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Abstract

Question answering, asking, and assessment are three innate human traits crucial
for understanding the world and acquiring knowledge. By enhancing these capabil-
ities, humans can more effectively utilize data, leading to better comprehension and
learning outcomes. Current Multimodal Large Language Models (MLLMs) primar-
ily focus on question answering, often neglecting the full potential of questioning
and assessment skills. Inspired by the human learning mechanism, we introduce
LOVA3, an innovative framework named “Learning tO Visual question Answer-
ing, Asking and Assessment,” designed to equip MLLMs with these additional
capabilities. Our approach involves the creation of two supplementary training
tasks GenQA and EvalQA, aiming at fostering the skills of asking and assessing
questions in the context of images. To develop the questioning ability, we compile a
comprehensive set of multimodal foundational tasks. For assessment, we introduce
a new benchmark called EvalQABench, comprising 64,000 training samples (split
evenly between positive and negative samples) and 5,000 validation and testing
samples. We posit that enhancing MLLMs with the capabilities to answer, ask,
and assess questions will enhance their multimodal comprehension, ultimately im-
proving overall performance. To validate this hypothesis, we train MLLMs using
the LOVA3 framework and evaluate them on a range of multimodal datasets and
benchmarks. Our results demonstrate consistent performance gains, underscoring
the critical role of these additional tasks in fostering comprehensive intelligence in
MLLMs. The code is available at https://github.com/showlab/LOVA3.

1 Introduction

To acquire knowledge, we humans often answer lots of questions and then improve ourselves by
comparing our answers with the ground-truth answers. As a result, this learning mechanism empowers
humans with the answering ability, which allows humans to handle well many real tasks, such as
visual question answering [26, 54, 30, 27, 43, 42]. However, as described in the following slogan,

“The art of proposing a question must be held in higher value than solving it.” -
Georg Cantor [6]

asking a question is very valuable and even more important than answering a question. Indeed,
humans also acquire knowledge from learning to ask questions since it encourages individuals to
engage more deeply with information, thereby enhancing problem-solving skills [69, 70, 21, 57]. In
addition to asking questions, humans also improve themselves through self-evaluation: humans try to
identify the correctness of the answer and thus are involved in a deep understanding of our diverse
world [86, 67].
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VQA Ability EvalQA Ability
Prompt: Is this a filled donut? Answer 
the question using a single word or 
phrase.

LLaVA1.5: Yes

LOVA3(Ours): Yes

Ground Truth: Yes

Prompt: Please examine the correctness of 
this ques;on and answer according to the 
image content. Ques;on: Is this a filled 
donut?\nAnswer: no

LLaVA1.5: Yes

LOVA3(Ours): No, this is a filled donut.

Prompt: Analyze the image and respond with a 
direct question and answer.

LLaVA1.5: What is the color of the pink frosted 
donut?\nAnswer: Pink
LOVA3(Ours): 
Question: What is the donut on the left side of 
the image called?
A. apple fritter B. long john C. eclair D. cruller
Answer: D

GenQA AbilityImage

Figure 1: Comparison of three abilities reveals that LLaVA1.5 excels in providing answers but
struggles in asking accurate questions and assessing question-answer pairs.

Although innate to humans, apart from answering ability, two other learning mechanisms of asking
and assessment remain underexplored for contemporary multimodal large language models (MLLMs).
Current MLLMs [42, 84, 3, 95] are excelled in addressing diverse domains of multimodal questions
such as mathematics [4], science [42], and commonsense knowledge [17]. However, they predom-
inantly revolve around visual question answering (VQA). As a result, as shown in Fig. 1, current
MLLMs, e.g., the representative LLaVA-1.5 [42], suffer from inferior performance on asking ques-
tions and self-assess question-answer pairs (QA), which underscores their efficacy as problem-solvers
and prohibits holistic multimodal understanding.

To advance the comprehensive intelligence of MLLMs, we introduce two essential tasks: GenQA
and EvalQA, aiming at bolstering the intelligence and robustness of MLLMs. GenQA focuses on
enabling the model to generate diverse question-answer (QA) pairs from the single input image,
thus equipping the MLLM with the capability to ask questions. We believe that if an MLLM can
successfully generate QA pairs for challenging tasks, it indicates a higher level of problem-solving
ability [40, 73]. Specifically, we define the GenQA task to include not only generic VQA (e.g.,
VQAv2 [26] and GQA [30]) but also Multi-Choice VQA (MC VQA), and Multi-Turn VQA (MT)
to increase the variety of data formats. Additionally, we incorporate two challenging multimodal
grounding tasks into the training process: Referring Expression Comprehension (REC) and Referring
Expression Generation (REG). Learning to generate the data of these grounding tasks forces the
MLLM to extract fine-grained visual cues from images, such as explicit object localization and
compositional relationships. This, in turn, enhances the multimodal reasoning ability of MLLMs.
During training, we gather the relevant datasets for these tasks and transform them into a generative
format using our proposed instruction template. EvalQA, on the other hand, involves tasking the
MLLM to predict the correctness of a given visual-question-answer triplet. Recognizing the absence
of datasets specifically designed to assess VQA correctness, we have developed a new benchmark
called EvalQABench for evaluating VQA data. Rather than asking humans to label such a dataset,
we propose a new pipeline for data construction. This benchmark comprises training, validation, and
test sets, with each VQA pair accompanied by a “Yes” or “No” label indicating correctness, along
with a one-sentence explanation as the feedback. For instance, “Yes, the oranges are not in a bag”.

By integrating the GenQA and EvalQA tasks into the vanilla multimodal learning, we develop an
effective training framework called LOVA3. In this study, we select the SOTA MLLM LLaVA-1.5
as the backbone model for evaluation. We conduct experiments on 10 widely used multimodal
benchmarks such as GQA [30], VQAv2 [26], Vizwiz [27], MME [19], MMBench [45], and MM-
vet [92], and observe consistent improvements across these benchmarks. To summarize, our proposed
LOVA3 is a new framework that endows the MLLM with the ability to ask and assess and finally
achieve profound multimodal understanding capability. Overall, our contributions are three folds:

(1) To the best of our knowledge, LOVA3 is the first effort to imbue the asking and assessment
abilities in training a robust and intelligent MLLM. LOVA3 open an avenue for imitating
the human abilities towards holistic intelligence for MLLM.

(2) We build a new benchmark EvalQABench for the VQA evaluation as the first effort to
advance the VQA data assessment of future research.

(3) The experimental results demonstrate that training with LOVA3 consistently improves per-
formance across several multimodal benchmarks, including VQAv2, GQA, MME, VizWiz,
MMBench, and MM-Vet, etc.
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2 Related Work

2.1 Multimodal Large Language Models

Large Language Models (LLMs) [16, 98, 65, 5, 81, 15, 82] such as GPT-4 [61] demonstrate their
exceptional capacity to handle a wide range of complex tasks to play an important role in assisting
humans in daily life. Equipped with these LLMs, a surge of multimodal modes [37, 43, 17, 3,
10, 84, 101, 9, 8, 51, 85, 29, 62, 58, 88, 22, 47, 28, 34, 7, 100, 48, 14, 38, 24, 68, 23, 66] are
proposed to integrate the visual information with the pre-trained LLM decoder for diverse multimodal
reasoning tasks such as image captioning [12, 1, 91] and visual question answering [26, 54, 30, 27].
LLaVA [43, 42] is a pioneering approach that collects 665K instruction tuning data from present
vision-language (VL) datasets for supervised finetuning (SFT) and achieves promising results on
various datasets in a lower cost of training requirement. Another SOTA model InstructBLIP [17]
also proposes gathering datasets to construct their instruction tuning dataset. It adopts the VQG
task but is limited in generic data type. Different from InstructBLIP, we propose the GenQA task
for jointly generated questions and answers on 5 primary VL tasks not restricted to generic data
type. Besides focusing on traditional vision-language tasks, Shikra [10], Kosmos-2 [62], PVIT [8],
Ferret [90] pay attention to the image-region based multimodal tasks (i.e., Referring Expression
Comprehension) and demonstrate the performance improvement with these hard tasks. By adopting a
large-scale image-text corpus for instruction tuning, Qwen-VL [3], CogVLM [84], AnyMAL [58]
and Chameleon [79] achieve exceptional performance on various multimodal tasks. However, these
MLLMs primarily concentrate on training the model to answer questions as effectively as possible,
neglecting the significance of enabling the model to act as a questioner and a competent evaluator
within the training paradigm.

2.2 Visual Question Answering and Generation

Nine years ago, visual question answer [2] was defined and became an essential task for evaluating
multimodal systems. A surge of VQA-related benchmarks [2, 26, 76, 56, 55, 27, 71, 54, 50, 30, 39]
are emerged to advance the development of this research area, including generic VQA benchmarks
[2, 26, 30], text-based VQA [76, 56, 55, 78], knowledge-augmented VQA [54, 71, 50, 13], and
goal-oriented VQA [27] aimed at assisting blind people.

Besides the VQA task, the Visual Question Generation (VQG) task was first formulated in [60],
which contributes a VQG dataset with each image annotated with multi-questions and benchmarking
on generative models and retrieval models. [97] first employs an RNN-based encoder-decoder
framework alongside model-generated captions to generate questions. After that a list of works [59,
60, 18, 32, 72, 87, 83] are proposed for promoting this research area. Two interesting studies [40, 73]
pose that treating VQG as a complementary task can enhance the robustness of visual question
answering. This finding reaffirms our motivation that training a model to generate diverse questions
contributes to a deeper understanding of visual information, thereby improving its problem-solving
capabilities. Unlike the traditional Visual Question Generation (VQG) task, which focuses primarily
on the generic VQA domain, GenQA is designed to generate diverse VQA data including MC VQA,
MT, REC, and REG. Additionally, GenQA generates both questions and answers simultaneously,
whereas traditional VQG focuses solely on question generation.

2.3 Multimodal Benchmarks

Traditional multimodal benchmarks focus on answering ability, such as visual question answering [26],
image captioning [12, 63, 1], as well as other benchmarks for specialized scenarios such as scene
text understanding [76, 75], commonsense reasoning [94], outside knowledge [54, 71]. The recent
development of MLLM posts a strong need for modernized multimodal benchmarks [19, 45, 36,
92, 25, 93, 49, 20, 11, 96, 44, 99, 77, 80] such as MME [19], MMBench [45], SEED-Bench [36]
which involve comprehensively evaluating current MLLMs on various multimodal abilities. Unlike
existing multimodal benchmarks focusing primarily on evaluating the model’s ability to answer, we
introduce EvalQABench, a benchmark designed to evaluate the correctness of VQA pairs, each with
a binary “Yes/No” annotation. Furthermore, recognizing the lack of emphasis on providing feedback
for incorrect answers in current benchmarks, we develop an LLM-based pipeline. This pipeline can
automatically generate feedback, paving the way for enhanced automated data processing in the
future.
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Table 1: Data taxonomy of GenQA, detailing the data type, name, size, and instruction prompts of
each dataset.

Data Type Dataset Size Instruction Prompts

Generic VQA

VQAv2 [26] 100K Note: randomly choose from 58 instruction prompts
GQA [30] 100K Example: Can you provide a clear question and its answer based on the image?
OCR-VQA [56] 80K
Counting20K† 20K
LLaVA-250K† [43] 250K

Multi-choice VQA A-OKVQA [71] 17K Can you provide a clear question and its answer based on the image?\nThis is a Multi-choice VQA
task.

Multi-turn VQA
VQAv2 [26] 83K Design a conversation between you and a person asking about this photo.

GQA [30] 72K The answers should be in a tone that a visual AI assistant is seeing the image and answering the
question. Ask diverse questions and give corresponding answers.

REC
VG [33] 30K Note: randomly choose from 58 instruction prompts with a specific task description prompt.

RefCOCO [31] 30K

Can you review the image and articulate a concise question and its answer?\nThis is a Referring
Expression Comprehension (REC) task. The question will express a specific region of the image.
Please provide the coordinates in the answer.

REG
VG [33] 30K Note: randomly choose from 58 instruction prompts with a specific task description prompt.

RefCOCO [31] 30K

Can you review the image and articulate a concise question and its answer?\nThis is a Referring
Expression Generation (REG) task. The purpose of REG is to generate a unique description for a
specified location.

Total - 842K

3 Methodology

In this section, we introduce LOVA3, a new framework designed to imitate two essential abilities -
asking and assessment - within multimodal learning. We delve into the specifics of addressing this
challenge through GenQA data collection, EvalQA data creation, model architecture, and training.

3.1 Data Collection for GenQA

If one MLLM is able to successfully generate high-quality question-answer pairs based on visual
input, it indicates a stronger problem-solving ability and deep visual understanding [40, 73]. To
enable the MLLM to ask questions, it is natural for us to gather existing annotated datasets as the
training corpus and then train the model to predict both questions and answers. We carefully define
five main multimodal data types as listed in Tab. 1. For each data type, we gather widely used
human-annotated datasets or high-quality instruction tuning datasets generated by GPT-4. We select
Generic VQA tasks to generate fundamental questions, e.g., object count and object action. We
incorporate Multi-choice VQA (MC VQA) and Multi-turn VQA (MT) to increase the diversity
of data formats. Additionally, we include two multimodal grounding tasks: Referring Expression
Comprehension (REC) and Referring Expression Generation (REG). Generating REC and REG data
requires a deeper understanding of image content, enabling the model to fully comprehend visual
cues. Both tasks increase the difficulty of GenQA, which helps MLLM acquire a higher level of
multimodal understanding. In total, we gather 842K data for training questioning ability.

3.2 Data Creation for EvalQA

Completing the VQA assessment often requires fine-grained and deep visual understanding. As
emphasized in Sec. 1, the ability to assess is often overlooked yet crucial in MLLM training. To
address this gap, we introduce a new benchmark, EvalQABench, to address the problem of assessing
visual question-answering data. Moreover, instead of merely labeling each VQA pair with “Yes/No”,
we advocate for integrating feedback into each instance, an important aspect rarely seen in prior
multimodal benchmarks. We consider training the model not only to assess the correctness of the
answer but also to provide reasonable feedback that would increase the capability for multimodal
understanding. EvalQABench comprises three datasets: training, validation, and test sets. As
illustrated in Tab. 2, we present examples of the training set from EvalQABench across various
question types.

MLLM-based Negative Answer Generation. The main challenge of EvalQABench lies in con-
structing negative answers. When dealing with large-scale ground-truth VQA pairs, how can we
automatically produce the negative answer? One viable solution is to leverage a multimodal model
for this purpose. Recognizing that Fuyu-8B [4] is an open-source free MLLM that stands out with
the exceptional ability to process high-resolution images and perform robust well on many complex
tasks. We utilize it to generate negative answers with the following prompt:
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Table 2: Selected examples from EvalQABench training set, including the ground truth answer,
negative answer, and feedback.

Question Types Object Yes/No Counting

Image

Question What kind of flowers are on
the picture to the left? Is the sun shining? How many vases are there?

Ground-truth Answer roses no 6
Negative Answer pansy yes 5

Feedback No, the left of the picture
shows roses. No, the sun is not shining. No, there are 6 vases in the

picture.

Question Types Color Attribute Number

Image

Question What color is the truck? What type of tree is on the
right?

What number is written on the
sheep?

Ground-truth Answer silver cherry 3
Negative Answer white palm 5

Feedback No, the truck is silver. No, the tree on the right is a
cherry tree.

The number written on the
sheep is 3.

Question Types Relation Action Other

Image

Question What does the woman have on
her back? What are the people doing? What does the second sign

say?
Ground-truth Answer backpack motorcycling all-war

Negative Answer jacket riding bikes stop

Feedback No, the woman has a backpack
on her back.

No, the people in the picture
are motorcycling.

No, the second sign says
“all-war”

<Img> This is the question: <Q> . Please give me the wrong answer to this question. The
answer should be a single word or phrase.\n

Here, <Img> and <Q> are two placeholders for the image and question from ground truth VQA
pair. The output of Fuyu-8B provides a negative answer, such as “pansy”, as illustrated in Fig. 2.

Manual Filtering and Error Correction. Acknowledging that the Fuyu-8B model is not flawless
and recognizing that no multimodal model, including GPT-4V, is perfect, we have implemented both
manual filtering and error corrections, as illustrated in Fig. 3 for the post-data processing. Through
empirical analysis, we identified 4 primary types of errors. For instance, an answer generated by
Fuyu-8B may be present in the question but lacks semantic relevance or is identical to the correct
answer. Additionally, some incorrect answers may result from misunderstanding the question’s
category, as exemplified by the example in Fig. 3. Beyond filtering, we propose error corrections for
two types of questions: “Yes/No” and “Counting”. For “Yes/No” questions, we directly substitute
an incorrect answer with “Yes”. For “Counting” questions, we first verify if the English numeral
matches the correct answer; if not, we replace it with a random number. After applying the above
filtering and correction processes, we found that most of the incorrect samples had been removed.
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VQA

MLLM
(Fuyu-8B)

Question: What kind of 
flowers are on the 
picture to the left?
Answer: roses

Negative Answer
Question: What kind of 
flowers are on the 
picture to the left?
Positive answer: roses
Negative answer: pansy

LLM
(Llama 2)

EvalQA with feedback

Question: What kind of flowers 
are on the picture to the left?
Positive answer: roses
Negative answer: pansy
Feedback: No, the left of the 
picture shows roses.

Manual 
Filtering

Figure 2: Illustration of the proposed pipeline for generating negative answers and feedback.

LLM-based Feedback Generation. With the candidate’s negative answer, we then focus on
generating error feedback. We consider the feedback describing the reason for incorrectness will help
the MLLM obtain a deeper understanding. We thus utilize the LLM Llama 2 [82] to generate the
feedback by reasoning the ground truth question-answer pairs with the following prompt:

Please rephrase the question and answer: <Q> \n <A> into one short description.

After processing by Llama 2, we can get feedback like “No, the left of the picture shows roses.”.
Moreover, we use similar manual filtering strategies that are used in the negative answer generation
step to remove the noisy samples with wrong formats or empty output.

In summary, we start by randomly selecting 100,000 samples from 443,758 annotated VQA pairs
in the VQAv2 training set [26] to generate negative answers. After manual filtering, this number is
reduced to 61,094 samples. We then generate feedback for each sample and further filter out those
with incorrect formats, resulting in a final set of 41,592 samples. For the training set of EvalQABench,
we create a one-positive-one-negative format by randomly selecting 32,000 negative samples from
the 41,592 filtered samples, yielding a total of 64,000 training data points. For the validation and
test subsets, we follow a similar sampling procedure. We randomly select 100,000 samples from the
VQAv2 validation set, resulting in 41,907 negative samples. From these, we randomly select 2,500
negative samples each for the validation set and the test set.

3.3 Model Architecture

In this subsection, we introduce the model architecture of LOVA3. This model is built upon the
prevalent MLLM LLaVA-1.5 [42] with three key components: Vision Encoder, MLP Adapter, and
Large Language Model. For the vision encoder, we follow LLaVA-1.5 [42] and implement it with
a pre-trained CLIP-Large vision encoder [64] with resolution 336 × 336. For the large language
model, we adopt the widely used instruction fine-tuned model, Vicuna-7B [15]. Following [42], the
MLP adapter is a simple two-layer MLP since such a simple design is better for reserving the visual
information while achieving running efficiency. In this study, we leverage LLaVA-1.5 to build upon
because of its exceptional performance and highly reproducible training and validating codes. Other
outstanding MLLMs, such as CogVLM [84] and Qwen-VL [3], are pre-trained on billions-scale
datasets or in-house datasets. This scale of data makes the training process difficult to replicate and
poses challenges in incorporating our proposed training tasks, GenQA and EvalQA.

3.4 Training

For brevity, we denote the LOVA3 model as FM . Given an image XI , our target is to enforce FM to
generate the response XR:

XR = FM (XT , XI), (1)

where XT represents the input text. XT can be an example of the three types: 1) VQA data, e.g.,
“What color is the pot?”; 2) GenQA data like “Can you provide a concise question and answer
based on the image?”; 3) EvalQA data, such as “What kind of flowers are on the picture to the
left?\nAnswer: pansy. \nPlease examine the correctness of this question and answer according to
the image content. Output Yes or No with the feedback”. Accordingly, the input instruction template
can be unified into the following ones:
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"question": "What is the cat lying 
on?”,
 "answer": "table”,
"fuyu_answer": "cat"

Answer appear in the question

"question": "Who is in the 
photo?", "answer": "man", 
"fuyu_answer": "man"

Repeat the ground truth answer

"question": "Is this a little boy's or little 
girl's room?", 
"answer": "boy", 
"fuyu_answer": "no"

Different answer type

"question": "How many sinks?", 
"answer": "2", 
"fuyu_answer": "two"

Number representation issue 

Manual Filtering Manual Correction

"question": "Are these buildings less 
than 10 years old?", 
"answer": "no", 
"fuyu_answer": "new" -> ”yes" 

Convert the text to yes/no

"question": "What number is on the 
girls shirt?", 
"answer": "12", 
"fuyu_answer": "two " -> ”2" 

Convert text to number

Figure 3: Examples from the manual filtering and error correction process. Red text indicates error
answers, while Green text represents manually corrected answers.

<s>USER: XI XT \n ASSISTANT: XR </s>

We follow previous MLLMs[42, 17], and design the training objective in an autoregressive manner:

max

L∑
i=i

log p(XR|XT , XI) =

L∏
i

pθ(xi|XT , XI , XR,<i), (2)

where xi is the current prediction token and L denotes the response sequence length. θ denotes the
trainable parameters.

4 Experiments

4.1 Datasets and Settings

Training Datasets. For the fair comparison, we utilize the 665K instruction-following dataset
introduced in LLaVA1.5, combined with the 842K GenQA data as outlined in Tab. 1, and an
additional 64K data comprising one-positive-one-negative pairs as described in Section 3.2, totaling
our training datasets with 1.5M samples. It is important to note that the datasets and annotations used
in both VQA and GenQA are the same. There are no additional datasets involved, thus avoiding
unfair comparisons caused by the introduction of new instruction data. For EvalQA, we adopt VQAv2
to build the training set, which is already included in the original 665K instruction dataset.

Validation Datasets. We assess LOVA3 on 10 widely used multimodal datasets and benchmarks.
(1) VQAv2 [26] and GQA [30] are two large-scale annotated VQA datasets comprising 430K and
943K instances. (2) VizWiz [27] is a challenging dataset comprising 8000 instances of test-dev set.
Most of the images in this dataset are blurred, making it difficult to respond. (3) ScienceQA [50]
is a benchmark comprising 21k multimodal multiple-choice questions with diverse science topics.
(4) POPE [39] is a benchmark for evaluating the object hallucination in the MLLM. (5) MME [19],
SEED-Bench [36], MMBench [45], LLaVA-Bench [43], MM-Vet [92] are five prominent multimodal
benchmarks designed to evaluate various capabilities of MLLMs, including object existence, color
recognition, counting, OCR, etc.

Competitors. We compare LOVA3 with other SOTA models inlcuding MiniGPT-4 [101], BLIP2 [37],
InstructBLIP [17], mPLUG-owl [89], LLaMA-AdapterV2 [22] and LLaVA-1.5 [42]. We report the
results from their paper or the benchmark leaderboard.

Implementation Details. To ensure a fair comparison, we train the LOVA3-7B model without tuning
any hyperparameters of LLaVA-1.5 [42] from its original supervised finetuing stage. The model is
trained for one epoch across three tasks: VQA, GenQA, and EvalQA. Specifically, we employ the
AdamW [46] optimizer with a learning rate of 2× 10−5 and a total batch size of 128. The training
process takes 24.5 hours on an 8 Nvidia A100 (40G) GPU setup. Moreover, we also replace the
LLM from Vicuna-7B[15] to Phi-1.5B[41] to evaluate smaller LLMs. We train LLaVA-Phi-1.5 and
LOVA3-1.5B by using the same training recipe. The only difference of training with Phi-1.5 is that
we increase the learning rate from 2×10−5 to 4×10−5 to ensure the higher performance. The model
LLaVA-Phi-1.5 is trained with the original 665K VQA instruction data as the baseline. The model
LOVA3-1.5B is trained with our proposed 1.5M mixture data including VQA, GenQA, EvalQA data.
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Table 3: Results on five generic tasks including VQAv2 [26], GQA [30], VizWiz [27], ScienceQA [50],
and POPE [39]. The first two columns represent the results on held-in datasets marked as ∗, and the
last three columns represent the held-out datasets. The best result on each subtask is bolded.

Method Train Paradigm LLM VQAv2 GQA VizWiz ScienceQA POPE
test-dev test test-dev img avg

LLaVA-Phi-1.5[42] VQA Phi-1.5B 73.2∗ 56.1∗ 33.8 57.3 87.6
LOVA3-1.5B (ours) VQA, GenQA, EvalQA Phi-1.5B 75.8∗+2.6 58.6∗

+2.5 37.2∗+3.4 57.8∗
+0.5 86.0∗

−1.6

BLIP-2 [37] VQA Vicuna-13B 41.0 41.3 19.6 61.0 85.3
InstructBLIP [17] VQA, VQG Vicuna-7B – 49.2 34.5 60.5 –
InstructBLIP [17] VQA, VQG Vicuna-13B – 49.5 33.4 63.1 78.9
IDEFICS-9B [35] VQA LlamA-7B 50.9 38.4 35.5 44.2 –
Qwen-VL [3] VQA Qwen-7B 78.8∗ 59.3∗ 35.2 67.1 –

LLaVA-1.5 [42] VQA Vicuna-7B 78.5∗ 62.0∗ 50.0 66.8 85.9
LOVA3-7B(ours) VQA, GenQA, EvalQA Vicuna-7B 80.3∗+1.8 63.3∗

+1.3 53.6+3.6 68.0+1.2 87.4+1.5

Table 4: Results on multimodal benchmarks, including MME [19] and SEED-Bench [36], MM-
Bench [45] and LLava-Bench [43]

Method Train Paradigm LLM MME SEED-Bench MMBench LLaVA-Bench
Image En Cn All

LLaVA-Phi-1.5 [42] VQA Phi-1.5B 1114.7 58.2 53.7 4.1 59.0
LOVA3-1.5B (ours) VQA, GenQA, EvalQA Phi-1.5B 1212.9+98.2 60.1+1.9 55.9+2.2 10.4+6.3 59.1+0.1

BLIP-2 [37] VQA Vicuna-13B 1293.8 49.7 – – 38.1
InstructBLIP [17] VQA, VQG Vicuna-7B – 58.8 36.0 23.7 60.9
InstructBLIP [17] VQA, VQG Vicuna-13B 1212.8 – – – 58.2
mPLUG-owl [89] VQA Llama-7B 967.3 37.9 – – –
LLaMA-AdapterV2 [22] VQA Llama-7B 972.7 35.2 41.0 – –

LLaVA-1.5 [42] VQA Vicuna-7B 1510.7 66.2 64.3 58.3 64.0
LOVA3-7B (ours) VQA, GenQA, EvalQA Vicuna-7B 1552.7+42.0 67.1+0.9 66.8+2.5 60.5+2.2 68.3+4.3

4.2 Main Results

Generic tasks. As shown in Tab. 3, LOVA3-7B outperforms LLaVA1.5 across all five datasets and
obtains 3.6% improvement on VizWiz dataset, 1.3% improvement on GQA, 1.8% improvement
on VQAv2 (1,932 samples are correctly predicted), and 1.2% improvement on ScienceQA. As for
the object hallucination benchmarks, our model attains 87.4% accuracy at an average of its three
subsets. Remarkably, these enhancements in VQAv2 and GQA performance are achieved without
any extra datasets, underscoring the significant impact of integrating GenQA and EvalQA into our
training to promote performance improvements on these generic VQA tasks. Based on the results
from smaller LLMs, our LOVA3-1.5B outperforms the baseline LLaVA-Phi-1.5 on VQAv2, GQA,
VizWiz, and ScienceQA by 2.6%, 2.5%, 3.4%, and 0.5%, respectively. This demonstrates a consistent
improvement when training with our LOVA3 framework across varying LLM sizes. Additionally, a
comparison of improvements for both 7B and Phi-15B on the VizWiz dataset highlights the advantage
of our LOVA3 framework for this VQA task.

MME, SEED-Bench, MMBench, LLaVA-Bench. In Tab. 4, we evaluate four prevalent multimodal
benchmarks, where our LOVA3-7B surpasses LLaVA1.5 with 42.0% on MME benchmark, 0.9%
increase in accuracy on SEED-Bench, 2.5% on MMBench (En), 2.2% MMBench (Cn) and 4.3% on
LLaVA-Bench. Such results showcase enhanced multimodal reasoning capabilities for complex tasks
compared to vanilla LLaVA1.5, which is solely trained with VQA tasks. By investigating the results
produced by LOVA3-1.5B on these multimodal benchmarks, one can see greater improvements
in the smaller models. Notably, LOVA3-1.5B achieves an impressive 98.2% improvement on the
MME benchmark. The lower results of LLaVA-Phi-1.5 and LOVA3-1.5B on MMBench (Cn) may be
attributed to a lack of Chinese training data in the Phi-1.5 training process.

MM-Vet. In Tab. 5, we compare LOVA3-7B with other approaches on MM-Vet, which is a chal-
lenging benchmark including numerous complex VQA samples that demand integration of several
multimodal capabilities for answering. As illustrated in Tab. 5, the results show that our LOVA3-7B
outperforms LLaVA-1.5 by 4.0% at an average. Such improvement demonstrates the effectiveness of
LOVA3-7B in solving these challenging multimodal questions. Based on the results on LOVA3-1.5B
and LLaVA-Phi-1.5, one can see a greater improvement than LOVA3-7B.
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Table 5: Multimodal reasoning ability on MM-Vet [92]. Rec denotes Recognition; Know denotes
knowledge; Gen denotes Language generation; and Spat denotes Spatial awareness.

Method Train Paradigm LLM Rec OCR Know Gen Spat Total

LLaVA-Phi-1.5 [42] VQA Phi-1.5B – – – – – 22.2
LOVA3-1.5B (ours) VQA, GenQA, EvalQA Phi-1.5B – – – – – 28.1+5.9

MiniGPT-4 [101] VQA Vicuna-7B 27.4 15.0 12.8 13.9 20.3 22.1
BLIP-2 [37] VQA Vicuna-13B 27.5 11.1 11.8 7.0 16.2 22.1
InstructBLIP [17] VQA, VQG Vicuna-7B 32.4 14.6 16.5 18.2 18.6 26.2
InstructBLIP [17] VQA, VQG Vicuna-13B 30.8 16.0 9.8 9.0 21.1 25.6

LLaVA-1.5 [42] VQA Vicuna-7B 37.0 21.0 17.6 20.4 24.9 31.2
LOVA3-7B (ours) VQA, GenQA, EvalQA Vicuna-7B 41.5+4.5 23.6+2.6 23.9+6.3 24.6+4.2 30.3+5.4 35.2+4.0

Table 6: Abaltion studies on different finetuning datasets. The model is LOVA3-7B.

Row Finetuning Corpus GQA VizWiz ScienceQA POPE MME SizeGenQA-Generic GenQA-Grounding EvalQA

0 LLaVA-1.5 (Baseline) 62.0 50.0 66.8 85.9 1510.7 665K

1 ! 63.1 53.1 67.4 86.9 1550.7 722K
2 ! 62.8 50.9 66.4 86.6 1495.8 120K
3 ! 62.8 49.1 67.8 87.0 1535.6 64K
4 ! ! 63.3 53.2 67.4 86.7 1523.6 842K
5 ! ! 63.7 54.4 67.0 86.9 1520.8 786K
6 ! ! 63.1 51.1 67.5 86.8 1478.7 184K
7 ! ! ! 63.3 53.6 68.0 87.4 1552.7 906K

Table 7: Results on 10 multimodal datasets. The 64K training data for EvalQA task is generated by
the Gemini-1.5-Flash model.

Method LLM VQAv2 GQA VizWiz ScienceQA POPE MME SEED MMBench LLaVA MM-Vet
test-dev test test-dev img avg Image En Cn All Total

LLaVA-Phi-1.5 [42] Phi-1.5B 73.2∗ 56.1∗ 33.8 57.3 87.6 1114.7 58.2 53.7 4.1 59.0 22.2
LOVA3-1.5B (ours) Phi-1.5B 75.8∗ 58.4∗ 36.9 57.8 85.8 1202.9 60.5 55.5 7.82 60.0 25.1

LLaVA-1.5 [42] Vicuna-7B 78.5∗ 62.0∗ 50.0 66.8 85.9 1510.7 66.2 64.3 58.3 64.0 31.2
LOVA3-7B (ours) Vicuna-7B 80.3∗ 63.4∗ 54.2 70.8 85.6 1526.8 67.6 66.5 57.6 67.7 32.2

4.3 Ablation Study

We split the data used in the GenQA task into two groups: GenQA-General and GenQA-Grounding.
The findings, presented in Tab. 6, are instrumental in investigating the contributions of GenQA and
EvalQA to model efficacy. (1) Comparing the first four rows, one can find that both GenQA-General
and EvalQA data are more effective in improving performance than GenQA-Grounding. (2) By
comparing rows 4 and 7, it demonstrates the effectiveness of EvalQA across five datasets, especially
on MME. (3) When comparing rows 6 and 7, by removing GenQA-General from the finetuning
corpus, the performance drops significantly on MME and VizWiz. (4) Compare the rows 0 and 3, one
can observe that even adding 64K data into the training, there are obvious improvements in GQA,
ScienceQA, and MME. By analyzing the data size, we did not introduce any new datasets for training
the GenQA task. For EvalQA, we only added 32K new negative answer annotations while retaining
the original questions used for training VQA capabilities. The details of the data size are provided in
the right column in Tab. 6.

4.4 Training with Gemini-Generated EvalQA Data

Rather than using the open-source model Fuyu-8B [4] to create the training data for EvalQABench,
we also explore the use of the commercial model Gemini-1.5-Flash1 as both the MLLM and LLM in
Fig. 2 to generate negative answers and one-sentence feedback. The experimental results, presented in
Tab. 7, indicate that regardless of whether we use the open-source model Fuyu-8B or the commercial
model Gemini-1.5-Flash, our proposed training paradigm LOVA3 consistently improves performance
across both smaller and larger baseline models.

1https://deepmind.google/technologies/gemini/flash/
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Table 8: Results of multimodal large language models on the test set of EvalQABench (ours).

Method LLM Test Set
Accuracy Precision F1 Score No (%)

Vision Language Pretraining Model
BLIP2 [37] Flan-T5-XXL-11B 58.00 82.79 32.47 87.80

Multimodal Large Language Models
InstructBLIP [17] Vicuna-7B 38.04 41.49 48.47 29.76
InstructBLIP [17] Vicuna-13B 61.42 57.60 69.18 24.82
CogVLM [84] Vicuna-7B 60.64 56.59 69.88 19.32
Qwen-VL-Chat [3] Qwen-7B 63.66 63.48 63.90 49.34
InternLM-XC [95] InternLM-7B 69.58 70.66 68.76 52.62

LLaVA-1.5 [42] Vicuna-7B 64.92 61.28 69.80 33.84
LOVA3-7B (ours) Vicuna-7B 79.58+14.66 79.15+17.87 79.72+9.92 49.26

4.5 Benchmark of EvalQABench

We report the evaluation results on our EvalQABench test set in Tab. 8 to validate the EvalQA ability
of current SOTA models and LOVA3. We select BLIP2 [37], InstructBLIP [17], CogVLM [84],
Qwen-VL-Chat [3], InternLM-XC [95], and LLaVA1.5 [42] for the comparison. We ask these models
to answer “Yes” or “No” strictly and record the results for calculating the Accuracy, Precision, F1
score, and No (%) metrics. Here, No (%) indicates the percentage of results classified as "No," which
ideally should approximate 50% due to the one-positive-one-negative setting utilized in our test set.
As indicated by the data presented in the table, BLIP2 predominantly yields "No" responses across
most test instances. Among the state-of-the-art MLLMs, InternLM-XC stands out by delivering
superior performance on these four metrics. Trained with EvalQA data, LOVA3 shows several
improvements over our baseline LLaVA1.5 by margins of 14.66%, 17.87%, and 9.92% in Accuracy,
Precision, and F1 Score, respectively.

5 Conclusion and Limitations

In this work, we propose a novel multimodal framework, LOVA3, which is capable of mimicking
the human visual question answering, asking, and assessment to achieve deeper multimodal under-
standing. We introduce two additional training tasks, GenQA and EvalQA, to help MLLM acquire
these abilities. We establish EvalQABench, a novel benchmark to assess the VQA samples between
multiple MLLMs. Experimental results show that LOVA3 achieves superior performance across
various benchmarks, including MM-Vet, SEED, and VizWiz, demonstrating the effectiveness of the
two additional abilities.

Limitations. (1) Due to computational constraints, we do not test larger LLMs, such as the 13B
or 34B variants. However, we believe that our LOVA3 could be beneficial for larger LLMs, as
other MLLMs have shown performance improvements with increased LLM scale. (2) GenQA and
EvalQA as two additional tasks increase training costs, but it is inevitable for an MLLM to acquire
new capabilities. (3) Due to the limited scope of instruction tuning datasets, LOVA3 cannot address
domain-specific multimodal tasks well, such as text-centric VQA or mathematic-relevant VQA.
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A Broader Impacts

In this paper, we propose a new training framework for imbuing two essential abilities into the model
training. We also propose the EvalQA task with a new benchmark of 64,000 training data and 5,000
validation and testing data. In summary, this work would inspire future work to pay more attention to
visual question asking and assessment. For these two tasks, there still exists some space for involving
more GenQA tasks and more formulations of EvalQA.

B Additional Details of Implementation

665K instruction tuning data. We follow the backbone MLLM LLaVA1.5 to adopt the 665K
instruction-following data into the supervise finetuning stage. We present the details of the 665K
instruction data in Tab. 9 for convenient browsing. The details include the dataset name, size, and
instruction prompts.

Model training. The baseline model LLaVA1.5 [42] includes two stages: image-text alignment
pertaining stage and supervised instruction tuning stage. The first stage involves only the image
caption datasets for aligning two modalities by only finetuning the two-layer MLP adapter. In this
paper, we are investigating the effectiveness of two additional tasks in the supervised instruction
tuning stage. Thus, we use the pretraining weights of the first stage for fair comparison and train the
model as in Fig. 4. The model comprises three key components: Vision Encoder, MLP Adapter, and
Large Language Model. The vision encoder is responsible for processing the input image XI to align
the learned visual features with the text input XT . Next, the Multi-Layer Perceptron (MLP) adapter
projects the visual feature FI to ZI . Finally, the large language model utilizes ZI and the current
text embedding ZT to predict the response in a left-to-right manner. During training, the data of the
three tasks is mixed. By such joint training, MLLM exhibits deeper comprehension and promising
reasoning ability.

Vision 
Encoder

𝑿𝑰

MLP Adapter

Large Language Model

…

…
𝑭𝑰

𝒁𝑻	
𝒁𝑰 …

❄

🔥

🔥 What color is the pot?

blue

Can you provide a concise 
question and answer based on 
the image?

GenQA

EvalQA

What kind of flowers are on the picture to the 
left?\nAnswer: pansy. \nPlease examine the 
correctness of this question and answer 
according to the image content. Output Yes 
or No with the feedback. 

Question: What color is 
the pot?\nAnswer: blue.

No, the left of the picture 
shows roses.

VQA

Figure 4: Illustration of the model training of LOVA3.

Hyperparameter. The hyperparameters of LOVA3 are aligned with those of LLaVA1.5 to ensure
a fair comparison, as illustrated in Tab 10. The exceptional performance highlighted in Tab. 3, 4,
and 5 of the main paper, achieved without any modulation of hyperparameters, demonstrates the
effectiveness and robustness of our LOVA3.

C Details of GenQA Data

Generic VQA. It includes four datasets: VQAv2 [26], GQA [30], OCR-VQA [56] and Count-
ing110K [52]. The generic VQA data type we developed focuses on enabling the model to produce
basic and general QA pairs. We incorporate VQAv2 and GQA, two fundamental VQA datasets for
granting LOVA3 the capability to learn how to ask questions like a human. Additionally, to increase
the question diversity, we introduce two supplementary VQA tasks: counting VQA and long-response
VQA.Counting110K†, a dataset developed in-house by reformulating the original PointQA [52]
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Table 9: 665K instruction data of LLaVA1.5. The content is from LLaVA1.5 for convenient browsing.

Dataset Name Size Instruction Prompts

LLaVA [43] 158K –
ShareGPT [74] 40K –

VQAv2 [26] 83K Answer the question using a single word or phrase.
GQA [30] 72K
OKVQA [54] 9K
OCRVQA [56] 80K

A-OKVQA [71] 50K Answer with the option’s letter from the given choices directly.

TextCaps [75] 22K Provide a one-sentence caption for the provided image.

RefCOCO[31, 53] 30K Note: randomly choose between the two formats
Provide a short description for this region.

VG [33] 86K Provide the bounding box coordinate of the region this sentence
describes.

Total 665K

Table 10: Hyperparameters of LOVA3 are the same as the LLaVA1.5.

Hyperparameter Finetune

batch size 128
learning rate 2× 10−5

learning rate schedule cosine decay
learning rate warmup ratio 0.03
weight decay 0
epoch 1
optimizer AdamW
DeepSpeed stage 3

format, contributes to the counting type data generation. Moreover, for most of the above generic
VQA with a short response, it is necessary for MLLM to learn to ask questions with long answers.
Thus, we leverage the conversation subset of LLaVA-150K [43] and then filter out overly lengthy
sentences (e.g., the word number ≥ 200.) to yield LLaVA-250K† with almost 250K samples.

Multi-choice VQA. Apart from generic VQA, there is another variant known as multi-choice
VQA. This format has become increasingly popular in recent multimodal benchmarks, including
ScienceQA [50], SEED [36], MMBench [45] and MMMU [93]. Such a data format can be seen as
a better way to evaluate the reasoning ability of MLLMs rather than the direct text response in an
open-ended way. As each MC VQA sample comprises one correct answer and three incorrect yet
plausible alternatives, it will introduce a higher level of complexity for model learning. Thus, We
proceed to make the LOVA3 learn to produce multi-choice VQA data.

Multi-turn VQA. It is also a complex multimodal data format. We incorporate this data type into
the training of LOVA3, enabling it to master the art of generating varied questions within a dialogue
context from a single image. Recognizing that the VQAv2 and GQA datasets offer multiple questions
per image, we carefully select 83,000 and 72,000 multi-turn VQA instances from each dataset,
respectively.

REC and REG. Recent studies such as Shikra [10] have recognized the importance of making
MLLM talk about the image regions for asking and answering (e.g., describing the region by giving a
bounding box in an image) in grounding tasks. Being able to refer to a region precisely when asking
or answering a question demonstrates a strong capability of multimodal reasoning. Possessing this
capability would enhance an MLLM’s potential as an intelligent assistant in human-AI interactions by
accurately identifying and referring regions of interest. Thus, besides considering the aforementioned
multimodal tasks, we also consider involving grounding tasks like REC and REG to enhance the
model capability related to positions. For REC, it aims to ground the region of an image with the
given referring expression. About REG, the target is to give the corresponding expression when
giving the exact coordinates. We randomly select 30K samples from RefCOCO [31] and Visual
Genome (VG) [33], respectively.

How about the asking ability of LOVA3? We provide some examples of prompting LOVA3 to
generate VQA pairs as in Fig. 9. One can see that LOVA3 is capable of asking versatile questions
based on the content of the unlabeled images. Such results demonstrate the potential of the current
MLLM to actively ask questions. We would like this finding to inspire future works that explore
human-AI interaction in depth.
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D EvalQABench

Why Fuyu-8B and Llama 2? To build the EvalQABench, we used two open-source models, Fuyu-
8B and Llama 2, to generate negative answers and feedback, respectively. These models were chosen
due to the zero financial cost of producing a training dataset. Furthermore, our empirical investigation
found that Fuyu-8B and Llama 2 are capable of generating the data by following the instruction
prompts described in Sec. 3.2. Such results prove that GPT-4 is not necessary for our purpose.

Why does manual filtering and correction work? The reason is that the models of Fuyu-8B and
Llama 2 are two closed-formed models, which will output incorrect samples with similar patterns
even set by the hyperparameters of inference mode. Therefore, we observe that use manual checking
is feasible and enough to remove most of the failure cases. Moreover, GPT-4 is a closed-form model
yet that exhibits error patterns.

Verification of data. As mentioned in the main paper, we select 100,000 samples from annotated
VQA pairs of the VQAv2 training set and then use Fuyu-8B to generate negative answers for
subsequent manual filtering and error correction. We obtain 61,094 filtered samples, which is
approximately 61% accuracy in generating negative answers. After that, we prompt Llama 2 to
produce feedback. In this process, we also manually filter the samples with incorrect formats and
finally obtain 41,592 samples. It is almost 68% accuracy in creating feedback.

Details of each procedure. In detail, we present the amounts of each procedure in creating the
EvalQABench training set in Tab. 11. Initially, we select 100,000 samples and then use Fuyu-8B
to obtain 99,998 valid outcomes, and then we use manual filtering to remove 38,904 samples. We
conduct error correction to 14,814 samples and then pass 61,094 samples to Llama 2 for feedback
generation. After that, we adopt manual filtering to remove 19,502 samples with incorrect formats.
The filtering of feedback includes overlength output or none of output.

Table 11: Data amount details of creating EvalQABench training set.

Procedures Amount

Raw Data 100,000
Negative answer generation 99,998
Manual filtering 61,094 (-38,904)
Error Correction 61,094 (14,814)
Feedback generation 61,094
Manual filtering 41,592 (-19,502)

Data distribution across categories We provide the data distribution of the nine question types
across the “Object”, “Yes/No”, “Counting”, “Color”, “Number”, “Attribute”, “Relation”, “Action”,
and “Others” of the EvalQABench training set in Tab. 12. One can observe that there are 26.7%
question belongs to Others. It is noted that “Others” includes versatile questions such as “What does
the image represent?”, “Who is not out of focus?”, “What does the back of the bus say?”, “What time
does the clock report?”, and “How old is this man?”. These questions, with diverse scopes, bring
diversity to our EvalQABench. Due to the inherent question bias in the original VQAv2 [26] training
set, the number of questions categorized as "Number" is limited. Nevertheless, it is important to note
that such biases are also present in real-world scenarios. We also provide the statics of the other seven
question types in the table.

Data distribution of negative answers.

To analyze the data distribution of produced negative answers, we build a word cloud in Fig. 5. One
can observe that “Yes” and “No” are the two majority negative answers due to the higher proportion
of “Yes/No” questions. While colors and numbers are also the two high-frequency word types that
appeared in the negative answers.

Data distribution of feedback.

For analyzing the distribution of feedback, we dive into three aspects: sentence length of feedback,
noun counts, and verb counts as in Fig. 6, 7, 8.
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Table 12: Statistic of question types of EvalQABench training set.

Statistic Number Proportion

Total Questions 32,000 –
- Object 2,418 7.55%
- Yes/No 6,804 21.26%
- Counting 4,880 15.25%
- Color 3,756 11.73%
- Attribute 343 5.67%
- Number 1,814 1%
- Relation 2,380 7.44%
- Action 1,274 3.98%
- Other 8,331 26.03 %
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Figure 5: The word cloud of total negative answers.

E Failure cases of EvalQABench

In this section, we show some failure cases of our LOVA3. As shown in Tab. 13, there are three failure
cases: the first case is from the TextVQA [76], and the last two cases are from MM-Vet [92]. In the
first case, when the watch is rotated -90◦ and an incorrect OCR reference is provided, our LOVA3

fails to give the correct time. The second example highlights the current limitations of LOVA3 in
mathematical calculations and multi-step reasoning. In the third example, LOVA3 fails to correctly
interpret the window of the living room, resulting in an incorrect answer. It is important to note that
due to the limited text-centric instruction tuning datasets and mathematic relevant task-specific data
in the current experimental settings, LOVA3 falls short in handling text-centric VQA, and mathematic
problem-solving. We believe these failure cases are primarily caused by the shortage of relevant
instruction tuning datasets. This leaves room for future exploration, while our work focuses mainly
on highlighting the importance and effectiveness of two additional high-level abilities for enhancing
multimodal understanding in this paper. We believe that exploring the creation or collection of more
mathematical or text-centric data for training will be essential for future work.
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Question: What is the dog doing in the 

image?

Answer: The dog is laying down and resting its 

head on a cushion or a brown pillow.

Question: What is the boy doing in the image?

Answer: The boy in the image is playing 

baseball, wearing a catcher's mitt, and is in a 

ready position to catch a ball.

Question: What is the cat doing in the 

image?

Answer: The cat is sitting on a bed next 

to a pillow.

Question: How many motorcycles are there?

Answer: 4

Question: Is the woman in the image skiing or 

snowboarding?

Answer: The woman in the image is skiing, 

not snowboarding.

Question: What is the boy doing with 

the frog?

Answer: He is either showing the frog to 

someone or is about to let the frog jump 

off the plate.

Question: What is the dog doing in the 

image?

Answer: The dog in the image is jumping in 

the air to catch a frisbee in its mouth.

Question: What is the man wearing in 

the image?

Answer: The man in the image is 

wearing a blue jacket and a helmet.

Question: What is the animal that is standing 

in the snow called?

Answer: sheep

Figure 9: We ask the LOVA3 to generate the diverse question-answer pairs.
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Table 13: Some failure cases of LOVA3.

Image:

Question: What is the time? \Reference OCR token: N, u, g0 \Answer the question
using a single word or phrase.

Answer: 10:10

Image:

Question: How many gallons of supreme gasoline can I get with $50?

Answer: With $50, you can get approximately 110 gallons of supreme gasoline,
as indicated by the gas station sign in the image.

Image:

Question: In which direction does the living room window face?

Answer: The living room window faces the dining area.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In abstract and introduction sections, we provide the clear motivation, the
problem we are solving, and the contributions of this study.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide the limitation discussion in the conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [No]
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Justification: This study does not involve the theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We detailly provide all the training data and implementation details for repro-
ducibility. Additionally, we provide the training and evaluation codes in the supplemental
material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the training and evaluation codes with new proposed data of
EvalQABench in the supplemental material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide the experimental settings and details in the experiments section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide the details of the train/test split in the main paper and hyperparam-
eters in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experiments were done on 8 A100 (40G) GPU setup.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research of this paper conform the Code of Ethics of NeurIPS.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We provide the positive impacts in the appendix while there are no negative
impacts of our work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper has no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The code, data, and models we used in this study follow the corresponding
license.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We create a new dataset that follows the license CC-BY 4.0.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: There are no human subjects involved in our study.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: There are no human subjects involved in our study.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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