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Abstract

We present Treeffuser, a new model class for robust probabilistic pre-
diction of arbitrarily complex conditional densities. Typical regression
models return a point estimate conditional on covariates, but probabilistic
regression models output a full probability distribution over the outcome
space, conditional on the covariates. This allows for predictive uncer-
tainty estimation — crucial in applications like healthcare and weather
forecasting. However, standard methods for probabilistic predictions rely
on stringent parametric assumptions about the form of likelihood, lead-
ing to poorly calibrated uncertainty estimates and bad predictions when
these assumptions are not met. To remedy this issue we leverage recent
advances in diffusion-based generative modeling to propose Treeffuser a
new model for probabilistic predictions that achieves comparable or better
uncertainty estimates, calibration, and conditional log-likelihood than ex-
isting methods, while providing considerable advantages in usability and
robustness. We provide a implemention of treefuser in [repo/pipy]

1 Goals

Assume that x € R% | y € R% and that there exists some distribution p*(x,y)
over both x and y. The goal is to learn the full conditional distribution
p*(y|x) so that we can sample from it.

Once we have learned to sample from it we can use the samples as one would
in a bayesian setting and report, mean, quantiles, variance, expectations of
quantities, measures of risk and uncertainty (e.g CVAR, VaR, etc.), etc.

The requirements for this algorithm are:

1. Tt should be able to learn the full conditional distribution p*(y|x) even if
the distribution is multimodal, has complex dependencies, is reasonably
high-dimensional, has heavy tails, etc.

2. It should be robust enough to be usable by non-experts with a
scikit-learn like interface.

3. The algorithm should be tailored for tabular data (i.e not for images,
text, etc.).



2 The algorithm

The idea of the algorithm is the following:

Use diffusion models to learn the conditional distribution p*(y|x) but instead
of estimating the score function using a neural network use gradient boosted
trees, with one tree for each dimension of y.

To be concrete, we first construct a diffusion process {y(¢)}_,, indexed by
time ¢ € [0, T, with initial condition y(0) ~ p*(y|x) and such that

dy = f(y,t)dt + g(t)dW
where W is a Wiener process and f and g are functions that we choose.

By a result in Anderson (I'll add the reference) then it is the case that by
starting from samples y(T') ~ p*(y(T)|x) and reverting the process we can
obtain samples from p*(y|x). Moreover, the reverse process has the nice form
of

dy = [f(y,t) — g(t)*Vy log pe(y|x)]dt + g(t)dW

where p;(y|x) is the density of the diffusion process at time ¢, and W is a
reverse Wiener process.

Therefore if we can learn the score function Vy logp;(y|x) and we construct
the diffusion process such that p*(y(7T")|x) is a simple distribution like a
standard normal then we can sample from p*(y|x) by sampling from the
standard normal and then running the reverse process (this can be done with
standard numerical methods for SDEs). The only thing that we need is an
estimate for the score function.

It turns out that by results in [Vincent| (2010) it is possible to estimate this
score function by selecting the mapping s(y,x,t) : R% x R% x R — R% that
minimizes the following loss:

L(s) = Ept)Ep (x)p= (y1x)p: (y(£) |y (0)) [||Vy log p: (y (t)|y(0)) — s(y, x, t)||2} (1)

Where p(t) is uniform over [0, 7], and p;(y(¢)|y(0)) is the density of the
diffusion process at time ¢ conditioned on the initial condition y(0).
This quantity is something that we can work with empirically because

1. Vylogpi(y(t)|y(0)) is computable analytically as we construct the
diffusion process.

2. We can sample from p(t) because it is just a uniform distribution.

3. We can motecarlo approximate the expectation over
p*(x)p*(y|x)p: (¥ (t)|y(0)). by using a dataset {x;,y;} ; and sampling
from p(y(¢)|y(0)) which is ok because it is a quantity we construct
ourselves when we create the diffusion process.



Therefore, what we can do is construct one gradient boosted tree for each
dimension of y that takes as input y and x and ¢ outputs the i-th coordinate of
the score function s(y, x,t); and we train them by minimizing the loss above.
Once trained we have a function s(y,x,t) that we can plug-in to the reverse
SDE and use to sample from p*(y|x) which is what we wanted.

3 Why Gradient Boosted Trees?

In principle this scheme could work with any model. However, gradient
boosted trees are the method of choice for tabular datasets. Moreover, because
we care about robustness and usability by non-experts they seem like the
natural model class.

In some simple experiments that we have conducted in a dataset with

n = 10000 and d, =1 and d, = 1 it takes around 3 seconds to train and 20
seconds to sample 100 points for a 1000 test points (i.e 100000 samples total).

4 Why better calibration - UQ?

We make no parametric assumptions about the form of the likelihood and
hence we can learn the conditional distribution p*(y|x) regardless of how
complex it is as long as we sample densely enough from it and our model is
flexible enough.(We could even prove stuff about this but not sure it is helpful).
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