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Abstract

Image Signal Processors (ISPs) convert raw sensor signals into digital images,
which significantly influence the image quality and the performance of downstream
computer vision tasks. Designing ISP pipeline and tuning ISP parameters are two
key steps for building an imaging and vision system. To find optimal ISP configura-
tions, recent works use deep neural networks as a proxy to search for ISP parameters
or ISP pipelines. However, these methods are primarily designed to maximize the
image quality, which are sub-optimal in the performance of high-level computer
vision tasks such as detection, recognition, and tracking. Moreover, after training,
the learned ISP pipelines are mostly fixed at the inference time, whose performance
degrades in dynamic scenes. To jointly optimize ISP structures and parameters, we
propose AdaptiveISP, a task-driven and scene-adaptive ISP. One key observation is
that for the majority of input images, only a few processing modules are needed to
improve the performance of downstream recognition tasks, and only a few inputs
require more processing. Based on this, AdaptiveISP utilizes deep reinforcement
learning to automatically generate an optimal ISP pipeline and the associated ISP
parameters to maximize the detection performance. Experimental results show that
AdaptiveISP not only surpasses the prior state-of-the-art methods for object detec-
tion but also dynamically manages the trade-off between detection performance
and computational cost, especially suitable for scenes with large dynamic range
variations. Project website: https://openimaginglab.github.io/AdaptiveISP/.

1 Introduction

Image Signal Processors (ISPs) play a fundamental role in camera systems. Originally, ISPs aimed at
enhancing the perceptual quality, focusing on photography-related applications. Recently, machine
vision cameras also optimized the ISP pipeline for downstream recognition tasks [35, 39, 34, 36].
For recognition tasks, studies have shown a specially designed ISP can significantly enhance their
performance. However, most machine vision cameras [13] still prefer a static hand-designed ISP
and manually-tuned parameters, making it sub-optimal for downstream recognition tasks and also
inflexible for dynamic scenes. Another solution is to directly train detection networks that take raw
files as input, skipping the entire ISP processing. However, this may require re-training the detection
network for each camera sensor, as the raw format varies between cameras, and studies [23] also show
that the raw detection network still performs worse than the detection network runs on ISP-processed
images. Therefore, a well-tuned ISP is important for downstream recognition tasks.

In this work, we aim to design an ISP that can dynamically adapt its pipeline and parameters
for different inputs, tailored for a given high-level computer vision task. This problem faces two
challenges: complexity and efficiency. First, it is a complicated optimization problem to jointly
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Figure 1: AdaptiveISP takes a raw image as input and automatically generates an optimal ISP pipeline
{Mi} and the associated ISP parameters {Θi} to maximize the detection performance for any given
pre-trained object detection network with deep reinforcement learning. AdapativeISP achieved
mAP@0.5 of 71.4 on the dataset LOD dataset, while a baseline method [35] with a fixed ISP pipeline
and optimized parameters can only achieve mAP@0.5 of 70.1. Note that AdaptiveISP predicts the
ISP for the image captured under normal light requires a CCM module, while the ISP for the image
captured under low light requires a Desaturation module.

re-organize the ISP modules, update their parameters, and also improve the performance of the
downstream recognition module. Because of this complexity, previous works only update the
parameters [35, 25, 30, 31, 38, 16, 26]. Some recent works jointly optimize the ISP pipeline and
parameters [10, 28], but they are not designed for downstream recognition tasks. Second, ISP
optimization must be efficient enough to adapt to dynamically changing scenes, which is particularly
important in real-time applications such as autonomous driving and robotics. The majority of ISP
pipeline optimization methods use searching strategies, such as the neural architecture search (NAS)
method [39] and the multi-object optimization search method [34], which often takes several hours,
making them infeasible for real-time applications across dynamically changing scenes.

To solve this challenge, we observe that the majority of input images only require a few ISP operations
to increase the downstream recognition accuracy. As shown in Figure 1 on the right, only the first two
stages of ISP already boost the detection accuracy (mAP) from 67.8 to 70.9, and the rest of the three
stages only further boost it to 71.4. Only challenging examples require more complicated pipelines.
Therefore, we can model the ISP configuration process as a Markov Decision Process [29], and our
AdaptiveISP only selects one ISP module at each stage, as shown in Figure 1 on the left. This greatly
reduces the search space at inference time and enables adaptively changing the ISP length, spending
less time on easy inputs.

Based on this idea, we introduce AdaptiveISP, a real-time reconfigurable ISP based on reinforcement
learning (RL). As shown in Figure 1, AdaptiveISP takes a linear image as input and generates an
optimal ISP pipeline with associated parameters that best fit this image for object detection. Unlike
previous neural architecture search (NAS) [39] that generates the entire pipeline at once, AdaptiveISP
takes a greedy approach to only generate one module at each iteration, greatly reducing the searching
time. At each iteration, a lightweight RL agent takes the processing output from the previous stage as
input and finds the optimal module for the next iteration. Because of its efficiency, AdaptiveISP only
takes 1 ms to predict one stage and can generate different pipelines for different scenes on the fly in
real-time, as illustrated in Figure 1.

Furthermore, we design a reinforcement learning scheme tailored for ISP configuration. First, we
integrate a pre-trained fixed object detection network, YOLO-v3 [32], into the optimization system as
a loss function, guiding our model to prioritize specific high-level computer vision tasks. Second, with
the observation that many later-stage ISP modules may only bring little improvement to detection,
we introduce a new cost penalty mechanism so that AdaptiveISP supports dynamically trading off
object detection accuracy and ISP latency.

The proposed AdaptiveISP have several distinctive properties compared to a typical ISP for visual
quality. First, ISP for detection can be much simpler. As shown on the right side of Figure 1, with
only 4 stages, it achieves the best detection accuracy, while traditional ISP may need more than
10 stages to enhance image quality. Second, while color processing is important in both types of
ISPs for both detection and viewing, their behaviors are different. For instance, ISPs for detection
often completely desaturate color in low-light scenarios to boost the detection rate, as shown in the
second-row of Figure 1, which rarely happens for traditional ISPs. Third, a simple sharpening or
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blurring module may greatly enhance detection accuracy, while a more widely used denoising module
in traditional ISPs is not super helpful for detection.

We have evaluated the proposed AdaptiveISP on the LOD [9], OnePlus [39], and synthetic raw
COCO [19] datasets and showed that it outperforms prior state-of-the-art methods under different
challenging conditions and different downstream tasks. Experimental results also demonstrate the
ability to dynamically switch from a high-accuracy ISP pipeline to a low-latency one.

2 Related Work

ISP Parameter Tuning. Recent studies have explored various methods for optimizing Image Signal
Processing (ISP) hyper-parameters, particularly those based on handcrafted designs and tailored
to meet the demands of downstream evaluation metrics. One category of methods focuses on
derivative-free optimization techniques. Nishimura et al. [26] introduced an automatic image quality
tuning method that employs nonlinear optimization and automatic reference generation algorithms.
Another category utilizes gradient-based optimization techniques. Tseng et al. [35] introduced a
gradient optimization method that relies on differentiable approximations, allowing for efficient
hyper-parameter tuning but the ISP parameters are fixed during the inference stage. Immediately
afterward, some researchers realized that one set of parameters was not necessarily suitable for
different scenarios. Qin et al. [30] proposed an attention-based CNN method, but it does not consider
sequence-specific prior knowledge. Then, Qin et al. [31] proposed a sequential ISP hyper-parameter
prediction framework, which optimizes the ISP parameters by leveraging sequential relationships
and parameter similarities. Additionally, Liu et al. [22] proposed the IA-YOLO approach, which can
adaptively process images under both normal and adverse weather conditions. Yoshimura et al. [38]
proposed DynamicISP, which can causally and smoothly control the parameters of the current frame
according to the recognition result of the previous frame. Departing from approximation methods,
Mosleh et al. [25] introduced a hardware-in-the-loop approach. This approach directly optimizes
hardware-based image processing pipelines to meet specific end-to-end objectives by using a novel
0th-order stochastic solver. Furthermore, an image enhancement method based on reinforcement
learning, proposed by Kosugi et al. [16], leverages reinforcement learning techniques to optimize
hyper-parameters in an unpaired manner.

ISP Pipeline Design. The conventional ISP pipelines are crafted to adhere to human visual perception,
and this alignment might not always be conducive to fulfilling the demands of downstream high-
level tasks. The prior research works [34, 39] have proved that handcrafted ISP configuration
does not necessarily benefit the downstream high-level vision tasks. ReconfigISP [39] proposed
a novel Reconfigurable ISP whose architecture and parameters can be automatically tailored to
specific data and tasks by using neural architecture search (Darts) [20]. RefactoringISP [34] jointly
optimized ISP structure and parameters with task-specific loss and ISP computation budgets through
multi-objective optimization algorithm (NSGA-II) [4]. However, these approaches maintain the ISP
pipeline and parameters fixed during inference, regardless of the distinct characteristics of the input.
An innovative study addresses the challenge of photo retouching by leveraging deep learning on
unpaired data, allowing users to emulate their preferred retouching style [10]. Additionally, recent
studies have explored replacing traditional ISP pipelines or modules with deep learning models
to enhance image quality. PyNET [11] proposed a unified model that directly learns the RAW-
to-RGB mapping to improve mobile photography, while CycleISP [40] introduced a noise-aware
denoising approach. ParamISP [14] developed forward and inverse ISP models conditioned on
camera parameters, enabling a more accurate emulation of real-world ISP behavior to enhance image
processing performance. DualDn [17] further employs a differentiable ISP to improve denoising
capabilities. Although these methods improve image quality, they do not consistently translate into
better performance for downstream high-level vision tasks.

3 Our Method

Image Signal Processors (ISPs) often consist of a pipeline of image processing modules that primarily
transform raw sensor pixel data into RGB images suitable for human viewing [2]. A typical camera
ISP pipeline includes two parts: raw-domain and RGB-domain. Compared to raw-domain processing,
the RGB-domain processing is normally image-dependent and requires more dedicated design and
tuning efforts. Details of ISP pipeline and modules can be found in the appendix.
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Figure 2: Overview of our method. The ISP configuration process is conceptualized as a Markov
Decision Process, where a CNN-based policy network predicts the selection of ISP modules and their
parameters. Concurrently, a CNN-based value network estimates the state value. The YOLO-v3 [32]
is employed to calculate the reward for the current policy. The entire system is optimized using the
actor-critic algorithm [15, 24].

In this work, we focus on the RGB-domain processing. We assume that the captured raw sensor data
is already converted to linear RGB images using a simple static raw-domain processing, and our
tuning mainly focuses on sRGB-domain processing, similar to [9, 38].

3.1 Problem Formulation of AdaptiveISP

Given an input linear RGB image I , the goal of AdaptiveISP is to find an optimal ISP pipeline
and parameters, with which the processed output image will result in high performance for object
detection. Let F(M,Θ) denote one ISP module, where M is the ISP module type and Θ is the set of

parameters for that module. An ISP pipeline consists of a sequence of ISP modules
{
F(Mt,Θt)

}T

t=0
,

which transforms an input image I to an output image It with t stages of ISP processing as

It =
(
F(Mt,Θt) ◦ · · · ◦ F(M0,Θ0)

)
(I) . (1)

The goal of AdaptiveISP is to predict an optimal ISP pipeline (with T stages) and its parameters, i.e.,
{Mt,Θt}Tt=0 for an input image, in order to maximize its performance for a given computer vision
task (e.g. object detection), which can be formulated as

{Mt,Θt}T∗
t=0 = argmin

{Mt,Θt}T
t=0

{D (IT )}, (2)

where D is the detection error with a given object detector. This optimization problem can thus be
modeled as a Markov Decision Process [29], which can be solved efficiently via deep reinforcement
learning.

3.2 Optimization Objectives

Our formulation is similar to [5, 6, 10, 28]. Let us denote the problem as P = (S,A), where S is a
state space and A is an action space. Specifically, in our task, S is the space of images, which includes
the input images and all the intermediate results in the ISP process, while A is the set of all ISP
modules. Since each action includes the selection of ISP modules and the prediction of ISP module
parameters, we can decompose the action space A into two parts: a discrete selection of ISP modules
aM and a continuous prediction of ISP module parameters aΘ. At stage i, with a selected ISP module
and its parameters (aMi , aΘi ), the input image at state si is mapped to state si+1. Applying a sequence
of T selected ISP modules to an input image corresponds to a trajectory τ of states and actions:

τ =
(
s0, a

M
0 , aΘ0 , . . . , sT−1, a

M
T−1, a

Θ
T−1, sT

)
, (3)

where sT is the stopping state. Our goal is to find a policy π that maximizes the accumulated
reward during the decision-making process. The policy π consists of two sub-policies (πM and πΘ),
where πM takes a state and returns a probability distribution over ISP modules, and πΘ predicts the
parameters aΘ of the selected ISP module. In this paper, the reward function with the i-th action (i.e.,
corresponding to the i-th stage of ISP processing) is thus written as:

r(si, a
M
i , aΘi ) = D (si)−D (si+1) , (4)
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where si+1 = p(si, a
M
i , aΘi ), and D is the error of object detection. Given a trajectory τ , we define

the return gt as the summation of the discounted rewards after st:

gt =

T−t∑
k=0

γk · r(st+k, a
M
t+k, a

Θ
t+k), (5)

where γ ∈ [0, 1] is a discount factor that places greater importance on rewards in the near future. We
can thus define the value of state function V π(s) as:

V π(s) = E
τ∼π

[g0|s0 = s] , (6)

and the value of action function Qπ(s, aM , aΘ) as:

Qπ(s, aM , aΘ) = E
τ∼π

[
g0|s0 = s, aM , aΘ

]
. (7)

Our goal is to select a policy π = (πM , πΘ) that maximizes the expected accumulated reward during
the decision-making process:

J(π) = E
s∼S0

[V π(s)] , (8)

where S0 denotes the entire image dataset.

Similar to [10, 28, 16, 5], we employ deep neural networks to approximate the value function V π(s)
and the policy π. As shown in Figure 2, convolutional neural networks (CNNs) and a fully-connected
layer are used as the policy network, which maps the image s into action probabilities πM (s,ΦM )
(after softmax) and ISP module parameters πΘ(s,ΦΘ) (after tanh), where (ΦM ,ΦΘ) are the network
parameters. The value network V π(s,ΦV ) uses a similar architecture with parameters ΦV . By
maximizing the objective J(π)Φ with training these two networks Φ = (ΦM ,ΦΘ,ΦV ), we can learn
to predict the optimal policy π(s) for an input image s. Specifically, to train the policy network and
the value network, as shown in Figure 2, we apply the actor-critic algorithm [15, 24], where the
actor is represented by the policy network and the critic is the value network. Details of network
architectures and training are provided in the appendix.

3.3 Implementation Details

To ensure stable and effective reinforcement learning for the ISP pipeline and parameter prediction,
we augment the network input and implement several penalty functions to better constrain the training
process. Specifically, we modify the reward function Equation 4 to:

r(si, a
M
i , aΘi ) = D (si)−D (si+1)− Pi, (9)

where Pi stands for the penalties as explained below.

Exploitation and Exploration. To avoid the same ISP module being selected consecutively multiple
times by the policy network, we augment the network input with the module usage record (which is
represented as N channels where N is the size of the ISP module pool) and one additional “stage”
channel. At each stage, if an ISP module is being used, the corresponding “use” channel and penalty
of reusing will be set to 1 and 0 otherwise. The “stage” channel is set with the index of the stage.
During training, these additional inputs and the penalty of reusing constrain the policy network
picking the same ISP module no more than once, which can effectively narrow down the solution
space and improve the performance. Details of network input are provided in the appendix.

In addition, we want to encourage the policy network πM (s) to explore different ISP modules to
prevent the parameter prediction network from insufficient learning. Specifically, we introduce
a penalty term Pe on the output entropy of the policy network πM (s) to ensure that the action
distribution is not overly concentrated.

Pe = λe

∑
m∈M

p(m) log p(m), (10)

where p(m) is the probability of an ISP module m in the softmax output, and λe ∈ [0, 1] is a penalty
coefficient and gradually decreases from 1 to 0 with the progress of the training process.
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Penalty of Computational Time. ISP pipelines typically consist of multiple modules responsible
for specific image processing tasks, such as denoising, sharpening, white balance, and more. These
modules exhibit varying computational costs, some being faster and others slower, as shown in Table 4.
Consequently, when designing ISP pipelines, it is crucial to consider the distinct computational costs
associated with these modules. Particularly, in scenarios requiring swift responses like autonomous
driving, optimizing the computational efficiency of ISP pipelines becomes paramount. In order to
make our method automatically select the appropriate modules and their sequence, we should account
for the computational time of each module during the design of the ISP pipeline. Specifically, we
collect the run time of all modules, marked as Mc, which can be found in Table 4, and the penalty of
cost Pc is defined as:

Pc = λc

∑
m∈M

Im ·Mc, (11)

where Im represents the one-hot encoding whether the module m is used, and λc is the penalty
coefficient.

4 Experiments

Datasets. In line with prior research [9, 27, 38, 39, 30, 31], we train and evaluate our models on
widely used real low-light detection datasets and synthetic normal-light datasets, including:

• LOD. LOD Dataset [9] is a real-world low-light object detection dataset, which contains
2,230 14-bit low-light raw images with eight categories of objects. This dataset aims to
systematically assess the low-light detection performance. There are 1,830 data pairs for
training and 400 data pairs for validation. Additionally, it provides accompanying metadata,
including ISO, shutter speed, aperture settings, and more, which greatly facilitates our
experimental analysis.

• OnePlus. OnePlus Dataset [39] is a real-world low-light object detection dataset collected
by the OnePlus 6T A6010 smartphone at driving scenes, which contains 141 raw images
with three classes of objects in the street scenes. There are 50 pairs for training and 91 pairs
for validation. Given the limited size of the dataset, all raw images were utilized as the
validation set in our experiments.

• Raw COCO. COCO [19] is a large-scale object detection, segmentation, and captioning
dataset. To evaluate the generalization ability of our method, we convert the COCO validate
dataset (5,000 images) to a synthetic raw-like dataset as our evaluate dataset by using UPI [1],
similar with [9, 38, 30, 31].

Experiment Details. Similar to [39], YOLOv3 [32] is utilized as the detection model in all methods
unless explicitly stated otherwise. YOLOv3 is a robust and fast object detection algorithm. Its
real-time applicability, speed, and high-performance capabilities make it a powerful choice for
various applications in numerous classic object detection algorithms [4, 33, 8, 21, 18, 5]. In terms of
back-propagation, YOLOv3 passes gradients back to our method for optimizing both structure and
parameters. It is important to note that the pre-trained YOLOv3 model remains unaltered throughout
the training process. During training and inference, we follow [9] to use a fixed input resolution
of 512 × 512. In addition, unless otherwise stated, our methods and comparison methods are all
experiments conducted on handcrafted ISP.

Evaluation Metrics. We utilize the mean Average Precision (mAP) across all Intersection over
Union (IoU) thresholds to assess the performance of our method, following a similar approach as
used in object detection algorithms [4, 33, 8, 21, 18, 5].

4.1 Results

Results on LOD Dataset. The LOD dataset provides JPEG images with accompanying metadata,
which serves as a convenience for the analysis of our experimental results. On this dataset, we choose
several baseline methods for evaluation. First, we select two network-based ISP methods, namely
Crafting [9] and NeuralAE [27]. Also, we evaluate our method against the static handcrafted pipeline
and parameter methods, specifically, Hyperparameter Optimization [35]. Furthermore, we compare
our approach with static handcrafted pipelines combined with dynamic parameters techniques, such
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Table 1: Experimental results of LOD [9], OnePlus [39], and raw COCO Dataset [19].
Methods LOD All OnePlus Raw COCO

mAP
@0.5

mAP
@0.75

mAP
@0.5:0.95

mAP
@0.5

mAP
@0.75

mAP
@0.5:0.95

mAP
@0.5

mAP
@0.75

mAP
@0.5:0.95

Crafting [9] 67.9 49.0 44.7 - - - - - -
NeuralAE [27] - - 45.5 - - - - - -

DynamicISP [38] - - 46.2 - - - - - -
Hyperparameter Optimization [35] 70.1 49.7 46.1 69.8 48.7 43.8 53.8 38.7 36.6

Attention-aware Learning [30] 70.9 51.0 46.6 70.9 48.9 44.7 53.6 38.7 36.6
ReconfigISP [39] 69.4 49.6 45.6 65.1 42.1 40.4 52.6 38.0 35.8

Refactoring ISP [34] 68.3 47.6 44.1 66.7 44.3 40.9 52.4 38.0 35.7
Ours 71.4 51.7 47.1 70.1 49.7 45.0 54.9 40.1 37.7

Hyperparameter
Optimization

Attention-aware 
Learning OursRefactoring

ISP

bicycle0.34

car0.94 car0.94car0.94 car0.95car0.94 car0.95car0.94 car 0.95
car0.37 car0.43 car0.39

car0.94 car0.95
car0.28

ReconfigISP

Figure 3: Object detection visualization results on LOD dataset. Our method outperforms the state-of-
the-art methods [35, 30, 39, 34] in terms of missed detection and false detection. The methods with
fixed pipelines or fixed parameters struggle to effectively handle varying noise levels and brightness
scenarios.

as Attention-aware Learning [30] and DynamicISP [38]. Finally, we compare our method with the
optimization method for ISP pipelines and parameters, as exemplified by ReconfigISP [39] and
Refactoring ISP [34]. ReconfigISP utilizes a neural architecture search algorithm (Darts) [20], while
Refactoring ISP is based on Non-dominated Sorting Genetic Algorithm II (NSGA-II) [4].

As shown in the first column of Table 1, our method achieves the best performance across all
object detection metrics on the LOD dataset. Note that static pipelines with dynamic parameter
methods outperform static pipeline and parameter approaches, dynamic pipelines and parameters
yield superior results across all methods. We further show the detection results of our method in
Figure 3, showcasing its superior performance in terms of both missed detection and false detection
compared to all other methods.

Cross Datasets Test. To evaluate the generalization ability of our method on different datasets, we
utilize a model trained on the LOD dataset and conduct testing on both the OnePlus and raw COCO
datasets. As displayed in the central and rightmost column of Table 1, our method achieves the best
performance, which verifies that our method also has the best generalization ability. In terms of
the mAP@0.75 evaluation metric, our method exhibits an improvement of approximately 1 point
compared to alternative approaches on both Oneplus and raw COCO datasets. Furthermore, our
method outperforms Refactoring ISP [34] and ReconfigISP [39] by 2 points on the raw COCO dataset
and by 4 points on the OnePlus dataset in terms of mAP@0.5:0.95 evaluation metrics.

Cross Detectors Test. To evaluate the generalization ability of our method on different detectors, we
use the detection results from the RGB (existing ISP) as a baseline and conduct comparative experi-
ments on DDQ [41], representing the Transformer-based approach, and YOLOX [7], representing
the CNN-based approach. As shown in Table 3, all detectors using our AdaptiveISP demonstrate
improved detection performance, demonstrating that our method does not overfit one detector, but is
suitable for other detectors. Note that DDQ [41] and YOLOX [7] are not used in the training process,
but our ISP can still generalize to these detectors at testing time.

Results for Image Segmentation. To show our approach can generalize to other tasks, in Table 2,
we also conduct an experiment using image segmentation as the downstream task. Note that all
models are trained on the LOD dataset using the pre-trained YOLOv3 [32] detector and evaluated
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Figure 4: Image segmentation visualization results on raw COCO dataset. Our method detects all the
object, while the state-of-the-art methods [35, 30, 39, 34] may miss some.

Table 2: Image Segmentation results on raw COCO datasets [19].

Methods mAP@0.5 mAP@0.5:0.95

Hyperparameter Optimization [35] 46.4 28.4
Attention-aware Learning [30] 45.5 27.9

ReconfigISP [39] 42.1 25.2
Refactoring ISP [34] 40.6 24.7

Ours 47.0 28.8

on the synthetic raw COCO datasets with the pre-trained YOLO-v5 [12] segmentor. Our method
performs better than all baselines, further showing its generalizability for different downstream tasks
and algorithms. We further present the segmentation results of our method in Figure 4, highlighting
its superior performance in terms of missed detection compared to all other methods.

Accuracy-Efficiency Trade-off. Our approach can control λc to regulate whether the optimization
process also takes the computational time of each ISP module into consideration, where λc is the
weight computational cost. By tuning up λc, we can generate a more efficient ISP with a minor drop
of the recognition accuracy.

We conducted analysis experiments on the LOD dataset, where λc = 0.0 represents the accuracy-
oriented results and λc = 0.01 stands for efficiency-oriented results. We calculated the proportions
of the occurrence of each module in the test results. As shown in Table 4, the efficiency-oriented
method has a significant reduction in the average running time for each sample, which is accompanied
by a slight decrease in performance. In addition, the frequency of appearance of modules with
higher computational time, such as Sharpen/Blur and Tone Mapping, decreased by more than 50%.
Conversely, modules with lower computational time, like Exposure and White Balance, saw a
substantial increase in selection frequency.

Runtime. To verify the practicality of our approach, we conducted speed tests using the NVIDIA
GTX1660Ti GPU, which offers a computational capability of 11 TOPS—markedly lower than that
of the NVIDIA DRIVE OrinTM SoC at 254 TOPS. Our method only takes 1.2 ms per stage during
inference, this efficiency is attributed to just need to utilize the light-weight policy network to predict
the modules and parameters during inference.

4.2 Ablation Study and Analysis

Adaptive ISP. We perform a study to show that different data require different ISP pipelines to
achieve the best performance. To accomplish this, we begin by gathering the various ISP pipelines
predicted by our method on the LOD dataset. Next, we select the three most representative ISP
pipelines along with their corresponding input raw images, resulting in three subsets of the LOD
dataset. The specifics of these three distinct ISP pipelines can be found in Figure 5. Finally, we
conduct cross-testing on the three sets of ISP pipelines generated by our method using the three
subsets, as depicted in Figure 5. By analyzing the experimental results, we can see that only the
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Table 3: Experimental results of different detectors on LOD dataset. Note that the DDQ [41] and
YOLOX [7] do not participate in our training process. All detectors using our method demonstrate
improved detection performance.

Detectors Methods mAP@0.5 mAP@0.75 mAP@0.5:0.95

YOLO-v3 [32] RGB 55.6 40.9 37.4
Ours 71.4 51.7 47.1

YOLOX [7] RGB 57.0 43.5 39.2
Ours 69.7 51.4 47.2

DDQ [41] RGB 50.3 42.0 35.9
Ours 74.0 58.1 52.0

LOD Subset 1 Subset 2 Subset 3

Representative Images

Metrics mAP@0.5 mAP@0.75 mAP@0.5 mAP@0.75 mAP@0.5 mAP@0.75

Pipeline 1 63.0 39.8 82.1 66.8 78.2 64.5

Pipeline 2 62.1 39.6 82.7 68.9 79.2 65.2

Pipeline 3 62.4 39.5 82.4 67.8 79.1 65.4

DesaturationSharpen/Blur White Balance CCM Tone Mapping Saturation

Figure 5: The cross-validated result of different ISP pipelines and its sub-dataset on LOD datasets.
Only the most matching pipeline can achieve the best results, which proves that a different pipeline is
necessary.

most matching pipeline can achieve the best results, otherwise, it will lead to varying degrees of
performance degradation, which also proves that there are different pipeline requirements in different
scenarios.

Module preferences of different images. Furthermore, we analyze the reasons why different
ISP pipelines are necessary for various scenarios. The LOD dataset provides JPEG images with
accompanying metadata, which serves as a convenience for the analysis of our experimental results.

It is noticed that there are two different choices at the first stage of the three ISP pipelines: CCM
and Desaturation. The High ISO (ISO6400, ISO3200) and high noise level cases tend to favor
the Desaturation module, whereas low ISO (ISO800, ISO1600) and low noise level cases tend to
prefer the CCM module, as shown in Figure 5. Because Desaturation can reduce the color noise and
saturation, high ISO images with high-level noise prefer it. CCM can remove color casts and enhance
color saturation. Therefore, it is the best choice is CCM for low-ISO images.

Subsequently, we observe a divergence between the second and third ISP pipelines during the third
stage. While the second ISP pipeline opts for the Tone Mapping module, the third ISP pipeline favors
the White Balance module. Upon the analysis of the images subsequent to the second stage, we
observe a pronounced color cast problem, particularly prevalent when the overall brightness was
relatively high. In such scenarios, the most suitable course of action is to opt for the White Balance
module. Conversely, when dealing with images characterized by a high dynamic range, such as those
containing electric lights or direct sunlight, it becomes evident that the superior choice is to employ
the Tone Mapping module.

Finally, when summarizing the commonalities among the three ISP pipelines, several key conclusions
emerge: i) The color correction module notably enhances detection performance (distinct from
color correction for image quality tasks). However, optimal choices vary for images with different
brightness and noise levels. ii) The Sharpen/Blur module holds a significant position, either enhancing
or blurring the image to align with the detection network. iii) Tone Mapping also plays a crucial role,
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Table 4: Experimental results considering computational cost on LOD dataset [9]. λc = 0.0 represents
the accuracy-oriented, λc = 0.1 stands for efficiency-oriented. The total time represents the average
running time of each sample. The efficiency-oriented method has a significant reduction in the
average running time for each sample, which is accompanied by a slight decrease in performance. As
λc increases, our method tends to favor faster-executing modules.

Exposure Gamma CCM Sharpen
Blur Denoise Tone

Mapping Contrast Saturation Desaturation White
Balance

mAP
@0.5

mAP
@0.75

mAP
@0.5:0.95

Total Time
(ms)

Time (ms) 1.7 2.0 1.9 6.3 10 2.7 2.1 2.0 1.9 1.7 - - - -

λc = 0 0% 0% 99.75% 100% 0% 100% 0.25% 77.5% 100% 22.5% 71.4 51.7 47.1 14.73
λc = 5e− 3 4.75% 1% 55.5% 100% 0% 59.75% 43.75% 39.25% 100% 96.5% 71.1 51.5 47.0 14.30
λc = 1e− 2 57.5% 56.25% 100% 42.5% 0% 42.75% 37.5% 21% 42.5% 100% 71.0 51.6 47.0 11.54
λc = 5e− 2 100% 7% 100% 0% 0% 0% 48% 49.75% 95.25% 100% 70.0 49.9 46.0 9.26
λc = 1e− 1 100% 0.75% 99.5% 0% 0% 0% 0% 99.75% 100% 100% 69.9 50.1 45.9 9.20

Table 5: Comparison of object detection performance at different stages on the LOD dataset [9].
Our approach attains optimal performance with just two stages and dynamically achieves a trade-off
between object performance and computational cost.

Methods Stages mAP@0.5 mAP@0.75 mAP@0.5:0.95

Hyperparameter Optimization [35] 10 70.1 49.7 46.1
Attention-aware Learning [30] 10 70.9 51.0 46.6

ReconfigISP [39] 5 69.4 49.6 45.6
Refactoring ISP [34] 6 68.3 47.6 44.1

Ours

1 69.6 49.8 45.7
2 70.9 51.1 46.6
3 71.3 50.7 46.9
4 71.4 51.6 47.1
5 71.4 51.7 47.1

enhancing detection accuracy by adjusting the overall color and brightness. iv) Denoising, contrary
to previous research conclusions, is not deemed crucial. This finding contributes to substantial
computational cost savings for the ISP. These analyses and conclusions provide valuable insights for
the future designs of ISPs tailored to specific downstream tasks.

Adaptive Trade-off. To demonstrate that our model can achieve an adaptive trade-off between
efficiency and accuracy during the inference phase, we use stages to represent the number of ISP
modules. Recall that none of the previous algorithms support dynamic efficiency-accuracy trade-
off. Hyper-parameter Optimization [35] and Attention-aware Learning [30] are optimized based on
handcrafted ISP, so the time consumption cannot be changed during the inference phase. Although
ReconfigISP [39] and Refactoring ISP [34] have optimized ISP pipelines and parameters for specific
tasks, the ISP pipelines and parameters remain fixed during inference. As shown in Table 5, our
method only requires 3 stages to achieve the best performance on the LOD dataset and reaches a
good trade-off between efficiency and accuracy. Moreover, this trade-off happens at inference time,
without any retraining, and supports the dynamic update of the trade-off strategy.

5 Conclusion

In this paper, we introduce AdaptiveISP, a novel approach that leverages deep reinforcement learning
to automatically generate an optimized ISP pipeline and associated parameters, maximizing detection
performance with a pre-trained object detection network. Our method incorporates several key
innovations. Firstly, we formulate the ISP configuration process as a Markov Decision Process,
allowing reinforcement learning to autonomously discover an optimal pipeline and parameters for
specific high-level computer vision tasks. Secondly, to account for computational costs associated with
different ISP modules, we introduce a penalty of computational time. Comprehensive experiments
demonstrate that AdaptiveISP surpasses existing state-of-the-art methods, and dynamically manages
the trade-off between performance and computational cost. Furthermore, we conduct a detailed
analysis of individual modules within ISP configurations, offering valuable insights for future ISP
designs tailored to specific downstream tasks. The present approach relies on the utilization of
differentiable ISP modules in research, with future endeavors aimed at exploring non-differentiable
ISP methodologies.
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A Additional Experiments

A.1 Experiments Details

We utilize the Adam optimizer with an initial learning rate of 3e − 5 and a batch size of 8. The
learning rate gradually decreases by a factor of λ = 0.13·iter/itertotal . Note that both the policy network
and value network use the same initial learning rate. Our training comprises 100,000 iterations on
one NVIDIA RTX 3090 (24G) GPU for the LOD dataset [9], which is completed in around 24
hours. Additionally, we re-implement four methods, namely Hyperparameter Optimization [35],
Attention-aware Learning [30], ReconfigISP [39], and Refactoring ISP [34], following the original
papers. The ISP pipelines for these methods are illustrated in the RGB domain of Fig. 2 of the main
paper. The results for Crafting [9], NeuralAE [27], and DynamicISP [38] are obtained from their
respective original papers.

The OnePlus dataset [39] comprises DNG files containing raw images and metadata. Given that
our method operates on linear RGB, we employ “rawpy” to perform demosaicing operations on the
original raw images, converting them into linear RGB images for the creation of our training and
testing datasets.

The LOD [9], OnePlus [39], and raw COCO [19] datasets are commonly used in ISP research. The
LOD dataset provides accompanying metadata, which greatly facilitates our experimental analysis.
The OnePlus dataset is a real-world dataset collected by smartphones. The COCO dataset is a
well-known object detection and segmentation dataset. The ROD [37] dataset is a 24-bit HDR raw
dataset collected by the SONY IMX490 sensor. The IMX490 sensor is rare in everyday life, therefore,
we do not use ROD as our benchmark dataset.

A.2 Ablation Experiments on the Necessity of ISP

To validate the necessity of Image Signal Processing (ISP), we conducted a series of experiments
on a raw COCO dataset [19]. For these experiments, we randomly selected 5,000 images from the
COCO training set as our training dataset. We utilized a pre-trained YOLO-v3 model [32] as our
starting model and trained it on the raw COCO dataset, setting the batch size to 128 and the learning
rate to 0.01, with the training extending over 100 epochs. Additionally, we trained our method on the
same dataset. It is important to note that within our methodology, the YOLO-v3 model [32] remained
in a frozen state. The final experimental results were compared on the raw COCO validation set, as
detailed in Table 6. These results convincingly demonstrate that the inclusion of the ISP module is
crucial and can significantly enhance detection performance.

Table 6: Ablation experiment of the necessity of ISP on raw COCO dataset [19].
Methods mAP@0.5 mAP@0.75 mAP@0.5:0.95

Raw + YOLO-v3 [32] 34.5 22.9 21.8
Ours 56.2 41.2 38.6

A.3 Additional Experiments on ROD dataset

We conduct additional experiments on the ROD dataset. Note that the released ROD dataset differs
from the one described in the published paper. Additionally, the released results (AP 28.1) on the
new version of the dataset are lower than those reported in the published paper, according to the
open-source code released on GitHub, indicating that the released version is more challenging.

Because the released dataset is only a training dataset that provides paired raw images and annotations,
we randomly split 80% of the dataset (12,800) for training, with the remainder as our validation
dataset (3200). The dataset processing pipeline is similar to the original paper and released codes.
Since our method emphasizes using training-well models, we selected only three categories (person,
car, truck) belonging to COCO from the ROD dataset for a fair comparison. Due to time constraints,
we select the previously best-performing method, Attention-Aware Learning [30], and the state-of-
the-art method on the ROD dataset, Toward RAW Object Detection [37], as our comparison methods.
Each method was trained for 100 epochs.
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As shown in Table 7, our method achieves the best performance, even though the detector we used is
not trained on this input (Toward RAW Object Detection method [37] does).

Table 7: Experimental results on ROD dataset. * refers to a detector that is trained on raw input,
which is normally better than detectors only trained on RGB input (like ours). The “Toward RAW
Object Detection” is an end-to-end raw detection method, that updates its parameters during training
time. Other methods use a pre-trained YOLO-v3 detector and freeze its parameters during training
time.

Methods mAP@0.5 mAP@0.75 mAP@0.5:0.95

Attention-Aware Learning [30] 49.8 34.0 31.6
Toward RAW Object Detection* [37] 54.1 30.9 31.3

Ours 51.6 35.7 33.2

A.4 Ablation Experiments on Penalty of Reusing

Table 8: Ablation experiment of the penalty of reusing on LOD dataset [9].
Penalty of Reusing Exposure Gamma CCM Sharpen

Blur Denoise Tone
Mapping Contrast Saturation Desaturation White

Balance
mAP
@0.5

2.25% 0% 164% 139% 0% 46.5% 0% 0% 99.5% 48.75% 70.9
✓ 0% 0% 99.75% 100% 0% 100% 0.25% 77.5% 100% 22.5% 71.4

To assess the impact of the penalty of reusing, we perform ablation experiments on the LOD
dataset [9]. As shown in Table 8, if the penalty of reusing is not applied, there is a noticeable decline
in detection performance, accompanied by an occurrence frequency exceeding 100% for both CCM
and Sharpen/Blur modules.

A.5 Experiment on Limited Datasets

To validate the applicability of our method with limited training data, we conducted experiments
on the OnePlus dataset [39], which comprises only 50 training images. The results are presented in
Table 9, demonstrating that our approach outperforms ReconfigISP.

Table 9: Experimental results on limited datasets (OnePlus dataset [39]).

mAP@0.5 mAP@0.75 mAP0.5:0.95

ReconfigISP [39] 60.1 - -
Ours 75.6 50.5 47.3

A.6 Comparison with Image Quality Task

To validate the distinct requirements of ISP between image quality tasks and object detection tasks,
we select Exposure [10] as the representative method for image quality tasks. Given that the Expo-
sure [10] method requires paired raw-RGB data, and computing object detection results necessitate
bounding box labels, we utilize 1,000 simulated raw-like images with the most bounding boxes
converted from the COCO training dataset [19] using UPI [1] as our training dataset. Additionally,
we employ the LOD Dataset, comprising all real raw images, as our test dataset, similar to prior
works [9, 38, 30, 31]. We train both our approach and the Exposure method on the synthetic raw
COCO dataset.

As shown in Figure 6, image quality and object detection tasks have distinct requirements for ISP.
Image quality tasks primarily emphasize color and brightness, intending to produce images that
closely align with human perception. In contrast, the results obtained from processing images for
target detection tasks better meet the demands of machine-based systems. We further compare the
object detection results with the image quality method [10] on the LOD dataset with all real raw
images, as shown in Table 10, the results of our method are much higher than the image quality
method.
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Input Stage 1 Gamma Stage 2 CCM Stage 3 Tone Mapping Stage 4 Sharpen/Blur

Stage 1 Gamma Stage 2 Tone Mapping Stage 3 Contrast Stage 4 Color Correction

Image Quality Task
Hu et al.

Object Detection Task
Ours

Figure 6: Visualization results for image quality and object detection tasks on the raw COCO dataset.
Image quality tasks and object detection tasks have distinct requirements for ISP.

Table 10: Comparison results with image quality methods on all LOD datasets.

mAP@0.5 mAP@0.75 mAP@0.5:0.95

Hu et al. [10] 54.3 35.4 33.7
Ours 62.1 42.1 39.6

A.7 More Visualization Results

Hyperparameter
Optimization

Attention-aware 
Learning OursRefactoring

ISPReconfigISP

bus0.91
bus0.59

bus0.88bus0.85bus0.86bus0.84

bus0.37 bus0.83 bus0.64

Figure 7: Object detection visualization results on LOD datasets.

We show more object detection and image segmentation visualization results in Figure 7 and Figure 8,
showcasing its superior performance in terms of both missed detection and false detection compared
to all other methods.

B Details of Implemented ISP

As shown in Figure 9, a typical camera ISP pipeline includes two parts: raw-domain and RGB-
domain. The raw-domain processing converts a raw sensor signal to a linear RGB image, which
includes Defective Pixel Correction (DPC), Black Level Correction (BLC), Lens Shading Correction
(LSC), and Demosaicking. The RGB-domain processing further applies customized rendering and
post-processing to generate the final image. This processing includes tone mapping, color correction,
denoising, sharpening, etc. We focus on RGB-domain processing, the ISP detailed in this paper
encompasses various standard differentiable modules, including:

(1) Exposure: Exposure control regulates the amount of light reaching the sensor to ensure
the image’s overall brightness matches the desired level. This module helps in adapting to
varying lighting conditions. This module can be expressed as:

Iexposure = I · 2p, (12)

where I is the input image, p is the exposure parameter and p ∈ [−3.5, 3.5].
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Figure 8: Image segmentation visualization results on raw COCO datasets.
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Figure 9: A typical camera ISP pipeline consists of different modules in the raw domain and RGB
domain, which transforms raw sensor pixel data into RGB images suitable for viewing. In this paper,
we focus on the ISP modules in the RGB domain.

(2) White Balance: White balance adjustment aims to rectify color temperature discrepancies,
ensuring that colors in the final image appear natural and consistent with the observed scene.
This module can be expressed as:[

IR′

IG′

IB′

]
=

[
pR 0 0
0 pG 0
0 0 pB

][
IR
IG
IB

]
, (13)

where pR, pG, pB are gain value of input image IR, IG, IB and pR, pG, pB ∈ [e−1/2, e1/2].

(3) Color Correction Matrix (CCM): The CCM module fine-tunes color representations by
mapping the sensor’s color response to the desired color space. It plays a pivotal role in
achieving accurate color rendering, the original image data IR, IG, IB is multiplied with
CCM to obtain IR′ , IG′ , IB′ :[

IR′

IG′

IB′

]
=

[
p00 p01 p02
p10 p11 p12
p20 p21 p22

][
IR
IG
IB

]
, (14)

where p is the CCM parameter and the sum of elements in each row equals 1.
(4) Gamma: Gamma correction alters the image’s tonal curve, affecting the distribution of

lightness levels. This module is essential for ensuring luminance and contrast consistency.
This module can be expressed as:

Igamma = Ip, (15)
where p is the gamma parameter and p ∈ [1/3, 3].

(5) Denoise: Denoise techniques are applied to mitigate image noise, particularly in low-light or
high ISO settings, preserving image quality by reducing noise. In this paper, we implement
a differentiable Non-Local Means Denoising algorithm (NLM [3]) based on PyTorch. This
module can be expressed as:

Idenoise = NLM(I, p), (16)
where p ∈ [0, 1] is filter-strength, which represents the strength of denoising.

(6) Sharpen/Blur: This module enhances or blurs image details and edges, thus improving
image clarity and visual appeal. It is useful for accentuating finer image structures. This
module can be expressed as:

Isharpen/blur = p · I + (1− p) · Iblurred, (17)
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where p ∈ [0, 2] is the factor and Iblurred is the blurred image, which can be obtained by

using the blur kernel, and the blur kernel can be expressed as: 1/13 ·

[
1 1 1
1 5 1
1 1 1

]
.

(7) Tone Mapping: Tone mapping regulates the dynamic range of an image, ensuring that details
in both bright and dark areas are discernible. It is especially valuable for rendering high
dynamic range scenes on standard displays. Following [10], we approximate curves as
monotonic and piecewise-linear functions. We use L parameters represent tone mapping
curve, denoted as {p0, p1, . . . , pL−1}. With the prefix-sum of parameters defined as Pk =∑k−1

l=0 pl, the points on the curves are represented as (k/L, Pk/PL). Given an input image
I ∈ [0, 1], the mapped result can be expressed as:

Itone_mapping =
1

PL

L−1∑
i=0

clip(L · I − i, 0, 1)pk, (18)

where the slope of each segment in the curve is in [0.5, 2.0] and L = 8.
(8) Contrast: This module modulates the contrast of an image, defining the variations between

light and dark areas. It contributes to image aesthetics and enhances perceptual quality. This
module can be expressed as:

Icontrast = (1− p) · I + p · I ·
1
2 (1− cos(π · Ilum)

Ilum
, (19)

where p ∈ [−1, 1] is adjustment factor, and Ilum can be expressed as:

Ilum = 0.27 · IR + 0.67 · IG + 0.06 · IB . (20)

(9) Saturation: Saturation adjustment manipulates the intensity of colors in an image, allowing
for vivid or muted color representation according to the desired artistic effect. This module
can be expressed as:

(IH , IS , IV ) = RgbToHsv(IR, IG, IB),
IS′ = IS + (1− IS) · (0.5− |0.5− IV |) · 0.8,
I ′ = HsvToRgb(IH , IS′ , IV ),

Isaturation = (1− p) · I + p · I ·
1
2 (1− cos(π · I ′))

Ilum
,

(21)

where p ∈ [0, 1] is adjustment factor, and Ilum can be obtained through Equation 20.
(10) Desaturation: The desaturation module, conversely, reduces the intensity of colors in an

image, leading to a more muted or grayscale appearance. It is often employed for specific
artistic or visual effects, including creating black-and-white imagery or subtle color emphasis.
This module can be expressed as:

Idesaturation = (1− p) · I + p · (Ilum, Ilum, Ilum), (22)

where p ∈ [0, 1] is adjustment factor, (Ilum, Ilum, Ilum) represents R-G-B channels of the
image are Ilum, and Ilum can be obtained through Equation 20.

C Additional Details of Method

C.1 Network Architecture

All of these networks share the same architecture depicted in Figure 10, while the extra channel
(EC) represents different additional input information, more detail can be found in Fig. 4 of the
main paper. For each feature extraction, we use four Conv-BN-LRelu layers and a fully connected
layer with 128 dimensions. Each Conv-BN-LRelu layer consists of a convolution layer with 4 × 4
kernels and 2 × 2 strides, a batch normalization, and an LRelu activation of leak = 0.2, the first
layer has 32 channels, and this number progressively doubles in the subsequent layers. The policy
network includes a dropout layer (with a dropout rate of p = 0.5) preceding the fully connected layer
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Figure 10: The network architecture of the policy and value network in our method. The extra channel
(EC) represents additional input that needs to be supplemented.

with 128 dimensions. The activation function for the module selection network is softmax, with the
number of outputs from the module selection network corresponding to the number of ISP modules.
Parameter prediction networks share a common feature extraction backbone. The activation function
and the number of outputs from parameter prediction networks are specific to each module, reflecting
variations in both the number and range of parameters for each ISP module.

C.2 Terminated and Truncated

(a) Input. (b) Overexposure. (c) Underexposure.

Figure 11: Failure cases during the training stage. When the system predicts an excessively high
gain value for the exposure module, the resulting image becomes overexposed, as illustrated in (b).
Conversely, an overly small gain value leads to a completely black image, as depicted in (c).

The process of reinforcement learning can be abstracted as an agent continually gathering experiences
from the environment and learning from them. However, during the experience collection process,
issues such as termination and truncation can significantly impact experience collection and training,
necessitating special design considerations.

We can limit the total number of ISP configuration steps to enable the policy network to autonomously
learn the optimal module selection for downstream tasks under resource constraints. Specifically,
the number of ISP module options in our ISP module pool is denoted as N, for the policy network
selecting the modules more stably, we intentionally “terminated” once the execution stage reaches
the maximum T (T ≤ N ). Besides, we incorporate step information into the policy networks by
introducing an additional channel for providing stage-related data, as shown in the stage channel of
Fig. 4 of the main paper. The terminated coefficient λterminated can be defined as:

λterminated =

{
0, if t ≤ T,

1, otherwise ,
(23)

where t is the number of ISP configuration stages, and T is the maximum stages and T is 5 in our
experiments.

Additionally, we intentionally truncate the execution when the network diverges to output abnormal
images, as shown in Figure 11, for example, “truncated" once the image mean gets out of range
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Figure 12: The network input of the policy and value network in our method. The number of use
channels is the same as the number of ISP modules (N ). The stage channel represents the current
stage. The extra 3 channels of value network input respectively represent the luminance, contrast,
and saturation of the input image.

(lummin, lummax). The truncated coefficient λtruncated can be defined as:

λtruncated =

{
0, if lummin ≤ I ≤ lummax,

1, otherwise ,
(24)

where I is the mean of processed image.

Ultimately, the state value function V π(s) can be defined as V π(s) = (1 − λterminated) × (1 −
λtruncated)V

π(s).

C.3 Design for Object Detection

ISP Modules. In the ISP pipelines for visual quality [10, 16, 28], the ISP modules primarily
focused on pixel operations related to color and brightness adjustment. To better adapt the ISP
pipeline for object detection, following the traditional ISP modules, we extend the existing pipeline
by incorporating differentiable Sharpen/Blur, Denoise, and CCM modules onto the foundation
established in [10]. Empirically, we find these changes increase the detection performance.

Input Resolution. For object detection networks, larger pixel images are commonly employed for
training and testing [4, 33, 8, 21, 18, 5]. To seamlessly integrate our policy network and detection
network into end-to-end training, the input resolution to our ISP is configured based on the input
resolution of the detection network. This ensures the back-propagation from the detection network to
the differentiable ISP and subsequently to the policy network. The policy network and value network
can continue to utilize down-sampled input resolutions, such as 64 × 64 pixels, during training and
testing, as illustrated in Figure 12. To enhance the value network’s assessment of the current state,
we include the average luminance, contrast, and saturation of the input image as additional input
features.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflect the contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations are discussed in Section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Experimental details are provided.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]

Justification: Codes and datasets will be made publicly available upon acceptance.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Details are provided in Section 4 and Appendix A.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: This follows the convention in ISP tuning and design research, the same as
previous works.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The information on the computer resources is shown in Appendix A.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We strictly adhere to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no direct negative societal impact for ISP tuning and design.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited all original papers and make sure that our usage is legal.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We construct our experiments based on public datasets and models.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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