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Abstract

Neural networks continue to struggle with compositional generalization, and this
issue is exacerbated by a lack of massive pre-training. One successful approach for
developing neural systems which exhibit human-like compositional generalization
is hybrid neurosymbolic techniques. However, these techniques run into the core
issues that plague symbolic approaches to AI: scalability and flexibility. The
reason for this failure is that at their core, hybrid neurosymbolic models perform
symbolic computation and relegate the scalable and flexible neural computation to
parameterizing a symbolic system. We investigate a unified neurosymbolic system
where transformations in the network can be interpreted simultaneously as both
symbolic and neural computation. We extend a unified neurosymbolic architecture
called the Differentiable Tree Machine in two central ways. First, we significantly
increase the model’s efficiency through the use of sparse vector representations of
symbolic structures. Second, we enable its application beyond the restricted set of
tree2tree problems to the more general class of seq2seq problems. The improved
model retains its prior generalization capabilities and, since there is a fully neural
path through the network, avoids the pitfalls of other neurosymbolic techniques
that elevate symbolic computation over neural computation.

1 Introduction

Figure 1: Generalization ability of our ap-
proach (sDTM) compared with baselines
across various out-of-distribution shifts, av-
eraged over different datasets. See §5.

Deep learning models achieve remarkable performance
across a broad range of natural language tasks [71],
despite having difficulty generalizing outside of their
training data, struggling with new words [36], known
words in new contexts [29], and novel syntactic struc-
tures, like longer sequences with greater recursive depth
[30, 39]. Increasingly this problem is addressed through
data augmentation, which tries to make it less likely
a model will encounter something unlike what it sees
during training — reducing the degree by which it has
to generalize [1, 15, 26]. However, even models trained
on vast quantities of data struggle when evaluated on
examples unlike those seen during training [32].
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This stands in contrast to how humans process language, which enables robust generalization [51].
By breaking novel sentences into known parts, we can readily interpret phrases and constructions that
we have never encountered before (e.g. ‘At the airport I smiled myself an upgrade’, [22]). Why do
models trained on orders of magnitude more language data than a human hears in 200 lifetimes [25]
still fail to acquire some of language’s most essential properties?

Central to language’s generalizability is compositional structure [49] where contentful units, like
words, fit together in a structure, like a syntactic tree. Many classical approaches in NLP and
Machine Learning attempt to induce a grammar from data in the hope of leveraging the same kinds
of generalization seen in natural language [e.g. 34, 33, 68]. However, structured representations
are not first-order primitives in most neural networks [44, 63]. Despite theoretical appeal, the
strictures of purely discrete symbolic approaches have made them difficult to apply to the breadth
of tasks and domains where deep learning models have proven successful [18]. In contrast, purely
connectionist models — like Transformers [71] — struggle with the kinds of sample efficiency and
robust generalization ubiquitous to human learning.

Neurosymbolic methods attempt to integrate neural and symbolic techniques to arrive at a system
that is both compositional and flexible [4, 19, 20, 63]. While some neurosymbolic architectures
achieve impressive compositional generalization, they are often brittle due to the symbolic core
of their computation [58]. These methods are hybrid neurosymbolic systems, where the primary
computation is symbolic, and the neural network serves to parameterize the symbolic space. We take
a different approach, one where symbolic operations happen in vector space. In our system, neural
and symbolic computations are unified into a single space; we multiply and add vector-embedded
symbolic structures instead of multiplying and adding individual neurons.

We introduce a new technique for representing trees in vector space called Sparse Coordinate Trees
(SCT). SCT allows us to perform structural operations: transformations which change the structure
of an object without changing the content. This is a crucial aspect of compositionality, where the
structure and content can be transformed independently. We extend the Differentiable Tree Machine
(DTM), a system which operates over binary trees in vector space, into the Sparse Differentiable Tree
Machine (sDTM) to improve performance and applicability to a larger variety of tasks2. While DTM
processes vector-embedded binary trees as the primitive unit of computation, the order of operations
and argument selection is governed by a Transformer. We present results showing that this unified
approach retains many of the desirable properties of more brittle symbolic models with regards to
generalization, while remaining flexible enough to work across a far wider set of tasks. While fully
neural architectures or hybrid neurosymbolic techniques excel at certain types of generalization, we
find that DTM, with its unified approach, excels across the widest array of shifts.

The main contributions from this paper are:

• Sparse Coordinate Trees (SCT), a method for representing binary trees in vector space as
sparse tensors. (§3.1)

• Bit-Shift Operating — systematic and parallelized tree operations for SCT. (§3.2)

• The introduction of Sparse Differentiable Tree Machine (sDTM), architectural improvements
to the DTM to leverage SCT and drastically reduce parameter and memory usage. (§4)

• Techniques to apply DTM to seq2seq tasks by converting sequences into trees. (§4.5)

• Empirical comparisons between sDTM and various baselines showing sDTM’s strong general-
ization across a wide variety of tasks. (§5)

2 Related Work

Work leveraging the generalizability of tree structures has a long history across Computer Science,
Linguistics, and Cognitive Science [9, 45, 57, 64, 68]. Much of classical NLP aims to extract
structured representations from text like constituency or dependency parses [for overview: 13, 42].
More recent work has shown the representations learned by sequence-to-sequence models without
structural supervision can recover constituency, dependency, and part of speech information from
latent representations in machine translation and language models [3, 6]. While those analyses show

2Code available at https://github.com/psoulos/sdtm.
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Figure 2: An example representation using Sparse Coordinate Trees (SCT). The values are N-
dimensional vectors, and the tree positional indices are integer representations of positions in the tree.
The absent child nodes of "The" (indices 4 and 6) are skipped with SCT.

structural information is encoded, they stop short of showing that the representations themselves are
tree-structured. Analyses inspired by Tensor Product Representations [46, 66] and chart parsing [48]
give an account of how representations become somewhat tree-structured over the course of training.

Despite the apparent emergence of semi-structured representations in Transformers and LSTMs,
these architectures still appear to struggle with the kinds of structural generalization that come easily
to humans [36, 31, 29]. A variety of approaches try to tackle this problem through meta-learning
[37, 11], data augmentation [1], or decomposing the task into separate parts [56, 41]. The Relative-
Universal Transformer [12] combines relative positional embeddings with a recurrent component, in
an effort to emphasize local structures while allowing for unbounded computation.

Explicitly tree structured network architectures have been introduced for RNNs [65], LSTMs [70, 16],
and Transformers [72, 61]. However, these variants often do not outperform their unstructured
counterpart on out-of-distribution challenges [67]. This may be because generalization requires
both structured representations and operations that respect that structure. A separate line of work
considers neural architectures that are used to parameterize components of a symbolic system [33, 8]
or fuzzy/probabilistic logic [75, 2, 73, 14]. Similar to how vectors are embedded in trees in our work,
some work embeds vectors within logical systems [54, 43]. Logic approaches to structure learning
are also an active area of research [47, 59]. Other approaches leverage explicit stack operations
[17, 24, 27, 76]. NQG from Shaw et al. [58] combines the outputs from neural and symbolic models
by inducing a grammar, but deferring to T5 [53] when that grammar fails. However the grammar’s
induction method has polynomial complexity with both dataset size and sequence length, which
limits its application to larger tasks.

Vector Symbolic Architectures (VSAs) implement symbolic algorithms while leveraging high dimen-
sional spaces [52, 21, 28, 35]. VSAs are similar to uniform neurosymbolic approaches, although
VSAs commonly lack a learning component. Our work extends that of Soulos et al. [67] which can
be viewed as integrating Deep Learning and VSAs. They introduce the Differentiable Tree Machine
for Tree-to-Tree transduction. Here we instantiate a sparse Sequence-to-Sequence version with far
fewer parameters and improved memory efficiency.

3 Differentiable Tree Operations Over Sparse Coordinate Trees

Representing trees in vector space enables us to perform differentiable structural operations on them.
Soulos et al. [67] used Tensor Product Representations (TPRs) [64] for this purpose. TPRs use the
tensor (or outer) product to represent trees in vector space (§A.1). Use of an outer product leads to a
representation dimensionality that is multiplicative with both the embedding dimensionality and the
number of possible tree nodes. Additionally, the number of nodes is itself an exponential function of
the supported depth. This makes TPRs difficult to use in practice, given available memory is quickly
exceeded as tree depth increases.

In this section, we introduce Sparse Coordinate Trees (SCT), a new schema for representing trees
in vector space. We then define a library of parallelized tree operations and how to perform these
operations on SCT.
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Figure 3: Left: Performing left (orange) and right (blue). Right: visualizing the left transforma-
tion which results in DP being placed at the root. Tree positional indices of 0 and their corresponding
values are discarded.

3.1 Sparse Coordinate Trees (SCT)

Like TPRs, we want an encoding for trees that factorizes the representation into subspaces for
structure and content respectively. This approach to representational spaces differs from models like
an RNN and Transformer, which represent structure and content jointly in an unfactorized manner.
By separating the structure and content subspaces a priori, we can operate over these two spaces
independently. This decision is motivated by the fact that distinct treatment of these spaces is an
essential aspect of compositionality.

We derive our tree representation scheme from the sparse coordinate list (COO) format. COO stores
tensor data in tuples of (indices [integers], values [any format], size [integers]). The indices are
N-dimensional to simulate a tensor of arbitrary shape (e.g. including dimensions such as batch or
length). When an index is not indicated in indices, it is assumed that the corresponding value is 0.

We give structural meaning to COO representations by defining one dimension of indices as the
tree position occupied by a value vector. Our tree addressing scheme is based on Gorn addresses
[23]: to get the tree position from an index, convert the index to binary and read from right to left.
A left-branch is indicated by a 0 and a right branch by a 1. To distinguish between leading 0s and
left-branches (e.g. 010 vs 10), we start our addressing scheme at 1 instead of 0. This indicates that all
0s to the left of the most-significant 1 are unfilled and not left-branches. Figure 2 shows an example
encoding of a tree with this approach. SCT can be viewed as a TPR with certain constraints, and
Section A.1 defines this equivalence and formally describes the memory savings.

Section 5.2 discusses the performance, memory, and parameter comparison between DTM models
which use standard TPRs and SCT.

3.2 Differentiable Tree Operations

To operate on the trees defined in the previous section, we need a set of functions. We use a small
library of only three: left-child (left), right-child (right), and construct (cons) a new tree from a
left and right subtree.3 Although these three functions are simple, along with the control operations
of conditional branching and equality-checking, these five functions are Turing complete [45].

In addition to saving memory, SCT also provides a more efficient method for performing differentiable
tree operations. The operations defined in Soulos et al. [67] require precomputing, storing, and
applying linear transformations for left, right, and cons. Since our values and tree positional
indices are kept separate, we can compute the results of left, right, and cons dramatically more
efficiently using indexing, bit-shifts, and addition.

Figure 3 shows how we can perform left directly on SCT. left is performed by indexing the even
indices (i.e. those with a 0 in the least significant bit, which targets all of the nodes left of the root)
and their corresponding values, then performing a right bit-shift on the indices. right is symmetrical,
except that we index for the odd positional indices and ignore position 1 in order to remove the
previous root node. cons is performed by left bit-shifting the positional indices from the left- and

3In LISP and expert systems literature, left is referred to as car, and right is referred to as cdr.
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right-subtree arguments, then adding 1 to the newly shifted indices for the right argument. A new
value s can be provided for the root node.

Our network also needs to learn a program over multiple operations differentiably. This involves
the aforementioned structured operations, as well as differentiable selection of which operation to
perform and on which trees. We take weighted sums over the three operations left, right, and
cons, as well as over potential trees. Specific details are discussed in the next section. The result
of our weighted sum is coalesced, which removes duplicate positional indices by summing together
all of the values that share a specific index. Formally, define the trees over which to perform left
TL, right TR, and cons TCL & TCR; T⃗ = [TL;TR;TCL;TCR]. We also take a new value s ∈ Rd

to be inserted (⊗) at the new root node of the cons operation, and a vector of operation weights
w⃗ = (wL, wR, wC) which sum to 1.

O(w⃗, T⃗ , s) = wLleft(TL) + wRright(TR) + wC(cons(TCL, TCR) + s⊗ r1) (1)

4 The Sparse Differentiable Tree Machine (sDTM)

Our work extends the Differentiable Tree Machine (DTM) introduced in Soulos et al. [67] with
the Sparse Differentiable Tree Machine (sDTM). While similar to the original at a computational
level, sDTM represents a different implementation of these concepts that make it dramatically more
parameter and memory efficient. We also introduce techniques to apply sDTM to tasks with sequence
input and output (seq2seq).

4.1 Overview

Differentiable Tree Machine (DTM)

Agent Interpreter Memory

Figure 4: A schematic of how the three core
components of the DTM (agent, interpreter, and
memory) relate to each other. Adapted from
Soulos et al. [67].

sDTM uses our Sparse Coordinate Trees schema
across its components. Like the original DTM, our
model is comprised of an agent, interpreter, and mem-
ory (illustrated in Figure 4). The Interpreter performs
Equation 1 by applying the bit-shifting tree opera-
tions from Section 3.2 and weighting the result. The
output from the interpreter is written to the next avail-
able memory slot, and the last memory slot is taken
as the output.

The Agent is a Transformer encoder that takes an
encoding of the memory as input and produces the
inputs for Equation 1: w⃗, T⃗ , and s. Two special
tokens, <OP> and <ROOT>, are fed into the Agent
to represent w⃗ and s. Each time a tree is written to memory, a fixed-dimensional encoding of that tree
is produced and fed as a new token to the agent (§4.2). The agent soft-selects tree arguments for the
interpreter, T⃗ , by performing a weighted sum over the trees in memory. Figure 6 in the Appendix
contains a detailed diagram showing the flow of information for one layer of sDTM.

The agent which implicitly parameterizes the conditional branching and control flow of the program
is modeled by a Transformer, and it is possible for sDTM to face some of the generalization pitfalls
that plague Transformers. The design of sDTM encourages compositional generalization through
differentiable programs, but it does not strictly enforce the constraints of classical symbolic programs.
As the results in Section 5 show, sDTM can learn generalizable solutions to some tasks despite the
presence of a Transformer, but on some other tasks the issues with generalization are still present.

4.2 Pooling by attention

Each tree in memory needs to have a fixed-dimensional encoding to feed into the agent regardless of
how many nodes are filled. Commonly this is done via pooling, like taking the means of the elements
in the tree, or a linear transformation in the case of the original DTM. Instead, we use Pooling by
Multi-headed Attention (PMA) [38], which performs a weighted sum over the elements, where the
weight is derived based on query-key attention.
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Attention is permutation invariant to the ordering of key and value vectors, but it is important that
our pooling considers tree position information. To enforce this, we convert the position indices
to their binary vector representation b⃗. This leads to an asymmetrical vector with only positive
values, so instead we represent left branches as −1 and keep right branches as +1. For example,
position 5 → [0, 0, 0, 0, 0, 1, 0, 1] → [0, 0, 0, 0, 0, 1,−1, 1]. The input to our pooling function is the
concatenation of this positional encoding b⃗ with the token embedding x⃗ at that position: [x⃗; b⃗]. This
method for integrating token and node position is similar to tree positional encoding from Shiv and
Quirk [60], except that we use concatenation and a linear transformation to mix the content and
position information instead of addition.

Unlike standard self attention, we use a separate learnable parameter for our query vector
q⃗ ∈ Rnum_heads×key_dim. We pass [x⃗; b⃗] through linear transformations to generate keys k⃗ ∈
Rnum_heads×key_dim and values v⃗ ∈ Rnum_heads×value_dim. The result of this computation is always
z ∈ Rnum_heads×value_dim given that q⃗ is fixed and does not depend on the input. The rest of the
computation is identical to a Transformer with pre-layer normalization [74].

4.3 Tree Pruning

While Sparse Coordinate Trees mean that trees with fewer filled nodes take up less memory, the
way our model blends operations results in trees becoming dense. The interpreter returns a blend
of all three operations at each step, including the cons operation which increases the size of the
representation by combining two trees. In practice even as the entropy of the blending distribution
drops, the probability of any operation never becomes fully 0. This means that over many steps, trees
start to become dense due to repeated use of cons. In order to keep our trees sparse, we use pruning:
only keeping the top-k nodes as measured by magnitude. k is a hyper-parameter that can be set along
with the batch size depending on available memory.

4.4 Lexical Regularization

To aid lexical generalization, we add noise to our token embeddings. Before feeding an embedded
batch into the model, we sample from a multi-variate standard normal for each position in each tree,
adding the noise to the embeddings as a form of regularization [5]. Ablation results showing the
importance of this regularization are available in Appendix A.3.

4.5 Handling Sequential Inputs and Outputs

seq2tree The original DTM can only be applied to tasks where a tree structure is known for both
inputs and outputs. Here we provide an extension to allow DTM to process sequence inputs. To do this
we treat each input token as a tree with only the root node occupied by the token embedding. We then
initialize the tree memory with N trees, one for each token in the input sequence. Figure 5 left depicts
the initial memory state for a sequence. The agent’s attention mechanism is permutation-invariant,
so in order to distinguish between two sequences which contain the same tokens but in different
orders, we apply random sinusoidal positional encodings to the first N tokens passed to the agent
[40, 55]. Random positional encodings sample a set of increasing integers from left-to-right instead
of assigning a fixed position to each token. The purpose of left and right is to extract subtrees.
Since in our seq2tree setting the input sequence is processed in a completely bottom-up manner, we
restrict the agent and interpreter to only have a single operation: cons. Use of a single operation
to construct new trees from subtrees aligns the DTM theoretically with the Minimalist Program [10],
which addresses natural language’s compositionality in terms of a single operation: merge.

seq2seq To handle sequence inputs and outputs we convert the output sequence to a tree. One
method to convert the output sequence into a tree is to use a parser. Alternatively, when a parser is
not available, we can embed a sequence as the left-aligned leaves at uniform depth (LAUD). Figure 5
right shows how an output sequence can be embedded using LAUD. Since all of the non-terminal
nodes are the same, we can hardcode the root argument to cons. We insert a special token <EOB> to
signify the end of a branch, similar to an <EOS> token.

6



right

??

walk

??

<NT>

<NT>

<EOB><NT>

<EOB>LOOK

<NT>

<NT>

RIGHTWALK

<NT>

WALKWALK

thrice

??

look

??

and

??

Memory

walk thrice and look right WALK WALK WALK RIGHT LOOK

Figure 5: Left: The memory state is initialized as a sequence of trees where only the root node
contains a token. Right: An output sequence is embedded in a tree using the left-aligned uniform-
depth (LAUD) scheme. <NT> and <EOB> are special tokens not in the original output sequence.

5 Results

5.1 Baselines

We consider models that are trained from scratch on the datasets they’re evaluated on; while the
compositional capabilities of large pre-trained models are under active debate [32], we are interested
in the compositional abilities of the underlying architecture — rather than those that may result
from a pre-training objective. We compare sDTM to two fully neural models, a standard Transformer
[71] as well as a relative universal Transformer (RU-Transformer) which was previously shown
to improve systematic generalization on a variety of tasks [12]. We also compare our model to
a hybrid neurosymbolic system, NQG [58, 69], a model which uses a neural network to learn a
quasi-synchronous context-free grammar [62]. NQG was introduced alongside NQG-T5, which is a
modular system that uses NQG when the grammar produces an answer and falls back to a fine-tuned
large language model T5 [53]. As mentioned at the beginning of this section, we only compare to
NQG in this paper since we want to evaluate models that have not undergone significant pre-training.4
Details related to data preprocessing (§A.4), model training (§A.6, §A.8), compute resources (§A.9),
and dataset details (§A.10) are available in the Appendix. For all datasets, the reported results are the
best exact match accuracies on the test set over five random seeds. Additional data on means and
standard deviations across the five runs are shown in Section A.7.

For each task, we test whether models generalize to samples drawn from various data distributions.
Independent and identically distributed (IID) samples are drawn from a distribution shared with
training data. We evaluate several out-of-distribution (OOD) shifts. One-shot lexical samples,
while drawn from the same distribution as the training data, contain a word that was only seen in
a single training sample. Similarly, Zero-shot lexical samples are those where the model is not
exposed to a word at all during training. Structural/length generalization tests whether models
can generalize to longer sequences (length) or nodes not encountered during training (structural).
Template generalization withholds an abstract n-gram sequence during training, and then each test
sample fits the template. Finally, maximum compound divergence (MCD) generates train and test sets
with identical uni-gram distributions but maximally divergent n-grams frequencies [29]. Although
models are often tested on a single type of generalization, we believe evaluating a model across a
broad array of distributional shifts is essential for characterizing the robustness of its generalization
performance.

5.2 Performance Regression (Active↔Logical)

Active↔Logical is a tree2tree task containing input and output trees in active voice and logical
forms [67]. Transforming a tree in active voice to its logical form simulates semantic parsing, and
transforming a logical form tree to active voice simulates natural language generation. For this
dataset, there are three test sets: IID, 0-shot lexical, and structural. In addition to the baselines listed
in the previous section, we also compare our modified sDTM to the original DTM. This enables us to
confirm that our proposed changes to decrease parameter count and memory usage while increasing
inference speed does not lead to a performance regression. The results are show in Table 1.

4NQG uses pre-trained BERT embeddings [15]; it is unknown how much this pre-training helps the method.
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Table 1: Active↔Logical accuracy. Results are the best performance over five runs. The test sets
are divided into IID, and OOD sets 0-shot lexical and structural. Parameter and memory usage is
shown for the original DTM with TPRs and our proposed sparse DTM with and without pruning. Our
modifications reduce the parameter count by almost two orders of magnitude. ∗NQG was trained on
a seq2seq version without parantheses because it was not able to learn the tree2tree training set.

Model Split

IID 0-Shot
Lexical Structural

Transformer 1.0 0.0 0.0
RU-Transformer 1.0 0.0 .12
NQG∗ .45 0.0 0.0

Parameters Memory (GB) Relative
Speed

Original DTM 1.0 1.0 1.0 72M 12.3 34
sDTM 1.0 1.0 1.0 1M 9.7 2.5
sDTM (pruned k=1024) 1.0 1.0 .95 1M 1.8 1

The various DTM models and Transformers all perform perfectly on the IID test set. NQG struggles to
learn the Active↔Logical task, an example of the brittleness of hybrid neurosymbolic systems. Only
the DTM variants succeed on the OOD test sets. As anticipated, the RU-Transformer performs better
than the standard Transformer with regards to structural generalization.

Comparing the original DTM to sDTM without pruning, we see a 70x reduction in parameter count from
pooling by attention, a 20% reduction in memory usage from fewer parameters and SCT, as well as a
roughly 13x speedup. We are able to gain even further memory savings and speed improvements due
to the pruning method. The final two rows show that the pruning method has no impact on lexical
generalization and a minor impact on structural generalization, while reducing memory usage by
5x and improving speed by 2.5x. The results from this experiment confirm that sDTM is capable of
matching DTM performance on a previous baseline. However, since both DTM and sDTM perform near
ceiling, it is difficult to isolate the effect of the proposed changes in this paper. We will investigate
this question further in Section 5.5. Next, we turn to tasks where the original DTM could not be used.

5.3 Scalability (FOR2LAM)

FOR2LAM is a tree2tree program translation task to translate an abstract syntax tree (AST) in an
imperative language (FOR) to an AST in a functional language (LAM) [7]. Due to the depth of the
trees in this dataset, DTM is unable to fit a batch size of 1 into memory. This makes FOR2LAM a
good dataset to test the scalability of sDTM to more complex samples. We augment the FOR2LAM
dataset with a 0-shot lexical test set. During training, only two variable names appear: ‘x’ and ‘y’.
For the 0-shot test, we replace all occurrences of x in the test set with a new token ‘z’. We are unable
to test DTM on FOR2LAM because a batch size of 1 does not fit into memory due to the depth of the
trees in the dataset.

Results on FOR2LAM are shown on the left side of Table 2. NQG suffers with scale (see A.8), and
we were unable to include results for it on FOR2LAM due to training and evaluation exceeding 7 days.
All other models do well on the in-distribution test set, but only DTM is able to achieve substantive
accuracy on the 0-shot lexical test. DTM’s performance is impressive given work on data augmentation
has shown the difficulty of few-shot generalization is inversely proportional to vocabulary size [50],
with smaller vocabulary tasks being more challenging. This 0-shot challenge is from 2 variables (x,
y) to 3 (x, y, z), making it difficult enough that both transformer variants score 3%.

5.4 Seq2Tree (GeoQuery)

GeoQuery is a natural language to SQL dataset [77] where a model needs to map a question stated
in natural language to a correctly formatted SQL query, including parentheses to mark functions

8



Table 2: Accuracies on FOR2LAM and GeoQuery. Results are the best performance over five
runs. NQG cannot be evaluated on FOR2LAM because it takes over a week to train. †Results taken
from Shaw et al. [58]. ∗We report the results from a replication study of NQG where the result on the
Length split differed substantially from the original result [69].

FOR2LAM GeoQuery
Model IID 0-shot lexical IID Length Template TMCD

Transformer 1.0 .03 .88 .26 .79 .40
RU-Transformer 1.0 .03 .87 .25 .77 .37
NQG† – – .76 .37/.26∗ .62 .41

sDTM 1.0 .61 .73 .20 .20 .36

and arguments. We use the parentheses and function argument relationship as the tree structure for
our output. In this format, GeoQuery is a seq2tree task, and we follow the description from Section
4.5. We use the same preprocessing and data as Shaw et al. [58]. The TMCD split for GeoQuery
[58] extends MCD to natural language datasets instead of synthetic languages. GeoQuery is a very
small dataset, with a training set containing between 440 and 600 samples, depending on the split.
Like FOR2LAM, we are unable to test DTM on GeoQuery because a batch size of 1 does not fit into
memory due to the depth of the trees in the dataset.

Results for GeoQuery are shown on the right side of Table 2. This is the most difficult task that we
test because of the small training set, and the natural language input is not draw from a synthetic
grammar. Given this, a potential symbolic solution to this task might be quite complex. We find that
both NQG and DTM perform worse than the two Transformer variants on the IID test set. This also
holds true for the Template split, where Transformers outperform the neurosymbolic models. On
the Length and TMCD splits, all of the baselines achieve roughly the same performance while DTM
performs slightly worse — the degree of variation in the input space and small training set appear to
make it difficult for sDTM to find a compositional solution.

It is worth noting that there is substantial room for improvement across every model on GeoQuery.
The small dataset with high variation poses a problem for both compositional methods of sDTM and
NQG. It is possible that with sufficient data, GeoQuery’s latent compositional structure could be
identified by NQG and DTM, but the released GeoQuery dataset has only on the order of 500 training
examples. Given all methods struggle to model the IID split, we refrain from drawing substantive
conclusions based on minor differences in accuracy on this single task in isolation from the rest of
the results.

5.5 Seq2Seq (SCAN)

SCAN is a synthetic seq2seq task with training and test variations to examine out-of-distribution
generalization [36]. To process seq2seq samples, we follow the description in Section 4.5. We
compare two methods for embedding the output sequence into a tree by writing a parser for SCAN’s
output and comparing this to the left-aligned uniform-depth trees (LAUD). In addition to the standard
test splits from SCAN, we introduce a 0-shot lexical test set as well.

Since the trees in SCAN are not very deep, we are able to compare sDTM to DTM to isolate the effect
of pooling by attention (§4.2). We modify the original DTM to handle sequential inputs and outputs
as described in Section 4.5. Replacing the linear transformation in DTM with pooling by attention in
sDTM leads to drastically better results; DTM is unable to perform well even on the simple IID split,
whereas sDTM performs well across many of the splits.

All baselines perform well on the IID test set, showing that they have learned the training distribution
well. Transformer variants perform poorly on lexical, length, and MCD splits. The Transformers and
sDTM perform well on the Template split while NQG completely fails. Along with the results from
GeoQuery, which showed weak sDTM performance on the Template split and strong performance
from both Transformers, it seems that the Transformer architecture is robust under template shifts
between training and testing. sDTM is the only model to perform well on the 0-shot lexical test set,
whereas NQG is the only model able to perform well on the MCD test set. The two sDTM rows
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Table 3: SCAN accuracy. Results are the best performance over five runs. MCD scores are calculated
as the average of the three MCD splits. †Results from Shaw et al. [58]. ∗Results from Sun et al. [69].

Model Split

IID 1-shot lexical 0-shot lexical Length Template MCD

Transformer 1.0 .08 0.0 .07 1.0 .02
RU-Transformer 1.0 .11 0.0 .19 1.0 .01
NQG† 1.0∗ 1.0 0.0 1.0 0.0∗ 1.0

sDTM (parse trees) 1.0 .99 .99 .75 .95 .03
sDTM (LAUD trees) 1.0 .87 .98 .06 .98 0.0
DTM (parse trees) 0.0 0.0 0.0 0.0 0.0 0.0

compare models trained with output trees from a parser or LAUD encoding. The main performance
difference is on the Length split, where the structurally relevant information in the parse trees is
necessary for sDTM to perform well. It is not necessary to have structured input for the model to
perform well on length generalization as long as the output is structured.

6 Conclusions

We introduced the Sparse Differentiable Tree Machine (sDTM) and a novel schema for efficiently
representing trees in vector space: Sparse Coordinate Trees (SCT). Unlike the fully neural and hybrid
neurosymbolic baselines presented here, sDTM takes a unified approach whereby symbolic operations
occur in vector space. While not perfect — sDTM struggles with MCD and Template shifts, as well as
the extremely small GeoQuery dataset — the model generalizes robustly across the widest variety of
distributional shifts. sDTM is also uniquely capable of zero-shot lexical generalization, likely enabled
by its factorization of content and structure.

While these capacities for generalization are shared with the original DTM, our instantiation is
computationally efficient (representing a 75x reduction in parameters) and can be applied to seq2seq,
seq2tree, and tree2tree tasks. Our work reaffirms the ability of neurosymbolic approaches to bridge
the flexibility of connectionist models with the generalization of symbolic systems. We believe
continued focus on efficient neurosymbolic implementations can lead to architectures with the kinds
of robust generalization, scalability, and flexibility characteristic of human intelligence.
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A Appendix

A.1 Sparse Coordinate Trees as Tensor Product Representations

This section shows that Sparse Coordinate Trees is the same as a TPR with the constraint that the role
basis is the standard basis. TPRs define structural positions as role vectors ri ∈ Rdr , and the content
that fills these positions is defined by filler vectors fi ∈ Rdf . For a particular role and filler pair, the
filler fi is bound to the role ri using the tensor/outer product: fi ⊗ ri ∈ Rdf×dr . The representation
of an entire structure is the sum over all N individual filler-role pairs: T =

∑N
i=1 fi ⊗ ri ∈ Rdf×dr .

As shown in the previous two equations, the dimensionality of a single filler-role pair is equal to
the dimensionality of an entire structure: both have dimensionality Rdf×dr . This means that a tree
with only a filled root node takes up the same memory as a dense tree with every node filled. An
important requirement for TPRs is that the role vectors must be linearly independent; this ensures
that a filler can be unbound from a role without introducing noise using the inner product: fj = Tr+j ,
where {r+i }i is the basis dual to {ri}i. Previous work typically used randomly initialized and frozen
orthonormal vectors to define the role basis. By defining our role vectors in a sparse manner as
opposed to random initialization, we can greatly reduce the memory used by TPRs.

Classic symbolic data structures grow in memory linearly with the number of filled positions. It is
possible to replicate this behavior with TPRs by defining the role vectors to be the standard one-hot
basis, which is orthonormal by definition. The i-th element of role vector ri is 1, and the other
elements are 0. When a filler and role vector are both dense, the resulting bound vector is also
dense. When the role vector is one-hot, the resulting bound vector is 0 everywhere except for column
i which corresponds to the value 1 in ri. By using a sparse tensor representation that only keeps
track of dimensions that are not equal to 0, we can reduce the memory usage of TPRs to linear
growth that scales with the number of filled positions, like a classical symbolic data structure. This
however forgoes a motivating desideratum for the design of TPRs, that roles (and not just fillers) have
similarity relations that support generalization across structural positions.

We can additionally improve the efficiency by refraining from performing the outer product. Since we
are not performing a tensor product, this technique is only implicitly a Tensor Product Representation.
Instead, we can keep the filler and role vectors in two aligned lists. A filler is bound to a role by
sharing an index in our aligned lists. This is equivalent to the binding and unbinding from classical
dense TPRs without having to perform multiplication.

Since we are not performing an outer product, instead of storing sparse role vectors, we can simply
store a role integer, where the integer corresponds to the one-hot dimension. We derive a tree
addressing scheme based on Gorn addresses [23]. In our scheme, addresses are read from right to left,
giving the path from the root where a left-branch is indicated by a 0 and a right-branch is indicated
by a 1. We need a way to distinguish between leading 0s and left-branches (e.g., 010 vs. 10), so we
start our addressing scheme at 1 instead of 0. This indicates that all 0s to the left of the left-most 1
are unfilled and not left-branches; the left-most 1 and all preceding 0s are ignored when decoding the
path-from-root. Figure 2 shows an example encoding of a tree in the sparse implicit approach.

We can compare the memory requirements of the Sparse Coordinate Tree encoding used in the sDTM
to the memory requirements of the full TPRs used in the original DTM of Soulos et al. [67]. A TPR
uses the same amount of memory regardless of the number of filled nodes. As with all sparse tensor
formats, the memory savings arise when there are many zeros. In a dense tree where every node is
occupied, the classical dense TPR approach is actually more efficient: the SCT’s value list has the
same total dimension as the classical TPR, but, in addition, the SCT encoding includes the list of
filled-node addresses.

A.2 Agent Figure

See Figure 6.

A.3 Lexical Regularization Ablation

To see the importance of adding noise to our input embeddings as defined in Section 4.4, we show
the performance of sDTM with and without this regularization in Table 4.
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Figure 6: Adapted from Soulos et al. [67]. One step of DTM is expanded to show how the agent
produces the input to the interpreter. The interpreter then writes the output to memory and encodes the
output for the agent. Parts of the architecture with learnable parameters are indicated in yellow. The
agent uses three linear transformations on top of a standard Transformer encoder layer to parameterize
the inputs to the interpreter. The superscript indicates the layer number and refers to parameters and
activations that are exclusive to this layer.

Table 4: Comparing sDTM’s accuracy on SCAN 1-shot lexical OOD generalization with and without
lexical regularization. We use LAUD to embed the output sequence in a tree.

With noise .87
Without noise 0.0

A.4 Dataset Preprocessing

We preprocessed GeoQuery according to the steps from Shaw et al. [58]. FOR2LAM and GeoQuery
both contain non-binary trees, which we convert to binary form using Chomsky normal form. When
a new node is inserted to make a branch binary, we use the token <NT>. For output sequences with
length one embedded according to left-aligned uniform-depth, we make the single token the left child
of a new <NT> root node.

A.5 0-shot Lexical Test Generation

For both FOR2LAM and SCAN, we introduce 0-shot lexical tests. For FOR2LAM, we do this by
replacing every occurrence of ‘x’ in the test set with a new token ‘z’. For the SCAN 0-shot set, we
start with the 1-shot lexical test set and remove the sample containing the 1-shot word ‘jump’. We
alter the output vocabulary to use the same tokens as the input vocabulary, since it is impossible for a
word level model to translate between an input and output word without any exposure to that word.

A.6 DTM Training Details

When applicable, we adopt the hyperparameters from Soulos et al. [67]. Below we list the newly
introduced hyperparameters and changes we made to existing parameters.

Soulos et al. [67] set the dimensionality of the embeddings to be equal to the size of vocabulary. This
works for the datasets with small vocabulary examined in the original paper. We keep this setting for
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Table 5: Summary statistics for Active↔Logical. Mean and standard deviation accuracies are
shown.

Model Split

IID 0-Shot
Lexical Structural

Original DTM 1.0± 0.0 1.0± 0.0 1.0± 0.0
sDTM 1.0± 0.0 1.0± 0.0 1.0± 0.0
sDTM (pruned k=1024) 1.0± 0.0 1.0± 0.0 .86± .04

Table 6: Summary statistics for FOR2LAM and GeoQuery. Mean and standard deviation accura-
cies are shown.

FOR2LAM GeoQuery
Model IID 0-shot lexical IID Length Template TMCD

sDTM 1.0±0.0 .43±.11 .68±.01 .19±.01 .16±.03 .35±0.0

Active↔Logical, but set the embedding dimension to 64 for FOR2LAM, and 128 for GeoQuery and
SCAN. We also changed the loss function from mean-squared error to cross entropy.

For each new task, we need to decide how many layers to use for sDTM. We followed the heuristic
of doubling the max tree depth for the models with sequence input and quadrupling the number of
layers for tree input. This leads to 56 layers for FOR2LAM, 22 layers for GeoQuery, and 14 layers
for SCAN.

Pooling by multi-headed attention 4.2 introduces new hyperparameters such as number of pooling
heads and pooling key dimensionality, and we set the value of these to be the same as the Transformer
hyperparameters for the agent. Tree pruning 4.3 introduces a new hyperparameter k for the maximum
number of nodes to keep. In general, a larger k is better but uses more memory. For Active↔Logical
we set k = 1024, for FOR2LAM k = 1024, for GeoQuery k = 2048, and for SCAN k = 256.
With the memory savings from SCT, pooling by multi-headed attention, and pruning, we increase
the batch size from 16 to 64. We also increased the agent’s model dimension to 256 with 8 heads
of attention due to the memory savings except for Active↔Logical where we matched the original
hyperparameters.

Random positional embeddings (RPE) also introduce a new hyperparameter for the max input integer,
and we set this to be double the max input length. This leads to an RPE hyperparameter of 44 for
GeoQuery and 18 for SCAN.

We noticed that randomly initializing and freezing our embedding vectors was essential for sDTM to
achieve 0-shot generalization on SCAN.

For the results, we reported the best run of 5 random seeds. Like DTM, sDTM suffers from high
variance. Some runs get stuck in local optima and fail to achieve moderate performance on the
training set, which leads to poor performance on the test sets. This is a known issue with models that
use superposition data structures, and reporting the best run over a number of random seeds has been
previously used [76, 17].

A.7 DTM Summary Statistics

Mean and standard deviation accuracies are shown in Tables 5, 6, and 7.

A.8 Baseline Training Details

NQG: Active↔Logical rule induction used the following hyperparameters: sample size=training
set size, terminal code length=8, allow repeated nts=True. The terminal code length setting was
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Table 7: Summary statistics for SCAN. Mean and standard deviation accuracies are shown.

Model Split

IID 1-Shot
Lexical

0-Shot
Lexical Length Template MCD

sDTM (parse trees) .80±.39 .51±.39 .80±.34 .34±.30 .19±.38 .02±.01
sDTM (LAUD trees) 1.0±0.0 .70±.15 .75±.22 .04±.01 .84±.12 0.0±0.0
DTM (parse trees) 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

obtained via grid search over the values 1, 8, 32. For the actual training of the model we follow the
hyperparameters utilised by [69, 58]. FOR2LAM used the same hyperparameters with the exception
of sample size which had to be set to 1000 as additional increases became computationally intractable.
Even under these settings rule induction took 42 hours on a machine with 64gb of ram. Writing the
training set would take an additional week of processing time, which we considered computationally
too expensive.

Transformer: We followed the same hyperparameters obtained via grid search from [67]. Specifically
these are: 30,000 steps of which 1000 were warmup and linear learning rate decay; batch size 256;
one encoder layer and three decoder layer each with a hidden dimension of 1024 and two attention
heads; the optimizer was Adam.

RU-Transformer: We followed the hyperparameters reported by [12]. These are: 128 dimension
hidden size with 256 feedforward; 8 attention heads; 3 layers; batch size 256; trained using Adam
with learning rate 10−3.

A.9 Compute resources

All reported sDTM runs could be processed on NVIDIA 16gb V100 GPUs. Depending on availability,
we ran some seeds on 80gb H100 GPUs, but this is not necessary. The Transformer baselines were
also run on NVIDIA 16gb V100 GPUs. NQG used NVIDIA 40gb A100 GPUs. The GPUs we used
were hosted on an internal cluster.

Designing our architecture involved many preliminary experiments that are not reported in the paper.

A.10 Dataset Statistics and Samples

Example input and output pairs are shown for Active↔Logical in Figure 7 FOR2LAM in Figure 8,
GeoQuery in Figure 9, and SCAN in Figure 5. The memory usage of DTM grows exponentially with
tree depth, so we present the max depth of the datasets here:

• Active↔Logical: max tree depth 10

• FOR2LAM: max tree depth 14

• GeoQuery: max tree depth 16

• SCAN: max tree depth 8

A.11 Licenses

Baselines:

• DTM: Permissive 2.0

• Transformer: BSD-3 (Pytorch implementation)

• RU-Transformer: MIT Licence

• NQG: Apache 2.0

Datasets:
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Figure 7: An input and output pair from Active↔Logical.
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Figure 8: An input and output pair from FOR2LAM.
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• GeoQuery: GLP 2.0
• SCAN: BSD
• Active↔Logical: Permissive 2.0
• FOR2LAM: Not public (no licence obtained through email request to original authors)
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: At the end of the introduction, we outline the primary contributions of our
paper along with the associated section where that content is available.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We address limitations of our approach in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: We provide mathematical descriptions of our model, but we do not introduce
any proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The main content outlines our model and empirical setup. In Appendix A.6 we
provide details for training our model, and in Appendix A.8 we outline details for training
the baselines. Additionally, we plan to make our code and data open source at the time of
publication to facilitate reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: we plan to make our code and data open source at the time of publication to
facilitate reproducibility.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The data splits are discussed extensively in Section 5. In Appendix A.6 we
provide details for training our model, and in Appendix A.8 we outline details for training
the baselines.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: for our results, we report the best run across five random initializations. As
discussed in Appendix A.6, neurosymbolic technique can have high variance, and this
method of reporting results is common.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In Appendix A.9 we discuss the compute resources needed to run our experi-
ments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This research is upstream of any concrete applications. While there is always
a risk of scientific research, we do not believe this work contains risks beyond general
scientific research.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
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Justification: This research is upstream of any concrete applications. While there is always
a risk of scientific research, we do not believe this work contains risks beyond general
scientific research.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This research is upstream of any concrete applications. While there is always
a risk of scientific research, we do not believe this work contains risks beyond general
scientific research.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cited the papers that introduce the models and datasets that we use. Most of
the models and datasets we used are publicly available. Appendix A.11 contains additional
information with regards to the licenses of each asset.
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Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: we plan to make our code and data open source at the time of publication to
facilitate reproducibility.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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