve them under both
soft and hard interventions. For this purpose, we delineate connections between UMN interventions
and the properties of score functions, i.e., the gradients of the logarithm of density functions. This
score-based framework is the UMN counterpart of the single-node framework proposed in [5, 7],
albeit with significant technical differences. Our contributions are summarized below.

• We show that under sufficiently diverse interventional environments, UMN stochastic hard inter-
ventions suffice to guarantee perfect identifiability of the latent causal graph and the latent variables
(up to permutations and element-wise scaling).

• We show that under sufficiently diverse interventional environments, UMN soft interventions
guarantee identifiability up to ancestors – transitive closure of the latent DAG is recovered, and
latent variables are recovered up to a linear function of their ancestors. Remarkably, these
guarantees match the best possible results in the literature of single-node interventions.

• We design score-based CRL algorithms for implementing CRL with UMN interventions with prov-
able guarantees. These guarantees also serve as constructive proof steps of the identifiability results.

Challenges of UMN interventions. There are two broad challenges specific to addressing the UMN
intervention setting that render it substantially distinct from the single-node (SN) intervention setting.
First, in SN interventions, since the learner knows exactly one node is intervened in each environment,
it can readily identify the intervention targets up to a permutation. In contrast, in UMN interventions,
the learner does not know how many nodes are intervened in each environment. Therefore, the
nature of resolving the uncertainty about the intervention targets becomes fundamentally different.
An immediate impact of this is that it becomes more challenging to properly capitalize on the
statistical diversity embedded in the interventional data. Secondly, in SN interventions, only one
causal mechanism changes across the environments. Such sparse variations of the causal mechanisms
are a core property leveraged by various existing CRL approaches, e.g., contrastive learning [8],
and score-based framework [6, 7]. On the contrary, UMN interventions allow for many concurrent
causal mechanism changes, which renders leveraging sparsity patterns in mechanism variations futile.
Finally, since intervention targets are unknown, our central algorithmic idea is to properly aggregate
the UMN interventional environments to create new distinct environments under which the inherent
statistical diversity is more accessible.

1.1 Related literature

Single-node interventional CRL. The majority of the studies on interventional CRL focus on SN
interventions [3–10, 14], which can be categorized based on their assumptions on the latent causal
model, transformation, and intervention model. Based on this taxonomy, it has been shown that SN
hard interventions suffice for identifiability with general latent causal models and linear transforma-
tions (one intervention per node) [7], with linear Gaussian latent models and general transformations
(one intervention per node) [8], and with general latent models and general transformations (two
interventions per node) [6, 9]. For the less restrictive SN soft interventions, identifiability up to
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Table 1: Comparison of the results to existing work in multi-node interventional CRL. We note that all studies
assume linear transformation.

Work Latent model Int. type Main assumption on interventions Identifiability (ID)
[14] Linear Soft |pa(i)| independent int. mechanisms ID up to surrounding
[16] General do strongly separated interventions perfect ID

Theorem 1 General Hard lin. indep. interv. (Assumption 1) perfect ID
Theorem 2 General Soft lin. indep. interv. (Assumption 1) ID up to ancestors

ancestors is shown for general latent models and linear transformations [7] and linear Gaussian
latent models and general transformations [8]. Furthermore, under additional assumptions such as
sufficiently nonlinear latent models, the latent DAG is shown to be perfectly identifiable [7, 10, 14]. In
a related study, [15] focuses on learning the latent DAG (but without learning latent causal variables)
using SN hard interventions without parametric assumptions on the model.

Multi-node interventional CRL. The studies on MN intervention settings are sparser than the SN
intervention settings. Table 1 summarizes the results closely related to the scope of this paper along
with the identifiability results established in this paper. In summary, the existing studies either provide
partial identifiability or focus on non-stochastic do interventions. The study in [14] focuses on
linear non-Gaussian latent models and linear transformations and uses soft interventions to establish
identifiability up to surrounding variables by using multiple interventional mechanisms for each node.
In a different study, [16] uses strongly separated multi-node do interventions and provides perfect
identifiability results for general latent models and linear transformations. We also note the partially
related study in [17] that applies soft interventions on a subset of nodes and aims to disentangle the
non-intervened variables from the intervened ones. Distinct from all these studies, we address the
open problem of perfect identifiability under UMN stochastic interventions.

Other approaches to CRL. We note that there exist other interesting settings that address CRL
without interventions. Some examples include using multi-view data [18–21], leveraging temporal
sequences [22, 23], building on nonlinear independent component analysis (ICA) principles to
identify polynomial latent causal models [24], and imposing sparsity constraints to obtain partial
disentanglement [25, 26], and grouping of observational variables [27]. We refer to [28] for a detailed
literature review on various CRL problems.

2 CRL setting and preliminaries

Notations. Vectors are represented by lowercase bold letters, and element i of vector a is denoted
by ai. Matrices are represented by uppercase bold letters, and we denote row i and column j
of matrix A by Ai and by A:,j , respectively, and Ai,j denotes the entry at row i and column j.
We use null({A1, . . . ,Ar}) to denote the nullspace of the matrix consisting of the row vectors
{A1, . . . ,Ar}. For n ∈ N, we define [n] ≜ {1, . . . , n}. The row permutation matrix associated with
any permutation π of [n] is denoted by Pπ. We denote the indicator function by 1. We use im(f)
to denote the image of a function f and dim(V) to denote the dimension of a subspace V . Random
variables and their realizations are presented by upper and lower case letters, respectively.

2.1 Latent causal model

Consider a latent causal space consisting of n causal random variables Z ≜ [Z1, . . . , Zn]
⊤. An

unknown linear transformation G ∈ Rd×n maps Z to the observed random variables denoted by
X ≜ [X1, . . . , Xd]

⊤ according to:
X = G · Z , (1)

where d ≥ n and G is full rank. The probability density functions (pdfs) of X and Z are denoted by
pX and pZ , respectively. We assume that pZ has full support on Rn. Subsequently, pX is supported
on X ≜ im(G). The causal relationships among latent variables Z are represented by a DAG G in
which the i-th node corresponds to Zi. Hence, pZ factorizes according to:

pZ(z) =

n∏
i=1

pi(zi | zpa(i)) , (2)
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where pa(i) denotes the set of parents of node i in G. The conditional pdfs {pi(zi | zpa(i)) : i ∈ [n]}
are assumed to be continuously differentiable with respect to all z variables. We use ch(i), an(i),
and de(i) to denote the children, ancestors, and descendants of node i, respectively. We say that
a permutation (π1, . . . , πn) of [n] is a valid causal order if the membership πi ∈ an(πj) indicates
that i < j. Without loss of generality, we assume that (1, . . . , n) is a valid causal order. We will
specialize some of our results for the latent causal models with additive noise 1 specified by

Zi = fi(Zpa(i)) +Ni , (3)

where functions {fi : i ∈ [n]} capture the causal dependence of node i on its parents and the terms
{Ni : i ∈ [n]} represent the exogenous noise variables.

2.2 Unknown multi-node intervention models

In addition to the observational environment, we have M UMN interventional environments denoted
by {Em : m ∈ [M ]}. We assume that the set of nodes intervened in each environment is unknown, and
denote the set intervened in environment Em by Im ⊆ [n]. Accordingly, we define the intervention
signature matrix Dint ∈ {0, 1}n×M to compactly represent the intervention targets under various
environments as

[Dint]i,m = 1{i ∈ Im} , ∀i ∈ [n] , ∀m ∈ [M ] . (4)
The m-th column of Dint lists the indices of the nodes intervened in environment Em, which we
refer to as the intervention vector of environment Em. Ensuring identifiability inevitably imposes
restrictions on the structure of Dint. For instance, if the i-th row of Dint is a zero vector, it means
that node i is not intervened in any environment, then the perfect identifiability is not possible [4] 2.
Therefore, to avoid such impossibility cases, we impose the mild condition that Dint has sufficiently
diverse columns, formalized next.
Assumption 1. Intervention signature matrix Dint defined in (4) is full row rank, i.e., it contains n
linearly independent intervention vectors.

In this paper, we consider UMN stochastic interventions and address identifiability results under both
hard interventions as well as soft interventions as the most general form of intervention.

Soft interventions. A soft intervention on node i alters the observational causal mechanism pi(zi |
zpa(i)) to an interventional causal mechanism qi(zi | zpa(i)). Such a change occurs in node i in all
the environments Em that contain node i, i.e., i ∈ Im. Subsequently, the pdf of the latent variables in
environment Em, denoted by pmZ , factorizes according to:

pmZ (z) ≜
∏
i∈Im

qi(zi | zpa(i))
∏
i̸∈Im

pi(zi | zpa(i)) , ∀m ∈ [M ] . (5)

Hard interventions. Under a hard intervention on node i, the functional dependence of node i
on its parents is removed, and the observational causal mechanism pi(zi | zpa(i)) is changed to an
interventional causal mechanism qi(zi), independent of parents of node i.

To distinguish the observational and interventional data, we denote the latent and observed random
variables in environment Em by Zm and Xm, respectively. We note that interventions do not affect
the transformation G. Hence, in Em we have Xm = G · Zm for all m ∈ [M ].

Score functions. The score function of a pdf is defined as the gradient of its logarithm. We denote
the score functions associated with the distributions of Zm and Xm by

smZ (z) ≜ ∇ log pmZ (z) , and smX(x) ≜ ∇ log pmX(x) , ∀m ∈ [M ] . (6)

Note that, using the factorization in (5), smZ decomposes as

smZ (z) =
∑
i∈Im

∇ log qi(zi | zpa(i)) +
∑
i̸∈Im

∇ log pi(zi | zpa(i)) . (7)

We denote the difference in score functions between interventional and observational environments by

∆smZ (z) ≜ smZ (z)− sZ(z) and ∆smX(x) ≜ smX(x)− sX(x) , ∀m ∈ [M ] . (8)
1Perfect identifiability results in the closely related literature are given for additive noise models [7, 4, 8, 16].
2[4, Proposition 5] shows that if the non-intervened node i has at least one parent, then perfect identifiability

is not possible.
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2.3 Identifiability criteria

In CRL, we use observed variables X to recover the true latent variables Z and the latent causal
graph G. We denote a generic estimator of Z given X by Ẑ(X) : Rd → Rn. We also consider a
generic estimate of G denoted by Ĝ. To assess the fidelity of the estimates Ẑ(X) and Ĝ with respect
to the ground truth Z and G, we provide the following well-known identifiability measures.

Definition 1 (Identifiability). For CRL under linear transformations, we define:

1. Perfect identifiability: Ĝ and G are isomorphic, and the estimator Ẑ(X) satisfies that

Ẑ(X) = Pπ ·Cs · Z , ∀Z ∈ Rn , (9)

where Cs ∈ Rn×n is a constant diagonal matrix with nonzero diagonal entries and Pπ is a row
permutation matrix.

2. Identifiability up to ancestors: Ĝ and transitive closure of G, denoted by Gtc, are isomorphic,
and the estimator Ẑ(X) satisfies that

Ẑ(X) = Pπ ·Can · Z , ∀Z ∈ Rn , (10)

where Can ∈ Rn×n is a constant matrix with nonzero diagonal entries that satisfies [Can]i,j = 0
for all j /∈ {an(i) ∪ {i}}, and Pπ is a row permutation matrix.

In the algorithm we will design, estimating Ẑ(X) and Ĝ are facilitated by estimating the inverse of
the transformation G, that is Moore-Penrose inverse G† ≜ [G⊤ ·G]−1 ·G⊤, which we refer to as
the true encoder. To formalize the process of estimating the true encoder, we defineH as the set of
candidate encoders specified byH ≜ {H ∈ Rn×d : rank(H) = n and H⊤ ·H ·X = X , ∀X ∈ X}.
Corresponding to any pair of observation X and valid encoder H ∈ H, we define Ẑ(X;H) as an
auxiliary estimate of Z generated as Ẑ(X;H) ≜ H ·X = (H ·G) · Z.

3 Identifiability under UMN interventions

In this section, we present the main identifiability and achievability results for CRL with UMN
interventions and interpret them in the context of the recent results in the literature. We start by
specifying the regularity conditions on the statistical models, which are needed to ensure sufficient
statistical diversity and establish identifiability results for hard and soft UMN interventions. The
constructive proofs of the results are based on CRL algorithms, the details of which are presented in
Section 4. Complete proofs are deferred to Appendix A.

We note that the UMN setting subsumes SN interventions. Similarly to all the existing identifiability
results from SN interventions, it is necessary to have sufficient statistical diversity created by the
intervention models.3 These conditions can be generally presented in the form of regularity conditions
on the probability distributions. Specifically, a commonly adopted regularity condition (or its
variations) in the SN intervention setting is that for every possible pair (i, j) where i ∈ [n], j ∈ pa(i),
the following term cannot be a constant function in z,

∂

∂zj

(
log

pi(zi | zpa(i))
qi(zi | zpa(i))

)[
∂

∂zi
log

pi(zi | zpa(i))
qi(zi | zpa(i))

]−1

. (11)

We present a counterpart of these conditions for UMN interventions, which involves one additional
term to account for the effect of intervening on multiple nodes simultaneously.

Definition 2 (Intervention regularity). We say that an interventions are regular if for every possible
triplet (i, j, c) where i ∈ [n], j ∈ pa(i) and c ∈ Q, the following ratio cannot be a constant function
in z

∂

∂zj

(
log

pi(zi | zpa(i))
qi(zi | zpa(i))

+ c · log
pj(zj | zpa(j))
qj(zj | zpa(j))

)[
∂

∂zi
log

pi(zi | zpa(i))
qi(zi | zpa(i))

]−1

. (12)

3Some examples include Assumption 1 in [6], generic SN interventions in [4], no pure shift interventions
condition in [8], and the genericity condition in [9].
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Essentially, ∂
∂zj

log
pi(zi|zpa(i))

qi(zi|zpa(i))
captures the effect of intervening on node i on the score associated

with node j. In our method, we will use combinations of score differences of multi-node environments.
This regularity condition ensures that the effect of a multi-node intervention is not the same on the
scores associated with different nodes. Given these properties, we establish perfect identifiability for
CRL with linear transformations using UMN stochastic hard interventions.
Theorem 1 (Identifiability under UMN hard interventions). Under Assumption 1 and a latent model
with additive noise,

1. perfect latent recovery is possible using regular UMN hard interventions; and

2. if the latent causal model satisfies adjacency-faithfulness, then perfect latent DAG recovery is
possible using regular UMN hard interventions.

Theorem 1 is the first perfect identifiability result using UMN stochastic hard interventions. In
contrast, [16] establishes perfect latent recovery using highly more stringent do-interventions. Fur-
thermore, Theorem 1 establishes the first perfect latent DAG recovery result (under any type of
multi-node interventions) for nonparametric latent models. We note that the capability of handling
nonparametric latent models stems from leveraging the score functions. Similar properties are demon-
strated by the prior work on score-based CRL for SN interventions [7]. It is noteworthy that we use a
total of n+ 1 environments whereas the study in [16] requires 2⌈log2 n⌉ do interventions of strongly
separating sets. However, we show that identifiability is impossible using strongly separating sets of
UMN stochastic hard interventions (see Appendix A.6).

Next, we consider UMN soft interventions. Since soft interventions retain the ancestral dependence
of the intervened node, in general, the identifiability guarantees for soft interventions are weaker than
those of hard interventions. Next, we establish that UMN soft interventions guarantee identifiability
up to ancestors for the general causal latent models and linear transformations.
Theorem 2 (Identifiability under UMN soft interventions). Under Assumption 1, identifiability up to
ancestors is possible using regular UMN soft interventions.

Identifiability up to ancestors has recently shown to be possible using SN soft interventions on general
latent models [7]. Theorem 2 establishes the same identifiability guarantees without the restrictive
assumption of SN interventions. Furthermore, Theorem 2 is significantly different from existing
results for UMN soft interventions. Specifically, the study in [14] focuses on linear non-Gaussian
latent models and requires |pa(i)|+ 1 distinct mechanisms for each node i. In contrast, Theorem 2
does not make parametric assumptions on latent variables and works with sufficiently diverse
interventions described by Assumption 1 instead of requiring multiple interventional mechanisms for
the same node.

4 UMN interventional CRL algorithm

In this section, we design the Unknown Multi-node Interventional (UMNI)-CRL algorithm that
achieves identifiability guarantees presented in Section 3. This algorithm falls in the category of
score-based frameworks for CRL [5, 7] and incorporates novel components to this framework that
facilitate UMN interventions with provable guarantees. Our score-based approach uses the structural
properties of score functions and their variations across different interventional environments to
find reliable estimates for the true encoder G†. The critical step involved is a process that can
aggregate the score differences under the available interventional environments, which have entirely
unknown intervention targets, and reconstruct the score differences for any desired hypothetical set of
intervention targets. In particular, we establish that such desired score differences can be computed
by aggregating the score differences available under the given UMN interventions. The proposed
UMNI-CRL algorithm consists of four stages for implementing CRL. The properties of these stages
also serve as the steps of constructive proof for identifiability results. We present the key algorithmic
stages and their properties in the remainder of this section and defer their proofs to Appendix A.

Stage 1: Basis score differences. In the first stage, we compute score differences for each interven-
tional environment and construct the basis score difference functions that are linearly independent.
The purpose of these functions is to subsequently use them and reconstruct the score differences under
any arbitrary hypothetical interventional environment. To this end, we use the following relationship
between score functions of X and Z.
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Algorithm 1 Unknown Multi-node Interventional (UMNI)-CRL

1: Input: Samples of X from environment E0 and interventional environments {Em : m ∈ [M ]}
2: Stage 1: Choose basis score differences and construct ∆SX using (17)

3: Stage 2: Identifiability up to a causal order
4: for t ∈ (1, . . . , n) do
5: for w ∈ W do ▷W is specified in (18)
6: V ← projnull({H∗

i : i∈ [t−1]}) im(∆SX ·w)

7: if dim(V) = 1 then
8: pick v ∈ im(∆SX ·w) \ span({H∗

i : i ∈ [t− 1]})
9: H∗

t ← v/∥v∥2 and [W]:,t ← w
10: break
11: Stage 2 outputs: H∗ and W

12: Stage 3: Identifiability up ancestors
13: Initialize Ĝ with empty graph over nodes [n]
14: for t ∈ (n− 1, . . . , 1) do
15: for j ∈ (t+ 1, . . . , n) do
16: if j ∈ ĉh(t) then
17: continue
18: if_parent← True
19: Mt,j ← [j − 1] \ {ĉh(t) ∪ {t}}
20: for (α, β) ∈ {−(∥W:,j∥1, . . . , ∥W:,j∥1)} × [∥W:,t∥1] do
21: w∗ ← α[W]:,t + β[W]:,j
22: V ← projnull({H∗

i : i ∈ Mt,j}) im(∆SX ·w∗)

23: if dim(V) = 1 then
24: pick v ∈ im(∆SX ·w∗) \ span({H∗

i : i ∈ Mt,j})
25: H∗

j ← v/∥v∥2 and [W]:,j ← w∗

26: Set if_parent← False and break
27: if if_parent is True then
28: Add t→ j and t→ u to Ĝ for all u ∈ d̂e(j) ▷ edges to identified descendants
29: Stage 3 outputs: Ĝ,H∗ and W

30: if the interventions are hard then
31: Stage 4: Unmixing for hard interventions
32: for t ∈ (2, . . . , n) do ▷ refine rows of H∗ sequentially
33: Ẑ ← Ẑ(X;H∗)

34: uobs ← −Cov(Ẑt, Ẑân(t)) · [Cov(Ẑân(t))]
−1

35: for m ∈ {i : Wi,t ̸= 0} do ▷ searching for a suitable environment
36: Ẑm ← Ẑm(X;H∗)

37: um ← −Cov(Ẑm
t , Ẑm

ân(t)) · [Cov(Ẑ
m
ân(t))]

−1

38: if (um · Ẑm
ân(t) + Ẑm

t ) ⊥⊥ Ẑm
ân(t) and um ̸= uobs then

39: H∗
t ← H∗

t + um ·H∗
ân(t) ▷ removing the effect of the ancestors on Zt

40: break
41: Ẑ ← Ẑ(X;H∗) ▷ use recovered Z in obs. env. for graph recovery
42: for t ∈ (1, . . . , n) do
43: for j ∈ ĉh(t) do
44: if Ẑt ⊥⊥ Ẑj | {Ẑi : i ∈ p̂a(j) \ {t}} then
45: Remove t→ j from Ĝ ▷ removing the edges from the nonparent ancestors

46: Return Ĝ and Ẑ
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Lemma 1 ([7, Corollary 2]). Latent and observational score functions are related via sX(x) =
[G†]⊤ · sZ(z), where x = G · z.

Using Lemma 1 for the scores and score differences defined in (7) and (8), respectively, we have

∆smX(x) = [G†]⊤ ·∆smZ (z)
(7)
= [G†]⊤ ·

∑
i∈Im

∇ log
pi(zi | zpa(i))
qi(zi | zpa(i))

. (13)

We compactly represent the summands in the right-hand side of (13) by defining the matrix-valued
function Λ : Rn → Rn×n with the entries

[Λ(z)]j,i ≜
∂

∂zj
log

pi(zi | zpa(i))
qi(zi | zpa(i))

, ∀i, j ∈ [n] , (14)

based on which (13) can be restated as

∆smX(x) = [G†]⊤ ·Λ(z) · [Dint]:,m . (15)

We note that [Λ(z)]i,j is constantly zero for i /∈ {pa(j) ∪ {j}}, and j-th column of Λ is a function
of the variables in {zk : k ∈ pa(j) ∪ {j}} which implies that the columns of Λ are linearly
independent. Throughout the rest of the paper, we omit the arguments of the functions ∆smX and Λ
when the dependence is clear from the context. Note that Dint has n linearly independent columns
(Assumption 1). Denote the indices of the independent columns by {b1, . . . , bn} and define the basis
intervention matrix D ∈ Rn×n using these columns as

[D]i,m ≜ [Dint]i,bm = 1{i ∈ Ibm} , ∀i,m ∈ [n] . (16)

Subsequently, it can be readily verified that the score difference functions {∆smX : m ∈ {b1, . . . , bn}}
are also linearly independent by leveraging (15) and linearly independent columns of Λ. Hence, these
score difference functions are sufficient to reconstruct the remaining unavailable score difference
functions. As such, {∆smX : m ∈ {b1, . . . , bn}} serve as basis score difference functions. We stack
these basis score differences, where each is a d-dimensional vector, to construct the matrix-valued
function ∆SX : X → Rd×n, which is used as the basis score difference matrix in the subsequent
stages.

∆SX ≜
[
∆sb1X , . . . ,∆sbnX

]
= [G†]⊤ ·Λ ·D . (17)

Finally, we note that ∆SX is directly estimated from samples of X via learning {∆sbmX : m ∈ [n]}.
Since Λ encodes the score differences in latent space, it cannot be estimated directly. Furthermore,
D is unknown, and (17) is given to emphasize the relationship between observed and latent score
differences.

Stage 2: Identifiability up to an unknown causal order. We design a process that aggregates score
differences of the UMN interventions and obtains a partial identifiability guarantee (identifiability up
to an unknown causal order) as an intermediate step toward more accurate identifiability. Specifically,
we linearly aggregate the columns of ∆SX such that those aggregate scores facilitate identifiability up
to an unknown causal order. Such mixing of the columns is facilitated by computing ∆SX ·W, where
the mixing matrix W ∈ Rn×n should be learned. Given the decomposition of ∆SX in (17), if we
learn W such that D ·W is upper triangular up to a row permutation, then we can subsequently learn
an intermediate estimate H∗ using the image of ∆SX . This ensures identifiability up to an unknown
causal order since rows of H∗ will be equal to combinations of rows of G† up to a causal order.

We design an iterative process to sequentially learn the columns of W. Specifically, at each iteration
of Stage 2, we learn an integer-valued vector w such that the projection of im(∆SX ·w) onto the
nullspace of the partially recovered encoder estimate becomes a one-dimensional subspace. To see
why this procedure works, note that the function ∆SX ·w is essentially a combination of SN latent
score differences via (17), and the SN score difference ∇ log pi(zi | zpa(i)) −∇ log qi(zi | zpa(i))
is a one-dimensional subspace if and only if the intervened node i has no parents. By taking the
projection of the im(∆SX ·w) onto the nullspace of the partially learned encoder while searching
for a desired w, we ensure that the final encoder estimate H∗ of this stage will be full-rank. Finally,
we use κ to denote maximum determinant of a matrix in {0, 1}(n−1)×(n−1), and show that the set

W ≜ {−κ, . . . ,+κ}n (18)

is guaranteed to contain such w vectors. The following result summarizes the guarantees of this
procedure.
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Lemma 2. Under Assumption 1 and intervention regularity, outputs of Stage 2 of Algorithm 1 satisfy:

1. D ·W has nonzero diagonal entries and is upper triangular up to a row permutation.

2. [H∗]t ∈ span({[G†]πj : j ∈ [t]}) for all t ∈ [n] and {[H∗]t : t ∈ [n]} are linearly independent.

Proof: See Appendix A.1. □

Stage 3: Identifiability up to ancestors. Next, we refine the outcome of Stage 2 to ensure identifia-
bility up to ancestors by updating the columns of W such that the entries of D ·W can be nonzero
only for the coordinates that correspond to ancestor-descendant node pairs. For this purpose, we
design Stage 3 of UMNI-CRL that iteratively updates the columns of W. The key idea is that the
edges in the transitive closure graph Gtc can be determined by investigating the subspaces’ dimensions
similarly to Stage 2. Leveraging this property, for all node pairs that do not constitute an edge in Gtc,
we aggregate the corresponding columns of W such that the corresponding entry of D ·W will be
zero. In Theorem 3, we show that the outputs of this stage achieve identifiability up to ancestors, that
is Ĝ is isomorphic to Gtc and Ẑi is a linear function of {Zπj

: j ∈ an(i) ∪ {i}} for all i ∈ [n].
Theorem 3. Under Assumption 1 and regular UMN soft interventions, outputs of Stage 3 of Algo-
rithm 1 have the following properties.

1. The estimate Ẑ(X;H∗) satisfies identifiability up to ancestors.

2. Ĝ and Gtc are related through a graph isomorphism.

Proof: See Appendix A.2. □

Stage 4: Perfect identifiability via hard interventions. In the case of hard interventions, we
apply an unmixing procedure to further refine our estimates and achieve perfect identifiability. This
stage consists of two steps. The first step relies on the property that the intervened node becomes
independent of its non-descendants and updates rows of the encoder estimate sequentially. In
the second step, we leverage the knowledge of ancestral relationships and use a small number of
conditional independence tests to refine the graph estimate from transitive closure Gtc to the true
latent DAG G. The following theorem summarizes the guarantees achieved by Algorithm 1.
Theorem 4. Under Assumption 1 and regular UMN hard interventions for an additive noise model,
outputs of Stage 4 of Algorithm 1 have the following properties.

1. Estimate Ẑ(X;H∗) satisfies perfect latent variable recovery.

2. If pZ is adjacency-faithful to G, then Ĝ and G are related through a graph isomorphism.

Proof: See Appendix A.3. □

Finally, we note that the computational cost of UMNI-CRL is dominated by the cardinality of the
search space for aggregating the score differences, e.g., in the worst-case, Stage 2 has O((2κ)n)
complexity. Therefore, the structure of the UMN interventions determines the complexity via its
determinant. We elaborate on the computational complexity of the algorithm and the range of κ in
Appendix A.8.

5 Simulations

We empirically assess the performance of the UMNI-CRL algorithm for recovering the latent DAG G
and latent variables Z. Implementation details and additional results are provided in Appendix B4.

Data generation. To generate G, we use Erdős-Rényi model with density 0.5 and n ∈ {4, 5, 6, 7, 8}
nodes. For the causal models, we adopt linear structural equation models (SEMs) with Gaussian
noise. The nonzero edge weights of the linear SEMs are sampled from Unif(±[0.5, 1.5]), and the
noise terms are zero-mean Gaussian variables with variances σ2

i sampled from Unif([0.5, 1.5]). For
a soft intervention on node i, the edge weight vector of node i is reduced by a factor of 1/2, and for a
hard intervention, the edge weights are set to zero. The variance of the noise term is reduced to σ2

i/4
in both intervention types. We consider target dimensions d ∈ {10, 50}, generate 100 latent graphs
for each (n, d) pair, and generate ns = 105 samples of Z from each environment. Transformation

4The codebase for the experiments can be found at https://github.com/acarturk-e/umni-crl.
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Table 2: UMNI-CRL for a linear causal model with UMN interventions (mean ± standard error)
UMN Soft UMN Hard

n d SHD(Gtc, Ĝ) MCC ℓsoft SHD(G, Ĝ) MCC ℓhard

4 10 0.91± 0.12 0.95± 0.01 0.08± 0.01 0.75± 0.11 0.98± 0.02 0.13± 0.02
5 10 1.67± 0.20 0.93± 0.01 0.09± 0.01 1.65± 0.11 0.97± 0.02 0.13± 0.02
6 10 3.19± 0.26 0.92± 0.01 0.12± 0.01 3.12± 0.25 0.96± 0.02 0.12± 0.02
7 10 5.44± 0.34 0.90± 0.01 0.15± 0.01 5.36± 0.35 0.93± 0.03 0.15± 0.03
8 10 7.63± 0.41 0.89± 0.01 0.16± 0.01 9.70± 0.52 0.87± 0.03 0.20± 0.03

4 50 0.77± 0.12 0.96± 0.01 0.06± 0.01 0.66± 0.10 0.98± 0.01 0.13± 0.02
5 50 1.93± 0.20 0.93± 0.01 0.10± 0.01 1.80± 0.19 0.98± 0.02 0.13± 0.01
6 50 3.39± 0.27 0.92± 0.01 0.13± 0.01 3.05± 0.25 0.95± 0.03 0.13± 0.01
7 50 4.62± 0.30 0.91± 0.01 0.13± 0.01 6.12± 0.34 0.91± 0.02 0.16± 0.01
8 50 8.26± 0.49 0.90± 0.01 0.14± 0.01 9.01± 0.53 0.88± 0.03 0.28± 0.02

G ∈ Rd×n is randomly sampled under full-rank constraint, and observed variables are generated as
X = G · Z. Finally, for each graph realization, intervention matrix D is chosen randomly among
column permutations of full-rank {0, 1}n×n matrices, which satisfies Assumption 1.

Score functions. The algorithm uses score differences between environment pairs. Since we use
a linear Gaussian model, X is also multivariate Gaussian, and its score function can be estimated
by sX(x) = −Θ̂ · x in which Θ̂ is the sample estimate of the precision matrix of X . We note that
the design of UMNI-CRL is agnostic to the choice of the estimator and can adopt any reliable score
estimator for nonparametric distributions [29, 30].

Graph recovery. To assess the graph recovery, we report the structural Hamming distance (SHD)
between the true and estimated DAGs. Recall that UMN hard and soft interventions ensure different
levels of identifiability guarantees. Hence, we report the SHD between (i) transitive closure Gtc and
Ĝ for soft interventions, and (ii) true DAG G and Ĝ for hard interventions. Table 2 shows that latent
graph recovery performance remains consistent for both soft and hard interventions when observed
variables dimension d increases from 10 to 50, which conforms to our expectations due to theoretical
results. Note that the expected number of edges is n(n− 1)/4 since we set the density of random
graphs to 0.5. Hence, the increasing SHD is also unsurprising when the latent dimension n increases
from 4 to 8, and the performance remains reasonable at n = 8. Finally, we note that n = 8 is the
largest latent graph size considered among the closely related SN intervention studies [4, 8, 7, 9].

Latent variable recovery. The estimates are given by Ẑ(X;H∗) = (H∗ · G) · Z. Hence, we
scrutinize the effective mixing matrix (H∗ ·G) and report the ratio of its incorrect mixing entries to
the number of zeros in constant matrices Cs and Can according to Definition 1, denoted by

ℓhard ≜

∑
j ̸=i 1([H

∗ ·G]i,j ̸= 0)

n2 − n
, and ℓsoft ≜

∑
j /∈an(i) 1([H

∗ ·G]i,j ̸= 0)

n2 −
∑

i | an(i)|
. (19)

We also report the mean correlation coefficient (MCC) [31], which measures linear correlations
between the estimated and ground truth latent variables and is commonly used in related work.
Table 2 shows that the UMNI-CRL algorithm achieves strong MCC performance (over 0.90) in all
cases. Furthermore, the ratio of incorrect mixing entries remains less than 0.20 for both soft and hard
interventions This demonstrates a strong performance of the UMNI-CRL algorithm at recovering
latent variables for as many as n = 8 latent variables even for observed variables dimension d = 50.

6 Discussion
In this paper, we established novel identifiability results using unknown multi-node (UMN) in-
terventions for CRL under linear transformations. Specifically, we designed the provably correct
UMNI-CRL algorithm, leveraging the structural properties of score functions across different en-
vironments. To facilitate identifiability, we introduced a sufficient condition for the set of UMN
interventions, abstracted as having n sufficiently diverse interventional environments. Investigating
the necessary conditions for UMN interventions to enable identifiability remains an open problem.
The main limitation is the assumption of linear transformations. Given existing results for general
transformations using two SN interventions per node [6, 9], a promising direction for future work is
extending our results to general transformations using UMN interventions with multiple interventional
mechanisms per node.
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A Proofs

We start this section by introducing the additional notations used in the subsequent proofs.

Additional notations. We use {ei : i ∈ [n]} to denote n-dimensional standard unit basis vectors.
For a set S ∈ [n], we use AS to denote the submatrix of A constructed by the rows {Ai : i ∈ S}.
For a valid encoder H ∈ H, we denote the score functions associated with the pdfs of Ẑ(X;H)
under environments E0 and Em by sẐ(·;H) and sm

Ẑ
(·;H) for all m ∈ [M ]. In addition to the graph

notations introduced in Section 2.1, we define

pa(i) ≜ pa(i) ∪ {i}, ch(i) ≜ ch(i) ∪ {i}, and an(i) ≜ an(i) ∪ {i} . (20)

Next, we provide an auxiliary result that will be used throughout the proofs of the main results.

Lemma 3. For every pair (i, j) where i ∈ [n] and j ∈ pa(i), the following ratio function cannot be
a constant in z[

Λ(z)]j,j[
Λ(z)

]
i,i

=

[
∂

∂zj
log

pj(zj | zpa(j))
qj(zj | zpa(j))

]
·
[

∂

∂zi
log

pi(zi | zpa(i))
qi(zi | zpa(i))

]−1

. (21)

Furthermore, the columns of Λ are linearly independent vector-valued functions.

Proof: See Appendix A.5. □

We also restate the interventional regularity in terms of the Λ function defined in (14), which will
help clarity in the subsequent proofs.
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Definition 2 (Intervention regularity) We say that an intervention on node i is regular if for every
possible triplet (i, j, c) where i ∈ [n], j ∈ pa(i) and c ∈ Q, the following ratio cannot be a constant
function in z

∂

∂zj

(
log

pi(zi | zpa(i))
qi(zi | zpa(i))

+ c · log
pj(zj | zpa(j))
qj(zj | zpa(j))

)[
∂

∂zi
log

pi(zi | zpa(i))
qi(zi | zpa(i))

]−1

. (22)

By definition of Λ, this means that for (i, j, c) where i ∈ [n], j ∈ pa(i) and c ∈ Q, the following
ratio cannot be a constant function in z[

Λ(z)
]
j,i

+ c ·
[
Λ(z)

]
j,j[

Λ(z)
]
i,i

. (23)

A.1 Proof of Lemma 2

First, we show that the search space in Stage 1 of Algorithm 1, i.e., the setW , has a certain property
that will be needed for the rest of the proof. Recall the definition in (18)

W ≜ {−κ, . . . ,+κ}n , (24)

in which κ denotes the maximum possible determinant of a matrix in {0, 1}(n−1)×(n−1). We will
show that for all i ∈ [n], there exists w ∈ W such that 1([D · w] ̸= 0) = ei. Let adj(D) be the
cofactor matrix of D, which is the matrix formed by the entries

[adj(D)]i,j ≜ det([D]−i,−j) , (25)

where [D]−i,−j is the first minor of D with i-th row and j-th columns are removed. Then, the inverse
of D is given by

D−1 =
1

det(D)
· [adj(D)]⊤ . (26)

By multiplying both sides from left by D and rearranging we obtain

D · [adj(D)]⊤ = det(D) · In×n , (27)

where all matrices are integer-valued and In×n denotes the n-dimensional identity matrix. The
identity in (27) implies that

D ·w∗ = det(D) · ei , where w∗ = [adj(D)]⊤:,i . (28)

Since entries of adj(D) are upper bounded by κ, we have w∗ ∈ W and we conclude that

∀i ∃w ∈ W such that 1
(
D ·w ̸= 0

)
= ei . (29)

Next, we prove the lemma statements by induction as follows.

Base case. At the base case t = 1, we will show that 1([D·W]:,1 ̸= 0) = ei and H∗
1 ∈ span([G†]i)

for some root node i. Consider a vector w ∈ W and denote c = D ·w. Then, using (17),

∆SX ·w = [G†]⊤ ·Λ ·D ·w = [G†]⊤ ·Λ · c . (30)

In the base case, we investigate the dimension of im(∆SX ·w). Then, using (30), we have

dim
(
im(∆SX ·w)

)
= dim

(
im([G†]⊤ ·Λ · c)

)
= dim

(
im(Λ · c)

)
. (31)

(29) implies that there exists w∗ ∈ W that makes 1(c ̸= 0) = ei. Subsequently, if i is a root node,
only nonzero entry of the column Λ:,i is Λi,i and we have

dim
(
im(∆SX ·w)

)
= dim

(
im([G†]⊤ ·Λ:,i)

)
= dim

(
im([G†]i ·Λi,i)

)
= 1 . (32)

Hence, by searching w withinW , Algorithm 1 is guaranteed to find a vector w such that dim(im(Λ ·
c)) = 1. Next, we show that if dim(im(Λ · c)) = 1, then 1(c ̸= 0) = ei for a root node i. We prove
this as follows. Consider the set A = {i : ci ̸= 0} and let i be the youngest node in A, i.e., i has no
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descendants within A. Using the fact that Λℓ,k = 0 for all ℓ /∈ pa(k) and ck = 0 for all k ∈ de(i),
we have

Λℓ · c
Λi · c

=

∑
k∈ch(ℓ) ck ·Λℓ,k∑
k∈ch(i) ck ·Λi,k

=

∑
k∈ch(ℓ) ck ·Λℓ,k

ci ·Λi,i
, ∀ℓ ∈ [n] . (33)

If c has multiple nonzero entries, let cℓ denote the second youngest node in A. If j /∈ pa(i), then for
ℓ = j, (33) reduces to

Λj · c
Λi · c

=
cj ·Λj,j

ci ·Λi,i
, (34)

which is not constant due to Lemma 3. If j ∈ pa(i), then (33) reduces to

Λj · c
Λi · c

=
cj ·Λj,j + ci ·Λj,i

ci ·Λi,i
, (35)

which is not constant due to interventional regularity. Hence, in either case, there exist multiple
vectors in im(Λ · c) with distinct directions. Therefore, dim(im(Λ · c)) = 1 implies that c has only
one nonzero entry ci ̸= 0. Finally, if i is not a root node, for j ∈ pa(i), (33) reduces to

Λj · c
Λi · c

=
Λj,i

Λi,i
, (36)

which is not constant due to interventional regularity. Therefore, dim(im(Λ · c)) = 1 implies that
1(c ̸= 0) = 1([D ·W]:,1 ̸= 0) = ei for a root node i. Next, using (30), we have

∆SX ·w = ci ·Λi,i · [G†]i . (37)

Hence, denoting the root node i by π1, setting H∗
1 = v for any v ∈ im(∆SX · w) ensures that

[D ·W]:,1 = eπ1
and H∗

1 ∈ span([G†]π1
) which completes the base step of the induction.

Induction hypothesis. For the induction step, assume that for all t ∈ [k], we have linearly
independent vectors H∗

t ∈ span({[G†]πj
: j ∈ pa(t)}) and

[D ·W]πj ,t =

{
0 , j > t

̸= 0 , j = t
, ∀t ∈ [k], ∀j ≥ t , (38)

where {π1, . . . , πk} constitutes the first k nodes of a causal order π. We will show that if

dim(V) = 1 where V = projnull({H∗
i : i∈ [k]}) im(∆SX ·w) , (39)

then w ∈ W satisfies

[D ·w]πj =

{
0 , j > k + 1

̸= 0 , j = k + 1
, (40)

for the causal order π. First, defineMk+1 ≜ [n] \ {π1, . . . , πk}. Note that, by the induction premise,

null({H∗
i : i ∈ [k]}) = null({[G†]πi : i ∈ [k]}) . (41)

Then, for any w ∈ W and c = D ·w, we have

V = projnull({[G†]πi
: i∈ [k]})([G

†]⊤ · im(Λ · c)) . (42)

Subsequently, we have

dim(V) = dim
(
im
(
[G†]⊤Mk+1

·ΛMk+1
· c
))

= dim
(
im(ΛMk+1

· c)
)
. (43)

Note that, if node i ∈ Mk+1 has no ancestors inMk+1, using the vector w ∈ W which makes
1(c ̸= 0) = ei ensures that dim(im(ΛMk+1

·)c) = dim(im(Λi,i · ei)) = 1. Hence, by searching w
withinW , Algorithm 1 is guaranteed to find a vector w such that dim(im(ΛMk+1

· c)) = 1. Next,
consider the set A = {i ∈Mk+1 : ci ̸= 0}. Since π1, . . . , πk are first k-nodes of a causal order π,
we have

Λi,πj
= 0 , ∀i ∈Mk+1, ∀j ∈ [k] . (44)

16



Then, if dim(V) = 1, A is not empty since otherwise (ΛMk+1
· c) is equal to zero vector and

dim(V) = 0. Let i be youngest node in A, i.e, i has no descendants within A. Similarly to (33), we
have

Λℓ · c
Λi · c

=

∑
k∈ch(ℓ) ck ·Λℓ,k

ci ·Λi,i
, ∀ℓ ∈Mk+1 . (45)

If A has multiple elements, let j be the second youngest node in A. If j /∈ pa(i), then for ℓ = j, (45)
reduces to

Λj · c
Λi · c

=
cj ·Λj,j

ci ·Λi,i
, (46)

which is not constant due to Lemma 3. If j ∈ pa(i), then for ℓ = j, (45) reduces to
Λj · c
Λi · c

=
cj ·Λj,j + ci ·Λj,i

ci ·Λi,i
, (47)

which is not constant due to interventional regularity. Hence, in either case, there exist vectors with
different directions in im(ΛMk+1

· c). Therefore, dim(im(ΛMk+1
· c)) = 1 implies that A has

only one element, i.e., there is only one node i ∈ [n] \ {π1, . . . , πk} such that ci ̸= 0, and also
pa(i) ⊆ {π1, . . . , πk}. Hence, denoting πk+1 = i, [D ·W]πj is nonzero for j = k + 1 and zero for
all j > k+1. Subsequently, by setting H∗

k+1 = v for any v ∈ im(∆SX ·w) \ span({H∗
i : i ∈ [k]})

we have
H∗

k+1 ∈ span({[G†]πi
: i ∈ [k + 1]}) . (48)

Finally, note that the contribution of [G†]i in H∗
k+1 is nonzero since ci ̸= 0. Hence, H∗

k+1 is linearly
independent of {H∗

1, . . . ,H
∗
k}, which completes the proof of the induction hypothesis. Therefore,

(38) holds for all t ∈ [n], which implies that Pπ ·D ·W is upper triangular and has nonzero diagonal
entries, and concludes the proof of the lemma.

A.2 Proof of Theorem 3

We will prove the theorem by proving the following equivalent statements: The output W of Stage 3
of Algorithm 1 satisfies

[D ·W]πt,j =

{
0 , πt /∈ an(πj)

1 , πt = πj
, (49)

and
t ∈ p̂a(j) ⇐⇒ πt ∈ an(πj) . (50)

for all t, j ∈ [n]. The second statement of the theorem, graph recovery up to a transitive closure, is
equivalent to (50) by definition. Next, we show that (49) implies the first statement of the theorem,
that is identifiability of latent variables up to mixing with ancestors. For this purpose, using (17), for
any w ∈ Rn, we have

∆SX ·w = [G†]⊤ ·Λ ·D ·w . (51)
Then, for w = [W]:,j , using the fact that Λπt,πk

= 0 for all πt /∈ pa(πk), the coefficient of [G†]πt

on the right-hand side becomes∑
πk∈[n]

Λπt,πk
· [D ·W]πk,j =

∑
πk∈ch(πt)

Λπt,πk
· [D ·W]πk,j . (52)

If πt /∈ an(πj), then πk ∈ ch(πt) implies that πk /∈ an(πj). Then, using (49), the sum in (52), i.e.,
the coefficient of [G†]πt in function (∆SX ·w), becomes zero. Furthermore, since [D ·W]πt,t ̸= 0,
the coefficient of [G†]πt in (∆SX · w) is nonzero. Therefore, (49) ensures, by choosing H∗

t ∈
im(∆SX · [W]:,t) for all t ∈ [n], we have

H∗
t ∈ span

(
{[G†]πj

: j ∈ an(t)}
)

(53)
and {H∗

1, . . . ,H
∗
n} are linearly independent. This implies that we have

H∗ = Pπ ·Can ·G† , (54)
where Pπ is the row permutation matrix of π, and Can ∈ Rn×n is a constant matrix with nonzero
diagonal entries that satisfies [Can]i,j = 0 for all j /∈ an(i). Subsequently,

Ẑ(X;H∗) = H∗ ·X = Pπ ·Can ·G† ·G · Z = Pπ ·Can · Z , (55)
which is the definition of identifiability up to ancestors for latent variables, specified in Definition 1.
In the rest of the proof, we will prove (49) by induction.
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Base case. At the base case, we have t = n− 1 and j = n. We will show that, at the end of step
(t, j) = (n− 1, n), [D ·W]πn−1,n ̸= 0 implies that πn−1 ∈ pa(πn). By Lemma 2, we know that

[D ·W]πn−1,n−1 ̸= 0 , [D ·W]πn,n ̸= 0 , and [D ·W]πn,n−1 = 0 . (56)

Consider some integers α ∈ {−nκ, . . . , nκ} and β ∈ {1, . . . , nκ}. Let w∗ = α[W]:,n−1+β[W]:,n
and c∗ = D ·w∗. Since β ̸= 0, (56) implies that c∗n ̸= 0. Using Lemma 2, we have

null({H∗
i : i ∈ [n− 2]}) = null({[G†]πi

: i ∈ [n− 2]}) . (57)

Then, we have

V = projnull({H∗
i : i∈ [n−2]}) im(∆SX ·w∗) (58)

= projnull({[G†]πi
: i∈ [n−2]})([G

†]⊤ · im(Λ · c∗)) . (59)

Subsequently,

dim(V) = dim

([
[G†]πn−1

[G†]πn

]⊤
· im

([
Λπn−1

Λπn

]
· c∗
))

(60)

= dim

(
im

([
Λπn−1

Λπn

]
· c∗
))

(61)

= dim

(
im

([
c∗πn−1

·Λπn−1,πn−1
+ c∗πn

·Λπn−1,πn

c∗πn
·Λπn,πn

]))
. (62)

Note that in the last step, we have used the fact that π is a causal order and j /∈ pa(i) implies that
Λi,j = 0. Then, if πn−1 ∈ pa(πn), interventional regularity ensures that the ratio of the two entries
in (62) is not a constant function which implies that dim(V) = 2. Furthermore, if πn−1 /∈ pa(πn)
but c∗πn−1

̸= 0, then (62) reduces to

dim(V) = dim

(
im

([
c∗πn−1

·Λπn−1,πn−1

c∗πn
·Λπn,πn

]))
= 2 , (63)

due to Lemma 3. Therefore, if w∗ satisfies

dim(projnull({H∗
i : i∈[n−2]}) im(∆SX ·w∗)) = 1 , (64)

by setting [W]:,n = w∗, we guarantee that [D ·W]πn−1,n = 0 if πn−1 /∈ pa(πn). Note that, for this
case, setting either (α, β) = (−[D ·W]n−1,n, [D ·W]n−1,n−1) or (α, β) = ([D ·W]n−1,n,−[D ·
W]n−1,n−1) achieves

c∗πn−1
= [D ·w∗]πn−1 = α · [D ·W]πn−1,n−1 + β · [D ·W]πn−1,n = 0 . (65)

Note that the entries of [D ·W] are bounded as

[D ·W]i,j =
∑
k∈[n]

Di,k ·Wk,j ≤
∑
k∈[n]

|Wk,j | = ∥W:,j∥1 , ∀i, j ∈ [n] . (66)

Hence, Algorithm 1 is guaranteed to find c∗πn−1
= 0 by searching over

(α, β) ∈ {−∥W:,n−1∥1, . . . , ∥W:,n−1∥1} × {1, . . . , ∥W:,n∥1} . (67)

Therefore, if dim(V) is never found to be 1 for any (α, β), it means that πn−1 ∈ pa(πn), and the
algorithm adds the edge (n− 1)→ n, which concludes the proof of the base case.

Induction hypothesis. Next, assume that for all t ∈ {k + 1, . . . , n} and j ∈ {t+ 1, . . . , n},

[D ·W]πt,j =

{
0 πt /∈ an(πj)

1 πt = πj
and πt ∈ an(πj) ⇐⇒ t ∈ p̂a(j) . (68)

We will prove that (68) holds for t = k and j ∈ {t+ 1, . . . , n}. We prove this by induction as well.
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Base case for the inner induction. At the base case, we have t = k and j = k + 1. Since π is a
causal order, we have

πk ∈ an(πk+1) ⇐⇒ πk ∈ pa(πk+1) . (69)

Also, ĉh(k) is empty at this iteration of the algorithm. Then, Mk,k+1 = [k − 1]. Consider
some integers α ∈ {−nκ, . . . , nκ} and β ∈ {1, . . . , nκ}. Let w∗ = α[W]:,k + β[W]:,k+1 and
c∗ = D ·w∗. Using Lemma 2, we have

null
(
{H∗

i : i ∈ [k − 1]}
)
= null

(
{[G†]πi : i ∈ [k − 1]}

)
. (70)

Then, we have

V = projnull({H∗
i : i∈[k−1]}) im(∆SX ·w∗) (71)

= projnull({[G†]πi
: i∈[k−1]})

(
[G†]⊤ · im(Λ · c∗)

)
. (72)

Using (68), c∗πi
= 0 for i > k + 1. Subsequently,

dim(V) = dim

(
im

([
[G†]πk

[G†]πk+1

]⊤
·
[
Λπk

Λπk+1

]
· c∗
))

= dim

(
im

([
Λπk

Λπk+1

]
· c∗
))

. (73)

Also, recall that Λπk,πj
= 0 for all j < k. Then,

dim(V) = dim

(
im

([
Λπk

Λπk+1

]
· c∗
))

= dim

(
im

([
c∗πk
·Λπk,πk

+ c∗πk+1
·Λπk,πk+1

c∗πk+1
·Λπk+1,πk+1

]))
.

(74)

Using (68) again, we have c∗πk+1
̸= 0. Then, if πk ∈ pa(πk+1), interventional regularity ensures

that the ratio of the two entries in (74) is not a constant function which implies that dim(V) = 2.
Furthermore, if πk /∈ pa(πk+1) but c∗πk

̸= 0, based on Lemma 3, (74) reduces to

dim(V) = dim

(
im

([
c∗πk
·Λπk,πk

c∗πk+1
·Λπk+1,πk+1

]))
= 2 . (75)

Therefore, if we have

dim(projnull({H∗
i : i∈ [k−1]}) im(∆SX ·w∗)) = 1 , (76)

by setting [W]:,k+1 = w∗, we guarantee that [D ·W]πk,k+1 = 0 if πk /∈ pa(πk+1). Note that,
similarly to the base case of outer induction, Algorithm 1 is guaranteed to find c∗πn−1

= 0 by searching
over (α, β) ∈ {−∥W:,k∥1, . . . , ∥W:,k∥1} × {1, . . . , ∥W:,k+1∥1}. Therefore, if dim(V) is never
found to be 1 for any (α, β), it means πk ∈ pa(πk+1), and the algorithm adds the edge t→ j, which
concludes the proof of the base case for the inner induction.

Induction hypothesis for the inner induction. Next, assume that for all j ∈ {k + 1, . . . , u},

[D ·W]πk,j =

{
0 πk /∈ an(πj)

1 πk = πj
and πk ∈ an(πj) ⇐⇒ k ∈ p̂a(j) . (77)

We will prove that (77) holds for j = u+1 as well. We work withMk,u+1 = [u−1]\{ĉh(k)∪{k}}.
Consider some w∗ = α[W]:,k + β[W]:,u+1 in which β ̸= 0 and let c∗ = D · w∗. Due to
the assumption in (77), ancestors of any node inMk,u+1 are contained inMk,u+1. Then, using
Lemma 2 again, we have

null({H∗
i : i ∈Mk,u+1}) = null({[G†]πi

: i ∈Mk,u+1}) . (78)

Then, we have

V = projnull({H∗
i : i∈Mk,u+1}) im(∆SX ·w∗) (79)

= projnull({[G†]πi
: i∈Mk,u+1})([G

†]⊤ · im(Λ · c∗)) , (80)

and

dim(V) = dim
(
im([Λ][n]\Mk,u+1

· c∗)
)
≥ dim

(
im

([
Λπk

Λπu+1

]
· c∗
))

. (81)
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We will investigate dim(V) through the ratio

Λπk
· c∗

Λπu+1 · c∗
. (82)

Note that, using (77) and the fact that π is a causal order, we know that

cπi = 0 , ∀ i ∈ {u+ 2, . . . , n} ∪ {{k + 1, . . . , u} \ ân(u+ 1)} , (83)
and Λπj ,πi = 0 , ∀πj /∈ pa(πi) . (84)

Then, using (83) and (84), we have

Λπu+1
· c∗ =

∑
πi∈ch(πu+1)

c∗πi
·Λπu+1,πi

= c∗πu+1
·Λπu+1,πu+1

, (85)

Λπk
· c∗ = c∗πk

·Λπk,πk
+ c∗πu+1

·Λπk,πu+1
+

∑
i :πi∈ch(πk) and i∈ân(u+1)

c∗πi
·Λπk,πi

. (86)

First, note that if there exists ℓ such that πk ∈ an(πℓ) and πℓ ∈ an(πu+1), then by the assumptions in
(68) and (77), we already have that k ∈ p̂a(ℓ) and ℓ ∈ p̂a(u+ 1) which implies that k ∈ p̂a(u+ 1).
Then, we only need to consider the case where there does not exist such ℓ. In this case, the summation
in (86) is zero and we have

Λπk
· c∗

Λπu+1
· c∗

=
c∗πk
·Λπk,πk

+ c∗πu+1
·Λπk,πu+1

c∗πu+1
·Λπu+1,πu+1

. (87)

Next, if πk ∈ pa(πu+1), interventional regularity ensures that this ratio is not a constant function
which implies that dim(V) ≥ 2. Furthermore, if πk /∈ an(πu+1) but c∗πk

̸= 0, then (87) reduces to

Λπk
· c∗

Λπu+1
· c∗

=
c∗πk
·Λπk,πk

c∗πu+1
·Λπu+1,πu+1

, (88)

which is not constant due to Lemma 3 and subsequently dim(V) ≥ 2. Therefore, dim(V) = 1
implies that πk /∈ an(πu+1) and c∗πk

= [D ·W]πk,u+1 = 0. Finally, similarly to the previous
cases, Algorithm 1 is guaranteed to find such (α, β) that makes c∗πk

= 0 by searching over (α, β) ∈
{−∥W:,k∥1, . . . , ∥W:,k∥1} × {1, . . . , ∥W:,u+1∥1}, e.g., (α, β) = (−[D ·W]k,u+1, [D ·W]k,k).
Then, the proof of the inner induction step, and subsequently, the outer induction step is concluded,
and (49) holds true. Consequently, the proof of the theorem is completed.

A.3 Proof of Theorem 4

We start with a short synopsis of the proof. Stage 4 of Algorithm 1 consists of two steps. The first
step resolves the mixing with ancestors in recovered latent variables and the second step refines the
estimated graph to the edges from non-parent ancestors to children nodes. The proof of the first step
uses similar ideas to that of [7, Lemma 10]. Specifically, we use zero-covariance as a surrogate for
independence and search for unmixing vectors to eliminate the mixing with ancestors. Since we do
not have SN interventions unlike the setting in [7], we use additional proof techniques to identify
an environment in which a certain node is intervened. In the graph recovery stage, we leverage the
knowledge of ancestral relationships and use a small number of conditional independence tests to
remove the edges from non-parent ancestors to the children nodes.

A.3.1 Recovery of the latent variables

First, by Theorem 3, for the output H∗ of Stage 3 of Algorithm 1 we have

[H∗ ·G] = Pπ · L , (89)

for some lower triangular matrix L ∈ Rn×n such that L has non-zero diagonal entries and Li,j = 0
for all j /∈ an(i), and π is a causal order. We will show that the output of Stage 4 satisfies that

1
(
[H∗ ·G]t

)
= e⊤πt

, ∀t ∈ [n] , (90)

which will imply
Ẑ(X;H∗) = H∗ ·X = H∗ ·G · Z = Pπ ·Cs · Z , (91)
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where Pπ is the row permutation matrix of π and Cs is a constant diagonal matrix with nonzero
diagonal entries. Note that this is the definition of perfect identifiability for latent variables, specified
in Definition 1. We prove that Stage 4 output H∗ satisfies (90) as follows.

We start by noting that since π1 is a root node in G as shown in Lemma 2, (89) implies

[H∗ ·G]1 = Lπ1,π1
· e⊤π1

and 1
(
[H∗ ·G]1

)
= e⊤π1

, (92)

and (90) is satisfied for t = 1. Next, assume that (90) is satisfied for all t ∈ {1, . . . , k − 1}, i.e.,

1
(
[H∗ ·G]t

)
= e⊤πt

, ∀t ∈ [k − 1] . (93)

Consider k-th iteration of the algorithm in which we update H∗
k where {H∗

i : i ∈ [k − 1]} already
satisfy (90). We will prove that (90) will be satisfied in four steps. Consider any environment Em and
use shorthand Ẑm for Ẑm(X;H∗).

Step 1: Cov(u · Ẑm
ân(k) + Ẑm

k , Ẑm
ân(k)) = 0 has a unique solution for u. For any i ∈ [k− 1], (93)

implies
Ẑm
i = [H∗ ·G] · Zm = ci · Zm

πi
, (94)

for some nonzero constants {c1, . . . , ck−1}. Specifically, by defining

ân(k) = {γ1, . . . , γr} (95)

in which the nodes are topologically ordered, then

Ẑm
ân(k) =

[
Ẑm
γ1
, . . . , Ẑm

γr

]
= [cγ1 · Zm

πγ1
, . . . , cγr · Zm

πγr
] . (96)

Note that Cov(Ẑm
ân(k)) is invertible since the causal relationships among the entries in Ẑm

ân(k) are not
deterministic. Then, we have

Cov(u · Ẑm
ân(k) + Ẑm

k , Ẑm
ân(k)) = 0 ⇐⇒ u = −Cov(Ẑm

k , Ẑm
ân(k)) · [Cov(Ẑ

m
ân(k))]

−1 . (97)

For the next step, using the additive noise model specified in (3), under hard interventions we have

Zm
πk

= fm
πk
(Zpa(πk)) +Nm

πk
, where (fm

πk
, Nm

πk
) ≜

{
(fπk

, Nπk
) , πk /∈ Im

(0, N̄πk
) , πk ∈ Im

, (98)

where N̄πk
denotes the exogenous noise term under intervention. Let us use f and N as shorthands

for fm
πk

and Nm
πk

.

Step 2: Cov(u · Ẑm
ân(k) + Ẑm

k , Ẑm
ân(k)) = 0 and u · Ẑm

ân(k) ⊥⊥ Ẑm
ân(k) implies that fm

πk
cannot be

nonlinear. Define random variable U ≜ (u · Ẑm
ân(k) + Ẑm

k ). Suppose that Cov(U, Ẑm
ân(k)) = 0 and

U ⊥⊥ Ẑm
ân(k). Recall that using (89), Ẑm

k is a linear combination of the variables {Zm
πi

: i ∈ an(k)}
and Zm

πk
, i.e.,

Ẑm
k = c′ · Ẑm

ân(k) + c′0 · Zm
πk

, (99)

where c′ ∈ R|ân(k)| and c′0 is a non-zero scalar. Then, U can be restated as

U = u · Ẑm
ân(k) + Ẑm

k = (u+ c′) · Ẑm
ân(k) + c′0 · (f(Zm

pa(k)) +N) . (100)

Note that U ⊥⊥ Ẑm
ân(k) and (96) together imply that U is independent of any function of the variables

in {Zm
πi

: i ∈ an(k)}. Hence,

(u+ c′) · Ẑm
ân(k) + c′0 · f(Zpa(k)) ⊥⊥ (u+ c′) · Ẑm

ân(k) + c′0(f(Zpa(k)) +N) , (101)

where the right-hand size is U and the left-hand side is a function of {Zm
πi

: i ∈ an(k)}. Also, since
N is the exogenous noise variable associated with Zπk

, we have

(u+ c′) · Ẑm
ân(k) + c′0 · f(Zpa(k)) ⊥⊥ c′0 ·N . (102)

(101) and (102) imply that (u+ c′) · Ẑm
ân(k) + c′0 · f(Zpa(k)) is a constant function of Ẑm

ân(k). Since

(u+ c′) · Ẑm
ân(k) is a linear function (or constant zero) and c′0 ̸= 0, f cannot be a nonlinear function

which concludes the proof of this step. Next, we consider two possible cases, f is zero, i.e., πk ∈ Im

case, and f is a linear function.
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Step 3: πk ∈ Im and f = 0. In this case, we have Zm
πk

= N . Note that for u = −c′, (100)
becomes

U = c′0 ·N = c′0 · Zm
πk

, (103)
which implies

(H∗
k + u ·H∗

ân(k)) ·G · Z
m = Ẑm

k + u · Ẑm
ân(k) = U = c′0 · Zm

πk
(104)

and 1
(
(H∗

k + u ·H∗
ân(k)) ·G

)
= e⊤πk

. (105)

Also note that, any u vector that satisfies U ⊥⊥ Ẑm
ân(k) also satisfies Cov(U, Ẑm

ân(k)) = 0. In Step 1,

we have shown that Cov(U, Ẑm
ân(k)) = 0 has a unique solution. Therefore, U ⊥⊥ Ẑm

ân(k) also has a
unique solution, which we have found in (97). Hence, if πk ∈ Im, then Algorithm 1 updates H∗

k
correctly.

Step 4: πk /∈ Im and f is linear. Only remaining case to check is πk /∈ Im and f is a linear
function. Let

f(Zpa(πk)) ≜ c′′ · Ẑm
ân(k) , (106)

in which c′′ ∈ R|ân(k)| has nonzero entries only at the coordinates corresponding to pa(πk). Then,
for (u+c′) · Ẑm

ân(k)+c′0 ·f(Zpa(k)) to be a constant function, we need to have (u+c′+c′0 ·c′′) = 0.
Note that, for c′′ ̸= 0 case, i.e., f ̸= 0 and πk /∈ Im, we have already found uobs = −c′ − c′0 · c′′
using the observational environment. Since we are searching for u = −c′, which is required to
achieve scaling consistency, we compare the solution um at environment Em to uobs and if they are
distinct, we update H∗

k.

To sum up, Stage 4 updates H∗
k correctly by identifying an environment Em in which Zπk

is intervened
and eliminating the effect of H∗

ân(k). Finally, we note that such an environment is guaranteed to exist
among {Em : Wm,k ̸= 0}. To see this, recall that [D ·W]πk,k ̸= 0 due to (49), proven in Theorem 3.
This implies that there exists m such that Dπk,m = 1 and Wm,k ̸= 0, and Dπk,m = 1 implies that
πk ∈ Im. This completes the proof of (90), and subsequently the proof of the perfect latent recovery.

A.3.2 Recovery of the latent graph

After the first step of Stage 4, we have

Ẑt = ct · Zπt
, ∀t ∈ [n] , (107)

where {ct : t ∈ [n]} are nonzero constants. Then,

Ẑt ⊥⊥ Ẑj | {Ẑi : i ∈ S} ⇐⇒ Zπt
⊥⊥ Zπj

| {Zπi
: i ∈ S} . (108)

Consider node t ∈ [n] and node j ∈ ĉh(t). If πt ∈ pa(πj), given the adjacency-faithfulness assump-
tion, (108) implies that Ẑt and Ẑj cannot be made conditionally independent for any conditioning set.
On the other hand, note that for any set S that contains all the nodes in pa(πj) and does not contain a
node in de(πj) satisfies

Zπt
⊥⊥ Zπj

| {Zπi
: i ∈ S} , (109)

and subsequently,
Ẑt ⊥⊥ Ẑj | {Ẑi : i ∈ S} . (110)

Finally, if πt /∈ pa(πj), then p̂a(j) \ {t} contains all the nodes in pa(πj) and does not contain a node
in de(πj). Hence, the second stage of Step 4 of Algorithm 1 successfully eliminates all spurious
edges between t and j ∈ ĉh(t).

A.4 Proofs of Theorem 1 and Theorem 2

Under Assumption 1 and interventional regularity, Lemma 2 and Theorem 3 show that using UMN
soft interventions, outputs of Algorithm 1 satisfy identifiability up to ancestors. Hence, identifiability
up to ancestors is possible using UMN soft interventions.

Furthermore, note that Lemma 2 and Theorem 3 are valid for both soft and hard interventions.
Then, Theorem 4 shows that using UMN hard interventions, Algorithm 1 outputs satisfy perfect
identifiability. Hence, perfect identifiability is possible using UMN hard interventions.
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A.5 Proof of Lemma 3

We start by showing that [Λ(z)]i,i cannot be a constant function in z. This is shown in the proof of [5,
Lemma 7]. For our paper to be self-contained, we repeat the proof steps in [5] as follows. For i ∈ [n]
define

h(zi, zpa(i)) ≜
pi(zi | zpa(i))
qi(zi | zpa(i))

. (111)

We prove by contradiction that h(zi, zpa(i)) varies with zi. Assume the contrary, i.e., let
h(zi, zpa(i)) = h(zpa(i)). By rearranging (111) we have

pi(zi | zpa(i)) = h(zpa(i)) · qi(zi | zpa(i)) . (112)

Fix a realization of zpa(i) = z∗pa(i), and integrate both sides of (112) with respect to zi. Since both pi
and qi are pdfs, we have

1 =

∫
R
pi(zi | z∗pa(i))dzi =

∫
R
h(z∗pa(i)) · qi(zi | z

∗
pa(i))dzi (113)

= h(z∗pa(i))

∫
R
qi(zi | z∗pa(i))dzi (114)

= h(z∗pa(i)) . (115)

This identity implies that pi(zi | z∗pa(i)) = qi(zi | z∗pa(i)) for any arbitrary realization z∗pa(i), which
contradicts with the premise that observational and interventional causal mechanisms are distinct.
Consequently,

[Λ(z)]i,i =
∂

∂zi
log

pi(zi | zpa(i))
qi(zi | zpa(i))

(116)

is not a constant in z. Note that for a fixed realization of zj = z∗j , zpa(i) = z∗pa(i), and zpa(j) = z∗pa(j),
[Λ(z)]j,j becomes constant whereas [Λ(z)]i,i varies with zi. Hence, their ratio is not a constant in z.
Finally, note that Λ(z) is an upper-triangular matrix since (1, . . . , n) is a valid causal order and for
all i ∈ [n],

∇ log
pi(zi | zpa(i))
qi(zi | zpa(i))

(117)

is a function of only {zk : k ∈ pa(i) ∪ {i}}. Together with the fact that diagonal entries of Λ(z) are
not constantly zero, the columns (and rows) of Λ are linearly independent vector-valued functions.

A.6 Insufficiency of strongly separating sets

Background. Recently, [16] has shown the identifiability of latent representations under a linear
transformation using do interventions. Specifically, they have shown that a strongly separating set of
multi-node interventions are sufficient for identifiability. It is well-known that strongly separating sets
can be constructed using 2⌈log2 n⌉ elements. Hence, identifiability can be achieved using 2⌈log n⌉
do interventions. In this section, we show that a similar result is impossible when using stochastic
hard interventions.

Lemma 4 (Impossibility). A strongly separated set of 2⌈log2 n⌉ stochastic hard interventions are
not guaranteed to be sufficient for perfect identifiability. In fact, they are not even sufficient for
identifiability up to ancestors.

Proof: We prove the claim for n = 2 nodes. The smallest strongly separating set for two nodes is
{{1}, {2}}. We will consider two distinct models of latent variables and latent graphs that are not
distinguishable using interventional data of I1 = {1} and I2 = {2} (without observational data).
The key idea is that after the linear transformation in the first model is fixed, we can design the linear
transformation in the second model such that observed variables in both models will have the same
distributions. We construct a pair of indistinguishable models as follows.
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First model. Let G consists of the edge 1→ 2. Consider a linear Gaussian latent model with the
edge weight of Z1 on Z2 is set to 1, and consider identity mapping, i.e.,

G : 1→ 2 , G =

[
1 0
0 1

]
, Z1 =

[
N∗

1
N∗

1 +N2

]
, Z2 =

[
N1

N∗
2

]
, (118)

N1 ∼ N (0, V1) , N∗
1 ∼ N (0, V ∗

1 ) , N2 ∼ N (0, V2) , N∗
2 ∼ N (0, V ∗

2 ) . (119)

where V1, V
∗
1 , V2, V

∗
2 are nonzero variances of the exogenous noise terms such that V̄1 ̸= V̄ ∗

1 to
ensure that interventional and observational mechanisms of node 1 are distinct. Then, the observed
variables X in two environments are given by

X1 = G · Z1 ∼ N
(
0,

[
V ∗
1 V ∗

1
V ∗
1 V ∗

1 + V2

])
, (120)

and X2 = G · Z2 ∼ N
(
0,

[
V1 0
0 V ∗

2

])
. (121)

Second model. Let Ḡ be the empty graph. Consider a linear Gaussian latent model under a
non-identity mapping parameterized by

Ḡ : empty , Ḡ =

[
a b
c d

]
, Z̄1 =

[
N̄∗

1

N̄2

]
, Z2 =

[
N̄1

N̄∗
2

]
, (122)

N̄1 ∼ N (0, V̄1) , N̄∗
1 ∼ N (0, V̄ ∗

1 ) , N̄2 ∼ N (0, V̄2) , N̄∗
2 ∼ N (0, V̄ ∗

2 ) . (123)

where V̄1, V̄
∗
1 , V̄2, V̄

∗
2 are nonzero variances of the exogenous noise terms such that V̄1 ̸= V̄ ∗

1 and
V̄2 ̸= V̄ ∗

2 to ensure that interventional mechanisms are distinct from the observational ones. Then,
the observed variables X̄ in two environments are given by

X̄1 = Ḡ · Z̄1 ∼ N
(
0,

[
a2V̄ ∗

1 + b2V̄2 acV̄ ∗
1 + bdV̄2

acV̄ ∗
1 + bdV̄2 c2V̄ ∗

1 + d2V̄2

])
, (124)

and X̄2 = Ḡ · Z̄2 ∼ N
(
0,

[
a2V̄1 + b2V̄ ∗

2 acV̄1 + bdV̄ ∗
2

acV̄1 + bdV̄ ∗
2 c2V̄1 + d2V̄ ∗

2

])
. (125)

Non-identifiability. We will show a nontrivial construction that ensures X1 = X̄1 and X2 = X̄2,
which implies the non-identifiability from intervention set {{1}, {2}}. First, using (120), (121),
(124), and (125), we write all requirements for X1 = X̄1 and X2 = X̄2 to hold:

V ∗
1 = a2V̄ ∗

1 + b2V̄2 , (126)

V ∗
1 = acV̄ ∗

1 + bdV̄2 , (127)

V2 = (c2 − ac)V̄ ∗
1 + (d2 − bd)V̄2 , (128)

V1 = a2V̄1 + b2V̄ ∗
2 , (129)

V ∗
2 = c2V̄1 + d2V̄ ∗

2 , (130)

0 = acV̄1 + bdV̄ ∗
2 . (131)

Now, let V̄1, V̄
∗
1 , V̄2, V̄

∗
2 take any values such that V̄1V̄2 ̸= V̄ ∗

1 V̄
∗
2 . We want to show that there exist

{a, b, c, d} and {V1, V
∗
1 , V2, V

∗
2 } values that satisfy all the six equations. Note that, the values of

V1, V2, and V ∗
2 are not constrained by multiple equations or additional conditions. Hence, for any

given {a, b, c, d} and {V̄1, V̄
∗
1 , V̄2, V̄

∗
2 }, we can readily set V1, V2, and V ∗

2 to satisfy (129), (128), and
(130), respectively. Therefore, we only need to ensure that we can choose {a, b, c, d} such that the
identities in (126),(127), and (131) are satisfied. Next, after substituting d = 1, and rearranging, we
only need to choose {a, b, c} that satisfy

acV̄1 + bV̄ ∗
2 = 0 , (132)

(a2 − ac)V̄ ∗
1 + (b2 − b)V̄2 = 0 . (133)

Substituting ac = −b V̄
∗
2

V̄1
into (133), we require

b2 · V̄2 − b(V̄2 − V̄ ∗
2

V̄ ∗
1

V̄1
) + a2V̄ ∗

1 = 0 . (134)
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(134) has a real solution for b if and only if

a2 ≤ V̄2

4V̄ ∗
1

(
1− V̄ ∗

1 V̄
∗
2

V̄1V̄2

)2

. (135)

This implies that, if V̄1V̄2 ̸= V̄ ∗
1 V̄

∗
2 , we can choose a and b that satisfies (134), and c is determined

by (132). This means that, for any given {V̄1, V̄
∗
1 , V̄2, V̄

∗
2 } such that V̄1V̄2 ̸= V̄ ∗

1 V̄
∗
2 , there exists

{a, b, c, d} and {V1, V
∗
1 , V2, V

∗
2 } that ensures X1 = X̄1 and X2 = X̄2. Hence, interventions on the

strongly separating set {{1}, {2}} are not sufficient to distinguish the first and second models, which
completes the proof of non-identifiability. □

A.7 Analysis of interventional regularity

Lemma 5. Consider additive noise models under hard interventions. Interventional regularity
is satisfied if the post-intervention score function of Ni, denoted by r̄, is analytic and one of the
following is true.

1.
∂fi(zpa(i))

∂zj
is not constant and there do not exist constants α1 ̸= 1, α2, α3 ∈ R such that

r̄(y) = α1 · r̄(y + α2) + α3 , ∀y ∈ R . (136)

2.
∂fi(zpa(i))

∂zj
is constant and noise term Ni remains unaltered after the intervention.

Proof: The additive noise model for nodes i and j are given by

Zi = fi(Zpa(i)) +Ni , and Zj = fj(Zpa(j)) +Nj . (137)

When nodes i and j are intervened, respectively, Zi and Zj are generated according to

Zi = N̄i and Zj = N̄j , (138)

in which N̄i and N̄j correspond to exogenous noise terms for nodes i and j under intervention. Then,
denoting the pdfs of Ni, N̄i, Nj , N̄j by hi, h̄i, hj , h̄j , respectively, we have

pi(zi | zpa(i)) = hi(zi − fi(zpa(i))) , (139)

qi(zi) = h̄i(zi) , (140)
pj(zj | zpa(j)) = hj(zj − fj(zpa(j))) , (141)

qj(zj) = h̄j(zj) . (142)

Then, by denoting the score functions associated with hi, h̄i, hj , h̄j by ri, r̄i, rj , r̄j , respectively, we
have

∂

∂zi
log

pi(zi | zpa(i))
qi(zi)

= ri(ni)− r̄i(ni + fi(zpa(i))) , (143)

∂

∂zj
log

pi(zi | zpa(i))
qi(zi)

= −ri(ni) ·
∂fi(zpa(i))

∂zj
, (144)

∂

∂zj
log

pj(zj | zpa(j))
qj(zj)

= rj(nj)− r̄j(nj + fj(zpa(j))) . (145)

Next, assume the contrary and let the ratio in (12) be a constant α ∈ R. Then, substituting (143),
(144), and (145) into (12) and rearranging the terms, we have(

α+
∂fi(zpa(i))

∂zj

)
· ri(ni)−α · r̄i(ni+ fi(zpa(i))) = c ·

(
rj(nj)− r̄j(nj + fj(zpa(j)))

)
. (146)
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Case 1: ∂fi(zpa(i))

∂zj
is not constant. Consider two distinct realizations of Zpa(i)∪pa(j) such that

∂
∂zj

fi(zpa(i)) takes values of β1 and β2 where β1 ̸= β2. Then, (146) implies

(α+ β1) · ri(ni)− α · r̄i(ni + γ1) = c · u1 , (147)
(α+ β2) · ri(ni)− α · r̄i(ni + γ2) = c · u2 , (148)

for some constants γ1, γ2, u1, u2 for all ni ∈ R, and β1 ̸= β2. By rearranging the terms, we get rid
of ri(ni) terms and obtain

α · ((α+ β2) · r̄i(ni + γ1)− (α+ β1) · r̄i(ni + γ2)) = c · ((α+ β1) · u2 − (α+ β2) · u1) .
(149)

Since β1 ̸= β2, (149) implies that

r̄i(y) = α1 · r̄i(y + α2) + α3 , (150)

where α1, α2, α3 are constants and α1 ̸= 1. Therefore, if there does not exist such constants, then the
ratio in (12) cannot be a constant.

Case 2: ∂fi(zpa(i))

∂zj
= β for some nonzero constant β. In this case, (146) becomes

(α+ β) · ri(ni)− α · r̄i(ni + fi(zpa(i))) = c ·
(
rj(nj)− r̄j(nj + fj(zpa(j)))

)
. (151)

Note that the right-hand side of (151) does not contain ni. Also note that since fi(zpa(i)) is continuous,
there exists an open interval Θ ⊆ R such that fi(zpa(i)) can take all values θ ∈ Θ. Then, by taking
the derivative of both sides with respect to ni and varying fi(zpa(i)) in Θ, we find that r̄′i(ni + θ) is
constant for all θ ∈ Θ. Since r̄i is analytic, this means that r̄i(y) = α1 · y + α2 for some constants
α1, α2 for all y ∈ R. Then, since the noise term is invariant under intervention, we have ri = r̄i.
Substituting this into (151), we obtain

(α+ β) · (αni + α2)− αα1 · (ni + fi(zpa(i))) = c ·
(
rj(nj)− r̄j(nj + fj(zpa(j)))

)
. (152)

Since β ̸= 0, the left-hand side is a function of ni whereas the right-hand side is not, which is invalid.
Hence, the ratio in (12) cannot be constant in this case. □

A.8 Computational complexity of UMNI-CRL algorithm

UMNI-CRL (Algorithm 1) consists of four stages that we elaborate on as follows.

Stage 1: The score difference estimation is only performed once before the subsequent main algo-
rithm steps. Since our results and the algorithm do not rely on a specific score difference
estimation technique, studying the computational complexity of this step is out of scope.

Stage 2: In this step, we check the dimension of V , a projection of a subspace (see line 6 of
Algorithm 1) at most n×(2κ+1)n times. Here, κ denotes the maximum possible determinant
of a matrix in {0, 1}(n−1)×(n−1). In the proof of Lemma 2 in Appendix A.1, we discuss
why this choice facilitates the identifiability guarantees.

Stage 3: In this step, we check the dimension of V (see line 23 of Algorithm 1) at most ∥W:,j∥1 ×
∥W:,t∥1 times for every (t, j) in Stage 3. Note that W is updated within the steps of Stage 3.
Therefore, the exact computational complexity would be a function of the graph structure
and the outputs of Stage 2.

Stage 4: Unmixing procedure for hard interventions essentially operates as a post-processing step
that does not pose additional computational challenges. For instance, the total number of
conditional independence tests in Stage 4 is O(n2).

Bounds on κ. In Section 4, we defined κ as the maximum determinant of a binary matrix
{0, 1}(n−1)×(n−1) and noted that the computational complexity of UMNI-CRL algorithm depends
on n and κ as seen in Stage 2 above. In general, using the well-known bound for the determinant of
{0, 1} matrices [32], we have

κ ≤ ⌊2(n/4)n⌋ .
∣∣∣[ adj(D)

]
i,j

∣∣∣ ≤ nn/2

2n−1
= 2

(n
4

)n
. (153)
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Figure 1: Sensitivity analysis of UMNI-CRL algorithm for quadratic latent causal models. The results
are for n = 5 latent nodes and d = 20 observed variables, 104 samples, and for average of 100 runs.
(a): SHD(Gtc, Ĝ) versus SNR (soft) and SHD(G, Ĝ) versus SNR (hard). (b): Incorrect mixing ratio
ℓsoft versus SNR (soft) and ℓhard versus SNR (hard).

However, for specific cases, we have much smaller upper bounds for κ. For instance, for the
choices of n being 2, 3, 4, 5, 6, 7, κ is known to be upper bounded by 1, 1, 2, 3, 5, 9, respectively [32].
Furthermore, [33] shows that the determinant of a matrix in {0, 1}n×n with n+ k nonzero entries is
bounded by 2k/3. Hence, if D has n+ k nonzero entries, then

κ ≤ ⌊2k/3⌋ . (154)

This implies that κ can be quite small for sparse UMN interventions. For instance, if we take the
exhaustive set of SN interventions and only add two additional intervened nodes in total, then we
have κ = 1.

Empirical tricks. Finally, we note that various empirical tricks can be used to reduce the algorithm’s
computational complexity. For instance, after every update to W, we can divide the columns of W
by the greatest common divisor of its entries. Furthermore, even though κ can grow quickly as n
becomes larger, in our experiments with up to n = 8 nodes, we observe that setting κ = 2 usually
suffices for a good performance. Hence, we set κ = 2 in the simulations in Section 5.

B Additional simulations

Details of evaluation metrics. For the graph recovery via hard interventions, we use conditional
independence tests in Stage 4 of Algorithm 1. Since we adopt a linear Gaussian SEM latent model,
we use a partial correlation test and set the significance level to α = 0.05. For the latent variable
recovery error metrics ℓhard and ℓsoft defined in (19), we first pass the entries of H∗ ·G through a
threshold of 0.1, then compute the incorrect mixing metrics.

B.1 Simulations with nonlinear latent causal models and sensitivity to noisy scores

In Section 5, we have adopted linear Gaussian SEMs as latent causal models for which the score
estimation can be done via estimating the precision matrices of the observed variables. In this section,
we perform additional simulations to study nonlinear latent causal models to investigate the relation
between the algorithm’s performance and the accuracy of the score function estimates. To this end, we
adopt a quadratic latent causal model under varying amounts of noise in score functions. Specifically,
we follow the experimental setup in [7] and adopt a quadratic latent causal model with additive noise
as follows

Zi =
√
Z⊤
pa(i) ·Ai · Zpa(i) +Ni , (155)

where {Ai : i ∈ [n]} are positive-definite matrices, and the noise terms are zero-mean Gaussian
variables with variances σ2

i sampled randomly from Unif([0.5, 1.5]). For an intervention on node i,
Zi is set to Ni/2. This causal model admits a closed-form score function (see [7, Appendix E.2] for
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details), which enables us to obtain a score oracle. In our MN intervention setup, we use this score
oracle and introduce varying levels of artificial noise according to

ŝX(x;σ2) = sX(x) ·
(
1 + Ξ

)
, where Ξ ∼ N (0, σ2 · Id×d) (156)

to test the behavior of our algorithm under different noise regimes σ ∈ [10−3, 10−1.5]. Figure 1
demonstrates the results for the latent graph recovery and latent variable recovery.
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental procedure is described in Section 5, and detailed parameteri-
zation is provided in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The experiments in Table 2 are reported for an average of 100 runs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Experiments are run on a single commercial CPU.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors have reviewed the NeurIPS Code of Ethics and confirm that the
research in this paper conforms with the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper is mostly theoretical and does not pose potential negative societal
impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper is mostly theoretical and does not pose such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Portions of the publicly available code of [7], available under Apache 2.0
license, are adopted in the code of our experiments.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The codebase for the experiments can be found at https://github.com/
acarturk-e/umni-crl, and is released under Apache 2.0 license.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

35


	Introduction
	Related literature

	CRL setting and preliminaries
	Latent causal model
	Unknown multi-node intervention models
	Identifiability criteria

	Identifiability under UMN interventions 
	UMN interventional CRL algorithm
	Simulations
	Discussion
	 
	Proofs
	Proof of Lemma 2
	Proof of Theorem 3
	Proof of Theorem 4
	Recovery of the latent variables
	Recovery of the latent graph

	Proofs of Theorem 1 and Theorem 2
	Proof of Lemma 3
	Insufficiency of strongly separating sets
	Analysis of interventional regularity
	Computational complexity of UMNI-CRL algorithm

	Additional simulations
	Simulations with nonlinear latent causal models and sensitivity to noisy scores



