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Abstract

We establish a new theoretical framework for learning under multi-class, instance-
dependent label noise. This framework casts learning with label noise as a form
of domain adaptation, in particular, domain adaptation under posterior drift. We
introduce the concept of relative signal strength (RSS), a pointwise measure that
quantifies the transferability from noisy to clean posterior. Using RSS, we establish
nearly matching upper and lower bounds on the excess risk. Our theoretical
findings support the simple Noise Ignorant Empirical Risk Minimization (NI-ERM)
principle, which minimizes empirical risk while ignoring label noise. Finally, we
translate this theoretical insight into practice: by using NI-ERM to fit a linear
classifier on top of a self-supervised feature extractor, we achieve state-of-the-art
performance on the CIFAR-N data challenge.

1 Introduction

The problem of classification with label noise can be stated in terms of random variables X , Y , and Ỹ ,
where X is the feature vector, Y ∈ {1, . . . ,K} is the true label associated to X , and Ỹ ∈ {1, . . . ,K}
is a noisy version of Y . The learner has access to i.i.d. realizations of (X, Ỹ ), and the objective is to
learn a classifier that optimizes the risk associated with (X,Y ).

In recent years, there has been a surge of interest in the challenging setting of instance (i.e., feature)
dependent label noise, in which Ỹ can depend on both Y and X . While several algorithms have been
developed, there remains relatively little theory regarding algorithm performance and the fundamental
limits of this learning paradigm.

This work develops a theoretical framework for learning under multi-class, instance-dependent label
noise. Our framework hinges on the concept of relative signal strength, which is a point-wise measure
of “noisiness” in a label noise problem. Using relative signal strength to charachterize the difficulty
of a label noise problem, we establish nearly matching upper and lower bounds for excess risk. We
further identify distributional assumptions that ensure that the lower and upper bounds tend to zero as
the sample size n grows, implying that consistent learning is possible.

Surprisingly, Noise Ignorant Empirical Risk Minimization (NI-ERM) principle, which conducts
empirical risk minimization as if no label noise exists, is (nearly) minimax optimal. To translate
this insight into practice, we use NI-ERM to fit a linear classifier on top of a self-supervised feature
extractor, achieving state-of-the-art performance on the CIFAR-N data challenge.
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2 Literature review

Theory and algorithms for classification with label noise are often based on different probabilistic
models. Such models may be categorized according on how Ỹ depends on Y and X . The simplest
model is symmetric noise, where the distribution of Ỹ is independent of Y and X [Angluin and Laird,
1988]. In this case, the probability that Ỹ = k is the same for all k ̸= Y , regardless of Y and X .
In this setting, it is easy to show that minimizing the noisy excess risk (associated to the 0/1 loss)
implies minimizing the clean excess risk, a property known as immunity. When immunity holds,
there is no need to modify the learning algorithm on account of noisy labels. In other words, the
learner may be ignorant of the label noise and still learn consistently.

A more general model is classification with label dependent noise, in which the distribution of Ỹ
depends on Y , but not X . Many practical algorithms have been developed over the years, based
on principles including data re-weighting [Liu and Tao, 2015], robust training [Han et al., 2018,
Liu et al., 2020, Hu et al., 2020, Foret et al., 2021, Liu et al., 2022] and data cleaning [Brodley
and Friedl, 1999, Northcutt et al., 2021]. Consistent learning algorithms still exist, such as those
based on loss correction [Natarajan et al., 2013, Patrini et al., 2017, Van Rooyen and Williamson,
2018, Liu and Guo, 2020, Zhang et al., 2022]. These approaches assume knowledge of the noise
transition probabilities, which can be estimated under some identifiability assumptions [Scott et al.,
2013, Zhang et al., 2021b].

In the most general setting, that of instance dependent label noise, the distribution of Ỹ depends on
both Y and X . While algorithms are emerging [Cheng et al., 2021, Zhu et al., 2021, Wang et al.,
2022, Yang et al., 2023], theory has primarily focused on the binary setting. Scott [2019] establishes
immunity for a Neyman-Pearson-like performance criterion under a posterior drift model, discussed
in more detail below. Cannings et al. [2020] establish an upper bound for excess risk under the strong
assumption that the optimal classifiers for the clean and noisy distributions are the same.

Closest to our work, Im and Grigas [2023] derive excess risk upper and lower bounds, and reach a
similar conclusion, that noise-ignorant ERM attains the lower bound up to a constant factor. Our
results, based on the new concept of relative signal strength, provide a more refined analysis.

Additional connections between our contributions and prior work are made throughout the paper.

3 Problem statement

Notation. X denotes the feature space and Y = {1, 2, . . . ,K} denotes the label space, with K ∈ N.
The K-simplex is ∆K := {p ∈ RK : ∀i, pi ≥ 0,

∑
pi = 1}. A K ×K matrix is row stochastic if

all of its rows are in ∆K . Denote the i-th element of a vector v as [v]i, and the (i, j)-th element of a
matrix M as [M ]i,j .

In conventional multiclass classification, we observe training data (X1, Y1), . . . , (Xn, Yn) drawn
i.i.d. from a joint distribution PXY . The marginal distribution of X is denoted by PX , and the class
posterior probabilities PY |X=x are captured by a K-simplex-valued vector η : X → ∆K , where
the j-th component of the vector is [η(x)]j = P (Y = j | X = x). A classifier f : X → Y maps an
instance x to a class f(x) ∈ Y . Denote the risk of a classifier f with respect to distribution PXY as
R(f) = E(X,Y )∼PXY

[
1{f(X )̸=Y }

]
. The Bayes optimal classifier for PXY is f∗(x) ∈ argmaxη(x).

The Bayes risk, which is the minimum achievable risk, is denoted as R∗ = R(f∗) = inff R(f).

We consider the setting where, instead of the true class label Y , a noisy label Ỹ is observed.
The training data (X1, Ỹ1), . . . , (Xn, Ỹn) can be viewed as an i.i.d. sample drawn from a “noisy”
distribution PXỸ . We define PỸ |X=x, η̃, R̃ and f̃∗ analogously to the “clean” distribution PXY .

The goal of learning from label noise is to find a classifier that is able to minimize the “clean test
error,” that is, the risk R defined w.r.t. PXY , even though the learner has access to only corrupted
training data (Xi, Ỹi)

i.i.d.∼ PXỸ .

Noise transition perspective. Traditionally, label noise is modeled through the joint distribution
of (X,Y, Ỹ ). This joint distribution is governed by PX , the clean class posterior PY |X , and a
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matrix-valued function

E : X → {M ∈ RK×K : M is row stochastic},
known as the noise transition matrix. The (i, j)-th entry of the matrix is defined as:

[E(x)]i,j = P
(
Ỹ = j | Y = i,X = x

)
.

This implies that the noisy and clean class posteriors are related by η̃(x) = E(x)⊤η(x), where ⊤

denotes the matrix transpose.

Domain adaptation perspective. Alternatively, label noise learning can be framed as a domain
adaptation problem. In this view, PXỸ represents the source domain, and PXY represents the target
domain. The relationship between the two domains is characterized by “posterior drift,” meaning
that while the source and target share the same X-marginal, the class posteriors (i.e., the distribution
of labels given X) may differ [Scott, 2019, Cai and Wei, 2021, Maity et al., 2023, Liu et al., 2024].
Thus, a label noise problem can also be described by a triple (PX ,η, η̃).

The two perspectives are equivalent, as discussed in Appendix A.1. In this work, we emphasize the
domain adaptation perspective for Sections 4 and 5, and the noise transition perspective for Section 6.

4 Relative signal strength

To study label noise, we introduce the concept of relative signal strength (RSS). This is a pointwise
measure of how much “signal” (certainty about the label) is contained in the noisy distribution relative
to the clean distribution. Previous work [Cannings et al., 2020, Cai and Wei, 2021] has examined a
related concept within the context of binary classification, under the restriction that clean and noisy
Bayes classifiers are identical. Our definition incorporates multi-class classification and relaxes the
requirement that the clean and noisy Bayes classifiers agree.

Definition 1 (Relative Signal Strength) For any class probability vectors η, η̃, define the relative
signal strength (RSS) at x ∈ X as

M(x;η, η̃) = min
j∈Y

maxi[η̃(x)]i − [η̃(x)]j
maxi[η(x)]i − [η(x)]j

, (1)

where 0/0 := +∞. Furthermore, for κ ∈ [0,∞), denote the set of points whose RSS exceeds κ as

Aκ(η, η̃) = {x ∈ X :M(x;η, η̃) > κ} .

M(x;η, η̃) is a point-wise measure of how much “signal” the noisy posterior contains about the
clean posterior. To gain some intuition, first notice that if the noisy Bayes classifier predicts a different
class than the clean Bayes classifier, the RSS is 0 by taking j = argmax η̃ (assuming for simplicity
that the argmax is a singleton set). Now suppose the clean and noisy Bayes classifiers do make the
same prediction at x, say i∗, and consider a fixed j. If

[η̃(x)]i∗ − [η̃(x)]j
[η(x)]i∗ − [η(x)]j

is small, it means that the clean Bayes classifier is relatively certain that j is not the correct clean
label, while the noisy Bayes classifier is less certain that j is not the correct noisy label. Taking the
minimum over j gives the relative signal strength at x. As we formalize in the next section, a large
RSS at x ensures that a small (pointwise) noisy excess risk at x implies a small (pointwise) clean
excess risk. To gain more intuition, consider the following examples.

Example 1 When η(x) = [0 1 0]⊤ and η̃(x) = [0.3 0.6 0.1]⊤,

M(x;η, η̃) = min
j∈Y

maxi[η̃(x)]i − [η̃(x)]j
maxi[η(x)]i − [η(x)]j

=
[η̃(x)]2 − [η̃(x)]1
[η(x)]2 − [η(x)]1

=
0.6− 0.3

1− 0
= 0.3.

Here, first of all, argmaxη = argmax η̃ = 2, i.e., the clean and noisy Bayes classifier give the same
prediction. What’s more,M(x;η, η̃) < 1 because the clean Bayes classifier is absolutely certain
about its prediction, while the noisy Bayes classifier is much less certain.
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Example 2 When η(x) = [0 1 0]⊤ and η̃(x) = [0 0 1]⊤,

M(x;η, η̃) = min
j∈Y

maxi[η̃(x)]i − [η̃(x)]j
maxi[η(x)]i − [η(x)]j

=
[η̃(x)]3 − [η̃(x)]3
[η(x)]2 − [η(x)]3

=
1− 1

1− 0
= 0.

The zero signal strength results from η̃ and η leading to different predictions about argmax.

Example 3 (Comparison to KL divergence) When η(x) = [0.05 0.7 0.25]⊤, and η̃(1)(x) =
[0.25 0.7 0.05]⊤, η̃(2)(x) = [0.1 0.6 0.3]⊤,

1

DKL

(
η
∥∥ η̃(1)

) <
1

DKL

(
η
∥∥ η̃(2)

) while M
(
x;η, η̃(1)

)
>M

(
x;η, η̃(2)

)
.

Here, η̃(2) is “closer” to η in terms of KL divergence, but η̃(1) provides more information in terms of
predicting the argmax of η. There is no conflict: KL divergence considers the similarity between
two (whole) distributions, while the task of classification only focuses on predicting the argmax.

This also illustrates why our notion of RSS is better suited for the label noise problem than other
general-purpose distance measures between distributions.

A desirable learning scenario would be if Aκ(η, η̃) = X for some large κ, indicating that the signal
strength is big across the entire space. Unfortunately, this ideal situation is generally not achievable.
To gain some insight, consider the following result, proved in Appendix A.2.1.

Proposition 1 A0(η, η̃) =
{
x ∈ X : arg max η̃(x) ⊆ arg max η(x)

}
.

If we assume that both argmax sets are singletons, this result indicates that A0, the region with
positive RSS, is the region where the true and noisy Bayes classifiers agree. Accordingly, X \A0, the
zero signal region, is the region where the clean and noisy Bayes decision rules differ. The “region
of strong signal,” Aκ, is a subset of A0. Since the clean and noisy Bayes classifiers will typically
disagree for at least some x, A0 ̸= X in general. We note that the strong assumption that A0 = X
has been made in prior studies [Cannings et al., 2020, Cai and Wei, 2021]. Our notion of RSS relaxes
this assumption and provides a unified view.

4.1 RSS in binary classification

We can express relative signal strength more explicitly in the binary setup. Let η(x) := [η(x)]1 =

P (Y = 1 | X = x) and η̃(x) := [η̃(x)]1 = P
(
Ỹ = 1 | X = x

)
. In standard binary classification,

the margin [Tsybakov, 2004, Massart and Nédélec, 2006], defined as
∣∣η(x)− 1

2

∣∣, serves as a pointwise
measure of signal strength. Our notion of relative signal strength (RSS) can be interpreted as an
extension of this concept in the context of label noise learning.

Proposition 2 In the binary setting, for κ ≥ 0,

M(x; η, η̃) = max

{
η̃(x)− 1

2

η(x)− 1
2

, 0

}
, and Aκ(η, η̃) =

{
x ∈ X :

η̃(x)− 1
2

η(x)− 1
2

> κ

}
.

In other words, RSS can be viewed as a “relative” margin.

Example 4 Illustration of relative signal strength in a binary classification setup (Figure 1).

4.2 Posterior Drift Model Class.

Now putting definitions together, we consider the posterior drift model Π defined over the triple
(PX ,η, η̃). Let ϵ ∈ [0, 1], κ ∈ [0,+∞), and define

Π(ϵ, κ) :=
{
(PX ,η, η̃) : PX

(
Aκ (η, η̃)

)
≥ 1− ϵ

}
.

This is a set of triples (label noise problems) such that Aκ, the region with RSS at least κ, covers at
least 1 − ϵ of the probability mass. In the next section, we will demonstrate that the performance
within Aκ can be guaranteed, whereas learning outside the region Aκ is provably challenging.

4



−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

x

0.0

0.2

0.4

0.6

0.8

1.0

C
l
a
s
s

P
r
o
b
a
b
i
l
i
t
y

P (Y = 1|X = x)
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Figure 1: Illustration of relative signal strength for binary classification. Left: clean and noisy
posteriors [η(x)]1 = P (Y = 1|X = x) and [η̃(x)]1 = P

(
Ỹ = 1|X = x

)
. Right: relative signal

strength corresponding to these posteriors. The gray region, x ∈ (0, 5), is where the true and noisy
Bayes classifiers differ, and is also the zero signal region X \ A0. The red region is A0.4, where the
RSS is > 0.4. Note that as x ↑ 0,M(x;η, η̃) ↑ ∞, which occurs since [η(x)]1 ↑ 1/2, while [η̃]1 is
far from 1/2. For x = 0+, the predicted labels under η and η̃ disagree, and the RSS crashes to 0.

5 Upper and lower bounds

In this section, we establish both upper and lower bounds for excess risk under multi-class instance-
dependent label noise.

5.1 Minimax lower bound

Our first theorem reveals a fundamental limit: no classifier trained using noisy data can surpass the
constraints imposed by relative signal strength in a minimax sense. To state the theorem, we employ
the following notation and terminology. Denote the noisy training data by Zn =

{
(Xi, Ỹi)

}n
i=1

i.i.d.∼
PXỸ . A learning rule f̂ is an algorithm that takes Zn and outputs a classifier. The risk R(f̂) of a
learning rule is a random variable, where the randomness is due to the draw Zn.

Theorem 1 (Minimax Lower Bound) Let ϵ ∈ [0, 1], κ > 0. Then

inf
f̂

sup
(PX ,η,η̃)∈Π(ϵ,κ)

EZn

[
R
(
f̂
)
−R(f∗)

]
≥ K − 1

K
ϵ+Ω

(
1

κ

√
1

n

)
,

where the inf is over all learning rules.

The proof in Appendix A.2.3 offers insights into how label noise impacts the learning process: On the
low RSS region (X\Aκ), learning is difficult if not impossible, and the learner incurs an irreducible
error of (1− 1/K)ϵ. On the high RSS region (Aκ), the standard nonparametric rate [Devroye et al.,
1996] is scaled by 1/κ. These aspects determine fundamental limits that no classifier trained only on
noisy data can overcome without additional assumptions.

5.2 Upper bound

This subsection establishes an upper bound for Noise Ignorant Empirical Risk Minimizer (NI-ERM),
the empirical risk minimizer trained on noisy data. This result implies that NI-ERM is (nearly)
minimax optimal, a potentially surprising result given that NI-ERM is arguably the simplest approach
one might consider. We begin by presenting a general result on the excess risk of any classifier, which
is proved in Appendix A.2.4.
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Lemma 1 (Oracle Inequality) For any label noise problem (PX ,η, η̃) and any classifier f ,

R(f)−R(f∗) ≤ inf
κ>0

{
PX

(
X \ Aκ (η, η̃)

)
+

1

κ

(
R̃(f)− R̃

(
f̃∗
))}

.

For (PX ,η, η̃) ∈ Π(ϵ, κ), the first term is bounded by ϵ. When f is selected by ERM over the noisy
training data, conventional learning theory implies a bound on the second term. This leads to the
following upper bound for NI-ERM, whose proof is in Appendix A.2.5.

Theorem 2 (Excess Risk Upper Bound of NI-ERM) Let ϵ ∈ [0, 1], κ > 0. Consider any
(PX ,η, η̃) ∈ Π(ϵ, κ), assume function class F has Natarajan dimension V , and the noisy Bayes
classifier f̃∗ belongs to F . Let f̂ ∈ F be the ERM trained on Zn =

{
(Xi, Ỹi)

}n
i=1

, i.e.,
f̂ = arg min

f∈F

1
n

∑n
i=1 1{f(Xi )̸=Ỹi}. Then

EZn

[
R
(
f̂
)
−R(f∗)

]
≤ ϵ+ Õ

(
1

κ

√
V

n

)
.

Õ denotes big-O notation ignoring logarithmic factors. The Natarajan dimension is a multiclass
analogue of the VC dimension. The upper bound in Theorem 2 aligns with the minimax lower bound
(Theorem 1) in both terms. For the irreducible error ϵ, there is a small gap of 1/K. This gap arises
because, in the lower bound construction, the low signal region X \ Aκ is known to the learner,
whereas knowledge of X \ Aκ is not provided to NI-ERM. If Aκ were known to the learner (an
unrealistic assumption), then a mixed strategy that preforms NI-ERM on Aκ and randomly guesses
on X \ Aκ would have an upper bound with first term of (1− 1/K)ϵ, exactly matching the lower
bound. Regarding the second term, there is a universal constant and a logarithmic factor between the
lower and upper bounds, which is a standard outcome in learning theory.

This result is surprising as it indicates that the simplest possible approach, which ignores the presence
of noise, is nearly optimal. No learning rule could perform significantly better in this minimax sense.

5.3 A smooth margin-condition on the relative signal strength

The previous sections have analyzed learning with label noise over the class Π(ϵ, κ) = {(PX ,η, η̃) :
PX(Aκ) ≥ 1 − ϵ}. Now, the set X \ Aκ equals (X \ A0) ∪ (A0 \ Aκ). The first part of this
decomposition is the region where the Bayes classifiers under the noisy and clean distributions differ,
while the second is a region where these match, but the RSS is small. Naturally, while PX(X \ A0)
must be incurred as an irreducible error, one may question why the class Π also limits the mass of
A0 \ Aκ. After all, with enough data, the optimal prediction in this region can be learned.

This issue would be resolved if there existed a κ0 > 0 such that PX(A0) = PX(Aκ0), i.e., if
PX(A0 \Aκ0

) = 0. In fact, our lower bound from Theorem 1 uses precisely such a construction. An
interesting point of comparison to this condition lies in Massart’s hard-margin condition from standard
supervised learning theory, which, for binary problems, demands that PX(|[η(x)]1 − [η(x)]2| <
h) = 0 for some h > 0, under which one obtains minimax excess risk bounds of O(V/nh) [Massart
and Nédélec, 2006]. With this lens, we can view the condition PX(A0 \ Aκ0

) = 0 as a type of
hard-margin condition on the relative signal strengthM. This naturally motivates a smoothened
version of this condition, inspired by Tsybakov’s soft-margin condition [Tsybakov, 2004].

Definition 2 A triple (PX ,η, η̃) satisfies an (ϵ, α, Cα)-smooth relative signal margin condition with
ϵ ∈ [0, 1], α > 0, Cα > 0 if

∀κ > 0, PX(M(x;η, η̃) ≤ κ) ≤ Cακ
α + ϵ.

Further, we define Π′(ϵ, α, Cα) as the set of triples (PX ,η, η̃) that satisfy an (ϵ, α, Cα)-smooth
relative signal margin condition.

We show in Appendix A.2.7 that the techniques of Section 5.2 yield the following result for Π′.
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Theorem 3 Let ϵ ∈ [0, 1], α > 0, Cα > 0. Consider any (PX ,η, η̃) ∈ Π′(ϵ, α, Cα), assume
function class F has Natarajan dimension V , and the noisy Bayes classifier f̃∗ belongs to F . Let
f̂ ∈ F be the ERM trained on Zn =

{
(Xi, Ỹi)

}n
i=1

. Then

EZn

[
R
(
f̂
)
−R (f∗)

]
≤ ϵ+ inf

κ>0

{
Cακ

α + Õ
(
1

κ

√
V

n

)}
= ϵ+ Õ

(
n−α/(2+2α)

)
.

Compared to Theorem 2, we see that the rate of the second term is slightly slower, which is
consistent with standard learning theory where Massart’s hard margin assumption leads to faster rates
than Tsybakov’s. The advantage of the smooth relative margin is that the irreducible term in the
above theorem is exactly PX(X \ A0), which has a clearer meaning as it measures the mismatch
between clean and noisy Bayes classifiers. Further, notice that the NI-ERM algorithm does not need
information about α, and thus the result is adaptive to both α, and to the optimal κ for each value of
α, as a consequence of the oracle inequality of Lemma 1.

More broadly, Theorem 3 illustrates the flexibility of our conceptualization of label noise problems
through RSS. The RSSM characterizes the irreducible error in label noise learning, similar to how
the regression function η characterizes excess risk in standard learning. Thus, standard theoretical
frameworks can be adapted to the noisy label problem via the relative signal.

6 Conditions that ensure noise immunity

The minimax lower bound in the previous section revealed a negative outcome, indicating that no
method can do well in the low signal region. Nevertheless, numerous empirical successes have been
observed even under significant label noise. This is not mere coincidence. In this section, we will
illustrate that the high signal regionAκ can indeed cover the entire input space X even under massive
label noise, albeit with the constraint Aκ ⊆ A0 as stated in Proposition 1. This not only explains past
empirical successes, but also gives a rigorous condition on the consistency of NI-ERM.

This section will delve into the study of noise transition matrix E and establish precise conditions that
lead to A0 = X . These conditions are linear algebraic conditions on E that ensure argmax η̃(x) =
argmaxη(x). As a result, we can infer that in a 10-class classification problem, even with up to 90%
of training labels being incorrect, the NI-ERM can still asymptotically achieve Bayes accuracy. In
the upcoming definition, we introduce the concept of noise immunity, wherein the optimal classifiers
remain unaffected by label noise [Menon et al., 2015, Scott, 2019].

Definition 3 (Immunity) We say that a K-class classification problem (PX ,η, η̃) is immune to
label noise if ∀x ∈ X , argmax η̃(x) = argmaxη(x).

Notice that due to Proposition 1, if a problem is immune, then A0 = X . We now provide necessary
and sufficient conditions on noise transition matrix E that ensure noise immunity. We begin by
considering distribution PXY with zero Bayes risk, that is, where η is one-hot almost surely. A matrix
is defined as diagonally dominant if, for each row, the diagonal element is the unique maximum.

Theorem 4 (Immunity for Zero-error Distribution) If PXY has Bayes risk of zero, then immunity
holds if and only if for all x, the noise transition matrix E(x) is diagonally dominant.

Remark For a zero-error distribution PXY , even corrupted with instance-dependent label noise,
achieving the Bayes risk is still feasible with a noise rate P

(
Ỹ ̸= Y

)
up to K−1

K . This highlights that
the task of classification itself is robust to label noise, specially when the clean η is well-separated.

The above result relies on strong assumptions about the distribution PXY . Now, we present a result
that applies to any distribution, which, as a trade-off, turns out to impose more requirements on E.

Theorem 5 (Universal Immunity) For any choice of PXY , immunity holds

⇐⇒ ∃ e(x) > 0 s.t. ∀x ∈ X , [E(x)]i,j =

{
1
K + e(x) i = j
1
K −

e(x)
K−1 i ̸= j.
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Figure 2: Data simulation that verifies noise immunity. For binary, the turning point is at noise rate
P
(
Ỹ ̸= Y

)
= 0.5. For 10-class, the turning point is at P

(
Ỹ ̸= Y

)
= 0.9.

Previous works [Ghosh and Kumar, 2017, Menon et al., 2018, Oyen et al., 2022] have established that
symmetric label noise is sufficient for immunity. Our contribution advances this understanding by
demonstrating that such noise conditions are not only sufficient but also necessary. Specifically, under
symmetric label noise, learning towards the Bayes classifier is feasible as long as the proportion of
wrong labels does not exceed K−1

K . Furthermore, this transition is abrupt: when P
(
Ỹ ̸= Y

)
< K−1

K ,
A0 = X , but when P

(
Ỹ ̸= Y

)
≥ K−1

K , A0 = ∅. Consequently, we expect to see a sudden drop in
performance when noise rate passes the threshold.

The rationale behind the necessity of E(x) taking this specific form is that it redistributes the
probability mass of η in a “uniform” manner. This constraint arises because E(x) cannot favor any
classes besides the true class. For instance, consider η(x) =

[
1
K + δ 1

K − δ 1
K · · · 1

K

]⊤
for some

small δ > 0, a “non-uniform” E(x) would alter the argmax.

The above theorems demonstrate that signal strength at x can still be high even under massive
label noise P

(
Ỹ ̸= Y

)
, and, in essence, it is the discrete nature of the classification problem that

allows robustness to label noise. When immunity holds, the irreducible error in Theorem 2 vanishes,
therefore NI-ERM becomes a consistent learning rule. We validate this through data simulations
presented in Figure 2, where we systematically flip labels uniformly and observe the corresponding
changes in the testing accuracy of NI-ERM. The simulation results align closely with the theoretical
expectations: NI-ERM achieves near-Bayes risk performance until a certain noise threshold is reached,
beyond which the testing performance sharply deteriorates.

7 Practical implication

The modern practice of machine learning often involves training a deep neural network. In complex
tasks involving noisy labels, the naïve NI-ERM is often outperformed by state-of-the-art methods by
a significant extent [Li et al., 2020, Xiao et al., 2023]. This is consistent with the finding that directly
training a large neural network on noisy data frequently leads to overfitting [Zhang et al., 2021a].

Yet this is not grounds for abandoning NI-ERM altogether as a practical strategy. Instead of using
NI-ERM for end-to-end training of a deep neural network, we instead propose the following simple,
two-step procedure, termed ‘feature extraction + NI-ERM’.

1. Perform feature extraction using any method (e.g., transfer learning or self-supervised learning)
that does not require labels.

2. Learn a simple classifier (e.g., a linear classifier) on top of these extracted features, using the
noisily labelled data, in a noise-ignorant way.
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This approach has three advantages over full network training. First, it avoids the potentially negative
impact of the noisy labels on the extracted features. Second, it enjoys the inherent robustness of
fitting a simple model (step 2) on noisy data, which we observed in Figure 2. Third, it avoids the need
to tune hyperparameters of the feature extractor using noisy labels. We note that a “self-supervised +
simple approach” to learning was previously studied by Bansal et al. [2021], although their focus
was on generalisation properties without label noise. We also acknowledge that the practical idea of
ignoring label noise is not new [Ghosh and Lan, 2021], but the full power of this approach has not
been previously recognized. For example, prior works often combine this approach with additional
steps or employ early stopping to mitigate the effects of noise [Zheltonozhskii et al., 2022, Xue et al.,
2022].

Remarkably, this two-step approach attains extremely strong performance. We conducted experiments
1 on the CIFAR image data under two scenarios: synthetic label flipping (symmetric noise) and
realistic human label errors [Wei et al., 2022], as shown in Figure 3. We examine three different
feature extractors: the DINOv2 foundation model [Oquab et al., 2023], ResNet-50 features extracted
from training on ImageNet [He et al., 2016], and self-supervised ResNet-50 using contrastive loss
[Chen et al., 2020]. We also compared to a simple linear model trained on the raw pixel intensities,
and a ResNet-50 trained end-to-end. We observed that ResNet-50 exhibits degrading performance
with increasing noise, consistent with previous findings [Zhang et al., 2021a, Mallinar et al., 2022].
The linear model demonstrates robustness to noise, but suffers from significant approximation error.
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(a) CIFAR-10 with synthetic label noise
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Figure 3: A linear model trained on features obtained from either transfer learning (pretrained
ResNet-50 on ImageNet [He et al., 2016] ), self-supervised learning (ResNet-50 trained on CIFAR-10
images with contrastive loss [Chen et al., 2020]), or a pretrained self-supervised foundation model
DINOv2 [Oquab et al., 2023] significantly boosts the performance of the original linear model. In
contrast, full training of a ResNet-50 leads to overfitting.

Conversely, the FE+NI-ERM approach enjoys the best of both worlds. Regardless of how the feature
extraction is carried out, the resulting models exhibit robustness to label noise, while the overall
accuracy depends entirely on the quality of the extracted features. This is illustrated in Figure 3,
where the flatness of the accuracy curves as noise increases indicates the robustness, and the intercept
at zero label noise is a measure of the feature quality. Importantly, this property holds true even under
realistic label noise of CIFAR-N [Wei et al., 2022]. In fact, we find that using the DINOv2 [Oquab
et al., 2023] extracted features in our FE+NI-ERM approach yields state of the art results on the
CIFAR-10N and CIFAR-100N benchmarks, across the noise levels, as shown in Table 1.

We emphasize that the only hyperparameters of our model are the hyperparameters of the linear classi-
fier, which are tuned automatically using standard cross-validation on the noisy labels. This contrasts
to the implementation of many methods on the CIFAR-N leaderboard (http://noisylabels.com/)

1Code is available at: https://github.com/allan-z/label_noise_ignorance.
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2, where the hyperparameters are hard-coded. Furthermore, our approach does not rely on data aug-
mentation. Additional experiments, detailed in Appendix A.4 , include comparisons with the ‘linear
probing, then fine-tuning’ approach [Kumar et al., 2022], the application of different robust learning
strategies on DINOv2 features, and results on synthetic instance-dependent label noise.

Overall, the strong performance, the simplicity of the approach and the lack of any untunable
hyperparameters highlights the effectiveness of FE+NI-ERM, and indicates the value of further
investigation into its properties.

Table 1: Performance comparison with CIFAR-N leaderboard (http://noisylabels.com/) in
terms of testing accuracy. “Aggre”, “Rand1”, . . . , “Noisy” denote various types of human label noise.
We compare with four methods that covers the top three performance for all noise categories: ProMix
[Xiao et al., 2023], ILL [Chen et al., 2023], PLS [Albert et al., 2023] and DivideMix [Li et al., 2020].
Our approach, a Noise Ignorant linear model trained on features extracted by the self-supervised
foundation model DINOv2 [Oquab et al., 2023] achieves new state-of-the-art results, highlighted in
bold. We employed Python’s sklearn logistic regression and cross-validation functions without data
augmentation; the results are deterministic and directly reproducible.

Leaderboard CIFAR-10N CIFAR-100N

Methods Aggre Rand1 Rand2 Rand3 Worst Noisy

ProMix 97.65 ± 0.19 97.39 ± 0.16 97.55 ± 0.12 97.52 ± 0.09 96.34 ± 0.23 73.79 ± 0.28
ILL 96.40 ± 0.03 96.06 ± 0.07 95.98 ± 0.12 96.10 ± 0.05 93.55 ± 0.14 68.07 ± 0.33
PLS 96.09 ± 0.09 95.86 ± 0.26 95.96 ± 0.16 96.10 ± 0.07 93.78 ± 0.30 73.25 ± 0.12

DivideMix 95.01 ± 0.71 95.16 ± 0.19 95.23 ± 0.07 95.21 ± 0.14 92.56 ± 0.42 71.13 ± 0.48

FE + NI-ERM 98.69 ± 0.00 98.80 ± 0.00 98.65 ± 0.00 98.67 ± 0.00 95.71 ± 0.00 83.17 ± 0.00
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Figure 4: Empirical CDF of estimated RSS for CIFAR-
10N, evaluated on test data.

RSS for realistic human label error. To
calculate the RSS under realistic human
label error, we train two linear classifiers
on DINOv2 features under clean and noisy
labels and use the models’ predictions as
estimates for the class probabilities η and
η̃. Despite the high overall noise rate in
CIFAR-10N “Worst” labels, with P(Y ̸=
Ỹ ) = 40.21%, we conjecture that the re-
gion where there is no signal, X \ A0,
covers only a small portion of the proba-
bility mass (ϵ ≤ 4%). Furthermore, the
cumulative distribution of the estimated
RSS can be upper-bounded by a polyno-
mial Cακ

α + ϵ, supporting the validity of
the smooth relative signal margin condition
introduced in Section 5.3.

8 Conclusions

This work presents a rigorous theory for learning under multi-class, instance-dependent label noise.
We establish nearly matching upper and lower bounds for excess risk and identify precise conditions
for classifier consistency. Our theory reveals the (nearly) minimax optimality of Noise Ignorant
Empirical Risk Minimizer (NI-ERM). To make this theory practical, we provide a simple modification
leveraging a feature extractor with NI-ERM, demonstrating significant performance enhancements.
A limitation of this work is that our methodology warrants more extensive experimental evaluation.

2If the link is inaccessible, see the May 23, 2024 archive captured by Wayback Machine: https://web.
archive.org/web/20240523101740/http://noisylabels.com/.
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A Appendix / supplemental material

A.1 Equivalence of noise transition and domain adaptation perspectives

The noise transition perspective models the joint distribution of (X,Y, Ỹ ), which can be characterized
as:

PX,Y,Ỹ = PX PY |X︸ ︷︷ ︸
η

PỸ |Y,X︸ ︷︷ ︸
E

Thus, by specifying PX , η, and E, we obtain a triple (PX ,η, η̃) with η̃(x) = E(x)⊤η(x).

In contrast, the domain adaptation perspective views label noise problems directly as a triple
(PX ,η, η̃), bypassing the explicit modeling of the noise transition matrix E.

If no assumptions are made about the form of E, the domain adaptation view remains fully expressive.
Given a triple (PX ,η, η̃), we can always define a noise transition matrix as:

E(x) = 1η̃⊤,

where 1 = [1 . . . 1]⊤. We can verify that E is row-stochastic, and

η̃ = E(x)⊤η = (η̃1⊤)η = η̃(1⊤η) = η̃.

Therefore, these two perspectives are equivalent.

A.2 Proofs

A.2.1 Proof of Proposition 1

Proposition

A0(η, η̃) =
{
x ∈ X : arg max η̃(x) ⊆ arg max η(x)

}
.

Proof. Notice that

M(x;η, η̃) = 0 ⇐⇒ arg max η̃(x) ̸⊆ arg max η(x).

This is becauseM(x;η, η̃) = 0 when the numerator is zero and the denominator is non-zero, which
happens when arg max η̃(x) ̸⊆ arg max η(x).

An equivalent statement of this is

M(x;η, η̃) > 0 ⇐⇒ arg max η̃(x) ⊆ arg max η(x).

A.2.2 Proof of Proposition 2

Proposition In the binary setting, for κ ≥ 0,

M(x; η, η̃) = max

{
η̃(x)− 1

2

η(x)− 1
2

, 0

}
, and Aκ(η, η̃) =

{
x ∈ X :

η̃(x)− 1
2

η(x)− 1
2

> κ

}
.

Proof. In a brute-force way, we can examine the nine cases where η(x), η̃(x) is greater, equal, or
smaller than 1/2.
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If η̃(x) > 1
2 , η(x) >

1
2 , then

M(x;η, η̃) = min
j∈Y

maxi[η̃(x)]i − [η̃(x)]j
maxi[η(x)]i − [η(x)]j

=
η̃(x)− (1− η̃(x))

η(x)− (1− η(x))

=
η̃(x)− 1

2

η(x)− 1
2

= max

{
η̃(x)− 1

2

η(x)− 1
2

, 0

}
.

If η̃(x) < 1
2 , η(x) <

1
2 , the same argument holds.

If η̃(x) > 1
2 , η(x) <

1
2 or η̃(x) < 1

2 , η(x) >
1
2 , take j = argmax η̃(x), we have

M(x;η, η̃) = min
j∈Y

maxi[η̃(x)]i − [η̃(x)]j
maxi[η(x)]i − [η(x)]j

= 0

= max

{
η̃(x)− 1

2

η(x)− 1
2

, 0

}
.

If η̃(x) = 1
2 , η(x) <

1
2 or η̃(x) = 1

2 , η(x) <
1
2 , take j ̸= argmaxη(x), we have

M(x;η, η̃) = min
j∈Y

maxi[η̃(x)]i − [η̃(x)]j
maxi[η(x)]i − [η(x)]j

= 0

= max

{
η̃(x)− 1

2

η(x)− 1
2

, 0

}
.

If η(x) = 1
2 , then

M(x;η, η̃) = min
j∈Y

maxi[η̃(x)]i − [η̃(x)]j
maxi[η(x)]i − [η(x)]j

=
maxi[η̃(x)]i − [η̃(x)]j

0
∀j

= +∞

= max

{
η̃(x)− 1

2

η(x)− 1
2

, 0

}
.

Note that it makes sense for RSS to be +∞ when η(x) = 1
2 , because in this case, clean excess risk

R(f)−R(f∗) is 0 at point x for any classifier.

Therefore, we can conclude that

M(x; η, η̃) = max

{
η̃(x)− 1

2

η(x)− 1
2

, 0

}
,

by definition, we have, for κ ≥ 0

Aκ(η, η̃) = {x ∈ X :M(x; η, η̃) > κ}

=

{
x ∈ X :

η̃(x)− 1
2

η(x)− 1
2

> κ

}
.
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A.2.3 Proof of lower bound: Theorem 1

Now we provide a more formal statement of the minimax lower bound and its proof. We begin with
the scenario where the noisy distribution PXỸ has zero Bayes risk as an introductory example. The
proof for the general case follows a similar strategy but involves more complex bounding techniques.
We recommend that interested readers first review the proof of the zero-error version to build a solid
understanding before tackling the general case.

Now consider a more restricted subset of Π(ϵ, κ):

Π(ϵ, κ, V, 0) :=
{
(PX ,η, η̃) : PX

(
Aκ (η, η̃)

)
≥ 1− ϵ, PX supported on V + 1 points, R̃∗ = 0

}
.

Theorem (Minimax Lower Bound: when R̃∗ = 0) Let ϵ ∈ [0, 1], κ > 0, V > 1. For any learning
rule f̂ based upon Zn =

{
(Xi, Ỹi)

}n
i=1

, and n > max(V − 1, 2),

sup
(PX ,η,η̃)∈Π(ϵ,κ)

EZn

[
R
(
f̂
)
−R(f∗)

]
≥ sup

(PX ,η,η̃)∈Π(ϵ,κ,V,0)

EZn

[
R
(
f̂
)
−R(f∗)

]

≥ K − 1

K
ϵ+

1

κ

(V − 1)(1− ϵ)

8en

Proof.

We will construct a triple (PX ,η, η̃) that is parameterized by j, b := [b1 b2 · · · bV−1]
⊤, and δ.

First, we define PX . Pick any V + 1 distinct points x0, x1, . . . , xV ,

PX(x) =





ϵ x = x0

(1− ϵ) · 1n x = x1, . . . , xV−1

(1− ϵ) ·
(
1− V−1

n

)
x = xV .

,

this is where we need the condition that n > V − 1.

Then, define the clean and noisy class posteriors:

If x = x0, then η(x) = ej , η̃(x) = e1, j ∈ {1, 2, . . .K} (2)

If x = xt, 1 ≤ t ≤ V − 1, then η(x) =




1
2 + 1

2(κ+δ) · (−1)bt+1

1
2 − 1

2(κ+δ) · (−1)bt+1

0
...
0



, η̃(x) = ebt , bt ∈ {1, 2}, δ > 0,

(3)

If x = xV , then η(x) =




1
2 + 1

2(κ+δ)
1
2 − 1

2(κ+δ)

0
...
0



, η̃(x) = e1, (4)

where ei denotes the one-hot vector whose i-th element is one.

The triple (PX ,η, η̃) is thus parameterized by j, b := [b1 b2 · · · bV−1]
⊤, and δ.

This construction ensures (PX ,η, η̃) ∈ Π(ϵ, κ, V, 0). In particular,

Aκ ⊇ {x1, x2, . . . , xV }, PX(Aκ) ≥ 1− ϵ,

X \ Aκ ⊆ {x0}, PX(X \ Aκ) ≤ ϵ,

and R̃∗ = 0 because η̃(x) is one-hot for all x.
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For any classifier f , by definition, its risk equals

R (f) = EX,Y

[
1f(X )̸=Y

]

= EXEY |X [1f(X )̸=Y ]

= EXEY |X [1− 1f(X)=Y ]

= EX

[
1− [η(X)]f(X)

]

=

∫

X

(
1− [η(x)]f(x)

)
dPX(x).

Therefore, the Bayes risk and excess risk equal

R(f∗) = inf
f

EX,Y

[
1f(X) ̸=Y

]

=

∫

X
(1−maxη(x)) dPX(x),

R(f)−R(f∗) =

∫

X

(
maxη(x)− [η(x)]f(x)

)
dPX(x).

Under our construction of PX , R(f) can be decomposed into two parts

R (f) =

∫

{x0}

(
1− [η(x)]f(x)

)
dPX(x)

︸ ︷︷ ︸
:=R0(f)

+

∫

{x1,...,xV }

(
1− [η(x)]f(x)

)
dPX(x)

︸ ︷︷ ︸
:=RV (f)

,

and so can the excess risk

R(f)−R(f∗) =
(
R0 (f)−R0(f

∗)
)
+
(
RV (f)−RV (f

∗)
)

=

∫

{x0}

(
maxη(x)− [η(x)]f(x)

)
dPX(x)

+

∫

{x1,...,xV }

(
maxη(x)− [η(x)]f(x)

)
dPX(x).

Recall that in our construction, (PX ,η, η̃) is parameterized by j, b, and δ. Therefore

sup
(PX ,η,η̃)∈Π(ϵ,κ,V,0)

EZn

[
R
(
f̂
)
−R(f∗)

]
≥ sup

j,b,δ
EZn

[
R
(
f̂
)
−R(f∗)

]

= sup
j,b,δ

{
EZn

[
R0

(
f̂
)
−R0(f

∗)
]

+ EZn

[
RV

(
f̂
)
−RV (f

∗)
]}

= sup
j

EZn

[
R0

(
f̂
)
−R0(f

∗)
]

+ sup
b,δ

EZn

[
RV

(
f̂
)
−RV (f

∗)
]

where the last equality holds because region {x0} only depends on j, while region {x1, . . . , xV }
only depends on b, δ.

In the remaining part of the proof, we will examine

sup
j

EZn

[
R0

(
f̂
)
−R0(f

∗)
]

(5)

and

sup
b,δ

EZn

[
RV

(
f̂
)
−RV (f

∗)
]

(6)

18



separately.

Let’s start with the first term (5), which reflects the excess risk over the “low signal strength” region
{x0}. Since η is one-hot on {x0}, its Bayes risk over that is zero

sup
j

EZn

[
R0

(
f̂
)
−R0(f

∗)
]
= sup

j
EZn

[
R0

(
f̂
)]

= sup
j

EZn

[∫

{x0}
1f̂(x)̸=jdPX(x)

]
.

To deal with supj , we use a technique called “the probabilistic method” [Devroye et al., 1996]:
replace j with a random variable J ∼ Uniform{1, 2, . . . ,K}:

sup
j

EZn

[∫

{x0}
1f̂(x)̸=jdPX(x)

]
≥ EJ

[
EZn|J

[∫

{x0}
1f̂(x)̸=JdPX(x)

]]

= EJ, Zn

[∫

{x0}
1f̂(x)̸=JdPX(x)

]

= EZn

[
EJ|Zn

[∫

{x0}
1f̂(x)̸=JdPX(x)

]]
.

Again, notice that J is an independent draw. Even if the point x0 is observed in Zn, the associated
noisy label Ỹ = 1 does not give any information about the clean label Y = J . Thus

EZn

[
EJ|Zn

[∫

{x0}
1f̂(x) ̸=JdPX(x)

]]
= EZn

[
EJ

[∫

{x0}
1f̂(x)̸=JdPX(x)

]]

= EZn

[∫

{x0}
EJ

[
1f̂(x)̸=J

]
dPX(x)

]

= EZn

[∫

{x0}

(
1− 1

K

)
dPX(x)

]

=

(
1− 1

K

)
ϵ.

Now we have the minimax lower bound for the first part (5):

sup
j

EZn

[
R{x0}

(
f̂
)
−R{x0}(f

∗)
]
≥
(
1− 1

K

)
ϵ.

For the second part (6), which is over {x1, . . . , xV }, due to the relative signal strength condition, and
from our explicit construction in Eqn. (3) and (4), the excess risks w.r.t. true and noisy distribution
are related by

RV (f)−RV (f
∗) =

∫

{x1,...,xV }

(
maxη(x)− [η(x)]f(x)

)
dPX(x)

=

∫

{x1,...,xV }

1

κ+ δ

(
max η̃(x)− [η̃(x)]f(x)

)
dPX(x) by construction of η, η̃

=
1

κ+ δ

(
R̃V (f)− R̃V (f̃

∗)
)
,

where R̃V (f) :=
∫
{x1,...,xV }

(
1 − [η̃(x)]f(x)

)
dPX(x). Also note that f∗(x) = f̃∗(x) for x ∈

{x1, . . . , xV }, which is a result of our construction of η, η̃.

Then

sup
b,δ

EZn

[
RV

(
f̂
)
−RV (f

∗)
]
= sup

b,δ
EZn

[
1

κ+ δ

(
R̃V (f)− R̃V (f̃

∗)
)]

.
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This allows us to reduce the label noise problem to a standard learning problem: we have an iid
sample Zn from PXỸ and consider the risk evaluated on the same distribution PXỸ . The remainder
of the proof is similar to the proof of Devroye et al. [1996, Theorem 14.1].

Notice that by our construction, Ỹ is a deterministic function of X . To be specific, Ỹ = f̃∗(X),
where

f̃∗(x) =





1 x = x0,

bt x = xt, 1 ≤ t ≤ V − 1

1 x = xV

is the noisy Bayes classifier.

We use the shorthand fb := f̃∗ to denote that the noisy Bayes classifier depends on b.

Since the noisy Bayes risk is zero,

sup
b,δ

EZn

[
1

κ+ δ

(
R̃V (f̂)− R̃V (f̃

∗)
)]

= sup
b,δ

1

κ+ δ
EZn

[
R̃V (f̂)

]
.

Again, use the probabilistic method, replace b with B ∼ Uniform{1, 2}V−1,

sup
b,δ

1

κ+ δ
EZn

[
R̃V (f̂)

]
≥ sup

δ

1

κ+ δ
EB,Zn

[
R̃V (f̂)

]

= sup
δ

1

κ+ δ
EZn

[
EB|Zn

[∫

{x1,...,xV }
1f̂(x)̸=fB(x)dPX(x)

]]

Since we have B ∼ Uniform{1, 2}V−1 and also Zn|B ∼ P⊗n

XỸ
, then by Bayes rule (or eye-balling,

since η̃ is one-hot), we get the posterior distribution of B|Zn, to be specific: ∀x ∈ {x1, · · · , xV },

If x = Xi, i ∈ {1, 2, . . . , n} , then P
(
fB(x) = Ỹi|Zn

)
= 1, P

(
fB(x) ̸= Ỹi|Zn

)
= 0

If x = xV , then P (fB(x) = 1|Zn) = 1, P (fB(x) = 2|Zn) = 0

If x /∈ {X1, . . . , Xn, xV }, then P (fB(x) = 1|Zn) = 1
2 , P (fB(x) = 2|Zn) = 1

2 ,

where we overload the notation P to denote conditional probability of B|Zn.

Then the optimal decision rule for predicting B based on sample Zn is:

g(x;Zn) =





Ỹi x = Xi, i ∈ {1, 2, . . . , n}
1 x = xV

random guess from {1, 2} x ̸= X1, . . . , x ̸= Xn, x ̸= xV .
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Therefore, the error comes from the probability of X ∈ {x1, . . . , xV } not being one of the observed
Xi: for any f̂ ,

EB,Zn

[
R̃V (f̂)

]
= EZn

[
EB|Zn

[∫

{x1,...,xV }
1f̂(x)̸=fB(x)dPX(x)

]]

≥ P (X ∈ {x1, . . . , xV }, g(X;Zn) ̸= fB(X)) ∵ error of f̂ ≥ error of g

=

(
1− 1

2

)
P (X ̸= X1, . . . , X ̸= Xn, X ̸= xV , X ∈ {x1, . . . , xV })

=
1

2

V∑

t=1

P (X ̸= X1, . . . , X ̸= Xn, X ̸= xV , X = xt)

=
1

2

V∑

t=1

P (X1 ̸= xt, . . . , Xn ̸= xt, xV ̸= xt, X = xt) ∵ replace all X with xt

=
1

2

V−1∑

t=1

P (X1 ̸= xt, . . . , Xn ̸= xt, X = xt)

=
1

2

V−1∑

t=1

P (X1 ̸= xt, . . . , Xn ̸= xt|X = xt)P (X = xt)

=
1

2

V−1∑

t=1

(1− P (X = xt))
n P (X = xt)

=
1

2
(V − 1)

(
1− 1− ϵ

n

)n(
1− ϵ

n

)

=
(V − 1)(1− ϵ)

2n

(
1− 1− ϵ

n

)n

=
(V − 1)(1− ϵ)

2n

(
1− 1− ϵ

n

)1+ϵ(
1− 1− ϵ

n

)n−1−ϵ

≥ (V − 1)(1− ϵ)

2n

(
1− 1− ϵ

n

)1+ϵ

e−1+ϵ ∵

(
1− 1− ϵ

n

)n−1−ϵ

↓ e−1+ϵ

≥ (V − 1)(1− ϵ)

2n

(
1− 1

n

)2

e−1 ∵ ϵ ∈ [0, 1]

≥ (V − 1)(1− ϵ)

2n

e−1

4
=

(V − 1)(1− ϵ)

8en
take n > 2.

Now we get the minimax risk for the second part (6)

sup
b,δ

EZn

[
RAκ

(
f̂
)
−RAκ

(f∗)
]
≥ sup

δ

1

κ+ δ

(V − 1)(1− ϵ)

8en

≥ 1

κ

(V − 1)(1− ϵ)

8en
let δ ↓ 0

Combine the two parts together, we get the final result, for n > max(V − 1, 2)

sup
(PX ,η,η̃)∈Π(ϵ,κ,V,0)

EZn

[
R
(
f̂
)
−R(f∗)

]
≥ K − 1

K
ϵ+

1

κ

(V − 1)(1− ϵ)

8en
.
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As for the general version of the lower bound, now consider the set of triples:

Π(ϵ, κ, V, L) :=
{
(PX ,η, η̃) :PX

(
Aκ (η, η̃)

)
≥ 1− ϵ,

PX supported on V + 1 points,
R̃Aκ

(
f̃∗
)

PX

(
Aκ (η, η̃)

) ≤ L
}
,

where R̃C(f) =
∫
C

(
1− [η̃(x)]f(x)

)
dPX(x).

Theorem (Minimax Lower Bound (General Version)) Let ϵ ∈ [0, 1], κ > 0, V > 1, L ∈ (0, 1/2).

For any learning rule f̂ based upon Zn =
{
(Xi, Ỹi)

}n
i=1

, for n ≥ V−1
2L max

{
16, 1

(1−2L)2

}

sup
(PX ,η,η̃)∈Π(ϵ,κ)

EZn

[
R
(
f̂
)
−R(f∗)

]
≥ sup

(PX ,η,η̃)∈Π(ϵ,κ,V,L)

EZn

[
R
(
f̂
)
−R(f∗)

]

≥ K − 1

K
ϵ+

1− ϵ

κ

√
(V − 1)L

2n
e−7

=
K − 1

K
ϵ+Ω

(
1

κ

√
1

n

)
.

Proof.

Now we construct a triple (PX ,η, η̃) that is parameterized by j, b := [b1 b2 · · · bV−1]
⊤, δ, c and p.

First, we define PX . Pick any V + 1 distinct points x0, x1, . . . , xV ,

PX(x) =





ϵ x = x0

(1− ϵ) · p x = x1, . . . , xV−1

(1− ϵ) · (1− (V − 1)p) x = xV .

This imposes the constraint (V − 1)p ≤ 1, which will be satisfied in the end. Notice the differ-
ence compared to the previous zero-error proof: we place probability mass p, rather than 1/n, on
x1, . . . , xV−1.

As for the clean and noisy class probabilities, choose

If x = x0, then η(x) = ej , η̃(x) = e1, j ∈ {1, 2, . . . k} (7)

If x = xt, 1 ≤ t ≤ V − 1, then η(x) =




1
2 + c

κ+δ · (−1)bt+1

1
2 − c

κ+δ · (−1)bt+1

0
...
0



, η̃(x) =




1
2 + c · (−1)bt+1

1
2 − c · (−1)bt+1

0
...
0



,

bt ∈ {1, 2}, δ > 0, c ∈
(
0,

1

2

)
(8)

If x = xV , then η(x) =




1
2 + 1

2(κ+δ)
1
2 − 1

2(κ+δ)

0
...
0



, η̃(x) = e1, (9)

where ei denotes the one-hot vector whose i-th element is one.

The construction for class posterior is also similar to the previous proof, except that for x =
xt, t ∈ {1, . . . , V − 1}, η̃ is no longer a one-hot vector, rather has class probability separated by 2c:∣∣∣ [η̃(x)]1 − [η̃(x)]2

∣∣∣ = 2c.
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Therefore, the triple (PX ,η, η̃) can be parameterized by j, b := [b1 b2 · · · bV−1]
⊤, δ, c and p.

Again, this construction ensures (PX ,η, η̃) ∈ Π(ϵ, κ), to be specific:

Aκ ⊇ {x1, x2, . . . , xV }, PX(Aκ) ≥ 1− ϵ,

X \ Aκ ⊆ {x0}, PX(X \ Aκ) ≤ ϵ.

For any classifier f , its risk can be decomposed into two parts

R (f) =

∫

{x0}

(
1− [η(x)]f(x)

)
dPX(x)

︸ ︷︷ ︸
:=R0(f)

+

∫

{x1,...,xV }

(
1− [η(x)]f(x)

)
dPX(x)

︸ ︷︷ ︸
:=RV (f)

,

as can its excess risk

R (f)−R(f∗) =
(
R0 (f)−R0(f

∗)
)
+
(
RV

(
f
)
−RV (f

∗)
)
.

In our construction, (PX ,η, η̃) is parameterized by j, b := [b1 b2 · · · bV−1]
⊤, δ, c and p, therefore

sup
(PX ,η,η̃)∈Π(ϵ,κ,V,L)

EZn

[
R
(
f̂
)
−R(f∗)

]
≥ sup

j
EZn

[
R0

(
f̂
)
−R0(f

∗)
]

(10)

+ sup
b,δ,c,p

EZn

[
1

κ+ δ

(
R̃V (f)− R̃V (f̃

∗)
)]

. (11)

Note that we have used the fact that

RV (f)−RV (f
∗) =

1

κ+ δ

(
R̃V (f)− R̃V (f̃

∗)
)
,

where R̃V (f) :=
∫
{x1,...,xV }

(
1− [η̃(x)]f(x)

)
dPX(x).

The first part (10) is exactly the same as in the zero-error proof, and we have

sup
j

EZn

[
R0

(
f̂
)
−R0(f

∗)
]
≥
(
1− 1

K

)
ϵ.

From this point forward, the procedure is similar to the proof of Devroye et al. [1996, Theorem 14.5].
For the second part (11), the noisy Bayes classifier is still

f̃∗(x) =





j x = x0,

bt x = xt, 1 ≤ t ≤ V

1 x = xV .

We also use the shorthand fb := f̃∗ to denote that the noisy Bayes classifier depends on b.

Now the noisy Bayes risk is no longer zero. In fact

R̃V (f̃
∗) =

∫

{x1,...,xV }

(
1− [η̃(x)]f(x)

)
dPX(x) = (V − 1)(1− ϵ)p

(
1

2
− c

)

What’s more,

R̃Aκ

(
f̃∗
)

PX

(
Aκ (η, η̃)

) ≤ R̃V (f̃
∗)

PX

(
{x1, . . . , xV }

) = (V − 1)p

(
1

2
− c

)
, (12)

where the inequality holds from R̃Aκ
(f̃∗) = R̃V (f̃

∗) (because η̃ is one-hot at point x0) and
PX

(
Aκ (η, η̃)

)
≥ PX

(
{x1, . . . , xV }

)
.
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Notice that in order to ensure that our construction (PX ,η, η̃) ∈ Π(ϵ, κ, V, L), by definition

R̃Aκ

(
f̃∗
)

PX

(
Aκ (η, η̃)

) ≤ L,

Due to the upper bound of (12), it suffices to require that

(V − 1)p

(
1

2
− c

)
= L, (13)

and this ensures that (PX ,η, η̃) ∈ Π(ϵ, κ, V, L) upon recalling that (PX ,η, η̃) ∈ Π(ϵ, κ), and that
PX is supported on V + 1 points.

It should be noted that since (V − 1)p ≤ 1 is required, and since c > 0, we have L < 1 · 1/2. This
is the origin of our condition L < 1/2 in the statement of the theorem. Naturally, the statement
can be adjusted to min(L, 1/2) instead. In any case, we are left with two nontrivial constraint on
our parameters (p, c): (13) and (V − 1)p ≤ 1, along with the boundary consraints p ∈ [0, 1] and
c ∈ [0, 1/2].

For fixed b, plugging in the definition of η̃, the excess risk over region {x1, . . . , xV } becomes

R̃V (f̂)− R̃V (f̃
∗) =

∫

{x1,...,xV }
2c1f̂(x)̸=fb(x)

dPX(x)

≥ 2c

V−1∑

t=1

(1− ϵ)p1f̂(xt) ̸=fb(xt)
,

where the inequality follows from the fact that we ignore the risk on point xV .

Using the probabilistic method, replace b with B ∼ Uniform{1, 2}V−1,

sup
b,δ,c,p

EZn

[
1

κ+ δ

(
R̃V (f̂)− R̃V (f̃

∗)
)]
≥ sup

δ,c,p
EB,Zn

[
1

κ+ δ

(
R̃V (f̂)− R̃V (f̃

∗)
)]

= sup
δ,c,p

1

κ+ δ
EZn

[
EB|Zn

[(
R̃V (f̂)− R̃V (f̃

∗)
)]]

Now, we need to calculate B|Zn, which can be calculated using Bayes rule because we have
B ∼ Uniform{1, 2}V−1 and also Zn|B ∼ P⊗n

XỸ
.

To be specific, for any x ∈ {x0, x1, . . . , xV−1}, assume point xt is observed k times in training
sample Zn,

P (fB(x) = 1|Zn) =

{
1
2 x ̸= X1, . . . , x ̸= Xn, x ̸= xV

P (Bt = 1|Yt1 , . . . , Ytk) x = xt = Xt1 = · · · = Xtk , 1 ≤ t ≤ V − 1,

where Bt denotes the t-th element of vector B (that associates with xt).

Next we compute P (Bt = 1|Yt1 = y1, . . . , Ytk = yk) for y1, . . . , yk ∈ {1, 2}. Denote the numbers
of ones and twos by k1 = |{j ≤ k : yj = 1}| and k2 = |{j ≤ k : yj = 2}|. Using Bayes rule, we
get

P (Bt = 1|Yt1 , . . . , Ytk) =
P (Bt = 1 ∩ Yt1 , . . . , Ytk)

P (Yt1 , . . . , Ytk)

=
P (Yt1 , . . . , Ytk |Bt = 1)P (Bt = 1)∑2
i=1 P (Yt1 , . . . , Ytk |Bt = i)P (Bt = i)

=
(1/2 + c)k1(1/2− c)k2(1/2)

(1/2 + c)k1(1/2− c)k2(1/2) + (1/2 + c)k2(1/2− c)k1(1/2)
.
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After some calculation, following the proof of Devroye et al. [1996, Theorem 14.5], we get

sup
b,δ,c,p

EZn

[
1

κ+ δ

(
R̃Aκ

(f)− R̃Aκ
(f̃∗)

)]

≥ sup
δ,c,p

1

κ+ δ
c(V − 1)(1− ϵ)pe−

8n(1−ϵ)pc2

1−2c − 4c
√

n(1−ϵ)p

1−2c

≥ 1− ϵ

κ
sup
c,p

c(V − 1)pe−
8npc2

1−2c − 4c
√

np

1−2c ∵ ϵ ≥ 0, take δ ↓ 0

=
1− ϵ

κ
sup
c,p

c
L

1/2− c
e−

8npc2

1−2c − 4c
√

np

1−2c , ∵ (13) (14)

where the supremum is over (p, c) ∈ [0, 1]× [0, 1/2] such that

(V − 1)p ≤ 1, and (V − 1)p(1/2− c) = L.

Now, suppose n is so large that

n ≥ (V − 1)

8L(1/2− L)2
⇐⇒ L ≤ 1

2
−
√

(V − 1)

8nL
,

and further that √
(V − 1)

8nL
≤ 1

8
⇐⇒ n ≥ 8(V − 1)

L
.

We choose

c =

√
(V − 1)

8nL
, and p =

L

(V − 1)(1/2− c)
.

By our choice of c and the first condition on n above, we can conclude that L ≤ (1/2 − c), and
therefore,

(V − 1)p =
L

1/2− c
≤ 1,

meaning that both the constraints required on (p, c) are met by the above choice.

As a consequence of this choice of c, p, we observe that

npc2 =
nL

(V − 1)(1/2− c)
· c2 =

nL

(V − 1)(1/2− c)
· (V − 1)

8nL
=

1

4− 8c
≤ 1

3
.

Since c ≤ 1/8 further implies that 1
1−2c ≤ 4

3 , this implies that

8npc2

1− 2c
+

4
√
npc2

1− 2c
≤ 8

3
· 4
3
+ 4 · 4

3
·
√

1

3
≤ 7.

Thus, instantiating the bound (14), we conclude that

sup
b,δ,c,p

EZn

[
1

κ+ δ

(
R̃Aκ(f)− R̃Aκ(f̃

∗)
)]
≥ 1− ϵ

κ
·
√

V − 1

8nL
· L

1/2− c
· e−7

≥ 1− ϵ

κ

√
(V − 1)L

8n
e−7 · 2

=
1− ϵ

κ

√
(V − 1)L

2n
e−7.

Putting the two parts together

sup
(PX ,η,η̃)∈Π(ϵ,κ)

EZn

[
R
(
f̂
)
−R(f∗)

]
≥ K − 1

K
ϵ+

1− ϵ

κ

√
(V − 1)L

2n
e−7,

for n ≥ V−1
2L max

{
16, 1

(1−2L)2

}
.
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A.2.4 Proof of upper bound: Lemma 1

Lemma (Oracle Inequality under Feature-dependent Label Noise) For any (PX ,η, η̃) and any
classifier f , we have

R(f)−R(f∗) ≤ inf
κ>0

{
PX

(
X \ Aκ (η, η̃)

)
+

1

κ

(
R̃(f)− R̃

(
f̃∗
))}

.

Proof. For any κ ≥ 0, the input space X can be divided into two regions: X \ Aκ and Aκ.

For any f , its risk is

R (f) = EX,Y

[
1f(X )̸=Y

]

= EXEY |X [1f(X )̸=Y ]

= EXEY |X [1− 1f(X)=Y ]

= EX

[
1− [η(X)]f(X)

]

=

∫

X

(
1− [η(x)]f(x)

)
dPX(x).

Therefore, its excess risk is

R(f)−R(f∗) =

∫

X

(
maxη(x)− [η(x)]f(x)

)
dPX(x)

=

∫

X\Aκ

(
maxη(x)− [η(x)]f(x)

)
dPX(x)

︸ ︷︷ ︸
a⃝

+

∫

Aκ

(
maxη(x)− [η(x)]f(x)

)
dPX(x)

︸ ︷︷ ︸
b⃝

Now examine the two terms separately,

a⃝ ≤
∫

X\Aκ

1 dPX(x) = PX

(
X \ Aκ (η, η̃)

)
,

and

b⃝ <

∫

Aκ

1

κ

(
max η̃(x)− [η̃(x)]f(x)

)
dPX(x) ∵ by definition of relative signal strength

≤
∫

X

1

κ

(
max η̃(x)− [η̃(x)]f(x)

)
dPX(x)

=
1

κ

(
R̃(f)− R̃(f̃∗)

)
∵ by definition of R̃.

Since this works for any κ > 0, we then have

R(f)−R(f∗) ≤ inf
κ>0

{
PX

(
X \ Aκ (η, η̃)

)
+

1

κ

(
R̃(f)− R̃

(
f̃∗
))}

.

A.2.5 Proof of upper bound: Theorem 2

To set the stage for the rate of convergence proof, we first introduce the concept of shattering in
the multiclass setting and the Natarajan dimension [Natarajan, 1989], which serves as a multiclass
counterpart to the VC dimension [Vapnik and Chervonenkis, 1971].
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Definition 4 (Multiclass Shattering) Let H be a class of functions from X to Y = {1, 2, . . . ,K}.
For any set containing n distinct elements Cn = {x1, . . . , xn} ⊂ X , denote

HCn
= {(h(x1), . . . , h(xn)) : h ∈ H} ,

and therefore |HCn
| is the number of distinct vectors of length n that can be realized by functions in

H.

The nth shatter coefficient is defined as

S(H, n) := max
Cn

|HCn | .

We say that a set Cn is shattered by H if there exists f, g : Cn → Y such that for every x ∈ Cn,
f(x) ̸= g(x), and

HC ⊇ {f(x1), g(x1)} × {f(x2), g(x2)} × · · · × {f(xn), g(xn)}

If Y = {1, 2}, this definition reduces to the binary notion of shattering which says all labeling of
points can be realized by some function in the hypothesis classH, i.e.,HC = {1, 2}|C|. Note that
multiclass shattering does not mean being able to realize all K possible labels for each point x ∈ C.
Instead, multiclass shattering is more like “embed the binary cube into multiclass”, where every
x ∈ C is allowed to pick from two of the K labels.

Definition 5 (Natarajan Dimension) The Natarajan dimension of H, denoted Ndim(H), is the
maximal size of a shattered set C ∈ X .

Theorem (Excess Risk Upper Bound of NI-ERM) Let ϵ ∈ [0, 1], κ ∈ (0,+∞). Consider any
(PX ,η, η̃) ∈ Π(ϵ, κ), assume function class F has Natarajan dimension V , and the noisy Bayes
classifier f̃∗ belongs to F . Let f̂ ∈ F be the ERM trained on Zn =

{
(Xi, Ỹi)

}n
i=1

, then

EZn

[
R
(
f̂
)
−R(f∗)

]
≤ ϵ+

1

κ
· 16
√

V log n+ 2V log k + 4

2n

= ϵ+O
(
1

κ

√
V

n

)
up to log factor.

Proof. Following directly from Lemma 1, with (PX ,η, η̃) ∈ Π(ϵ, κ), we already have

R(f)−R(f∗) ≤ PX

(
X \ Aκ (η, η̃)

)
+

1

κ

(
R̃(f)− R̃

(
f̃∗
))

≤ ϵ+
1

κ

(
R̃(f)− R̃

(
f̃∗
))

.

Now replace f with NI-ERMf̂ . To bound the expected excess risk we employ a multiclass VC-style
inequality.

Lemma 2

EZn

[
R̃
(
f̂
)
− R̃

(
f̃∗
)]
≤ 16

√
log(8eS(H, n))

2n

The binary version of this lemma is Corollary 12.1 in Devroye et al. [1996]. We prove the multiclass
version below in Section A.2.6.

Next, we bound the multiclass shattering coefficient with Natarajan dimension, using the following
lemma, which can be viewed as a multiclass version of Sauer’s lemma.

Lemma 3 (Natarajan [1989]) Let C and Y be two finite sets and letH be a set of functions from C
to Y . Then

|H| ≤ |C|Ndim(H) · |Y|2Ndim(H)
.
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Letting V denote Ndim(H), we have that S(H, n) ≤ nV K2V , and therefore Lemma 2 can be upper
bounded by

EZn

[
R̃
(
f̂
)
− R̃

(
f̃∗
)]
≤ 16

√
log (8e(n)V K2V )

2n

= 16

√
log 8e+ log (nV ) + log (K2V )

2n

≤ 16

√
V log n+ 2V logK + 4

2n

Putting things together,

EZn

[
R
(
f̂
)
−R(f∗)

]
≤ ϵ+

1

κ
· 16
√

V log n+ 2V logK + 4

2n
.

A.2.6 Proof of Lemma 2

Theorem 6 Consider any set of multiclass classifiers F . Let (X1, Y1), . . . , (Xn, Yn) be iid draws
from PXY . For any n, and any ϵ > 0,

Pr

{
sup
f∈F
|Rn(f)−R(f)| > ϵ

}
≤ 8S(F , n)e−nϵ2/32

where the probability is with respect to the draw of the data.

Proof. Apply Theorem 12.5 from Devroye et al. [1996], with the following identifications. In
what follows, the left-hand side of each equation is a notation from Devroye et al. [1996], and the
right-hand side is our notation.

ν = PXY

Z = (X,Y )

Zi = (Xi, Yi)

A = {Af | f ∈ F}, where Af := {(x, y) | f(x) = y}
With these identifications, we have

ν(Af ) = 1−R(f)

νn(Af ) =
1

n

∑

i

1{Zi∈Af} =
1

n

∑

i

1{f(Xi)=Yi} = 1−Rn(f)

By Theorem 12.5 we conclude

Pr

{
sup
f∈F
|Rn(f)−R(f)| > ϵ

}
≤ 8s(A, n)e−nϵ2/32,

where s(A, n) (note the lowercase “s”) is defined to be

max
z1,...,zn

NA(z1, . . . , zn)

where the max is over points z1, . . . , zn, and NA(z1, . . . , zn) is the number of distinct subsets of the
form

Af ∩ {z1, . . . , zn}
as f ranges over F .

To conclude the proof, it suffices to show that s(A, n) ≤ S(F , n), where the latter expression is the
multiclass shatter coefficient defined above. We show this as follows.
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Consider fixed pairs zi = (xi, yi), i = 1, . . . , n. Supposed that there are N distinct subsets of the
form Af ∩ {z1, . . . , zn}, and let f1, . . . , fN be the classifiers in F that realize these distinct subsets.
Consider the map that sends fi to the vector of its values at x1, . . . , xn:

fi 7→ (fi(x1), . . . , fi(xn)) ∈ Yn.

We will show that this map is injective, from which the claim follows. To see injectivity, consider
classifiers fi and fj , where i ̸= j. Since fi and fj yield different subsets, it means there is some pair
(xk, yk) such that one of fi and fj classifies the pair correctly, while the other does not. This implies
that fi(xk) ̸= fj(xk), and therefore

(fi(x1), . . . , fi(xn)) ̸= (fj(x1), . . . , fj(xn)).

This concludes the proof.

Now, Lemma 2 follows from the above theorem (stated in terms of the noisy data/distribution/risk) in
precisely the same way that Corollary 12.1 in Devroye et al. [1996] follows from Theorem 12.6 in
the same book.

A.2.7 Proof of upper bound: Theorem 3

Theorem (Excess Risk Upper Bound of NI-ERM under smooth relative margin condition) Let
ϵ ∈ [0, 1], α > 0, Cα > 0. Consider any (PX ,η, η̃) ∈ Π′(ϵ, α, Cα), assume function class F has
Natarajan dimension V , and the noisy Bayes classifier f̃∗ belongs to F . Let f̂ ∈ F be the ERM
trained on Zn =

{
(Xi, Ỹi)

}n
i=1

. Then

EZn

[
R
(
f̂
)
−R (f∗)

]
≤ ϵ+ inf

κ>0

{
Cακ

α + Õ
(
1

κ

√
V

n

)}

= ϵ+ Õ
(
n−α/(2+2α)

)
.

Proof. Again, using Lemma 1, and Theorem 2, we can conclude the following, where C is some
large enough constant.

EZn [R(f̂)−R(f∗)]

≤ inf
κ>0

{
PX

(
X \ Aκ (η, η̃)

)
+

1

κ

(
R̃(f)− R̃

(
f̃∗
))}

≤ inf
κ>0

{
PX

(
X \ Aκ (η, η̃)

)
+

1

κ

√
CV log(nK)

n

}
.

Now, by definition of Π′(ϵ, α, Cα), it holds that

∀κ > 0, PX(M(x;η, η̃) ≤ κ) ≤ Cακ
α + ϵ.

Thus, we can further conclude that

EZn [R(f̂)−R(f∗)] ≤ inf
κ>0

{
ϵ+ Cακ

α +
1

κ

√
CV log(nK)

n

}
.

The final statement now comes from optimizing the above bound, which is attained by taking the
derivative w.r.t. κ and set to zero, we have

κ∗ =
(
(αCα)

−1
√
CV log(nK)/n

)1/(α+1)

.

This yields the bound

EZn [R(f̂)−R(f∗)] ≤ ϵ+O
((√

V log(nK)/n
)α/(α+1)

)
= ϵ+ Õ(n−α/(2α+2)).
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A.2.8 Proof of immunity results: Theorem 4 and 5

Here, we state the immunity theorems in an equivalent but different way, so that the proofs are easier
to follow.

Theorem (Immunity for one-hot vector) Denote B = {e1, . . . , eK} to be the set of one-hot
vectors.

∀ η(x) ∈ B, arg max η(x) = arg max E(x)⊤η(x)

⇐⇒ Diagonal elements of E(x) maximizes its row.

Proof. Let η(x) = ey for some y, then

η̃(x) = E⊤η(x) =




P
(
Ỹ = 1 | Y = y,X = x

)

P
(
Ỹ = 2 | Y = y,X = x

)

...
P
(
Ỹ = K | Y = y,X = x

)



= [E(x)]

⊤

y,:

To have

arg max η̃(x) = arg max [E(x)]
⊤

y,: = arg max η(x) = y

for any choice of y, it is equivalent to say that the diagonal elements of E(x) maximizes its row.

Theorem (Universal Immunity) Consider K-class classification,

∀ η(x), arg max η(x) = arg max E(x)⊤η(x)

⇐⇒ ∃ e(x) s.t. ∀x, e(x) ∈
[
0,

1

K

)
and

E(x) =




1− (K − 1)e(x) e(x) · · · e(x)
e(x) 1− (K − 1)e(x) · · · e(x)

...
...

. . .
...

e(x) e(x) · · · 1− (K − 1)e(x)


 .

Proof.

⇐=: Plug E(x) into the expression

η̃(x) = E⊤η(x)

=




1− (K − 1)e(x) e(x) · · · e(x)
e(x) 1− (K − 1)e(x) · · · e(x)

...
...

. . .
...

e(x) e(x) · · · 1− (K − 1)e(x)


η(x)

=


(1−K · e(x)) ·




1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


+ e(x) ·




1
1
...
1


 ·
[
1 · · · 1

]

η(x)

= (1−K · e(x))η(x) + constant vector

When e(x) ∈ [0, 1
K ), we have

∀η(x), arg max η̃(x) = arg max η(x).

30



=⇒: Denote T (x) := E(x)⊤, then

T (x) =




t11(x) t12(x) · · · t1K(x)
t21(x) t22(x) · · · t2K(x)

...
...

. . .
...

tK1(x) tK2(x) · · · tKK(x)




has each column sum to 1. Let us consider several choices of η(x), which pose conditions on matrix
T (x).

1) If η(x) =
[
1
K

1
K · · · 1

K

]⊤
, then

η̃(x) = T (x)η(x) =
1

K




t11(x) + t12(x) + · · ·+ t1K(x)
t21(x) + t22(x) + · · ·+ t2K(x)

...
tK1(x) + tK2(x) + · · ·+ tKK(x)


 .

To have

arg max η̃(x) = arg max η(x) = {1, 2, . . . , k} ,

all elements of η̃(x) must be equal, i.e., each row of T (x) should sum to the same value. The sum of
all elements in T (x) is K, since all column sum to 1. Therefore, each row of T (x) also sum to 1.

2) If η(x) =
[

1
K−1

1
K−1 · · · 1

K−1 0
]⊤

, then

η̃(x) = T (x)η(x) =
1

K − 1




t11(x) + t12(x) + · · ·+ t1(K−1)(x)
t21(x) + t22(x) + · · ·+ t2(K−1)(x)

...
t(K−1)1(x) + t(K−1)2(x) + · · ·+ t(K−1)(K−1)(x)

tK1(x) + tK2(x) + · · ·+ tK(K−1)(x)




=
1

K − 1




1− t1K(x)
1− t2K(x)

...
1− t(K−1)k(x)
1− tKK(x)



. ∵ each row of T (x) sum to 1

To have

arg max η̃(x) = arg max η(x) = {1, 2, . . . ,K − 1} ,

the first K − 1 elements of η̃(x) must be equal (and larger than tKK(x)), then we have

t1K(x) = t2K(x) = · · · = t(K−1)K(x).

In other words, all elements of the K-th column of T (x) are the same (except for the (K,K)-th
element). Similarly, consider η(x) to be a vector that contains 0 in the i-th position and 1

K−1 in
other positions, then the general condition for T (x) is that: all elements of the i-th column are equal,
except the i-th diagonal. Written explicitly,

T (x) =




t11(x) t12(x) t13(x) · · · t1K(x)
t21(x) t22(x) t13(x) · · · t1K(x)
t21(x) t12(x) t33(x) · · · t1K(x)

...
...

...
. . .

...
t21(x) t12(x) t13(x) · · · tKK(x)



.
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Since each row and column of T (x) sum to 1, we have




0 + t12(x) + t13(x) + · · ·+ t1K(x) = (K − 1)t21(x)←− sum of first row = sum of first column
t21(x) + 0 + t13(x) + · · ·+ t1K(x) = (K − 1)t12(x)

t21(x) + t12(x) + 0 + · · ·+ t1K(x) = (K − 1)t13(x)
...

t21(x) + t12(x) + t13(x) + · · ·+ 0 = (K − 1)t1K(x)

Subtracting the first equation from the second, we have t12(x) = t21(x). Repeating for all pairs of
equations, we have t21(x) = t12(x) = t13(x) = · · · = t1K(x). What’s more, all diagonal elements
of T (x) will be equal. Thus,

T (x) =




1− (K − 1)e(x) e(x) · · · e(x)
e(x) 1− (K − 1)e(x) · · · e(x)

...
...

. . .
...

e(x) e(x) · · · 1− (K − 1)e(x)


 , where e(x) ∈ [0, 1].

3) The final step is to determine what value e(x) can take. Take η(x) = ey for some y, then from
Theorem 4, we know that the diagonal elements of T (x) maximize their column, therefore

1− (K − 1)e(x) > e(x) =⇒ e(x) ∈ [0,
1

K

)
.

Finally, take any η(x), the arg max is preserved by multiplying this specific choice of T (x). This

concludes the⇐= part.

A.3 Experimental details

A.3.1 2D Gaussian with synthetic label noise

For 2D Gaussian mixture data, we draw from two Gaussian centered at [1 1]⊤ and [−1 − 1]⊤, with
covariance matrix being identity, 200 data points from each, with label Y = 1, 2 respectively. To
generate noisy labels, we flip every label uniformly with some probability. We use Sklearn’s logistic
regression (with no ℓ2 regularization). The experiment was conducted on AMD Ryzen 5 3600 CPU.
The goal of the simulation is to experimentally verify noise immunity results in Section 6. Notice
that different trial corresponds to different draw of both instances and noisy labels.

Table 2: Testing accuracy of logistic regression on gaussian mixture data with uniform label noise.
“Noise rate” refers to P

(
Ỹ ̸= Y

)
, the percentage of wrong labels in the training data. As theory in

Section 6 predicts, when P
(
Ỹ ̸= Y

)
reach 50%, there is a sharp decrease in performance.

Noise rate 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Trial #1 93.00 92.83 92.38 92.08 91.78 91.93 92.25 92.90 91.83 92.58 74.68 25.12 9.70 7.73 7.52 7.25 7.38 7.15 7.18 7.10 7.00
Trial #2 91.73 91.60 92.05 91.63 91.78 91.78 91.68 91.63 91.55 91.48 80.40 21.10 9.93 8.55 8.38 8.22 8.20 8.35 8.33 8.40 8.28
Trial #3 92.73 92.75 92.78 92.78 92.58 92.45 91.68 88.15 82.58 59.83 49.53 35.80 21.28 14.35 9.33 8.53 8.12 7.70 7.13 7.23 7.28
Trial #4 91.55 91.58 91.60 91.63 91.68 91.60 91.25 90.98 89.98 86.38 60.53 9.95 8.75 10.00 10.45 9.08 9.00 9.53 9.20 9.03 8.45
Trial #5 91.55 91.58 91.60 91.63 91.68 91.60 91.25 90.98 89.98 86.38 60.53 9.95 8.75 10.00 10.45 9.08 9.00 9.53 9.20 9.03 8.45
Mean 92.11 92.07 92.08 91.95 91.90 91.87 91.62 90.93 89.18 83.33 65.13 20.40 11.68 10.10 9.23 8.43 8.34 8.45 8.21 8.16 7.89
Std 0.70 0.66 0.51 0.50 0.38 0.35 0.41 1.74 3.79 13.44 12.35 10.94 5.39 2.56 1.29 0.75 0.68 1.07 1.03 0.94 0.70

A.3.2 MNIST with synthetic label noise

We flip the clean training label of MNIST (http://yann.lecun.com/exdb/mnist/) uniformly
(to any of the wrong classes). We use a shallow neural network with two convolution layers and
two fully connected layers. We train with stochastic gradient descent with learning rate 0.01 for 10
epochs, batch size equals 64. We use the same hyperparamters for all tests. The experiments were
conducted on a single NVIDIA GTX 1660S GPU. The goal of the simulation is to experimentally
verify noise immunity results in Section 6. Here randomness corresponds to different realization of
noisy labels and stochastic gradient descent.
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Table 3: Testing accuracy of a shallow CNN (2 conv layers with 2 fully connected layers) on MNIST
with uniform label noise. “Noise rate” refers to P

(
Ỹ ̸= Y

)
, the percentage of wrong labels in the

training data. As theory in Section 6 predicts, when P
(
Ỹ ̸= Y

)
reach 90%, there is a sharp decrease

in performance.

Noise rate 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Trial #1 98.97 98.89 98.81 98.46 98.49 98.16 98.46 98.07 97.98 97.57 97.88 97.84 97.19 97.10 96.70 95.02 89.00 83.72 11.58 0.17 0.03
Trial #2 98.88 98.73 98.94 98.55 98.72 98.66 98.50 98.24 98.15 98.23 97.86 97.98 97.70 97.10 96.91 95.76 91.99 88.49 9.99 0.08 0.04
Trial #3 99.00 99.04 98.86 98.56 98.69 98.66 98.51 98.49 98.37 98.25 98.25 97.39 97.37 97.18 96.66 94.88 92.15 81.48 6.19 0.14 0.04
Trial #4 99.04 98.86 98.70 98.76 98.83 98.65 98.34 98.42 98.58 98.47 98.00 97.41 97.63 97.09 96.46 95.94 93.19 84.78 8.68 0.19 0.01
Trial #5 99.05 98.58 98.89 98.82 98.72 98.83 98.34 98.55 98.40 98.38 98.01 97.31 97.33 96.21 96.29 94.92 90.38 85.84 8.98 0.13 0.08
Mean 98.99 98.82 98.84 98.63 98.69 98.59 98.43 98.35 98.30 98.18 98.00 97.59 97.44 96.94 96.60 95.30 91.34 84.86 9.08 0.14 0.04
Std 0.07 0.17 0.09 0.15 0.12 0.25 0.08 0.20 0.23 0.36 0.16 0.30 0.21 0.41 0.24 0.51 1.65 2.59 1.98 0.04 0.03

A.3.3 CIFAR with synthetic label noise

We flip the clean training label of CIFAR-10 (https://www.cs.toronto.edu/~kriz/cifar.
html) uniformly (to any of the wrong classes). To have a fair comparison between different methods,
we fix the realization of noisy labels. Follow the 2-step procedure described in Section 7, we use
different pre-trained neural networks as feature extractor: forward-passing the training image through
the network and record the feature. Then use sklearn’s (https://scikit-learn.org/stable/)
logistic regression function to fit the (feature, noisy label) pair in a full batch manner. We pre-
specify a range of values for ℓ2 regularization ({0.0001, 0.001, 0.01, 0.1, 1, 10, 100} ) and number of
iterations for lbfgs optimizer ({10, 20, 50, 100}), then do cross-validation on noisy data to pick the
best hyper-parameters. We use the same range of hyper-parameters in all tests. The experiments were
conducted on a single NVIDIA Tesla V100 GPU. The result is deterministic.

Table 4: Peformance on CIFAR-10 with synthetic label noise. We apply linear model on top of
different feature extractors: “ResNet-50 TL” refers to using a pre-trained ResNet-50 on ImageNet
[Deng et al., 2009] (available in Pytorch model library) in a transfer learning fashion, “ResNet-50 SSL”
refers to using a pre-trained ResNet-50 on unlabeled CIFAR data with self-supervised loss [Chen
et al., 2020] (publicly downloadable weights https://github.com/ContrastToDivide/C2D?
tab=readme-ov-file) and “DINOv2 SSL” refers to using the self-supervised foundation model
DINOv2 [Oquab et al., 2023] (available at https://github.com/facebookresearch/dinov2)
as the feature extractor. “Noise rate” refers to P

(
Ỹ ̸= Y

)
, the percentage of wrong labels in the

training data. As theory in Section 6 predicts, when P
(
Ỹ ̸= Y

)
reach 90%, there is a sharp decrease

in performance. We employed Python’s sklearn logistic regression and cross-validation functions
without data augmentation. The results are deterministic.

Noise rate 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 0.9 0.95 1
Linear 41.37 41.09 40.97 40.37 40.45 39.44 37.28 35.20 26.74 18.00 10.28 5.50 3.92

Linear + ResNet-50 TL 90.17 89.58 89.01 88.27 87.55 87.28 86.40 85.01 82.03 74.02 10.82 1.47 0.26
Linear + ResNet-50 SSL 92.48 92.26 91.74 91.46 91.13 90.33 91.07 90.99 89.11 83.89 10.08 1.31 0.34
Linear + DINOv2 SSL 99.25 99.27 99.23 99.14 99.10 99.11 99.02 98.84 95.50 76.91 10.13 0.92 0.03

A.3.4 CIFAR with human label error

We load the noisy human labels provided by http://noisylabels.com/, then follow exact the
same procedure as above.
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Table 5: Performance on CIFAR-N dataset (http://noisylabels.com/) in terms of testing accu-
racy. “Aggre”, “Rand1”, . . . , “Noisy” denote various types of human label noise. We apply linear
model on top of different feature extractors: “ResNet-50 TL” refers to using a pre-trained ResNet-50
on ImageNet [Deng et al., 2009] in a transfer learning fashion, “ResNet-50 SSL” refers to using a
pre-trained ResNet-50 on unlabeled CIFAR data with self-supervised loss [Chen et al., 2020] and
“DINOv2 SSL” refers to using the self-supervised foundation model DINOv2 [Oquab et al., 2023] as
the feature extractor. We employed Python’s sklearn logistic regression and cross-validation functions
without data augmentation; the results are deterministic and directly reproducible.

Methods CIFAR-10N CIFAR-100N

Aggre Rand1 Rand2 Rand3 Worst Noisy

Linear 40.73 40.41 40.31 40.63 38.43 16.61
Linear + ResNet-50 TL 89.18 88.63 88.61 88.66 85.32 62.89

Linear + ResNet-50 SSL 91.78 91.66 91.39 91.28 87.84 57.95
Linear + DINOv2 SSL 98.69 98.80 98.65 98.67 95.71 83.17

A.4 Additional experiments

A.4.1 Linear probing, then fine tuning (LP-FT)

We study whether ‘linear probing, then fine tuning’ (LP-FT) [Kumar et al., 2022] works better than
linear probing (LP) only, in label noise learning scenario.

Table 6: Performance on CIFAR-N dataset (http://noisylabels.com/) in terms of testing ac-
curacy. “Clean” refers to no label noise, “Aggre”, “Rand1”, . . . , “Noisy” denote various types of
human label noise. We compare the testing accuracy of LP-FT versus LP only, over different feature
extractors: “ResNet-50 TL” refers to using a pre-trained ResNet-50 on ImageNet [Deng et al., 2009]
in a transfer learning fashion, “ResNet-50 SSL” refers to using a pre-trained ResNet-50 on unlabeled
CIFAR data with contrastive loss [Chen et al., 2020] and “DINOv2 (small) SSL” refers to using a
light version of the self-supervised foundation model DINOv2 [Oquab et al., 2023] as the feature
extractor.

Feature Method CIFAR-10N CIFAR-100N

Clean Aggre Rand1 Rand2 Rand3 Worst Clean Noisy

ResNet-50 TL LP (ours) 90.17 89.18 88.63 88.61 88.66 85.32 71.79 62.89
LP-FT 95.94 92.03 88.55 87.78 87.82 71.88 82.3 63.85

ResNet-50 SSL LP (ours) 92.54 91.78 91.66 91.46 91.17 87.85 69.88 57.98
LP-FT 94.11 89.11 84.49 83.75 84.15 65.00 74.41 54.49

DINOv2 (small) SSL LP (ours) 96.09 94.8 94.39 94.42 94.35 91.14 83.82 72.46
LP-FT 98.23 93.29 88.03 87.27 86.94 67.42 89.97 64.81

A.4.2 Robust learning strategy over DINOv2 feature

This section examines how different robust learning strategy works over DINOv2 feature, compared
with only training with cross entropy.
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Table 7: Comparison of different noise robust methods on DINOv2 features. Training a linear
classifier with cross entropy (CE) loss is the baseline. We compare it with robust losses: mean
absolute error (MAE) loss [Ghosh and Kumar, 2017, Ma and Fattahi, 2022], sigmoid loss [Ghosh
et al., 2015], and regularized approaches: ‘Early-Learning Regularization’ (ELR) [Liu et al., 2020],
‘Sharpness Aware Minimization’ (SAM) [Foret et al., 2021].

Feature Method CIFAR-10N CIFAR-100N

Clean Aggre Rand1 Rand2 Rand3 Worst Clean Noisy

DINOv2 SSL

CE 99.25 98.69 98.8 98.65 98.67 95.71 92.85 83.17
MAE 99.27 99.04 99.01 99.09 99.11 95.55 90.68 82.55

Sigmoid 99.26 98.86 98.91 98.87 98.96 96.66 92.82 82.03
ELR 99.09 98.49 98.62 98.53 98.56 95.60 89.99 82.75
SAM 99.09 97.66 98.47 98.53 98.47 95.47 89.97 82.85

A.4.3 Synthetic instance-dependent label noise

Table 8: We synthetically corrupt labels of CIFAR-10 according to Xia et al. [2020], and compare
our NI-ERM with the ‘Part-dependent matrix estimation’ (PTD) method proposed in that same paper.

Method \ Noise rate 10 % 20 % 30 % 40 % 50 %

PTD 79.01 76.05 72.28 58.62 53.98
NI-ERM (ours) 99.11 98.94 98.20 93.35 74.67
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims are either supported by theory statements or by reproducible
experiment results.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations about our practical method is described.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
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is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.
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address problems of privacy and fairness.
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reviewers as grounds for rejection, a worse outcome might be that reviewers discover
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

36



Answer: [Yes]

Justification: Assumptions are stated in the theorem statement. Full proofs are included in
the appendix.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Important information about the experiments are in main text. Details on the
experimental setup is described in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

37



5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code is provided, common benchmark datase were used, instructions are given,
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See appendix and attached code.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
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material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should
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of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See appendix.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have read the NeurIPS Code of Ethics and confirm that this
research follows the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
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societal impacts of the work performed?

Answer: [NA]
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problem.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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(e.g., deployment of technologies that could make decisions that unfairly impact specific
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to particular applications, let alone deployments. However, if there is a direct path to
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to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
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• The answer NA means that the paper does not use existing assets.
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• The authors should state which version of the asset is used and, if possible, include a
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
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has curated licenses for some datasets. Their licensing guide can help determine the
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
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or other labor should be paid at least the minimum wage in the country of the data
collector.
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such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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