
Web2Code: A Large-scale Webpage-to-Code Dataset
and Evaluation Framework for Multimodal LLMs

Sukmin Yun∗,1,4, Haokun Lin∗,1, Rusiru Thushara∗,1, Mohammad Qazim Bhat∗,1,
Yongxin Wang∗ ,1, Zutao Jiang1,7, Mingkai Deng2, Jinhong Wang1, Tianhua Tao1,3,

Junbo Li1, Haonan Li1, Preslav Nakov1, Timothy Baldwin1, Zhengzhong Liu1,5,
Eric P. Xing1,2,5, Xiaodan Liang1,6, Zhiqiang Shen1

1MBZUAI, 2CMU, 3UIUC, 4HYU ERICA, 5Petuum, 6SYSU, 7Pengcheng Laboratory
https://mbzuai-llm.github.io/webpage2code/

Abstract

Multimodal large language models (MLLMs) have shown impressive success
across modalities such as image, video, and audio in a variety of understanding and
generation tasks. However, current MLLMs are surprisingly poor at understanding
webpage screenshots and generating their corresponding HTML code. To address
this problem, we propose Web2Code, a benchmark consisting of a new large-scale
webpage-to-code dataset for instruction tuning and an evaluation framework for
the webpage understanding and HTML code translation abilities of MLLMs. For
dataset construction, we leverage pretrained LLMs to enhance existing webpage-
to-code datasets as well as generate a diverse pool of new webpages rendered
into images. Specifically, the inputs are webpage images and instructions, while
the responses are the webpage’s HTML code. We further include diverse natural
language QA pairs about the webpage content in the responses to enable a more
comprehensive understanding of the web content. To evaluate model performance
in these tasks, we develop an evaluation framework for testing MLLMs’ abilities in
webpage understanding and web-to-code generation. Extensive experiments show
that our proposed dataset is beneficial not only to our proposed tasks but also in the
general visual domain. We hope our work will contribute to the development of gen-
eral MLLMs suitable for web-based content generation and task automation. Our
data and code are available at https://github.com/MBZUAI-LLM/web2code.

1 Introduction

Multimodal large language models (MLLMs) have achieved explosive growth in the past few
years. Leveraging the rich commonsense knowledge in large language models (LLMs), MLLMs are
remarkably successful at processing and reasoning about various modalities such as image [2, 35],
video [60, 53], and audio [40] in a broad range of tasks such as recognition [52], reasoning [59], and
question-answering [39], all using language as the intermediate representation. However, existing
MLLMs are surprisingly poor at understanding webpage screenshots and generating the HTML code
to express their latent states. For instance, given the instruction “Parse the HTML code for this
webpage”, the well-known LLaVA-1.5 [33] generates generic, pale code that fails to preserve most of
the original webpage’s features (see Figure 1), which hampers its utility in applications such as UI
prototyping, automation agents, and accessibility (e.g., noting available buttons and options given
webpage screenshot).

The essential ingredients behind the progress in MLLMs are arguably large-scale instruction
datasets [9, 63] and evaluation benchmarks [16, 58] – the former for aligning multimodal inputs

∗Equal Contribution.

38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets and Benchmarks.

https://mbzuai-llm.github.io/webpage2code/
https://github.com/MBZUAI-LLM/web2code

(2) Trained on LLaVA dataset only

(3) Using our webpage dataset

(1) Original webpages

Figure 1: Our motivation for constructing the Web2Code dataset stems from the limitations of
previous models, such as LLaVA [33], which are trained on general datasets and struggle to generate
high-quality webpages, as in the second row. Our dataset aims to significantly enhance the quality of
webpage generation as in third row while maintaining a strong level of general multimodal ability.

with the massive knowledge in LLMs [27, 35], and the latter for standardized comparison which
facilitates model development. However, existing instruction datasets and benchmarks typically
focus on general settings (e.g., visual QA and reasoning) and pay insufficient attention to webpage
understanding and webpage-to-code generation, which requires a unique combination of capabilities
such as optical character recognition (OCR), spatial reasoning, and long-text generation, among
others. While previous work has developed datasets for these tasks [4, 22], they lack instruction
information and are unsuitable for integration with general-purpose MLLMs. On the other hand,
popular benchmarks [36, 25] evaluate some of the required capabilities in isolation, but not fully in
combination for visual parsing and reasoning over webpages.

To fill this gap, we propose a new instruction tuning dataset and evaluation suite named Web2Code.
Web2Code contains a total of 1179.7k webpage based instruction-response pairs. The responses
consist of not only the HTML code, but also the structured questions and answers about the webpage,
which assist a model in better understanding its information. For dataset collection, we use GPT-3.5
and GPT-4 to clean existing data (e.g. WebSRC [10]) as well as to generate completely new webpages
in HTML code. To evaluate the MLLM’s success at webpage understanding and HTML parsing, we
propose the Webpage Understanding Benchmark (WUB) and Webpage Code Generation Benchmark
(WCGB), two tasks that test the model’s abilities to answer questions about a webpage and generate
its HTML code, respectively. For the latter task, we find that traditional text similarity metrics are
insufficient for evaluating the fidelity of the generated code, and instead propose to render the output
HTML back to a webpage screenshot, and use GPT-4V [42] to evaluate the quality of the resulting
webpage [61].

To demonstrate the utility of our dataset, we train LLaVA-style MLLMs with our dataset included
in the instruction finetuning stage. Quantitative results show that finetuning on our dataset not
only clearly improves the image-to-HTML-code translation ability of the MLLM, but also leads to
improvements in the model’s perception and reasoning abilities in webpage screenshot understanding
as they are closely related. Furthermore, previous datasets like WebSight [22] and Pix2Code [4]
present challenges: WebSight includes privacy-sensitive information, while Pix2Code contains
random letters in full webpage screenshots. These issues limit MLLMs’ ability to generate coherent
text for webpage construction. In contrast, our dataset is more suitable for MLLM instruction
fine-tuning, offering enhanced capabilities without compromising existing ones.

2 Related Work

MLLM Dataset. At present, there is a substantial amount of large-scale visual instruction data,
primarily generated using GPT. SVIT [63] and LRV-Instruction [32] are both generated by GPT4

2

based on manual prompts to adjust the instruction data, including rich high-quality dialogue question
and answer, complex reasoning question and answer, reference question and answer, and image
detail description task datasets; similarly, ShareGPT4V [9], LLaVAR [62], LVIS-Instruct4V [55] use
GPT-4V [42] to generate millions of high-quality image-text pairs, aiming to enhance the perception,
reasoning and planning capabilities of MLLM. Commonly used image data sources include LAION
[48], CC [49], SBU [46], COCO [31], VG [21], VQAv2 [18].

MLLM. Instruction Tuning MLLM has made great progress in recent years. The structure of MLLM
usually contains a visual encoder, vision-language mapping module and LLM. LLaVA-v1.5 [33] only
uses MLP as the vision-language mapping module and the successful application of instruction tuning
on MLLM has inspired people. The community has explored various feasible structures, which can be
divided into attention structures BLIP2 [27], InstructBLIP [12], Qwen-VL [3], ShareGPT4V [9] and
non-attention structures LLaVA [33], Shikra [8] according to the vision-language mapping module.
At the same time, various open source and more powerful LLMs, such as Vicuna1.5 [11], InternLM2
[5] also help MLLM achieve richer and more extensive instruction following capabilities. Qwen-VL
[3], OtterHD [24], mPLUG-Owl [56], InternLM-XComposer2-4KHD [13] increase the resolution of
images, while LLaVA-NeXT [34], Mini-Gemini [28], MM1 [41] split the input image into several
image crops. In addition, BRAVE [19], MoVA [64], DeepSeek-VL [38], OmniFusion [17] apply
supplementary vision encoders to obtain abundant visual features, e.g. DINOv2 [43], SAM [20].
Furthermore, more computer vision models are utilized for different tasks, which include image
segmentation, detection and OCR, in MOAI [23], CuMo [26] and SpatialVLM [7]. Subsequently,
MoE [30] was applied to MLLM to expand the scale of training data at the same computing scale.

Code Study. There are various code studies related to LLM. Sarker et al. [47] focuses on generating
code functions using formula hints, aiming to enhance syntactic robustness and systematically testing
the reliability of the syntax. From the perspective of security, Finkman et al. [15] claims that these
code assistance tools may inadvertently disclose the developer’s proprietary code to the code assistant
service provider in the process of helping development, thus they propose a complementary method
to reduce the risk of code leakage while providing effective advice to developers. In addition to
code leakage, the code generated by LLM has also caused concerns in industries and other fields.
To address this issue, Ye et al. [57] proposes a new zero-shot synthetic code detector based on the
similarity between code and its rewritten variants. In the evaluation work on code generation, Du et al.
[14] proposes a new computational efficiency benchmark Mercury and a new metric Beyond for the
efficiency evaluation of code. They experimentally show that direct preference optimization can be
used as a robust baseline for improving computational efficiency compared to supervised fine-tuning,
which paves a promising path for future exploration of efficient code generation.

3 Dataset Construction

Overview. Our Web2Code instruction tuning dataset construction and instruction generation process
involves four key components: (1) Creation of new webpage image-code pair data: We generate high-
quality HTML webpage-code pairs following the CodeAlpaca prompt [6] using GPT-3.5 and convert
them into instruction-following data. (2) Refinement of existing webpage code generation data: We
transform existing datasets including WebSight [22] and Pix2Code [4] into an instruction-following
data format similar to LLaVA data [33], so they can be used as instruction-following data to train
MLLMs. (3) Creation of a new text question-answer pair data: We generate a new question-answer
pair dataset utilizing our new GPT-3.5 generated data from (1) for webpage understanding. (4)
Refinement of existing webpage understanding data: We refine the WebSRC [10] question-answer
data to improve its quality using the GPT-4. Each component is elaborated in detail as follows:

DWCG: Creation of new webpage image-code pair data for code generation. To augment
our dataset with high-quality data, we employ GPT-3.5 to generate 60K HTML pages following
the guidelines and prompts in CodeAlpaca [6].2 Using Selenium WebDriver, we then create web
image screenshots from the generated HTML code. These web image-code pairs were subsequently
converted into an instruction-following data format similar to the LLaVA data format [33], enabling
their use in training Multimodal Large Language Models (MLLMs). The example of the instruction is
shown in Figure 17. The generation of instruction is done in two stages using prompts fed to GPT-4:
(a) During stage 1, the prompt shown in Figure 13 resulted in the creation of generic instructions. (b)

2To ensure both quality and diversity in the synthetic data generation, we design a prompting mechanism
based on 10 detailed criteria, as detailed in Section 4.1.

3

Describe the procedure for someone interested in
volunteering.

An interested individual can volunteer by filling
out the form provided in the 'Volunteer' section of the
website. This form asks for the person's full name,
email, phone number, and area of interest. Additionally,
the person must check a box agreeing to the terms and
conditions before submitting the form.

What is the main goal of the organization, according
to their mission statement?

The main goal of the organization, according to
their mission statement, is to provide quality education
and opportunities to underprivileged communities,
empowering individuals to achieve their full potential
and break the cycle of poverty.

Identify the main color used on the 'Add to Cart'
buttons.

The 'Add to Cart' buttons have a background color of
#7cb342, which is a shade of green.

What items are currently in the cart, and can you
state their prices?

There are two items in the cart: 'Trendy Sneakers'
priced at $49.99 and 'Stylish Handbag' priced at $69.99.

Calculate the total cost if a user decides to remove
the 'Stylish Handbag' from the cart.

If the 'Stylish Handbag', which costs $69.99, is
removed from the cart, the total cost would be the price
of the 'Trendy Sneakers', which is $49.99.

Q

Q

Q

Q

Q

A

A

A

A

A

Figure 2: Qualitative example of generated question-answer pair dataset. Questions cover diverse
aspects of the web page understanding.

Question: Where will I be working if I choose
Unlimited Commission - Work from Home?

Answer: Western Cape

Question: What is the location of Unlimited Commission
- Work from Home?

Answer: Western Cape

Question: Where is the job Sales Representative
located?

Answer: Johannesburg

Question: Where will I be working if I choose Sales
Representative?

Answer: Johannesburg

Question: Where is the job Work from home - Call
centre agent / lead warmer located?

Answer: Gauteng

Question: What is the location of Work from home -
Call centre agent / lead warmer?

Answer: Gauteng

Question: When was the job Sales Representative
posted?

Answer: 21 Oct 2020

Question: When was the job offer Sales Representative
posted on the internet?

Answer: 21 Oct 2020

Question: Where will I be working if I choose
Unlimited Commission - Work from Home?

Answer: Western Cape

Question: What is the location of Unlimited Commission
- Work from Home?

Answer: The Unlimited Commission - Work from Home job is
located in Western Cape.

Question: Where is the job Sales Representative
located?

Answer: The Sales Representative job is based in
Johannesburg.

Question: Where will I be working if I choose Sales
Representative?

Answer: Johannesburg

Question: Where is the job Work from home - Call centre
agent / lead warmer located?
Answer: The job is located in Gauteng.

Question: What is the location of Work from home -
Call centre agent / lead warmer?

Answer: Gauteng

Question: When was the job Sales Representative
posted?

Answer: The Sales Representative job was posted on 21
Oct 2020.

Question: When was the job offer Sales Representative
posted on the internet?

Answer: 21 Oct 2020

Figure 3: WebSRC data refinement for improved Quality. Left: Before refinement; Right: After
refinement, the quality has been improved and duplications have been excluded.

This is followed by augmenting the instruction from (a) with the GPT generated instructions using
the prompt shown in Figure 14 to include stylistic information. This allows the model to learn two
styles: Modern and Bootstrap style as shown in Figure 22 and Figure 23, respectively.

DWCGR: Refinement of existing webpage code generation data. To enhance the capability of our
model in the task of HTML code generation, we leverage the Pix2code [4] and WebSight [22] datasets.
To mitigate the detrimental impact on model performance from random letters in Pix2Code data,
we replace these random letters with meaningful text using GPT-4, thereby refining the webpages
into diverse webpages encompassing product landing pages, personal portfolios, blogs, and other
categories. We then visually render each sample by taking screenshots of the browser view of each
webpage. Further, we convert all these data into LLaVA instruction following data format using the
same strategy as used for DWCG. We note that DWCG and WebSight webpages follow Modern style
while Pix2Code follows Bootstrap style.

DWU: Creation of a new question-answer pair data for webpage understanding. For the purpose
of fine-tuning our models in an instruction-following manner, we utilize the capabilities of GPT-4 to
generate webpage code-based question-answer pairs. We generate 10 question-answer pairs using

4

Figure 4: Word Cloud for the answer set of the
GPT4 based DWU dataset.

div p
meta im

g a h2
inp

ut
htm

l
he

ad
bo

dy titl
e h3sty

le li h1lab
el

bu
tto

n
op

tio
n
for

m
he

ad
er

HTML Tags

0K

50K

100K

150K

200K

250K

Co
un

t

Figure 5: Distribution of most common 20 tags
in GPT-3.5 based HTML data.

Dataset WebSight [22] Design2Code [50] Pix2Code [4] DWCG (ours) DWCGR (ours)
Instruction - - - ✓ ✓
Source Synthetic Real-World Synthetic Synthetic Synthetic
Size 823K 484 1.7K 60K 824.7K
Avg Length (tokens) 647±216 31216±23902 658.7±98.0 471.8±162.3 652.85±157.0
Avg Tag Count 19±8 158±100 51.6±8.0 28.1±10.6 35.3±9.0
Avg DOM Depth 5±1 13±5 8.0±0.0 5.3±1.0 6.5±1.0
Avg Unique Tags 10±3 22±6 17.0±0.0 13.6±2.7 13.5±2.5

Table 1: Comparison of dataset statistics among webpage code generation datasets: WebSight,
Design2Code, Pix2Code, our DWCG, and our DWCGR. DWCG is a newly generated GPT-3.5-based
dataset, while DWCGR is the refined dataset that utilizes WebSight and Pix2Code datasets.

GPT-4 for a subset of 24.35K webpage data, resulting in a total of 243.5K question-answer data points.
This includes, a set of 230K question-answer pairs for GPT-3.5 based webpages, a set of 13.5K newly
generated question answer pairs for refined Pix2Code images. These pairs are meticulously crafted to
align with our image-based evaluation criteria, ensuring that each question probes specific aspects
of the visual and content quality reflected in the generated web images. This strategy enhances the
model’s performance by integrating a nuanced understanding of the evaluation parameters into its
learning process. To generate the DWU question-answer pair data, we use only the HTML code
shown in Figure 12, which includes the compiled HTML image. Figure 2 shows the compiled HTML
image alongside the corresponding question-answer pairs. For training, we input the image and
questions together, excluding the HTML code for enhancing webpage understanding capabilities.

DWUR: Refinement of existing webpage understanding data. To increase our instruction-
following dataset with high-quality instruction-following examples for webpages, we integrate
the WebSRC dataset into our training regime. Prior to inclusion, we meticulously filter the existing
question-and-answer pairs from the WebSRC dataset to ensure relevance and quality. This involves
duplication removal and quality optimization as shown in Figure 3. Specifically, we find that Web-
SRC data contains several questions related to the same answer. To this end, we first remove those
duplicates and then employed GPT-4 to assess and enhance the quality of answers. This process not
only refines the dataset into 51.5K high-quality instruction data but also ensures that the model’s
training is influenced by high-fidelity, instructionally sound data, thereby improving its ability to
follow complex web-based instructions.

3.1 Statistics and Analysis

Figure 4 shows the word cloud of the answer set of our question-answer dataset. The word cloud
highlights the most frequently occurring terms, with "section," "color", "button", and "website" being
the most prominent, indicating a strong emphasis on structural and design elements in the data. This
reflects the detailed focus on the layout and visual aspects of the dataset.

Figure 5 illustrates the distribution of the most common HTML tags in our GPT-3.5 generated HTML
data. The distribution shows a high frequency of essential structural tags such as <div>, <p>, <meta>,
, and <a>, indicating that the generated pages include a diverse range of elements necessary for
rich and varied web content. The significant presence of <h2>, <input>, <html>, <head>, and <body>
tags further reinforces the completeness and structural integrity of the generated HTML documents.

5

Question: Please
generate the HTML
code for the given

image.

MLLM

GPT4 Vision

• Visual Structure and Alignment
• Textual and Content Consistency
• Color and Aesthetic Design
• User Interface and Interactivity

GPT based
Evaluation

GT webpage

Generated
webpage

Q&A based
Evaluation

GT webpage

MLLM

Question: ….
Answer: Yes / No

Question: ….
Answer: Yes / No

• Accuracy Score

Question id:
Answer: Yes / No

Question id:
Answer: Yes / No

Webpage Code Generation Benchmark (WCGB) Webpage Understanding Benchmark (WUB)

Figure 6: Evaluation benchmark for webpage generation and webpage understanding. Left: WCGB
utilizes GPT4 Vision based online evaluation for image level comparison; Right: WUB employs an
offline evaluation based on question-answer pairs.

To estimate the difficulty levels of our HTML-based webpage dataset, we provide several quantitative
measures and compare them with recent and similar existing datasets, namely WebSight [22],
Design2Code [50], and Pix2Code [4] (See Table 1).

Design2Code is primarily used for testing and has a small size of 484 examples, limiting its versatility
and robustness. In contrast, our dataset, intended for both training and testing, is significantly
larger (884.7K examples) and more complex, making it more suitable for developing robust models.
Overall, our benchmark examples are more challenging and cover a broader spectrum of complexities
compared to prior efforts such as WebSight.

3.2 Distribution

Dataset DWU DWUR
Instruction ✓ ✓

Size 243.5K 51.5K

Table 2: Distribution of DWU and
DWUR datasets. Both datasets in-
clude high-quality question-answer
pairs for webpage understanding.

Our instruction-following dataset contains 1,179.7K instruction
data points. This includes 884.7K website image-code pairs
and 295K question-answer pairs.

The 295K question-answer pairs consist of 243.5K GPT-4 based
question-answer pairs (DWU Data) and 51.5K pairs from Web-
SRC image-based data, as shown in Table 2. Our evaluation
dataset comprises 1,198 webpage screenshot images, sourced
from diverse origins, including WebSight, Pix2Code, GPT-
3.5-generated data, and manual processes, to ensure a broad
representation of web content. Additionally, we utilize 5,990 "yes" / "no" question-answer pairs
generated from the GPT-4 Vision API for our Webpage Understanding Benchmark, as in Section 4.1.

4 A New Evaluation Framework for Webpage

Our proposed evaluation framework includes two schemes: (1) Webpage Understanding Benchmark
(WUB): An offline evaluation using "yes" / "no" questions. (2) Webpage Code Generation Benchmark
(WCGB): An online evaluation (using GPT-4 Vision) based on image similarity.

4.1 Evaluation Metric for HTML Code Generation

In the realm of assessing code quality, particularly in terms of final visual appeal and overall function-
ality, existing methods that rely on code similarity metrics fall short. These traditional approaches
often lack the precision and reliability needed for nuanced evaluations of code effectiveness. To
address these shortcomings, we have developed a novel approach: regenerating the webpage using
the model’s predicted HTML code and capturing screenshots of these generated webpages. This
process, automated using the Selenium WebDriver extension in Python, shifts the focus from the less
reliable code similarity assessments to a more accurate and visually oriented method. By comparing
images of the generated webpages, we can more effectively evaluate the aesthetic and functional
aspects of the code, offering a more comprehensive understanding of its quality.

6

We propose two benchmarks for assessing webpage understanding and code generation capabilities.

WUB: This benchmark comprises 5,990 high-quality question-answer pairs generated from GPT-4
Vision API (See prompt 16), based on 1,198 webpage screenshot images, where each answer is
either "yes" or "no". These images are sourced from diverse data origins, including WebSight,
Pix2Code, GPT-3.5, and manual processes, ensuring a broad representation of web content. Figure
11 shows a qualitative sample data we used for WUB. We test these pairs on various multimodal
image understanding models by comparing the predicted answers to the ground truth, with the final
accuracy score serving as the evaluation metric as depicted on the right side of Figure 6. Qualitative
data examples in our WUB benchmark are shown in Figure 11.

WCGB: Utilizing the same images as the WUB, this benchmark evaluates a multimodal model tasked
with generating HTML code from webpage images based on specific instructions. Unlike traditional
code-level evaluations, this benchmark assesses the generated webpage’s fidelity at the image level.
We convert the predicted HTML codes back into images using Selenium WebDriver to allow a direct
visual comparison with the ground truth images. The evaluation, depicted on the left side of Figure 6,
considers 10 different aspects, which are further categorized into four evaluation matrices using the
GPT-4 Vision API. This image-level evaluation provides a more accurate measure of the model’s
code generation capabilities, acknowledging that identical webpages can be constructed from varying
codes. The prompt used for evaluation is shown in Figure 15. This framework consists of 10 distinct
criteria, which we group into four categories, each encompassing specific criteria that are scored on a
0-10 scale, as follows:

1. Visual Structure and Alignment
• Layout Consistency: Measures the arrangement of structural webpage elements like

headers, footers, and sidebars.
• Element Alignment: Assesses the alignment of images, buttons, and text boxes.
• Proportional Accuracy: Checks for consistency in sizes and aspect ratios of visual ele-

ments.
• Visual Harmony: Examines the overall balance and harmony in design.

2. Color and Aesthetic Design
• Color Scheme and Aesthetic Match: Focuses on the similarity in color schemes, including

hues and saturation.
• Aesthetic Resemblance: Looks at the overall aesthetic appeal and style (modern, minimal-

istic, traditional, etc.).

3. Textual and Content Consistency
• Font Characteristics and Consistency: Assesses uniformity in font type, size, style, and

weight.
• Textual Content Match: Evaluates the match in words and sentences.
• Numeric and Special Character Accuracy: Checks for consistency in numbers, dates, and

special characters.

4. User Interface and Interactivity
• User Interface Consistency: Assesses the similarity in design language and appearance of

UI elements like menus, buttons, and forms.

4.2 Quantitative Evaluation for HTML Code Generation of MLLMs

We have evaluated the trained models using various data configurations and backbones on our WUB
and WCGB benchmarks. The performance of the models on the code generation benchmark is
presented in Table 3, while the results for webpage understanding are shown in Table 4.

To be specific, our dataset components have an orthogonal contribution to the overall improvements
on both the WUB and the WCGB benchmarks. Table 3 demonstrates improvements in webpage
code generation quality when incrementally adding Web2Code sub-datasets; + DWCG, + DWU,
+ DWCGR, and + DWUR. For example, the results based on instruction-tuned LLaMA-3 (in the
first five rows) show step-wise improvements on the WCGB benchmark from the general domain
data only (1.79→6.402→6.716→7.806→8.530 on the overall metric). Interestingly, the instruction-
tuned LLaMA-3 model trained solely on general domain data shows poor performance on WCGB,

7

LLM Backbone DWCG DWU DWCGR DWUR VSA ↑ CAD ↑ TCC ↑ UII ↑ Overall ↑

LLaMA3-8B [1]

- - - - 1.563 1.777 1.894 1.911 1.79
✓ - - - 5.613 6.575 6.551 6.870 6.402
✓ ✓ - - 6.564 6.762 6.998 6.541 6.716
✓ ✓ ✓ - 7.667 7.560 7.995 8.001 7.806
✓ ✓ ✓ ✓ 8.522 8.564 8.421 8.611 8.530

CrystalChat-7B [37]
- - - - 4.714 4.572 4.865 5.147 4.825
✓ ✓ - - 7.900 8.001 8.204 8.215 8.080
✓ ✓ ✓ ✓ 8.384 8.287 8.417 8.488 8.394

CystalCoder-7B [37]
- - - - 3.832 3.678 3.411 3.992 3.728
✓ - - - 7.812 7.899 8.138 8.112 7.990
✓ ✓ - - 8.010 8.102 8.266 8.124 8.126

Vicuna1.5-7B [11] - - - - 3.042 3.250 3.333 3.167 3.198
✓ ✓ ✓ ✓ 7.876 7.687 7.267 7.563 7.598

Table 3: Performance comparison of different LLM backbones under various data configurations on
our Webpage Code Generation Benchmark (WCGB). "VSA" denotes Visual Structure and Alignment,
"CAD" represents Color and Aesthetic Design, "TCC" represents Textual and Content Consistency,
and "UII" denotes User Interface and Interactivity.

LLM Backbone DWCG DWU DWCGR DWUR WUB Accuracy (%)

LLaMA3-8B [1]

- - - - 65.56
✓ - - - 60.00
✓ ✓ - - 69.33
✓ ✓ ✓ - 68.68
✓ ✓ ✓ ✓ 74.84

CrystalChat-7B [37]
- - - - 73.94
✓ ✓ - - 73.48
✓ ✓ ✓ ✓ 74.14

CrystalCoder-7B [37]
- - - - 73.54
✓ - - - 71.81
✓ ✓ - - 73.74

Vicuna1.5-7B [11] - - - - 71.12
✓ ✓ ✓ ✓ 71.23

Table 4: Accuracy of webpage understanding under various data configurations and LLM backbones.
All models are instruction-tuned and evaluated on our WUB benchmark. We note that the general
domain data (i.e., LLaVA) is included in all data configuration as default.

while achieves comparable performance on WUB when compared to models trained with additional
webpage datasets. (see Table 4). Similar trends are also found in other LLM backbones while adding
the proposed dataset shows significant improvements. Table 4 further demonstrates the effectiveness
of the proposed dataset on the webpage comprehension capabilities. For example, the DWCG dataset
improves code generation capabilities, though it requires more webpage understanding. However, the
DWU dataset not only recovers but also enhances both WUB and WCGB performances. Moreover,
the refined dataset DWCGR primarily boosts WCGB, while DWUR shows improvements across all
metrics. Overall, we found the proposed dataset can enhance both webpage understanding capability
and webpage code generation abilities under various LLM backbones, and LLaMA3-8B archives the
best performance among all on both webpage code generation and webpage understanding.

4.3 Visualizations for Qualitative Evaluation

As shown in Figure 7, we compare the results between the original image which is the real-world
webpage sample, the rendered image generated by using LLM backbones of Vicuna1.5-7B and
CrystalChat-7B, respectively. CrystalChat-7B is a code-enhanced LLM and our visualization demon-
strates that it achieves the better quality of generation than Vicuna1.5-7B even though the performance
is slightly worse on the general multimodal domain, as presented in Table 6. Moreover, as in Figure 8,
our rendered webpage from the model trained on our web dataset closely resembles the original
image, indicating the positive impact of the web2code dataset. We further visualize our generation in
Figure 9 when the input is a hand-drawn webpage to examine the adaptation ability of our model.

8

(a) Original (b) Our Vicuna1.5-7B (c) Our CrystalChat-7B

Figure 7: Visualization comparison using different backbones. Using the code-enhanced LLM
backbone CrystalChat-7B achieves better quality of generation than Vicuna1.5-7B.

(a) Original (b) GT-Code to Image (c) Ours

Figure 8: Visualization comparison between ground-truth code generated image and our result. The
style and layout of the generated webpage image are similar to the ground-truth image.

Hand drawn webpage CrystalChat outputHand drawn webpage CrystalChat output

(a) Hand drawn webpage and our generation (b) Hand drawn webpage and our generation

Figure 9: Visualization of our CrystalChat-7B generation when the input is a hand-drawn webpage.

5 General Evaluation of MLLMs Using Web2Code

Setup and Overview. Our model training framework mainly follows the design of LLaVA-1.5 [33]
where we leverage the capabilities of both a pre-trained visual encoder, an LLM and a projector
to connect visual features into the word embedding space. The model consists of (1) a pre-trained
CLIP ViT-L/14 [44] visual encoder with a resolution of 336×336 and a patch size of 14, which has
good feature representation already aligned with the text embedding space. (2) As for the LLM
backbones, we leverage CrystalChat [37] as the base model and compare it with other latest LLM
backbones like Vicuna1.5 [11], LLaMA2 [54], LLaMA3 [1] and CrystalCoder [37].3 Training details
and hyperparameters are presented in the Appendix A.

General Evaluation Metrics for MLLMs. MME [16] serves as an extensive evaluative benchmark,
aiming to assess the perceptual and cognitive capability of MLLMs within 14 sub-tasks. Addition-
ally, we also evaluate the performance of our models on text-oriented visual question-answering
tasks employing a diverse set of benchmark datasets including ScienceQA [39] and TextVQA [51].
Furthermore, We assess our models’ ability toward anti-hallucination through POPE [29].

Effects of Web2Code on General Domain. Here, we first perform instruction tuning using Web2Code
on various LLM backbones and then we evaluate those MLLMs on the general domain of visual
language understanding. Throughout extensive experiments under various data configurations, we
observed that the proposed dataset Web2Code can be incorporated with the conventional visual
language instruction tuning dataset of LLaVA [33] without harming performances on the general
domain. Table 5 summarizes the results.4 Specifically, both proposed Web Understanding data (DWU

3CrystalCoder [37] and CrystalChat [37] are an open-source code LLM pre-trained and instruction-tuned
models, respectively. They are trained on publicly available language and code datasets.

4We observe that the conventional visual language domain data (i.e., LLaVA) is a crucial component for
visual language understanding, i.e., instruction-tuned MLLMs without the general domain data are weak.

9

LLM Backbone DWU DWCG DWUR DWCGR MME-P MME-C POPE SciQA TextVQA

CrystalChat-7B [37]

- - - - 1456.53 308.21 86.86 67.77 57.84
✓ - - - 1438.51 292.14 87.10 68.27 58.15
✓ ✓ - - 1478.82 297.14 86.13 67.92 57.41
✓ ✓ ✓ ✓ 1449.54 279.64 86.53 68.32 57.86

Table 5: Component analysis on CrystalChat-7B backbone under various data configurations. We
note that the general domain data (i.e., LLaVA) is included in all data configuration as default.

or DWUR) and Web Code Generation data (DWCG or DWCGR) do not hurt or even can be beneficial
to the visual language understanding. For example, we observed that adding DWU to CrystalChat
achieves comparable or even better performances on POPE (86.86→87.10), SciQA (67.77→68.27),
and TextVQA (57.84→58.15). Somewhat surprisingly, we further found that adding DWCG can even
improve visual language understanding. For example, the second and third rows of CrystalChat show
+40.31 and +5.00 points higher improvements in MME-P and MME-C benchmarks, respectively.
Moreover, adding refined data DWUR and DWCGR are still effective in the visual language domain,
by achieving comparable (or even better) performances on overall benchmarks. For example, the
last row indicates that adding DWUR and DWCGR preserves comparable performances on overall
benchmarks and even achieves +0.4 higher points on the SciQA benchmark.

6 Conclusion

We have presented Web2Code, a benchmark that consists of a high-quality, large-scale webpage-to-
code instruction tuning dataset containing 1.18M entries and an evaluation suite for the webpage
understanding and webpage-to-HTML translation abilities of MLLMs. To mitigate potential data bi-
ases, we have guided the synthetic data generation process toward a balanced output and incorporated
diverse existing datasets to further address bias concerns. Through extensive experiments, we have
demonstrated that our proposed dataset is clearly effective at enhancing these abilities of MLLMs as
well as general visual proficiency, while existing datasets lead to inferior performance. We hope our
work will attract the community’s attention and facilitate progress toward foundation models serving
as virtual assistants for content generation and task automation.

Limitations and Ethics Statement. The Web2Code project provides a comprehensive dataset and
evaluation framework for fine-grained multimodal large language models. This can significantly
enhance the capabilities of LLMs in understanding and generating web code from instructions,
leading to advancements in web development automation, and improved coding assistance tools and
platforms. By enabling more accurate and context-aware code generation, it can boost productivity
for developers and make coding more accessible to beginners. However, the primary limitations
of the Web2Code include the potential for a biased dataset that may not cover all possible HTML
coding scenarios, potentially leading to gaps in model performance, and some webpages that include
humans may be privacy sensitive, Ensuring high-quality annotations and comprehensive coverage of
all possible HTML and code structures is challenging. Also, handling complex, real-world HTML
and code scenarios might still be beyond the current capabilities of the models trained on this dataset.
Moreover, the proposed evaluation framework may not capture all aspects of the code generation
quality, such as code efficiency, readability, or adherence to best practices.

Acknowledgements

We are thankful to Veselin Stoyanov for discussions on multimodal large language models. We also
thank the support provided by the MBZUAI IT/corporate service teams (Ian Mathews, John Murphy,
Padma Pavani, Tapas Sen, Walid Omari) and CIAI engineering team (Guowei He, Yun Xu, Yue Peng)
for organizing High Performance Computing resources and services. Z.S. and E.X. would like to
thank the MBZUAI-WIS Joint Program for AI Research. Z.S. and S.Y. also would like to thank
the Google Research award grant and the Gemma Academic Program grant for their support. S.Y.
was supported by the research fund of Hanyang University (HY-2024-2693). S.Y. was also partly
supported by Institute of Information & Communications Technology Planning & Evaluation (IITP)
grant funded by the Korean government (MSIT) (No.RS-2022-00155885, Artificial Intelligence
Convergence Innovation Human Resources Development (Hanyang University ERICA)).

10

References
[1] AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/llama3/

blob/main/MODEL_CARD.md.

[2] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson,
Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual
language model for few-shot learning. NeurIPS, 2022.

[3] Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding,
localization, text reading, and beyond, 2023.

[4] Tony Beltramelli. pix2code: Generating code from a graphical user interface screenshot. arXiv
preprint arXiv:1705.07962, 2017.

[5] Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen, Zehui
Chen, Zhi Chen, Pei Chu, et al. Internlm2 technical report. arXiv preprint arXiv:2403.17297,
2024.

[6] Sahil Chaudhary. Code alpaca: An instruction-following llama model for code generation.
https://github.com/sahil280114/codealpaca, 2023.

[7] Boyuan Chen, Zhuo Xu, Sean Kirmani, Brian Ichter, Danny Driess, Pete Florence, Dorsa
Sadigh, Leonidas Guibas, and Fei Xia. Spatialvlm: Endowing vision-language models with
spatial reasoning capabilities. arXiv preprint arXiv:2401.12168, 2024. URL https://arxiv.
org/abs/2401.12168.

[8] Keqin Chen, Zhao Zhang, Weili Zeng, Richong Zhang, Feng Zhu, and Rui Zhao. Shikra:
Unleashing multimodal llm’s referential dialogue magic, 2023.

[9] Lin Chen, Jisong Li, Xiaoyi Dong, Pan Zhang, Conghui He, Jiaqi Wang, Feng Zhao, and Dahua
Lin. Sharegpt4v: Improving large multi-modal models with better captions. arXiv preprint
arXiv:2311.12793, 2023.

[10] Xingyu Chen, Zihan Zhao, Lu Chen, Danyang Zhang, Jiabao Ji, Ao Luo, Yuxuan Xiong, and
Kai Yu. Websrc: A dataset for web-based structural reading comprehension. arXiv preprint
arXiv:2101.09465, 2021.

[11] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna:
An open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL
https://lmsys.org/blog/2023-03-30-vicuna/.

[12] Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng
Wang, Boyang Li, Pascale N Fung, and Steven Hoi. Instructblip: Towards general-purpose
vision-language models with instruction tuning. NeurIPS, 36, 2024.

[13] Xiaoyi Dong, Pan Zhang, Yuhang Zang, Yuhang Cao, and et al Bin Wang. Internlm-xcomposer2-
4khd: A pioneering large vision-language model handling resolutions from 336 pixels to 4k hd,
2024.

[14] Mingzhe Du, Anh Tuan Luu, Bin Ji, and See-Kiong Ng. Mercury: An efficiency benchmark for
llm code synthesis. arXiv preprint arXiv:2402.07844, 2024.

[15] Amit Finkman, Eden Bar-Kochva, Avishag Shapira, Dudu Mimran, Yuval Elovici, and Asaf
Shabtai. Codecloak: A method for evaluating and mitigating code leakage by llm code assistants.
arXiv preprint arXiv:2404.09066, 2024.

[16] Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang,
Xiawu Zheng, Ke Li, Xing Sun, Yunsheng Wu, and Rongrong Ji. Mme: A comprehensive
evaluation benchmark for multimodal large language models, 2023.

11

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/sahil280114/codealpaca
https://arxiv.org/abs/2401.12168
https://arxiv.org/abs/2401.12168
https://lmsys.org/blog/2023-03-30-vicuna/

[17] Elizaveta Goncharova, Anton Razzhigaev, Matvey Mikhalchuk, Maxim Kurkin, Irina Abdul-
laeva, Matvey Skripkin, Ivan Oseledets, Denis Dimitrov, and Andrey Kuznetsov. Omnifusion
technical report, 2024.

[18] Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v
in vqa matter: Elevating the role of image understanding in visual question answering, 2017.

[19] Oğuzhan Fatih Kar, Alessio Tonioni, Petra Poklukar, Achin Kulshrestha, Amir Zamir, and
Federico Tombari. Brave: Broadening the visual encoding of vision-language models, 2024.

[20] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson,
Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick.
Segment anything, 2023.

[21] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie
Chen, Yannis Kalantidis, Li-Jia Li, David A. Shamma, Michael S. Bernstein, and Fei-Fei Li.
Visual genome: Connecting language and vision using crowdsourced dense image annotations,
2016.

[22] Hugo Laurençon, Léo Tronchon, and Victor Sanh. Unlocking the conversion of web screenshots
into html code with the websight dataset. arXiv preprint arXiv:2403.09029, 2024.

[23] Byung-Kwan Lee, Beomchan Park, Chae Won Kim, and Yong Man Ro. Moai: Mixture of all
intelligence for large language and vision models, 2024.

[24] Bo Li, Peiyuan Zhang, Jingkang Yang, Yuanhan Zhang, Fanyi Pu, and Ziwei Liu. Otterhd: A
high-resolution multi-modality model, 2023.

[25] Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yixiao Ge, and Ying Shan. Seed-
bench: Benchmarking multimodal llms with generative comprehension. arXiv preprint
arXiv:2307.16125, 2023.

[26] Jiachen Li, Xinyao Wang, Sijie Zhu, Chia-Wen Kuo, Lu Xu, Fan Chen, Jitesh Jain, Humphrey
Shi, and Longyin Wen. Cumo: Scaling multimodal llm with co-upcycled mixture-of-experts,
2024.

[27] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International conference
on machine learning, pages 19730–19742. PMLR, 2023.

[28] Yanwei Li, Yuechen Zhang, Chengyao Wang, Zhisheng Zhong, Yixin Chen, Ruihang Chu,
Shaoteng Liu, and Jiaya Jia. Mini-gemini: Mining the potential of multi-modality vision
language models, 2024.

[29] Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating
object hallucination in large vision-language models, 2023.

[30] Bin Lin, Zhenyu Tang, Yang Ye, Jiaxi Cui, Bin Zhu, Peng Jin, Junwu Zhang, Munan Ning,
and Li Yuan. Moe-llava: Mixture of experts for large vision-language models. arXiv preprint
arXiv:2401.15947, 2024.

[31] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays,
Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Common
objects in context, 2015.

[32] Fuxiao Liu, Kevin Lin, Linjie Li, Jianfeng Wang, Yaser Yacoob, and Lijuan Wang. Mitigat-
ing hallucination in large multi-modal models via robust instruction tuning. In The Twelfth
International Conference on Learning Representations, 2023.

[33] Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual
instruction tuning. arXiv preprint arXiv:2310.03744, 2023.

[34] Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae
Lee. Llava-next: Improved reasoning, ocr, and world knowledge, January 2024. URL https:
//llava-vl.github.io/blog/2024-01-30-llava-next/.

12

https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/

[35] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36, 2024.

[36] Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan,
Jiaqi Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around
player? arXiv preprint arXiv:2307.06281, 2023.

[37] Zhengzhong Liu, Aurick Qiao, Willie Neiswanger, Hongyi Wang, Bowen Tan, Tianhua Tao,
Junbo Li, Yuqi Wang, Suqi Sun, Omkar Pangarkar, Richard Fan, Yi Gu, Victor Miller, Yonghao
Zhuang, Guowei He, Haonan Li, Fajri Koto, Liping Tang, Nikhil Ranjan, Zhiqiang Shen,
Xuguang Ren, Roberto Iriondo, Cun Mu, Zhiting Hu, Mark Schulze, Preslav Nakov, Tim
Baldwin, and Eric P. Xing. Llm360: Towards fully transparent open-source llms, 2023.

[38] Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai Dong, Bo Liu, Jingxiang Sun, Tongzheng
Ren, Zhuoshu Li, Hao Yang, Yaofeng Sun, Chengqi Deng, Hanwei Xu, Zhenda Xie, and Chong
Ruan. Deepseek-vl: Towards real-world vision-language understanding, 2024.

[39] Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind
Tafjord, Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought
chains for science question answering. In The 36th Conference on Neural Information Process-
ing Systems (NeurIPS), 2022.

[40] Chenyang Lyu, Minghao Wu, Longyue Wang, Xinting Huang, Bingshuai Liu, Zefeng Du,
Shuming Shi, and Zhaopeng Tu. Macaw-llm: Multi-modal language modeling with image,
audio, video, and text integration. arXiv preprint arXiv:2306.09093, 2023.

[41] Brandon McKinzie, Zhe Gan, Jean-Philippe Fauconnier, Sam Dodge, Bowen Zhang, Philipp
Dufter, and et al. Mm1: Methods, analysis & insights from multimodal llm pre-training, 2024.

[42] OpenAI. Gpt-4 technical report, 2024.

[43] Maxime Oquab, Timothée Darcet, Theo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil
Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Russell
Howes, Po-Yao Huang, Hu Xu, Vasu Sharma, Shang-Wen Li, Wojciech Galuba, Mike Rabbat,
Mido Assran, Nicolas Ballas, Gabriel Synnaeve, Ishan Misra, Herve Jegou, Julien Mairal,
Patrick Labatut, Armand Joulin, and Piotr Bojanowski. Dinov2: Learning robust visual features
without supervision, 2023.

[44] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763. PMLR, 2021.

[45] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,
Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models
for code. arXiv preprint arXiv:2308.12950, 2023.

[46] Babak Saleh and Ahmed Elgammal. Large-scale classification of fine-art paintings: Learning
the right metric on the right feature. arXiv preprint arXiv:1505.00855, 2015.

[47] Laboni Sarker, Mara Downing, Achintya Desai, and Tevfik Bultan. Syntactic robustness for
llm-based code generation. arXiv preprint arXiv:2404.01535, 2024.

[48] Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton
Mullis, Aarush Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laion-400m: Open
dataset of clip-filtered 400 million image-text pairs. arXiv preprint arXiv:2111.02114, 2021.

[49] Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual captions: A
cleaned, hypernymed, image alt-text dataset for automatic image captioning. In Proceedings of
the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 2556–2565, 2018.

[50] Chenglei Si, Yanzhe Zhang, Zhengyuan Yang, Ruibo Liu, and Diyi Yang. Design2code: How
far are we from automating front-end engineering? arXiv preprint arXiv:2403.03163, 2024.

13

[51] Oleksii Sidorov, Ronghang Hu, Marcus Rohrbach, and Amanpreet Singh. Textcaps: a dataset
for image captioning with reading comprehension, 2020.

[52] Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi
Parikh, and Marcus Rohrbach. Towards vqa models that can read. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 8317–8326, 2019.

[53] Quan Sun, Yufeng Cui, Xiaosong Zhang, Fan Zhang, Qiying Yu, Zhengxiong Luo, Yueze Wang,
Yongming Rao, Jingjing Liu, Tiejun Huang, et al. Generative multimodal models are in-context
learners. arXiv preprint arXiv:2312.13286, 2023.

[54] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[55] Junke Wang, Lingchen Meng, Zejia Weng, Bo He, Zuxuan Wu, and Yu-Gang Jiang. To see is to
believe: Prompting gpt-4v for better visual instruction tuning. arXiv preprint arXiv:2311.07574,
2023.

[56] Qinghao Ye, Haiyang Xu, Jiabo Ye, Ming Yan, Anwen Hu, Haowei Liu, Qi Qian, Ji Zhang, Fei
Huang, and Jingren Zhou. mplug-owl2: Revolutionizing multi-modal large language model
with modality collaboration, 2023.

[57] Tong Ye, Yangkai Du, Tengfei Ma, Lingfei Wu, Xuhong Zhang, Shouling Ji, and Wenhai Wang.
Uncovering llm-generated code: A zero-shot synthetic code detector via code rewriting. arXiv
preprint arXiv:2405.16133, 2024.

[58] Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multimodal
understanding and reasoning benchmark for expert agi. arXiv preprint arXiv:2311.16502, 2023.

[59] Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin Choi. From recognition to cognition:
Visual commonsense reasoning. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 6720–6731, 2019.

[60] Hang Zhang, Xin Li, and Lidong Bing. Video-LLaMA: An instruction-tuned audio-visual
language model for video understanding. In Yansong Feng and Els Lefever, editors, Proceedings
of the 2023 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations, 2023.

[61] Xinlu Zhang, Yujie Lu, Weizhi Wang, An Yan, Jun Yan, Lianke Qin, Heng Wang, Xifeng
Yan, William Yang Wang, and Linda Ruth Petzold. Gpt-4v (ision) as a generalist evaluator for
vision-language tasks. arXiv preprint arXiv:2311.01361, 2023.

[62] Yanzhe Zhang, Ruiyi Zhang, Jiuxiang Gu, Yufan Zhou, Nedim Lipka, Diyi Yang, and Tong Sun.
Llavar: Enhanced visual instruction tuning for text-rich image understanding. arXiv preprint
arXiv:2306.17107, 2023.

[63] Bo Zhao, Boya Wu, and Tiejun Huang. Svit: Scaling up visual instruction tuning. arXiv preprint
arXiv:2307.04087, 2023.

[64] Zhuofan Zong, Bingqi Ma, Dazhong Shen, Guanglu Song, Hao Shao, Dongzhi Jiang, Hongsheng
Li, and Yu Liu. Mova: Adapting mixture of vision experts to multimodal context. arXiv preprint
arXiv:2404.13046, 2024.

14

Appendix

A Training Details and Hyperparameters

We follow the instruction-tuning protocol of LLaVA-1.5 [33]. In the pretraining step, we employ the
caption data to optimize the projector, while keeping the vision encoder and LLM frozen. Meanwhile,
we optimize the projector and LLM in the instruction tuning step. During the pretraining phase, we
utilize a batch size of 256, while for the instruction tuning phase, we employ a batch size of 128. The
learning rate is set at 1e−3 during pretraining and adjusted to 2e−5 for instruction tuning, with both
phases incorporating a cosine decay schedule. We also apply a learning rate warmup with a decay
factor of 0.03, and no weight decay is used. Both pretraining and instruction tuning are conducted for
one epoch each, consistently using the AdamW optimizer.

B More Effects of Web2Code on General Domain

Here, we first perform instruction tuning using Web2Code on various LLM backbones and then we
evaluate those MLLMs on the general domain of visual language understanding.

Comparison on different LLM backbones. We compare the general domain abilities of various
LLM backbones under the same data configuration of LLaVA + DWU + DWCG; Table 6 summarizes
the results of instruction-tuned MLLMs. Specifically, we found that instruction-tuned CrystalChat-7B,
Vicuna1.5-7B, and LLaMA2-7B show superior performances in the general domain compared to
CrystalCoder and CodeLlama. For example, CrystalChat shows +132.89 points higher than CodeL-
lama in MME-P (i.e. perception domain). Somewhat surprisingly, instruction-tuned CrystalChat
showed the strongest performance on TextVQA, which requires visual reasoning based on text in
images.

LLM Backbone MME-P MME-C POPE SciQA TextVQA

CodeLlama-7B [45] 1345.93 258.92 85.28 61.87 55.23
CrystalCoder-7B [37] 1351.22 274.64 86.05 61.63 50.11
CrystalChat-7B [37] 1478.82 297.14 86.14 67.92 57.41
Vicuna1.5-7B [11] 1488.26 268.21 87.05 69.31 56.40
LLaMA2-7B [54] 1448.58 304.29 86.87 67.87 55.62

Table 6: Comparison of different LLM backbones on visual language understanding benchmarks. All
models are instruction-tuned on the general domain data (i.e., LLaVA) with DWU and DWCG.

C Data collection of Web2Code

Diversity. The dataset Web2Code was curated from a wide variety of sources, including different
types of websites and design patterns, to ensure broad coverage of real-life scenarios, Figures 4 and 5
also illustrate the diversity of our data. In Table 7 and Figure 10, we have calculated the distribution
percentages of different types of web pages in our dataset to illustrate its comprehensiveness further.

Corporate Portfolio Contact Personal Advertisement Landing

10.83 4.77 9.17 0.52 20.68 10.23

Blog E-commerce Educational Non-profit Login Entertainment

8.21 10.77 2.78 2.54 1.02 1.74

News Forum Event Documentation Marketing Unknown

0.69 1.89 0.81 0.15 0.05 13.14

Table 7: Data distribution percentages (%) of different types by category.

Privacy. We have implemented several measures to ensure that our data collection and processing
adhere to legal and ethical standards for safeguarding privacy. Below, we provide a detailed overview
of these privacy protection measures:

15

Figure 10: Data distribution percentages (%) of different types by category.

1. Personal data removal. During the data collection process, any personal or sensitive infor-
mation (e.g., names, email addresses, phone numbers) that could be linked to individuals was
systematically removed. This anonymization process ensures that the dataset does not contain
any information that could directly identify users.

2. Scrubbing of sensitive fields. Fields known to potentially hold sensitive information, such as
form inputs or user comments, were either excluded from the dataset or anonymized to prevent
privacy breaches.

3. Publicly available data. The dataset was curated and refined primarily from publicly available
datasets where no authentication is required. This reduces the risk of capturing sensitive, private
content that is not intended for public consumption.

4. Exclusion of personally identifiable information. No personally identifiable information was
included in the dataset. Any data fields that could inadvertently contain personally identifiable
information were carefully reviewed and excluded or anonymized.

To further assess privacy concerns, we conducted a thorough examination by randomly sampling
1,000 data points from our dataset and performing a human evaluation to check for privacy-sensitive
information, such as phone numbers, email addresses, credit card numbers, and personal images. We
find that only 2.7% (16 email addresses, 11 phone numbers, and no credit card numbers) of the data
contained such issues, indicating the effectiveness of our privacy protection measures.

LLM Backbone DWCG DWU DWCGR DWUR Block-Match ↑ Text ↑ Position ↑ Color ↑ CLIP ↑

LLaMA3-8B [1]

- - - - 5.3 11.6 7.4 26.0 73.2
✓ - - - 76.3 92.0 74.8 63.7 84.2
✓ ✓ - - 75.4 91.3 77.3 64.9 85.6
✓ ✓ ✓ - 77.1 94.8 76.7 64.4 86.3
✓ ✓ ✓ ✓ 77.1 96.9 77.0 66.2 86.7

Table 8: LLaMA3-8B results on low-level element matching (Design2Code [50]) metrics and CLIP
[44] score.

16

D More Analysis on Other Metrics for HTML Code Generation of MLLMs

In this section, we incorporate low-level element matching metrics from Design2Code [50] and
CLIP-based assessments [44] for visual-text alignment, to provide a more comprehensive evaluation.
As shown in Table 8, our proposed DWCG method shows significant improvements across various
metrics, with DWU dataset enhancing performance in block-match, position, and color attributes.
Models trained with DWCGR and DWUR further demonstrate improvements across all aspects.

E More Comparisons with Existing Datasets

Here, we have provided more comparisons with additional baselines of the WebSight datasets [22].
In Table 9, the single HTML code generation dataset (i.e., WebSight v0.1) significantly drops the
performances of WUB compared to the original LLaVA dataset (without any additional code-related
data). We also observe that even a single DWCG dataset (our 60K generated webpage code generation
data) outperforms the WebSight v0.1 dataset of 823K. Table 10 also shows the effectiveness of the
proposed dataset DWCG and DWU. Similar to the trend shown in Table 9, our 60K generated
data, DWCG, significantly outperforms ∼14 times larger dataset baseline, WebSight0.1, across all
low-level element matching metrics (Design2Code [50]) and CLIP [44] score.

DWCG DWU WebSight v0.1 WebSight v0.2 VSA ↑ CAD ↑ TCC ↑ UII ↑ WCGB Overall ↑ WUB Acc.

- - - - 3.832 3.678 3.411 3.992 3.728 73.54
✓ - - - 7.812 7.899 8.138 8.112 7.990 71.81
✓ ✓ - - 8.010 8.102 8.266 8.124 8.126 73.74
- - ✓ - 7.524 7.600 7.818 7.862 7.701 59.38
- - - ✓ 5.469 5.830 6.113 5.911 5.831 56.06

Table 9: WebSight baseline results compared to the DWCG and DWU datasets on the WCGB and
WUB benchmarks. All models are trained on the CrystalChat-7B [37] backbone.

DWCG DWU WebSight v0.1 WebSight v0.2 Block-Match ↑ Text ↑ Position ↑ Color ↑ CLIP ↑
- - - - 8.6 13.2 6.5 17.4 70.3
✓ - - - 76.6 90.4 78.2 63.1 85.2
✓ ✓ - - 75.4 91.7 77.4 64.0 83.9

- - ✓ - 62.4 77.7 63.9 60.7 79.2
- - - ✓ 61.8 78.2 62.9 62.1 78.7

Table 10: WebSight baseline resultson low-level element matching (Design2Code [50]) metrics and
CLIP [44] score. All models are trained on the CrystalChat-7B [37] backbone.

Furthermore, Tables 11, 12, and 13, summarize comparisons between the Webstight dataset and the
proposed dataset, Web2Code, on various evaluation metrics, including WCGB, WUB, Design2Code,
CLIP, and general domain benchmarks. Overall, our Web2Code dataset significantly outperforms the
WebSight baselines across all metrics. Such degradation of existing code generation datasets in the
general domain motivates us to explore ways to refine them and simultaneously collect (or generate)
both code generation data and webpage understanding data to maintain overall performance.

Web2Code WebSight v0.1 WebSight v0.2 VSA ↑ CAD ↑ TCC ↑ UII ↑ WCGB Overall ↑ WUB Acc.

- - - 1.563 1.777 1.894 1.911 1.790 65.56
✓ - - 8.522 8.564 8.421 8.611 8.530 74.84
- ✓ - 4.236 4.113 3.981 4.168 4.125 70.13
- - ✓ 4.611 5.238 5.923 4.689 5.115 57.33

Table 11: Comparisons between the WebSight datasets and the proposed Web2Code dataset on the
WCGB and WUB benchmarks. All models are trained on the LLaMA3-8B [1] backbone.

F Qualitative Data Examples in WUB Benchmark

The qualitative data examples in our WUB benchmark are shown in Figure 11. It covers different
aspects of webpage understanding based on "yes" / "no" question-answer pairs.

17

Web2Code WebSight v0.1 WebSight v0.2 Block-Match ↑ Text ↑ Position ↑ Color ↑ CLIP ↑
- - - 5.3 11.6 7.4 26.0 73.2
✓ - - 77.1 96.9 77.0 66.2 86.7
- ✓ - 60.1 78.5 60.9 60.3 79.5
- - ✓ 57.3 73.9 59.1 60.8 76.1

Table 12: Comparisons between the WebSight datasets and the proposed Web2Code dataset on
low-level element matching (Design2Code [50]) metrics and CLIP [44] score. All models are trained
on the LLaMA3-8B [1] backbone.

Web2Code WebSight v0.1 WebSight v0.2 MME-P MME-C POPE SciQA TextVQA

✓ - - 1464.73 265.14 86.34 72.08 58.76
- ✓ - 1349.33 235.47 85.73 61.42 23.38
- - ✓ 1149.68 270.36 83.29 56.19 20.51

Table 13: Comparisons between the WebSight datasets and the proposed Web2Code dataset on general
domain benchmarks. All models are trained on the LLaMA3-8B [1] backbone.

Q Can users find information about specific
match timings for the tournament directly on this
page? Output YES or NO. NO

Does the webpage employ a monochromatic color
scheme for its design? Output YES or NO. NO

Is there a consistent font style used
throughout the different sections of the webpage?
Output YES or NO. YES

A

Q
A

Q

A

Does the visual structure of the webpage
indicate that the flight information is meant for
simultaneous display of both departures and
arrivals? Output YES or NO. NO

Are there interactive elements visible that
would allow a user to update the flight status
information on the webpage? Output YES or NO.

NO

Do the flight numbers follow a consistent
naming convention that assists users in
recognizing the airline's code and flight
sequence? Output YES or NO. YES

Q

A

Q

Q

A

A

Figure 11: Qualitative data examples in our WUB benchmark. It covers different aspects of webpage
understanding based on "yes" / "no" question-answer pairs.

G Prompt Templates

G.1 Prompt Used to Question and Answer Generation for DWU Data

18

System: You are an advanced AI model who can identify html code and interpret the compiled webpage.

User: You are asked to come up with a set of 10 diverse website understanding task instructions with the
corresponding source codes. These task instructions will be given to a GPT model and we will evaluate the GPT
model for completing the instructions.

You should output 10 questions and the answers for them, for each html code.
Your output should be formatted as follows. Don't include any other text, connective phases other than the
formatted text.
output a comma separated list of 10 instruction pairs in following format
[{"Q": "<question>" , "A": "<answer>"}, {"Q": "<question>" , "A": "<answer>"}]

Here are the requirements:
1. Try not to repeat the verb for each instruction to maximize diversity.
2. The languages used for the instruction should be diverse. For example, you should combine questions with

imperative instructions.
3. The instructions should be in English.
4. The instructions should be at least 1 to 2 sentences long. Either an imperative sentence or a question is

permitted.
5. Instructions should be clear and precise.
6. Instructions can either be simple queries like 'what text is displayed on the button?', to more complex

tasks requiring analysis, such as 'what would be the total cost of ordering items A and B from the
menu?'.

7. Avoid direct html code related instructions. i.e. Don't include questions related to html tags, font
sizes, and etc. Instead include real webpage image related instructions that a human can ask after
looking into the webpage. For example, What is the main event that this website is allowing users to
register for?, State the variety of dishes featured in the desserts section of the menu.

8. The Answer should be an appropriate response to the instruction and the input.
9. If the answer isn't immediately clear from the content, the output should detail the thought process. For

instance, if the task is to determine the age of someone born in 1983, the response should explain:
'Considering the current year is 2024, the age would be 2023 minus 1984, which equals 40.’

10.Try to make questions covering the following aspects i.e. Visual Structure and Alignment: Layout
Consistency: Evaluates the match in the placement of headers, footers, and sidebars. Element Alignment:
Assesses alignment of images, buttons, and text boxes. Proportional Accuracy: Checks for consistency in
sizes and aspect ratios of visual elements. Visual Harmony: Examines the overall balance and harmony in
design. Color and Aesthetic Design: Color Scheme and Aesthetic Match: Focuses on the similarity in color
schemes, including hues and saturation. Aesthetic Resemblance: Looks at the overall aesthetic appeal and
style (modern, minimalistic, traditional, etc.). Textual and Content Consistency: Font Characteristics
and Consistency: Assesses uniformity in font type, size, style, and weight. Textual Content Match:
Evaluates the match in words and sentences. Numeric and Special Character Accuracy: Checks for
consistency in numbers, dates, and special characters. User Interface and Interactivity: User Interface
Consistency: Assesses the similarity in design language and appearance of UI elements like menus,
buttons, and forms.

11.Answers should be more informative and descriptive. Don't output single word or numbers for the outputs,
make them descriptive with one or two sentences.

12.Don't shrink the output. Need everything expanded. Avoid outputs like (...)

Here's the html code.

<!DOCTYPE html>
<html>
<head>
<title>Charity Walk Registration</title>
</head>
<body>
<h1>Welcome to the Charity Walk Registration Site</h1> ...

Figure 12: Prompt used to generate Question Answer pairs using GPT4 for DWU data.

19

G.2 Prompts Used For Instruction generation of DWCG and DWCGR

User:
Here are some instructions that are being fed to a generative AI model as instruction tuning during the
training of a Vision language model.

"In the provided webpage screenshot, generate HTML to replicate the layout and styling of the webpage",

"Given the web application interface shown, write HTML code to implement the interactive features visible in
the image",

"Analyze the webpage structure in the screenshot and provide HTML and CSS code to design a responsive webpage
with similar layout and components",

"Examine the provided webpage screenshot and generate HTML code to implement the responsive layout",

"Given the webpage screenshot, provide the HTML code that represents its structure",

"Create HTML code for the webpage depicted in the image provided",
"Craft HTML code to replicate the visual design and structure of the webpage captured in the provided
screenshot",

"Create HTML and CSS code to imitate the appearance and layout of the web interface shown in the provided
image",

"Generate HTML and CSS code snippets to mirror the layout and styling of the website visible in the given
screenshot”

Note:
1.Try not to repeat the verb for each instruction to maximize diversity.
2.The languages used for the instruction should be diverse. For example, you should combine questions with
imperative instructions.
3.The instructions should be in English.
4.The instructions should be at least 1 to 2 sentences long. Either an imperative sentence or a question is
permitted.
5.Instructions should be clear and precise.
6.Please provide 150 examples.

Figure 13: Prompt used to generate instructions for DWCG using GPT4, feeding input as Seed
instructions and output as GPT generated instructions shown in Figure 17.

User:
Here are some instructions that are being fed to a generative AI model as instruction tuning during the
training of a Vision language model.

“Please provide the code in material design style.",

"Share the code adhering to the principles of material design.",

"Ensure the code follows the guidelines of material design aesthetics.",

"Provide the code in a style consistent with material design principles.",

"Code should reflect the design language of material design.",

"Maintain a coding style aligned with material design aesthetics.",

"Present the code in accordance with material design styling.”

Note:
1.Try not to repeat the verb for each instruction to maximize diversity.
2.The languages used for the instruction should be diverse. For example, you should combine questions with
imperative instructions.
3.The instructions should be in English.
4.The instruction should be clear.
5.Please provide 40 examples.

Figure 14: Prompt used to generate webpage style instruction for DWCG using GPT4, feeding input
as Seed instructions and output as GPT generated webpage style instructions shown in Figure 17.

20

G.3 Prompt Used For GPT4-Vision Evaluation in WCGB benchmark

System: You are an advanced AI model equipped with OCR and image understanding capabilities, capable of
analyzing visual elements in detail.

User: Your task is to assess two webpage images and output a score between 0 and 10 for each of the following
questions.

If the answer to a question is a definite YES, output a score of 10, signifying perfect similarity.
Conversely, a definite NO should yield a score of 0, indicating no similarity.

For answers that fall in between, assign a score accordingly, where a higher number indicates a greater
degree of similarity. Only provide the numerical score for each question, without any additional text.
Example contexts are provided for clarity. Examples provides the idea, but you can output any number in 0-10
range accordingly.

Only output a comma separated list containing 10 numbers. DO NOT give score of 10 for any category unless
otherwise the two images are identical.

Layout Consistency (Score: 0-10): Does the placement of headers, footers, and sidebars match in both
webpages? (e.g., A score of 10 for identical layouts, 5 for similar but not exact placements, and 0 for
completely different layouts.)

Element Alignment (Score: 0-10): Are elements like images, buttons, and text boxes aligned similarly on both
pages? (e.g., A score of 10 for perfectly aligned elements, 6 for slight misalignments, and 0 for major
misalignments.)

Proportional Accuracy (Score: 0-10): Do the sizes and aspect ratios of images, buttons, and text boxes appear
consistent across both pages? (e.g., A score of 10 for exact proportions, 4 for noticeable size differences,
and 0 for drastic inconsistencies.)

Visual Harmony (Score: 0-10): Do both webpages exhibit a similar level of visual harmony and balance in their
design? (e.g., A score of 10 for harmonious designs, 5 for some dissonance, and 0 for clashing designs.)

Color Scheme and Aesthetic Match (Score: 0-10): How closely do the color schemes of the two webpages align in
terms of background and text colors? Evaluate the similarity in hues, saturation, and overall color
aesthetics. (e.g., A score of 10 for perfectly matching color schemes, including identical hues and
saturation levels, 6 for similar color palettes with minor variations, and 0 for starkly different color
schemes that create entirely different visual impacts.)

Aesthetic Resemblance (Score: 0-10): Is the overall aesthetic appeal (modern, minimalistic, traditional,
etc.) similar on both pages? (e.g., A score of 10 for identical aesthetics, 4 for somewhat similar but
distinguishable styles, and 0 for completely different aesthetics.)

Font Characteristics and Consistency (Score: 0-10): Assess the degree of consistency in font attributes
across both webpages. This includes not only the font type and size but also the nuances of font style
(italic, bold) and weight (light, regular, bold). (e.g., A score of 10 for complete uniformity in font type,
size, style, and weight across both pages, 5 for consistency in font type and size but variations in style or
weight, and 0 for wide disparities in font type, size, style, or weight, leading to a distinctly different
textual appearance.)

Textual Content Match (Score: 0-10): Do the words and sentences match between the two webpages? (e.g., A
score of 10 for identical text, 5 for some similar paragraphs or sections, and 0 for completely different
textual content.)

Numeric and Special Character Accuracy (Score: 0-10): Are numbers, dates, and special characters (like email
addresses) consistent between the two pages? (e.g., A score of 10 for exact matches, 6 for minor
discrepancies, and 0 for major differences.)

User Interface Consistency (Score: 0-10): Do the user interface elements (like menus, buttons, and forms) on
both pages share a similar design language and appearance? (e.g., A score of 10 for identical UI elements, 6
for slight design variations, and 0 for completely different UI designs.)

<GROUND TRUTH IMAGE>
<PREDICTED IMAGE>

Figure 15: Prompt utilized for evaluation in WCGB with the employment of GPT4-Vision.

21

G.4 Prompt Used For QA Generation for WUB benchmark

User: Generate 5 QA pairs for assessing an AI model's comprehension and response accuracy in relation to a
given webpage screenshot.

The answers should be evenly balanced between YES and NO. These QA pairs will be used as a benchmark to
evaluate another model's understanding of the webpage's visual and textual elements.

Ensure the output is formatted as QA pairs in the following dictionary format: '{ 'Q': \"question\", 'A':
\"answer\"}’.

The QA pairs should cover the following aspects:

- Advanced Logical Reasoning and Textual Understanding: The questions should challenge the AI's ability to
understand complex text and infer meanings or implications that are not explicitly stated.
- Visual Structure and Alignment Evaluation: Questions should test the AI's ability to interpret and
analyze the webpage's layout, including the positioning and relationship of various visual elements.
- Color and Aesthetic Design Analysis: Include questions that assess the AI's understanding of the
webpage's color scheme and overall design aesthetics, and how they contribute to the page's purpose or
message.
- Consistency in Text and Content: Formulate questions that evaluate the AI's recognition of textual
consistency and coherence across different sections of the webpage.
- User Interface and Interactivity Insights: Develop questions to assess the AI's comprehension of the
webpage's interactive elements and user interface design, including navigational features and response
mechanisms.

Remember, the goal is to create questions that will test another AI model's ability to analyze and
interpret a webpage screenshot in a comprehensive manner. Do not include additional text other than the
output dictionary entry.

Figure 16: Prompt employed to generate "yes" / "no" Question Answer pairs for the WUB benchmark
through the utilization of GPT4-Vision.

H Data samples

Figure 17: Examples of webpage to code generation instruction tuning data. These web image-code
pairs were converted into an instruction-following data format close to the LLaVA data format.

22

Figure 18: Examples of webpage to code generation instruction tuning data in DWCG. These web
image-code pairs were converted into an instruction-following data format close to the LLaVA data
format.

Figure 19: Examples of webpage to code generation instruction tuning data in DWCGR. The refined
instruction tuning dataset for webpage code generation, by utilizing GPT-4.

Figure 20: Examples of webpage understanding data in DWU. For a webpage, there is a set of diverse
question-answer pairs about web understanding.

23

Figure 21: Examples of webpage understanding data in DWUR. The refined instruction tuning dataset
for web understanding tasks.

Figure 22: Examples of Modern styles webpages.

Figure 23: Examples of Bootstrap styles webpages.

24

	Introduction
	Related Work
	Dataset Construction
	 Statistics and Analysis
	Distribution

	A New Evaluation Framework for Webpage
	Evaluation Metric for HTML Code Generation
	Quantitative Evaluation for HTML Code Generation of MLLMs
	Visualizations for Qualitative Evaluation

	General Evaluation of MLLMs Using Web2Code
	Conclusion
	Training Details and Hyperparameters
	More Effects of Web2Code on General Domain
	Data collection of Web2Code
	More Analysis on Other Metrics for HTML Code Generation of MLLMs
	More Comparisons with Existing Datasets
	Qualitative Data Examples in WUB Benchmark
	Prompt Templates
	Prompt Used to Question and Answer Generation for DWU Data
	Prompts Used For Instruction generation of DWCG and DWCGR
	Prompt Used For GPT4-Vision Evaluation in WCGB benchmark
	Prompt Used For QA Generation for WUB benchmark

	Data samples

