
A MDP Examples468

A.1 LQR max-following parametric class vs. constituent policies469
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To motivate the use of max-following policies in a richer class of MDPs, we consider a traditional470

control problem with continuous state and action spaces: the discrete linear quadratic regulator. Note471

that here we analyze the infinite horizon discounted case so that we can analyze the time-invariant472

value function, but episodic analogues exist. Consider the following setting where � 2 [0, 1] is a473

discount factor, and wt ⇠ N (0,�2I). Here, we consider the simple case where Q,R,A = I and474

B = (1 + ✏)I . We know that the optimal policy is of the form u = �K⇤x [Bertsekas, 2012] and475

we set two policies that are only stable along one component and unstable along the other of the476

form u1 = �K1x and u2 = �K2x. It is important to note that the value functions of the individual477

policies and the optimal policies have exact quadratic forms like V (x) = xTPx+ q, but the max-478

following policy is not necessarily within the same parametric class. For example, P1 is the solution479

to the Lyapunov equation P1 = (I +KT

1 K1 + �(A�K1)TP1(A�K1)) and q1 = �

1��
�2 tr(P1).480

A similar formula exists for policy 2.481

In LQR, for the K1,K2 controllers described above, a max-following policy is able to attain higher482

value than the individual expert policies that have an unstable direction in one axis. Moreover, we483

see that the optimal policy is obviously superior to all the other policies, but that a max-following484

policy is more competitive with it than the other individual expert policies. A max-following policy485

is ultimately able to benefit from the stabilizing component of each axis of the individual policies,486

which ultimately lets it perform better than any given individual one.487

B Additional Proofs488

Lemma 4.1 (Worst approximate max-following policy competes with best fixed policy). For any489
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Proof. We will prove the claim inductively, showing that for all C 2 [H], if we run any approximate492

max-following policy for C steps, and then continue following the policy ⇡k chosen at step C for the493

rest of the episode, then our expected return is not much worse than if we had followed any fixed ⇡k494

for the whole episode.495

Somewhat more formally, recalling the definition of the set of approximate max-following policies496
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follows at state s and time h, we will show that if at some step C 2 [H] we have499
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, then the same holds for C + 1 for all ⇡.500

In the base case, C = 0, the claim501
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We now prove the inductive step. We wish to show that if at step C, we have for some ⇡ 2 ⇧k
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then continuing to follow ⇡ at step C + 1 and following ⇡t(sC+1,C+1) thereafter reduces expected505

return by O( "

H
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for all C 2 [H]. In particular, for C = H � 1 we conclude that510
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C Additional information about experiments513

For our experiments, we use a heuristic version of MaxIteration that operates in rounds. First, the514

algorithm collects a set of trajectories using every policy to initialize the respective value functions.515

Then, in every round the algorithm for every policy exectues the max-following policy for � steps516

and the switches to the respective constituent policy. At the end of each round, value functions of517

constituent policies are updated. � is uniformly spaced along the full horizon and thus, depends on518

the number of rounds and the horizon. The total number of episodes is an upper bound on the number519

of samples collected which is what we determine to compare run-times between MaxIteration and520

IQL. Finally, we use a � discounting which has been shown to have regularizing effects on the value521

function updates [Amit et al., 2020].522

For IQL, we use the d3rlpy implementations [Seno and Imai, 2022] and code provided by Hussing523

et al. [2023].524

C.1 Hyperparameters525

Both algorithms are run for 100000 steps initially (to initialize value functions for MaxIteration and526

to pre-fill the buffer for IQL) before doing updates and then for 500000 steps for online training.527

All neural networks use ReLU [Glorot et al., 2011] Multi-layer perceptrons with 2 layers and a hidden528

dimension of 256 per layer.529

Table 1: Hyperparameters for MaxIteration

Optimizer Adam
Adam �1 0.9
Adam �2 0.999
Adam " 1e� 8
Value Function Learning Rate 1e� 4
Number of rounds 50
Number of gradient steps per
round 40’000

Batch Size 64
� 0.99

Table 2: Hyperparameters for Implicit Q-Learning

Optimizer Adam
Adam �1 0.9
Adam �2 0.999
Adam " 1e� 8
Actor Learning Rate 4e� 3
Critic Learning Rate 4e� 3
Batch Size #Tasks ⇥256
n_steps 1
� 0.99
⌧ 0.005
n_critics 2
expectile 0.7
weight_temp 3.0
max_weight 100
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C.2 Full results on CompoSuite530

Figure 4
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C.3 Results on DM Control531

We run our MaxIteration algorithm on the DM Control benchmarks [Tunyasuvunakool et al., 2020]532

similar to the MAPS [Liu et al., 2023] setup. In their setup, the constituent policies correspond to533

different 3 checkpointed models in one run of the online Soft-Actor critic [Haarnoja et al., 2018]534

algorithm. As a result, it is generally true that the latest checkpointed model will outperform the535

previous two checkpoints meaning one constituent policy is strictly better everywhere than the others.536

We report the final performance over 5 seeds using 16 evaluation trajectories in Figure 5. The537

results show that our algorithm behaves as expected and always uses the best oracle. Without policy538

improvement operator, this setup does not allow us to exceed the performance of the constituent539

policies.540

Figure 5: Mean return over 5 seeds of MaxIteration on DM Control tasks [Tunyasuvunakool et al.,
2020]. Error-bars correspond to standard error. MaxIteration always selects the best performing
constituent policy.

C.4 Computational Resources541

Our experiments were conducted using a total of 17 GPUs inclusing both server-grade (e.g., NVIDIA542

RTX A6000s) and consumer-grade (e.g., NVIDIA RTX 3090) GPUs. Training the constituent policies543

from offline data takes less than 2 hours. Our MaxIteration algorithm takes about 3 hours to train544

while the baseline fine-tuning takes around 1 hour. A large chunk of the runtime cost stems from545

executing the simulator.546
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