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Abstract

How can we attribute the behaviors of machine learning models to their training
data? While the classic influence function sheds light on the impact of individual
samples, it often fails to capture the more complex and pronounced collective
influence of a set of samples. To tackle this challenge, we study the Most Influential
Subset Selection (MISS) problem, which aims to identify a subset of training
samples with the greatest collective influence. We conduct a comprehensive
analysis of the prevailing approaches in MISS, elucidating their strengths and
weaknesses. Our findings reveal that influence-based greedy heuristics, a dominant
class of algorithms in MISS, can provably fail even in linear regression. We
delineate the failure modes, including the errors of influence function and the
non-additive structure of the collective influence. Conversely, we demonstrate
that an adaptive version of these heuristics which applies them iteratively, can
effectively capture the interactions among samples and thus partially address the
issues. Experiments on real-world datasets corroborate these theoretical findings
and further demonstrate that the merit of adaptivity can extend to more complex
scenarios such as classification tasks and non-linear neural networks. We conclude
our analysis by emphasizing the inherent trade-off between performance and
computational efficiency, questioning the use of additive metrics such as the Linear
Datamodeling Score, and offering a range of discussions.

1 Introduction

Unraveling the intricate connections between data and model predictions is critical in machine
learning, particularly in high-stakes decision-making contexts such as healthcare, economics, and
public policy [Bracke et al., 2019, Rudin, 2019, Amarasinghe et al., 2023]. A better understanding of
these connections allows tackling tasks like data cleaning [Teso et al., 2021], model debugging [Guo
et al., 2021], and assessing the robustness of inferential results [Broderick et al., 2020], all key to
enhancing model interpretability and fostering trust between machine learning practitioners and
domain experts. Among the various methodologies, the influence function adopted by Koh and
Liang [2017] stands out as a particularly effective tool, sparking extensive research into identifying
influential individual samples [Barshan et al., 2020, Schioppa et al., 2022, Grosse et al., 2023].

Nevertheless, focusing solely on the influence of individual samples is often insufficient. In many
scenarios, it is necessary to understand how sets of samples jointly affect model predictions. These
include uncovering biases associated with specific demographic groups [Chen et al., 2018], fairly
allocating credits among crowdworkers [Arrieta-Ibarra et al., 2018], and detecting trends and signals
that emerge collectively within the data [Yang et al., 2020]. Gaining such insights is crucial for a
more comprehensive understanding of model behaviors.
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In pursuit of advancing this field, in this paper, we delve into the most influential subset selection
(MISS) problem [Fisher et al., 2023]. MISS attempts to find a set of samples that, when removed from
the training set, results in the most significant change of a pre-defined target function. In essence, it
measures the worst-case collective influence.

Contributions. We provide a comprehensive analysis of existing algorithms to tackle MISS,
revealing their weaknesses and strengths, and discussing the challenges and important considerations
for future research. To summarize our contributions:

• We systematically study the failure modes of influence-based greedy heuristics, a dominant class
of algorithms in MISS that assign a static score to each sample and subsequently perform a greedy
selection. Specifically, the error of influence function, as well as the inability to incorporate the
non-additive structure of the collective influence, can cause these heuristics to fail in MISS even in
simple linear regression.

• In contrast, we demonstrate the effectiveness of the adaptive greedy algorithm that dynamically up-
dates the score for each remaining sample in response to selections already made. The improvement
mainly comes from its ability to capture the nuanced interactions among samples.

• We conduct experiments on both synthetic and real-world datasets. The experimental results
not only corroborate the theoretical findings but also extend to more complex settings including
classification tasks and non-linear models, showcasing the consistent benefits of adaptivity.

• We discuss the inherent trade-offs between performance and efficiency in MISS, and the potential
drawbacks of additive metrics such as Linear Datamodeling Score, among others.

Concurrent work. We acknowledge a concurrent work [Huang et al., 2024], which was posted
around the same time as ours. Huang et al. [2024] investigate the Maximum Influence Perturbation
problem [Broderick et al., 2020], which is equivalent to MISS. Both studies analyze the additive
assumption and the adaptive greedy algorithm in OLS, but they differ in the theoretical results.
Notably, we formally prove the failure of LAGS in solving MISS under a specific data generation
process, uncovering the phenomena of amplification and cancellation. Huang et al. [2024] analyze the
approximation error of variants of LAGS by comparing the closed-form expression of the approximate
algorithm and the actual effect.

2 Preliminaries

2.1 Problem statement

Consider a prediction task (e.g., regression or classification) with an input space X ⊂ Rd and a
target space Y ⊂ R. The prediction task aims to learn a function f(θ, ·) : X → Y parameterized
by θ ∈ Rq . Specifically, denote {(xi, yi)}ni=1 as the training samples and L(·, ·) as the loss function
(e.g., squared error or cross-entropy), we aim to solve the following optimization problem:

θ̂ = argmin
θ∈Rq

1

n

n∑
i=1

L(f(θ, xi), yi). (1)

A key notion for analyzing the influential samples is the optimal model parameters after removing
a subset of training samples. Denote [n] = {1, 2, · · · , n} and the set of indices as S ⊂ [n], this
corresponds to

θ̂−S = argmin
θ∈Rq

1

n

∑
i/∈S

L(f(θ, xi), yi). (2)

Note that we do not adjust the normalizing constant as it does not affect the optimal solution to Eq.(2).
Finally, denote ϕ : Rq → R as the target function, which takes the model parameters as input and
returns a quantity of interest (e.g., the prediction on a test sample or the sign of its first coefficient).
We now formally define the most influential subset selection problem.
Definition 2.1 (Most Influential Subset Selection (MISS)). Given a positive integer k ≪ n, the
k-Most Influential Subset Selection (k-MISS) problem refers to this discrete optimization problem:

Sopt,k = argmax
S⊂[n],|S|≤k

A−S , where A−S := ϕ(θ̂−S)− ϕ(θ̂). (3)
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We refer to A−S as the actual effect of removing S. For clarity, we refer to the actual effect as the
individual effect when |S| = 1 and the group effect otherwise. Essentially, MISS aims to identify a
subset with bounded size, such that its removal from the training samples will lead to the maximum
actual effect. It can be viewed as analogous to adversarial examples [Biggio et al., 2013, Szegedy
et al., 2014], in that both characterize the alteration of model behaviors in the worst case, but MISS
operates on the training data space and during training time.

Unfortunately, the naive approach of enumerating all possible subsets has an exponential time
complexity in k, rendering it computationally intractable in practice. In fact, even in the context
of linear regression, a variant of MISS (where the target function depends on S) known as robust
regression [Andersen, 2007] is proved to be NP-hard [Price et al., 2022]. To tackle this challenge,
researchers have proposed various greedy heuristics to select an approximately most influential subset.

2.2 Influence-based greedy heuristics

One of the most prominent algorithms for MISS, ZAMinfluence, was introduced by Broderick et al.
[2020] and applied to assess the robustness of inferential results in earlier econometric studies [At-
tanasio et al., 2015, Angelucci et al., 2015]. It builds upon the classic influence function [Koh and
Liang, 2017] from robust statistics literature [Hampel, 1974, Hampel et al., 2005], extending its
application from individual samples to a set of samples. A similar approach has been employed by
Koh et al. [2019] to estimate group effects. We defer a detailed review of the literature to Section 7.
Definition 2.2 (Upweighted objective). We denote the optimal solution to the upweighted objective
w.r.t. a set of indices S as

θ̂−S(δ) := argmin
θ∈Rq

1

n

n∑
i=1

L(f(θ, xi), yi) + δ
∑
i∈S

L(f(θ, xi), yi). (4)

It is straightforward to see that δ = 0 corresponds to θ̂, while δ = − 1
n corresponds to θ̂−S . Similar

to the influence function of individual samples [Koh and Liang, 2017], the influence of a set S can be
characterized by the local perturbation of θ̂−S(δ) around δ = 0. This quantity is well-defined when L
is strictly convex and can be computed via the Implicit Function Theorem [Krantz and Parks, 2002].
Definition 2.3 (Influence function of a set). The influence of upweighting S on the parameters is:

I(S) := dθ̂−S(δ)

dδ

∣∣∣∣
δ=0

= −H−1

θ̂

∑
i∈S

∇θL(f(θ̂, xi), yi), (5)

where Hθ̂ = 1
n

∑n
i=1 ∇2

θL(f(θ̂, xi), yi) is the Hessian of the loss function at θ̂.

Using the chain rule and note that θ̂−S = θ̂−S(− 1
n ), the actual effect can be estimated via the

first-order approximation:

A−S ≈ − 1

n
· dϕ(θ̂−S(δ))

dδ

∣∣∣∣
δ=0

=
1

n
∇θϕ(θ̂)

⊤H−1

θ̂

∑
i∈S

∇θL(f(θ̂, xi), yi). (6)

The key observation is that the right-hand side of Eq.(6) displays an additive structure so that the
group effect can be approximated by a summation of individual influences. This naturally yields the
ZAMinfluence algorithm, which involves 1) calculating vi = ∇θϕ(θ̂)

⊤H−1

θ̂
∇θL(f(θ̂, xi), yi) for

each i ∈ [n]; 2) sorting vi’s; 3) returning the top i’s with positive vi. In fact, a series of studies in
MISS [Wang et al., 2023, Yang et al., 2023a, Chhabra et al., 2024] follow a similar approach: they
score individual samples using variants of influence functions, and then greedily select those with the
highest positive scores. We refer to these algorithms as influence-based greedy heuristics.

These heuristics are powerful in two aspects. The first is their broad applicability: they can be applied
to any Z-estimator of a twice-differentiable objective function [Broderick et al., 2020] to obtain an
influential subset w.r.t. any differentiable target function. The second is their computational efficiency:
once we have computed the scores for each sample, they can be executed in linear to log-linear time
complexity. However, a major drawback of these heuristics is the lack of provable guarantees. It
is well-known that even the influence estimates of individual samples can be fragile and erroneous,
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especially in complex models like neural networks [Basu et al., 2021, Bae et al., 2022]. A more
significant concern lies in the additivity assumption implicitly adopted by these heuristics (also see
Guu et al. [2023] for discussions), as it fails to account for the interactions among samples. We
critically examine these issues in Section 3.

3 Pitfalls of greedy heuristics in Most Influential Subset Selection

In this section, we delve into the influence-based greedy heuristics introduced in Section 2, providing
a comprehensive study of their limitations in solving MISS within the context of linear regression.
Setup and notation. In standard linear regression, each xi ∈ Rd represents a vector of covariates,
and yi stands for a real-valued label. The first coordinate of each xi is set to 1 to account for the
intercept term. We stack the row vectors x⊤

i to form the design matrix X ∈ Rn×d and concatenate
the yi’s into the target vector y ∈ Rn. We assume the labels are generated as follows: there exists a
θ∗ ∈ Rd (note q = d), a noise parameter ε > 0 and some p, such that

e = (ε, 0, · · · , 0, pε)⊤ ∈ Rn, y = Xθ∗ − e. (7)

For a subset S, XS and yS denote the corresponding covariates and responses, while X−S and
y−S represent their complements. To ensure the uniqueness of the optimal solution, we assume
N = X⊤X is invertible, and that

∑n−1
i=2 xix

⊤
i is also invertible (when this assumption is violated,

our results naturally extend to ridge regression). The hat matrix is denoted as H = XN−1X⊤. The
diagonal element hii of H represents the leverage score of xi, and the off-diagonal element hij

represents the cross-leverage score [Chatterjee and Hadi, 2009] between xi and xj . The Ordinary
Least Squares (OLS) estimator is given by

θ̂ = argmin
θ

1

n
∥Xθ − y∥2 = N−1

n∑
i=1

xiyi. (8)

Let ŷi = x⊤
i θ̂ be the prediction and ri = ŷi − yi be the negative residual for the i-th sample.

Throughout Sections 3 and 4, we focus on the linear target function ϕ(θ) = x⊤
testθ for xtest =

x1+pxn

p+1 ,
whose first coordinate is also 1. This choice of xtest is intentional: it greatly simplifies the analysis by
making most of the individual effects negative, as reflected in Figures 1 to 3 and the calculations in
Appendix A.1. Furthermore, due to the continuous nature of the problem, our conclusions hold for a
set of xtest with non-zero Lebesgue measure.

3.1 Influence function is not accurate (even) in linear models

Figure 1: Influence estimates suffer from disparate lev-
els of under-estimation, leading to the failure of 1-MISS

Influence function is widely acknowledged
as an accurate alternative of leave-one-
out re-training in linear models [Koh and
Liang, 2017, Basu et al., 2021, Bae et al.,
2022]. In this section, however, we chal-
lenge this viewpoint by pointing out a pre-
viously overlooked fact: the influence func-
tion fails to incorporate the leverage scores
of individual samples in linear regression,
which could result in its failure in selecting
the most influential sample (i.e., 1-MISS).

Plugging the squared loss into Eq. (5),
we have I(S) = −nN−1

∑
i∈S xiri.

Therefore, ZAMinfluence assigns vi =
x⊤

testN
−1xiri to each sample. We refer to

them as influence estimates. On the other
hand, it is well-known in the statistics liter-
ature [Beckman and Trussell, 1974, Cook,
1977] that

θ̂−{i} − θ̂ =
N−1xiri
1− hii

. (9)
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Consequently, the change in the target function is given by A−{i} =
x⊤

testN
−1xiri

1−hii
, which deviates

from the influence estimate by a factor of 1/(1− hii) and implies under-estimation (a phenomenon
which was also reported in Koh et al. [2019]). This is particularly concerning when a sample has a
high leverage score (e.g., an outlier [Chatterjee and Hadi, 1986]): in this case, the influence function
substantially under-estimates the individual effect, potentially leading to the failure of 1-MISS. We
illustrate this intuition in Figure 1: while point 8⃝ is scored highest by the influence function, it is
however removing point 1⃝ (which has the highest leverage score) that leads to the greatest change in
the prediction on the test sample. More generally, we present the following theorem illustrating the
failure of ZAMinfluence in 1-MISS, with the proof detailed in Appendix A.2.
Theorem 3.1. Assume h11 > hnn. Under the label generation process described in Eq.(7), there
exists some p, such that ZAMinfluence fails to select the most influential sample.

Takeaway: Even when the influence estimates have high correlation with the individual effects,
they can be misleading for extreme samples. As a result, the influence function may not be a
reliable tool for MISS.

3.2 Violation of the additivity assumption: amplification and cancellation

Note that the individual effects A−{i}’s can be computed efficiently for linear regression (this is
generally infeasible for more complicated tasks) by correcting the influence estimates vi’s with their
corresponding leverage scores. Hence, a natural alternative is to directly perform greedy selection
based on the A−{i}’s. We refer to this method as Leverage-Adjusted Greedy Selection (LAGS).
Nevertheless, we will illustrate in this section that even with perfect individual influence estimation,
LAGS may still fall short in MISS due to violations of the additivity assumption.

We start by computing the closed-form of A−S . The proof can be found in Appendix A.3.
Proposition 3.2. For any set of indices S, we have

A−S := ϕ(θ̂−S)− ϕ(θ̂) = x⊤
testN

−1X⊤
S

(
Ik −XSN

−1X⊤
S

)−1

(XS θ̂ − yS). (10)

Remark 3.3. Denote MS = XSN
−1X⊤

S . It is straightforward to see that replacing the Neumann
series (Ik −MS)

−1 = Ik +MS +M2
S + · · · by the identity matrix yields the influence estimates,

i.e., the first-order approximation. We further prove in Appendix A.4 that there is a one-to-one
correspondence between the Taylor series of θ̂−S(δ) and the Neumann series: for any k ∈ N+, the
k-th order approximation of θ̂−S(δ) is equivalent to truncating the Neumann series at Mk−1

S . On the
other hand, LAGS is based on the diagonal approximation of (Ik −MS).

To systematically study the failure mode of LAGS, we consider S = {i, j}. In this case,

A−{i,j} = x⊤
test

(
(1− hjj)N

−1xiri + (1− hii)N
−1xjrj + hijN

−1(xirj + xjri)

(1− hii)(1− hjj)− h2
ij

)

=
(1− hii)(1− hjj)(A−{i} +A−{j}) + hijx

⊤
testN

−1(xirj + xjri)

(1− hii)(1− hjj)− h2
ij

. (11)

From Eq.(11), we identify two primary factors contributing to the non-additivity of the group effect:
the cross-leverage score hij in the denominator, which can lead to super-additivity by inflating the
sum of individual effects, and the cross terms x⊤

testN
−1(xirj + xjri) in the numerator, which may

result in sub-additivity through the neutralization of individual effects. We refer to these phenomena
as “amplification” and “cancellation,” respectively, and will delve into how they provably lead to the
failure of LAGS in what follows.
Amplification. Amplification occurs when the group effect of a set substantially exceeds the sum of
individual effects. As suggested by Eq.(11), this phenomenon is pronounced when the cross-leverage
score is high. Therefore, we focus on scenarios where there are c ≥ 2 identical copies of a sample,
in which case the cross-leverage score becomes the leverage score. Intuitively, this setting can be
generalized to a cluster of similar samples. We first prove a useful result in this context.
Proposition 3.4. Suppose there are c copies of (xi, yi). We have

A−{i}c

A−{i}
=

c · (1− hii)

1− chii
> c, (12)
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where A−{i}c denotes the group effect of removing all c copies of (xi, yi).

Figure 2: LAGS fails in 2-MISS due to amplification

The proof can be found in Appendix A.5.
It suggests that the group effect not only
surpasses the sum of individual effects, but
their ratio can be unbounded as hii → 1

c .
Put differently, a sample with minor in-
fluence can collectively cause a substan-
tial effect when grouped with similar ones.
In MISS, this could lead to the failure of
LAGS when there is a cluster of samples
with high leverage scores yet do not have
the largest individual effects. This intuition
is illustrated in Figure 2: while points 7⃝
and 8⃝ (the pink cluster) have the highest in-
dividual effects due to their large residuals,
points 1⃝ and 2⃝ (the green cluster) with
high leverage scores constitute the most
influential size-2 subset.

We show a generalization of this example
in the following theorem and defer its proof to Appendix A.6.
Theorem 3.5. Suppose there are c copies of (x1, y1) and (xn, yn), and that h11 > hnn. Under the
label generation process described in Eq.(7), there exists some p, such that LAGS fails in c-MISS.

Cancellation. Cancellation happens when the group effect of a set S is less than one of its subsets
S′, indicating that removing S \ S′ induces a negative effect.

Figure 3: LAGS fails in 2-MISS due to cancellation

In this case, cancellation is equivalent to
A−{1,n} < A−{n} (we assume w.l.o.g.
that A−{n} > A−{1}). From Eq.(11), this
inequality is likely to hold when A−{1} has
a small magnitude compared to A−{n}, and
the sign of h1n differs from that of rn

r1
. If

we further have that A−{1} and A−{n} are
the top-2 positive individual effects (which
guarantees that they will be selected by the
greedy algorithm), then LAGS will fail in
this context.

We illustrate this in Figure 3: although
points 8⃝ and 1⃝ have the top-2 individual
effects and are positive, their group effect
as a size-2 subset is less than the individual
effect of point 8⃝.

We present a more general result in the
following theorem and defer its proof to Appendix A.7.
Theorem 3.6. Assume h1n ̸= 0. Under the label generation process described in Eq.(7), there exists
some p, such that LAGS fails in 2-MISS.

Takeaway: LAGS provably works for MISS when all cross-leverage scores are zero, but can fail
with even a single non-zero cross-leverage score. This highlights the algorithm’s fragility.

4 Promises of the adaptive greedy algorithm

Given the limitations of LAGS, a pertinent question arises: is it possible to capture the non-additive
structure of the joint effect without enumerating subsets? In this section, we examine a refined
heuristic proposed by Kuschnig et al. [2021], and provide a theoretical analysis following our
framework in Section 3. Kuschnig et al. [2021] originally introduced this refined algorithm in the
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context of linear regression, which applies to general influence-based greedy heuristics. The idea is
to adaptively build the influential subset. Specifically, the algorithm works by 1) refitting the model
on the current dataset and recalculating the individual effect or influence estimate for each sample;
2) excluding the most influential sample from the current dataset; 3) adding it to the influential subset.
This iterative process is repeated until the subset reaches the desired size. We refer to this as the
adaptive greedy algorithm.

It is empirically observed that the adaptive greedy algorithm outperforms LAGS in linear regres-
sion [Kuschnig et al., 2021]. In this section, we further aim to provide theoretical support for the
benefits of adaptivity. Specifically, we will show that in scenarios where LAGS fail due to cancel-
lation, the adaptive greedy algorithm can effectively address this problem by leveraging a scoring
function that captures the marginal contributions relative to the removal of the most influential sample.

Following the cancellation setup, (xn, yn) is the most influential sample w.r.t. the full dataset. We
denote A′

−{i} as the actual effect of removing (xi, yi) for 1 ≤ i ≤ n−1 after the removal of (xn, yn).
Essentially, A′ is the scoring function employed in the second step of the adaptive greedy algorithm.
We start by proving two useful properties of A′ (the proof is deferred to Appendix B.2).

Proposition 4.1. The scoring function A′ satisfies the following properties:

1. Sign consistency: A′
−{i} and (A−{i,n} −A−{i}) have the same sign for 1 ≤ i ≤ n− 1;

2. Order preservation: {A′
−{i}}

n−1
i=2 and {A−{i,n}}n−1

i=2 are order-isomorphic.

These properties have significant implications. The first property indicates that A′ is a more reliable
scoring function as it captures the marginal contribution of each sample relative to the removal of
(xn, yn). Hence, in the cancellation setup, A′ will not choose (x1, y1), even though A−{1} represents
the second-largest individual effect and is positive. In contrast, the actual effect A, which reflects the
marginal contribution of each sample relative to the full dataset, does not account for how a newly
selected sample interacts with those already selected. The second property further guarantees the
success of MISS based on A′. Formally, we prove the following for the adaptive greedy algorithm.

Theorem 4.2. Under the label generation process described in Eq.(7), suppose A−{1}, A−{n} > 0,
A−{1,n} < A−{n} (indicating cancellation), and that n ∈ Sopt,2 (i.e., (xn, yn) is contained in the
most influential subset), then the adaptive greedy algorithm solves 2-MISS.

Proof. We first show that the condition A−{1,n} < A−{n} implies that (xn, yn) is the most influential
sample (the proof is deferred to Appendix B.3). This ensures that the adaptive greedy algorithm will
select (xn, yn) in the first step. We now discuss two cases separately.

Case 1: If A−{i,n} −A−{n} < 0 for every 2 ≤ i ≤ n− 1, then Sopt,2 = {n}. Furthermore, by the
first property of Proposition 4.1 we have A′

−{i} < 0 for 1 ≤ i ≤ n− 1. This implies that the adaptive
algorithm will return ∅ in the second step since no scores are positive, as desired.

Case 2: If there exists some 2 ≤ i ≤ n − 1, such that A−{i,n} − A−{n} > 0. We denote the
most influential subset as Sopt,2 = {i∗, n}. Since A−{i∗,n} − A−{n} > 0, the first property of
Proposition 4.1 implies A−{i∗} > 0. Furthermore, by the second property of Proposition 4.1, the
adaptive greedy algorithm will return the correct index i∗ in the second step.

Combining the above two cases finishes the proof of Theorem 4.2.

Remark 4.3. In the cancellation setup, our theoretical results are restricted to 2-MISS. We identify
two challenges: 1) Conceptually, it is not immediately clear how to define cancellation for more
than two samples; 2) Technically, proving the success of MISS is much harder than constructing a
counterexample since it requires enumerating all possible subsets, whose number grows exponentially
with k. We leave this as future work.

Takeaway: In essence, the critical limitation of LAGS and other influence-based greedy heuristics
is their reliance on a one-pass procedure that measures the contribution of each sample solely in
relation to the full training set. On the other hand, the adaptive greedy algorithm considers more
complex interactions between samples, akin to those in data Shapley [Ghorbani and Zou, 2019],
leading to more effective subset selection.
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5 Experiments

In this section, we empirically evaluate the efficacy of the adaptive greedy algorithm on real-world
datasets by comparing the performance of the vanilla greedy algorithm versus the adaptive greedy
algorithm across a range of k’s.1 We cover the simple linear regression studied in Sections 3 and 4 as
well as more complicated scenarios (including the classification task and non-linear neural networks)
as a complement. Additional experiments on synthetic datasets can be found in Appendix C.1.
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Figure 4: Adaptive Greedy v.s. Greedy Algorithm. Row 1: Averaged actual effect A−S measures the
averaged actual effect induced by the greedy and adaptive greedy algorithms. Row 2: Winning rate
indicates the proportion of instances where one algorithm outperforms the other.

Evaluation metrics. We evaluate the algorithms using two metrics, the averaged actual effect and
the winning rate. Given a held-out test set, we define the averaged actual effect A−S as the mean of
the actual effects w.r.t. each test point. A higher score of A−S indicates a more influential subset is
selected on average. Additionally, we report the winning rate across test data points in a held-out test
set, namely the ratio of the algorithm outperforms the other one in terms of the actual effect A−S .
Target functions and greedy algorithms. We consider two types of tasks: regression and clas-
sification. For the regression task, we adopt the target function ϕ(θ) = x⊤

testθ on a given test point
z := (xtest, ytest). We utilize LAGS as the vanilla greedy algorithm. For the classification task, we
consider the target function ϕ(θ) = log(p(z; θ)/(1− p(z; θ))), where p(z; θ) represents the softmax
probability assigned to the correct class. We opt for the ZAMinfluence as the vanilla greedy algorithm.
Experimental setup. For regression, we choose a popular UCI dataset Concrete Compressive
Strength [Yeh, 2007]. For classification, we experiment with a moderate-scale UCI tabular dataset
Waveform Database Generator [Breiman and Stone, 1988] and an image dataset MNIST [LeCun
et al., 1998]. We apply logistic regression on the former and a simple 2-layer multi-layer perceptron
(MLP) on the latter. We defer details of the datasets, train/test split, and MLP training to Appendix C.
Approximated actual effect. We address one unique challenge for the MLP: for neural networks,
it is impossible to obtain the actual effect since the optimal model is not unique in general. To address
this, we adopt an ensemble technique used in recent literature [Park et al., 2023]: averaging the target
function’s values from several independently trained models. Specifically, we train 5 models with the
same initialization but different seeds. This works for both the greedy algorithm and evaluation: for
the former, we estimate each model’s influence with the ZAMinfluence algorithm and select the most
influential subset based on the averaged influence; for the latter, we approximate the actual effect of a
subset S by the averaged difference of the target values of each model, trained with or without S.

While ensemble solves the non-uniqueness problem, it induces a significant computational burden.
Noticeably, the adaptive greedy algorithm now requires retraining for (k × number of ensembles)
times. To mitigate it, we use an efficient approximate variant of the ZAMifluence estimation algorithm
in our implementation and devise two strategies. We defer the concrete descriptions to Appendix C.4.

1Our code is publicly available at https://github.com/sleepymalc/MISS.
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Results. We present the main results in Figure 4. First, we see that as k increases, the averaged
actual effect A−S given by both the vanilla and the adaptive greedy algorithms increase, which aligns
with the intuition that removing a larger set S induces a greater joint effect A−S . Furthermore, the
adaptive greedy algorithm surpasses its vanilla counterpart across all scenarios and all k’s under both
metrics. This implies that the benefits of adaptivity extend beyond linear regression and apply to
more complicated scenarios like classification tasks and even non-linear neural networks.

Finally, for the experiment on MLP specifically, we report results of multiple random seeds in
Appendix C.5 to account for the randomness in model training. The consistent results across different
seeds demonstrate the robustness of the aforementioned conclusions.

6 Discussion

Failure of the adaptive greedy algorithm. While Theorem 4.2 demonstrates the advantages of
the adaptive greedy algorithm, it is still not perfect. Specifically, the assumption n ∈ Sopt,2 in
Theorem 4.2 is actually necessary: if the most influential sample is not part of the most influential
subset, the algorithm will make an error in the first step and cannot correct this mistake in subsequent
procedures. For instance, under the amplification setup as in Theorem 3.5, it is straightforward to see
that the adaptive greedy algorithms provably fail in c-MISS since it selects (xn, yn) in the first place.
Second-order approximation. To more effectively capture the amplification effect caused by
clusters of similar samples, it is essential to utilize algorithms that can detect higher-order interactions.
In this context, the second-order group influence introduced by Basu et al. [2020] is a more powerful
alternative. It is calculated based on the second-order approximation as described in Remark 3.3:

Q−S = x⊤
testN

−1X⊤
S

(
Ik +XSN

−1X⊤
S

)
(XS θ̂ − yS). (13)

From here, the original MISS can be cast as a quadratic optimization problem (see Appendix D.1)
and solved via L1 relaxation and projected gradient descent. Furthermore, we have Q−{1}c =

c2v1∥x1∥2 + cv1, Q−{n}c = c2vn∥xn∥2 + cvn, indicating that quadratic approximation can capture
the joint effect amplified by the leverage score by emphasizing the norm.
Submodular property. Given the challenges of finding an exact solution, it is tempting to explore
approximate solutions to MISS with provable guarantees. A classical result of Nemhauser et al.
[1978] states that so long as the (set) value function satisfies the submodular property, the greedy
algorithm will return a solution within a factor 1− 1/e of the optimum. While the value function
associated with the first-order approximation is submodular due to linearity, we show in Appendix D.2
that this is generally not the case for Q−S . Since the second-order approximation is a more accurate
estimation of the actual effect, this suggests that the actual effect is unlikely to be submodular either.
Therefore, MISS is expected to be hard even when we allow approximate solutions.
The role of target function. Our negative results critically rely on the choice of xtest, underscoring
the importance of the target function — an issue that has been overlooked in prior research. In
addition, we have identified a few target functions in which the influence-based greedy heuristics
fail to provide meaningful results: 1) the change of norm, ϕ1(θ) = ∥θ − θ̂∥2; 2) the training loss,
ϕ2(θ) = ∥Xθ − y∥2. In both of these cases, we have ∇θϕ(θ̂) = 0, implying that the scores assigned
to each sample will also be 0.
Implication on Linear Datamodeling Score. Recently, Linear Datamodeling Score (LDS) [Park
et al., 2023] has emerged as a prominent metric for evaluating data attribution algorithms [Zheng et al.,
2024, Bae et al., 2024]. Central to its design is the assumption that group influence is additive, which
we critically examine in our work and reach a negative conclusion. This raises an important question:
does a higher LDS result from a truly better data attribution algorithm, or are certain algorithms
simply more aligned with the potentially flawed additive assumption? While LDS offers valuable
insights into data attribution, we believe it is crucial for the research community to develop evaluation
metrics that better capture the non-additive and contextual nature of training data influence.
Limitation and future direction. Despite thorough theoretical and empirical analyses, our study
does not offer algorithmic improvements over existing research. We believe solving general MISS
is a challenging problem, and hypothesize that there is an inherent trade-off between performance
and computational efficiency, in which an increase in performance necessitates additional computing.
This pattern is already reflected in the comparison between the vanilla and adaptive greedy algorithms,
a trend that will likely continue in future research. To address this challenge, we suggest incorporating
the knowledge of target function and data characteristics into algorithmic designs.
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7 Related work

(Most) influential subset. Since the seminal work of Koh and Liang [2017], which utilized the
influence function to identify influential individuals, subsequent research has explored finding an
influential set of samples [Khanna et al., 2019, Basu et al., 2020, Broderick et al., 2020]. Among
them, a notable example is the ZAMinfluence algorithm by Broderick et al. [2020], which builds
on the group influence function [Koh et al., 2019] and greedily selects an approximately most
influential subset. ZAMinfluence is particularly renowned for its broad applicability: it can be used
to improve various dimensions of machine learning such as pre-training [Wang et al., 2023], dataset
pruning [Yang et al., 2023b], and trustworthiness [Wang et al., 2022, Sattigeri et al., 2022, Chhabra
et al., 2024], as well as to assess the sensitivity of inferential results in multiple domains such as
applied econometrics [Attanasio et al., 2015, Angelucci et al., 2015], economics [Finger and Möhring,
2022, Martinez, 2022], and social science [Eubank and Fresh, 2022]. Additionally, Kuschnig et al.
[2021] proposed a refined version of ZAMinfluence based on iteratively refitting the model and
removing the most influential sample, an approach which was also explored in Yang et al. [2023a].

Theoretical understanding of MISS. Despite its empirical success, the theoretical understanding
of ZAMinfluence and other influence-based greedy heuristics remains limited. Giordano et al.
[2019a,b] provided finite sample error bounds between the approximated and actual effects, but
consistency (i.e., the error uniformly converges to 0 for all subsets as the sample size goes to infinity)
is only achieved as the fraction of removed samples α approaches zero. Fisher et al. [2023] extended
the analysis to any fixed 0 < α < 1, but their consistency is not directly related to the actual effect,
thus offering limited insights for MISS. Moitra and Rohatgi [2023], Freund and Hopkins [2023]
examined finite-sample stability (i.e., the minimum number of samples that need to be dropped in
order to flip the sign of a coordinate) in linear regression and proposed algorithms with provable
guarantees, yet they are confined to highly specific scenarios, such as very low dimensions or binary
design matrices. Saunshi et al. [2023] explored the additivity assumption in group influence within a
different yet less interpretable framework. We position our work as the first to provide a fine-grained
analysis of the common practices in MISS, shedding light on the limitations of influence-based greedy
heuristics as well as the potential of the adaptive greedy algorithm.

Multiple outlier detection. Classical tools in statistics, such as Cook’s distance and its variants, can
detect a single outlier in linear regression [Cook, 1986, Chatterjee and Hadi, 1986] and generalized
linear models [Wojnowicz et al., 2016]. Nevertheless, they struggle with multiple outliers due to the
well-known phenomena of swamping and masking [Rousseeuw and Leroy, 1987, Hadi and Simonoff,
1993]. This challenge has motivated a line of research in regression diagnostics [Fox, 2019], known
as multiple outlier detection. Prominent approaches include clustering [Gray and Ling, 1984, Hadi,
1985], influence matrix [Peña and Yohai, 1995], and a class of iterative procedures [Belsley et al.,
1980, Hadi and Simonoff, 1993, She and Owen, 2011, Roberts et al., 2015] that resemble Kuschnig
et al. [2021]. While seemingly alike, its key distinction from influential subset selection is that the
‘outlier’ is defined context-independently, rather than with respect to a specific quantity of interest.

Broader context. Our work falls under a broader research area that aims to attribute and interpret
model behavior through the lens of data (a.k.a. data attribution). Beyond the influence function,
which is central to our study, other popular approaches include the representer point method [Yeh
et al., 2018], the data Shapley [Ghorbani and Zou, 2019, Jia et al., 2019], the TracIn algorithm [Pruthi
et al., 2020], and more recently, the datamodels [Ilyas et al., 2022]. For a comprehensive review of
this subject, we refer readers to Hammoudeh and Lowd [2024]. Finally, we emphasize that MISS
should not be confused with data selection [John and Draper, 1975, Kolossov et al., 2023]. While
many data attribution algorithms can indeed be applied for data selection (e.g., a recent study Wang
et al. [2024] demonstrated that the effectiveness of data Shapley in data selection hinges on the utility
function), data selection remains an independent research area. It typically involves subsampling
a small fraction of the training data to enable effective and data-efficient learning or estimation,
differing from MISS in its objectives, methodologies, and applications.

8 Conclusion

We have provided a comprehensive study of common practices in MISS, revealing the failure modes
of influence-based greedy heuristics and uncovering the benefits of adaptivity. We hope our work
will enhance the transparency and interpretability of machine learning models by illuminating the
collective influence of training data, and serve as a foundation for future algorithmic advancements.
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A Omitted details from Section 3

A.1 Preparation work

We start by calculating the OLS estimator, the negative residuals ri’s, the influence estimates vi’s,
and the individual effects A−{i}’s. Suppose there are c copies of (x1, y1) and (xn, yn), where c = 1
unless otherwise noted. Under the label generation process in Eq.(7), we have

θ̂ = N−1 (Nθ∗ − cεx1 − pcεxn) . (14)

Therefore, the negative residuals are

r1 = (1− ch11 − pch1n)ε, rn = (p− pchnn − ch1n)ε, (15)

and
ri = −(ch1i + pchin)ε, 2 ≤ i ≤ n− 1. (16)

For xtest =
x1+pxn

p+1 , the influence estimates can be calculated as follows:

v1 =
(h11 + ph1n)(1− ch11 − pch1n)ε

p+ 1
, vn =

(phnn + h1n)(p− pchnn − ch1n)ε

p+ 1
, (17)

whereas

vi = −c(h1i + phin)
2ε

p+ 1
≤ 0, 2 ≤ i ≤ n− 1. (18)

Finally, we have

A−{1} =
(h11 + ph1n)(1− ch11 − pch1n)ε

(p+ 1)(1− h11)
, A−{n} =

(phnn + h1n)(p− pchnn − ch1n)ε

(p+ 1)(1− hnn)
,

(19)
and

A−{i} = − c(h1i + phin)
2ε

(p+ 1)(1− hii)
≤ 0, 2 ≤ i ≤ n− 1. (20)

We also discuss a few properties of the hat matrix H .
Lemma A.1. The leverage scores satisfy: h11 < 1

c , hnn < 1
c .

Proof. Note the hat matrix is idempotent, i.e., H2 = H . As a consequence, we have

h11 = ch2
11 +

n−1∑
i=2

h2
1i + ch2

1n. (21)

Note
∑n−1

i=2 xix
⊤
i is invertible, and that N−1x1 is a non-zero vector. As a consequence, we have

n−1∑
i=2

h1ixi =

n−1∑
i=2

xix
⊤
i

N−1x1 ̸= 0, (22)

which further implies that the sequence {h1i}n−1
i=2 cannot be all zero. Therefore, we have h11 < 1

c .
The same argument applies to hnn.

Lemma A.2. The following inequalities hold:

h2
1n < h11hnn, and (1− ch11)(1− chnn) < c2h2

1n. (23)

Proof. Since N is positive definite (PD), P =
√
N−1 is well-defined and is invertible. Note

hij = x⊤
i N

−1xj = ⟨Pxi, Pxj⟩. Therefore, h2
1n < h11hnn is equivalent to

⟨Px1, Pxn⟩ < ∥Px1∥ · ∥Pxn∥. (24)

Since h11 > hnn, we have x1 ̸= xn, and therefore x1 ∖// xn since their first coordinates are the same.
Therefore, Eq.(24) follows from the Cauchy-Schwarz inequality.
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For the second inequality, denote C⊤ = (
√
cx1,

√
cxn) ∈ Rd×2. Consider the following matrix:

S :=

(
N C⊤

C I2

)
. (25)

Since the Schur complement of I2: S/I2 = N − C⊤I2C =
∑n−1

i=2 xix
⊤
i ≻ 0, and that I2 ≻ 0, we

have S ≻ 0. This further implies that the Schur complement of N is positive definite, i.e.,

S/N = I2 − CN−1C⊤ =

(
1− ch11 −ch1n

−ch1n 1− chnn

)
≻ 0. (26)

As a consequence, we have det(S/N) = (1− ch11)(1− chnn)− c2h2
1n > 0.

A.2 Proof of Theorem 3.1

Proof of Theorem 3.1. We will show that there exists some p, such that

1 <
vn
v1

<
1− hnn

1− h11
, (27)

and that v1 and vn are positive. Since vi ≤ 0 for 2 ≤ i ≤ n − 1, this implies that ZAMinfluence
selects (xn, yn) and fails to find the most influential sample (x1, y1). We will discuss three cases.

Case 1: h1n = 0. In this case, both v1 and vn are positive by Lemma A.1. Furthermore, we have

vn
v1

=
hnn(1− hnn)

h11(1− h11)
· p2, (28)

which is continuous and takes values in [0,∞). Hence, there exists a p > 0 such that Eq.(27) holds.

Case 2: h1n < 0. When

−h1n

hnn
< p < −h11

h1n
, (29)

both v1 and vn are positive. Note Eq.(29) forms a valid interval by the first inequality in Lemma A.2.
Now consider

vn
v1

=
(phnn + h1n)(p− phnn − h1n)

(h11 + ph1n)(1− h11 − ph1n)
, (30)

which is continuous and approaches 0 as p → − h1n

hnn
and approaches ∞ as p → − h11

h1n
. Hence, there

exists a p > 0 such that Eq.(27) holds.

Case 3: h1n > 0. When
h1n

1− hnn
< p <

1− h11

h1n
, (31)

both v1 and vn are positive. This forms a valid interval by the second inequality in Lemma A.2. The
rest of the analysis can be performed similarly as in Case 2.

A.3 Proof of Proposition 3.2

Proof of Proposition 3.2. Applying the Woodbury matrix identity, we have

(N −X⊤
S IkXS)

−1 = N−1 +N−1X⊤
S (Ik −XSN

−1X⊤
S )−1XSN

−1 (32)

= N−1 +N−1
∑
i∈S

1

1− hii
xix

⊤
i N

−1. (33)

Therefore,

θ̂−S − θ̂ = (N −X⊤
S IkXS)

−1X⊤
−Sy−S −N−1X⊤y (34)

=
(
N−1 +N−1X⊤

S (Ik −XSN
−1X⊤

S )−1XSN
−1
)
(X⊤y −X⊤

S yS)−N−1X⊤y

(35)

= N−1X⊤
S (Ik −XSN

−1X⊤
S )−1

(
XSN

−1X⊤y − yS

)
(36)

= N−1X⊤
S

(
Ik −XSN

−1X⊤
S

)−1

(XS θ̂ − yS), (37)
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and the actual effect of removing S is

A−S := ϕ(θ̂−S)− ϕ(θ̂) = x⊤
testN

−1X⊤
S

(
Ik −XSN

−1X⊤
S

)−1

(XS θ̂ − yS). (38)

A.4 Correspondence between the Neumann series and the Taylor series

We will demonstrate that there is a one-to-one correspondence between the Neumann series (Ik −
MS)

−1 and the Taylor series of θ̂−S(δ). To see this, consider

∂θ̂−S(δ)

∂δ
= n(X⊤X − nδX⊤

S XS)
−1X⊤

S (XS θ̂−S(δ)− yS). (39)

From Petersen et al. [2008], we have

∂K−1

∂δ
= −K−1 ∂K

∂δ
K−1 (40)

for any invertible symmetric matrix K. By induction, we can show that for any i ≥ 1,

∂iθ̂−S(δ)

∂δi
= (ni · i!) · (X⊤X − nδX⊤

S XS)
−1X⊤

S[
XS(X

⊤X − nδX⊤
S XS)

−1X⊤
S

]i−1

(XS θ̂−S(δ)− yS).

(41)

Therefore, by Taylor expansion, we have

θ̂−S = θ̂ +

∞∑
i=1

1

i!

∂iθ̂−S(δ)

∂δi

∣∣∣∣∣
δ=0

(
1

n

)i

(42)

= θ̂ +N−1X⊤
S

 ∞∑
i=1

(XSN
−1X⊤

S )i−1

 (XS θ̂ − yS) (43)

= θ̂ +N−1X⊤
S

 ∞∑
i=1

M i−1
S

 (XS θ̂ − yS). (44)

Therefore, truncating at the i-th element in the Neumann series is equivalent to the ith-order Taylor
approximation of θ̂−S(δ). In particular, first-order approximation corresponds to the identity matrix,
which does not concern the leverage scores at all. Conversely, higher-order approximations entail
more accurate information on the leverage scores but come at the cost of computational efficiency.

A.5 Proof of Proposition 3.4

Proof of Proposition 3.4. Denote θ−{i}c as the optimal model parameters after removing all c copies
of (xi, yi), and z =

∑n
j=1 xjyj . Using the Sherman-Morrison formula, we have

θ̂−{i}c − θ̂ = (N − cxix
⊤
i )

−1(z − cxiyi)−N−1z (45)

=

(
N−1 +

cN−1xix
⊤
i N

−1

1− chii

)
(z − cxiyi)−N−1z (46)

=
cN−1xix

⊤
i θ̂

1− chii
− cN−1xiyi − cN−1xiyi

chii

1− chii
(47)

=
cN−1xiri
1− chii

. (48)

Consequently,

A−{i}c =
cx⊤

testN
−1xiri

1− chii
. (49)
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On the other hand, the influence of removing a single copy is

A−{i} =
x⊤

testN
−1xiri

1− hii
. (50)

Therefore,
A−{i}c

A−{i}
=

c · (1− hii)

1− chii
> c. (51)

A.6 Proof of Theorem 3.5

Proof of Theorem 3.5. It suffices to show that there exists some p, such that A−{1} < A−{n} and
A−{1}c > A−{n}c . This further implies that the failure of LAGS. From Proposition 3.4, it suffices to
show there exists some p, such that

1 <
A−{n}
A−{1}

<
(1− chnn)(1− h11)

(1− ch11)(1− hnn)
. (52)

Note this is a valid interval since

(1− ch11)(1− hnn) = 1− ch11 − hnn + ch11hnn (53)
< 1− chnn − h11 + ch11hnn (54)
= (1− chnn)(1− h11), (55)

where we use c ≥ 2 and h11 > hnn in the second inequality. Furthermore, Eq.(52) is equivalent to

1− hnn

1− h11
<

vn
v1

<
1− chnn

1− ch11
, (56)

where we use A−{i} = vi
1−hii

. Therefore, we can repeat the analysis in the proof of Theorem 3.1 and
conclude the existence of a desired p.

A.7 Proof of Theorem 3.6

Proof of Theorem 3.6. Recall from Eq.(11) we have

A−{1,n} =
(1− h11)(1− hnn)(A−{1} +A−{n}) + h1nx

⊤
testN

−1(x1rn + xnr1)

(1− h11)(1− hnn)− h2
1n

. (57)

Therefore, A−{1,n} < A−{n} is equivalent to

(1− h11)(1− hnn)A−{1} + h2
1nA−{n} + h1nx

⊤
testN

−1(x1rn + xnr1) < 0. (58)

Plugging in the formulas of A−{1}, A−{n}, r1, rn, Eq.(58) is equivalent to

(1− hnn)(h11 + ph1n)(1− h11 − ph1n) + h2
1n(phnn + h1n)

(
p− h1n

1− hnn

)
<− h1n(h11 + ph1n)(p− phnn − h1n)− h1n(phnn + h1n)(1− h11 − ph1n). (59)

Combining like terms, we get

(h11 + ph1n)
(
(1− h11)(1− hnn)− ph1n(1− hnn) + ph1n − h1n(phnn + h1n)

)
<− (phnn + h1n)

(
ph2

1n − h3
1n

1− hnn
− h1n(h11 + ph1n) + h1n

)
. (60)

This could be simplified to

(h11 + ph1n)
(
(1− h11)(1− hnn)− h2

1n

)
< −h1n(phnn + h1n)

(1− h11)(1− hnn)− h2
1n

1− hnn
.

(61)
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Since (1− h11)(1− hnn)− h2
1n > 0 by Lemma A.2, the above inequality is equivalent to

h1n(phnn + h1n) + (1− hnn)(h11 + ph1n) < 0, (62)

or
h1np+ h11(1− hnn) + h2

1n < 0. (63)

Now it suffices to show there exists a p, such that A−{1}, A−{n} > 0, and that Eq.(63) holds.

Case 1: h1n < 0. When

−h1n

hnn
< p < −h11

h1n
, (64)

both A−{1} and A−{n} are positive. Furthermore, we have

lim
p→− h11

h1n

h1np+ h11(1− hnn) + h2
1n = h2

1n − h11hnn < 0 (65)

from Lemma A.2. This proves the existence of a desired p.

Case 2: h1n > 0. When

−h11

h1n
< p < −h1n

hnn
, (66)

both A−{1} and A−{n} are positive. Similarly, we can pick a p that is sufficiently close to − h11

h1n
,

such that p ̸= −1 and Eq.(63) holds.

Combining the above two cases finishes the proof as desired.

B Omitted details from Section 4

B.1 Preparation work

We start by computing the updated OLS estimator, the negative residuals, and the individual effects
after removing the sample (xn, yn). Denote N ′ =

∑n−1
i=1 xix

⊤
i , the updated OLS estimator is

θ̂′ = (N ′)−1(N ′θ∗ − εx1). (67)

Therefore, the updated negative residuals are r′1 = (1− h′
11)ε and r′i = −h′

1iε for 2 ≤ i ≤ n− 1.
By the Sherman-Morrison formula,

(N ′)−1 = N−1 +
N−1xnx

⊤
nN

−1

1− x⊤
nN

−1xn
= N−1 +

N−1xnx
⊤
nN

−1

1− hnn
. (68)

Therefore, we have

h′
1i = h1i +

h1nhin

1− hnn
, h′

ii = hii +
h2
in

1− hnn
, x⊤

i (N
′)−1xn =

hin

1− hnn
(69)

for 1 ≤ i ≤ n− 1. Finally, the adjusted individual effects are

A′
−{1} =

x⊤
testN

′−1x1r
′
1

1− h′
11

=
h′
11 + px⊤

1 (N
′)−1xn

p+ 1
, (70)

and

A′
−{i} =

x⊤
testN

′−1xir
′
i

1− h′
ii

= −ph′
1ix

⊤
i N

′−1xn + h′2
1i

(p+ 1)(1− h′
ii)

(71)

for 2 ≤ i ≤ n− 1.

We will also make use of the following lemma.

Lemma B.1. For 2 ≤ i ≤ n− 1, A−{i,n} < A−{n} is equivalent to(
h1ihin(1− hnn) + h2

inh1n

)
p+

(
h1i(1− hnn) + hinh1n

)2
> 0. (72)
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Proof. From Eq.(11), we have

A−{i,n} =
(1− hii)(1− hnn)(A−{i} +A−{n}) + hinx

⊤
testN

−1(xirn + xnri)

(1− hii)(1− hnn)− h2
in

. (73)

Therefore, A−{i,n} < A−{n} is equivalent to

(1− hii)(1− hnn)A−{i} + h2
inA−{n} + hinx

⊤
testN

−1(xirn + xnri) > 0. (74)

Plugging in the formulas of A−{i}, A−{n}, ri, rn, Eq.(74) is equivalent to

−(h1i + phin)
2(1− hnn) +

(phnn + h1n)(p− phnn − h1n)h
2
in

1− hnn

+ hin(h1i + phin)(p− 2phnn − 2h1n) > 0. (75)

Multiplying both side by (1− hnn), the coefficient of p2 is

−h2
in(1− hnn)

2 + h2
inhnn(1− hnn) + h2

in(1− hnn)(1− 2hnn) = 0; (76)

the coefficient of p is

− 2h1ihin(1− hnn)
2 + h2

inh1n(1− 2hnn) + (1− hnn)hin

(
h1i(1− 2hnn)− 2h1nhin

)
=− h1ihin(1− hnn)− h2

inh1n; (77)

and the constant term is

−(1− hnn)
2h2

1i − h2
1nh

2
in − 2h1ih1nhin(1− hnn) = −

(
h1i(1− hnn) + hinh1n

)2
. (78)

Therefore, Eq.(75) is equivalent to(
h1ihin(1− hnn) + h2

inh1n

)
p+

(
h1i(1− hnn) + hinh1n

)2
> 0. (79)

B.2 Proof of Proposition 4.1

Proof of sign consistency. For (x1, y1), plugging Eq.(69) into Eq.(70), we have

A′
−{1} < 0 ⇐⇒

(
h11 +

h2
1n

1− hnn

)
+ p

(
h1n +

h1nhnn

1− hnn

)
< 0 (80)

⇐⇒ h1np+ h11(1− hnn) + h2
1n < 0, (81)

which aligns with Eq.(63). Therefore, A−{1,n} < A−{n} ⇐⇒ A′
−{1} < 0.

For (xi, yi) where 2 ≤ i ≤ n− 1, plugging Eq.(69) into Eq.(71), we have

A′
−{i} = −

p
(
h1i +

h1nhin

1−hnn

)
hin

1−hnn
+
(
h1i +

h1nhin

1−hnn

)2
(p+ 1)

(
1− hii −

h2
in

1−hnn

) (82)

= −
phin

(
h1nhin + h1i(1− hnn)

)
+
(
h1i(1− hnn) + h1nhin

)2
(p+ 1)(1− hnn)si

. (83)

This implies

A′
−{i} < 0 ⇐⇒

(
h1ihin(1− hnn) + h2

inh1n

)
p+

(
h1i(1− hnn) + hinh1n

)2
> 0, (84)

which aligns with Eq.(72) in Lemma B.1. Therefore, A−{i,n} < A−{n} ⇐⇒ A′
−{i} < 0.

Proof of order preservation. Plugging A−{i}, A−{n} into Eq.(11), we have

A−{i,n} =

−(1− hnn)(h1i + phin)
2 + (1− hii)(phnn + h1n)(p− phnn − h1n)

+ hin(h1i + phin)(p− 2phnn − 2h1n)

(1− hii)(1− hnn)− h2
in

. (85)
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Denote si = (1− hii)(1− hnn)− h2
in > 0. In the numerator, the coefficient of p2 is

−(1− hnn)h
2
in + hnn(1− hii)(1− hnn) + h2

in(1− 2hnn) = hnnsi; (86)

the coefficient of p is

− 2h1ihin(1− hnn) + (1− hii)(1− hnn)h1n − (1− hii)h1nhnn

− 2h1nh
2
in + h1ihin(1− 2hnn) (87)

= −h1ihin − h1nh
2
in + sih1n − h1nhnn(1− hii) (88)

= − 1

1− hnn

(
(h1ihin + h1nh

2
in)(1− hnn) + h1nhnnh

2
in + sih1n(2hnn − 1)

)
(89)

= − 1

1− hnn

(
hin

(
h1i(1− hnn) + h1nhin

)
+ sih1n(2hnn − 1)

)
, (90)

and the constant term is

− (1− hnn)h
2
1i − h2

1n(1− hii)− 2h1nh1ihin

=− 1

1− hnn

(
(1− hnn)

2h2
1i + 2h1nh1ihin(1− hnn) + h2

1nsi + h2
1nh

2
in

)
(91)

=− 1

1− hnn

((
h1i(1− hnn) + h1nhin

)2
+ h2

1nsi

)
. (92)

Therefore,

A−{i,n} =

(
hnnp

2 +
(1− 2hnn)h1n

1− hnn
p− h2

1n

1− hnn

)
+Bi, (93)

where

Bi = −
phin

(
h1i(1− hnn) + h1nhin

)
+
(
h1i(1− hnn) + h1nhin

)2
si

. (94)

Since h1n, hnn, p are constants, {A−{i,n}}n−1
i=1 and {Bi}n−1

i=1 are order-isomorphic. Furthermore,
from Eq.(83) we have

A′
−{i} =

Bi

(p+ 1)(1− hnn)
. (95)

Therefore, {A′
−{i}}

n−1
i=2 and {Bi}n−1

i=2 are also order-isomorphic. The conclusion then follows from
the transitivity of order-isomorphism.

B.3 Proof of a technical lemma

We will show that when A−{1}, A−{n} > 0, A−{1,n} < A−{n} implies A−{1} < A−{n}. This
guarantees (xn, yn) to be the most influential sample since A−{i} ≤ 0 for 2 ≤ i ≤ n− 1.

Proof. Plugging in the formulas of A−{1}, A−{n}, we have

A−{1} < A−{n} ⇐⇒
(
p− h1n

1− hnn

)
(phnn + h1n) > (ph1n + h11)

(
1− ph1n

1− h11

)
. (96)

This is equivalent to(
hnn +

h2
1n

1− h11

)
p2 +

h1n(h11 − hnn)

(1− h11)(1− hnn)
p−

(
h11 +

h2
1n

1− hnn

)
> 0. (97)

Recall from Eq. (63) that A−{1,n} < A−{n} is equivalent to h1np + h11(1 − hnn) + h2
1n < 0. It

follows that

h1n(h11 − hnn)

(1− h11)(1− hnn)
p−

(
h11 +

h2
1n

1− hnn

)
>

h1n(h11 − hnn)

(1− h11)(1− hnn)
p+

h1n(1− h11)

(1− h11)(1− hnn)
p

(98)

=
h1n

1− h11
p. (99)
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Therefore, it suffices to show(
hnn +

h2
1n

1− h11

)
p2 +

h1n

1− h11
p > 0. (100)

We now discuss two cases.

Case 1: h1n < 0. In this case, we must have p > 0 to ensure Eq. (63). Therefore, Eq. (100) is
equivalent to

h1n +
(
hnn(1− h11) + h2

1n

)
p > 0. (101)

Plugging in p = −h11(1−hnn)+h2
1n

h1n
, it suffices to show(

h11(1− hnn) + h2
1n

)(
hnn(1− h11) + h2

1n

)
> h2

1n. (102)

This is true since (
h11(1− hnn) + h2

1n

)(
hnn(1− h11) + h2

1n

)
= h11hnn(1− h11 − hnn) + h2

1n(h11 + hnn) + (h11hnn − h2
1n)

2 (103)

> h2
1n(1− h11 − hnn) + h2

1n(h11 + hnn) = h2
1n. (104)

Case 2: h1n > 0. In this case, we must have p < 0 to ensure Eq. (63). Therefore, Eq. (100) is
equivalent to

h1n +
(
hnn(1− h11) + h2

1n

)
p < 0. (105)

Plugging in p = −h11(1−hnn)+h2
1n

h1n
, it suffices to show(

h11(1− hnn) + h2
1n

)(
hnn(1− h11) + h2

1n

)
> h2

1n, (106)

which is essentially Eq.(102).

Combining the above two cases finishes the proof as desired.

C Omitted details from Section 5

C.1 Empirical justification with synthetic dataset

We first demonstrate our theory of linear regression empirically, Theorem 4.2 in particular, with
a carefully designed synthetic dataset to create the cancellation phenomenon. Firstly, we random
sample θ∗ ∈ Rd and X ∈ R(n−2·c)×d where each entrance is between [−1, 1]. Here, c is the size of
two clusters that will happen to create the cancellation phenomenon. We then artificially attached
an all-one matrix 1 ∈ R(2·c)×d to (the bottom of) X , which corresponds to the farmost features of
those two clusters. Then, we create the response y ∈ Rn by first calculating the perfect response
y∗ := Xθ∗, and perturb it by adding and subtracting some noise ϵ from the two clusters, respectively.
In particular, for each i ∈ [2 · c + 1, n], we sample a noise ϵi ∼ y∗i Z proportional to its original
magnitude y∗i , where Z ∼ N (1, σ2) for some variance σ2 > 0. Finally, we note that we create each
test data point xtest ∈ Rd by again sampling each entry uniformly from [−1, 1].

Intuitively, this training dataset contains two clusters on the opposite side of the ground truth θ∗,
hence creating the cancellation phenomenon. For demonstration, we choose d = 10, σ2 = 0.2, and
n = 1000 with a cluster size of c = 50. The results are reported in Figure 5. We see that when k < c,
the vanilla greedy and the adaptive greedy algorithm perform similarly. However, when k > c, we
immediately see a clear separation in terms of the performance of the vanilla greedy and the adaptive
greedy algorithm, which gives strong evidence that the adaptive greedy can capture the marginal
effect after removing the entire cluster.
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Figure 5: Adaptive Greedy v.s. Greedy Algorithm. Left: Averaged actual effect A−S measures the
averaged actual effect induced by the greedy and adaptive greedy algorithms. Right: Winning rate
indicates the proportion of instances where one algorithm outperforms the other.

C.2 Details of the datasets

We detail two of the UCI datasets we chose in our experiments.

• Concrete Compressive Strength [Yeh, 2007]: The dataset contains 1030 instances and 8 features.
• Waveform Database Generator [Breiman and Stone, 1988]: It contains 5000 instances and 21

features, with three different classes. Since we consider binary classification for logistic regression,
we select the first two classes for our experiments, which contain in total 3254 instances.

The two UCI datasets are licensed under CC-BY 4.0, while the MNIST dataset holds a CC BY-SA
3.0 license.

Train/valid/test split. For the first two UCI datasets, we randomly sample 50 data points as the test
set and use the remaining for training. For MNIST, to control the scale of the experiments, we sample
5000 data points from the train split for training and 50 data points from the test split for testing.

C.3 Details of the MLP training

We consider a simple 2-layer MLP with input size 784 (to match the input size of images from
MNIST [LeCun et al., 1998]) and a hidden-size of 128, with ReLU [Agarap, 2018] as our activation
function. We train the model using Stochastic Gradient Descent (SGD) [Ruder, 2016] till convergence,
with a learning rate of 0.01 and momentum of 0.9. Empirically, we observe that after 30 epochs the
model converges, hence for simplicity, we set the default epochs to be 30.

Hyper-parameter selection. The reported hyper-parameters above were selected via grid search.
We swept across hidden unit number (denoted as “width”) ∈ {64, 128}, learning rate (denoted
as “lr”) ∈ {0.01, 0.05, 0.1, 0.5}, momentum (denoted as β) ∈ {0.9, 0.95}, and training epochs
(denoted as “epochs”) ∈ {30, 50}. For each combination of hyper-parameters, we performed 5-fold
cross-validation. We present the comparisons in Table 1, which supported our final choice of the
hyper-parameters in the main experiments (width = 128, lr = 0.01, β = 0.9, epochs = 30).

C.4 Enhancing computational efficiency for the MLP experiments

As mentioned in Section 5, the adaptive greedy algorithm is time-consuming as every run of the
algorithm requires retraining for (k × number of ensembles) times if only one point is selected at
each step. In our case, one evaluation requires around 104 many retraining. Hence, we adopt several
efficient approximations to mitigate the computational burden.

Firstly, when computing the vanilla individual influence of training data points for a converged MLP,
we leverage one of the most memory and time-efficient approximation algorithms known in the
literature named EK-FAC [George et al., 2018] to expedite computation. EK-FAC is efficient enough
to deal with large language models, which suffices for our purpose. Additionally, we devise the
following two strategies to reduce the computational cost when being adaptive:
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Table 1: Cross-validation performance for MLP Model on MNIST. Width stands for the width of
the hidden layer of the MLP, lr stands for the learning rate, and β stands for the momentum.

width lr β epochs Accuracy

64 0.01 0.9 30 91.96%
128 0.01 0.9 30 93.44%
64 0.01 0.9 50 92.88%

128 0.01 0.9 50 93.40%
64 0.01 0.95 30 92.48%

128 0.01 0.95 30 93.12%
64 0.01 0.95 50 93.48%

128 0.01 0.95 50 94.68%
64 0.05 0.9 30 88.44%

128 0.05 0.9 30 87.64%
64 0.05 0.9 50 86.64%

128 0.05 0.9 50 89.60%
64 0.05 0.95 30 45.80%

128 0.05 0.95 30 41.24%
64 0.05 0.95 50 53.32%

128 0.05 0.95 50 54.60%

width lr β epochs Accuracy

64 0.1 0.9 30 39.36%
128 0.1 0.9 30 40.08%
64 0.1 0.9 50 41.64%

128 0.1 0.9 50 45.36%
64 0.1 0.95 30 13.48%

128 0.1 0.95 30 13.36%
64 0.1 0.95 50 10.8%

128 0.1 0.95 50 15.71%
64 0.5 0.9 30 11.68%

128 0.5 0.9 30 11.68%
64 0.5 0.9 50 11.68%

128 0.5 0.9 50 11.68%
64 0.5 0.95 30 11.04%

128 0.5 0.95 30 11.20%
64 0.5 0.95 50 11.20%

128 0.5 0.95 50 11.20%

• Adaptation with steps: We enhance the adaptive greedy with a tunable parameter, step size ℓ,
i.e., we select the top ℓ most influential training points into a tentative most influential subset S at
each selection step. The standard adaptive greedy has ℓ = 1. In our experiment, we set ℓ = 5 in
particular.

• Warm start: At each step, we need to obtain a new model that is supposed to be trained without S.
To make the adaptive greedy algorithm more efficient, we obtain a new model by first initializing
the model parameters from the previous step (for each seed of the ensemble, respectively), and
train without S until convergence. Empirically, we observed that compared to the cold start (which
requires 30 epochs to converge), the warm start only requires 8 epochs to converge, significantly
reducing the computational time.

C.5 MLP experiments with multiple random seeds

We repeat the MLP experiments using multiple random seeds and report the results in Figure 4.
The randomness in the experiments arises from neural network training. In summary, our results
are generally consistent and robust across different random seeds. Specifically, the adaptive greedy
algorithm consistently outperforms the vanilla greedy algorithm, though there are some fluctuations
in the winning rate.
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Figure 6: The MLP experiment under different random seeds (0, 22, 42, 62, 82). We report the actual
effect and the winning rate. Results in the main paper in Figure 4 were obtained on seed 0.
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C.6 Computational resource and complexity

We conduct our experiments on Intel(R) Xeon(R) Gold 6338 CPU @ 2.00GHz with Nvidia
A40 GPU. All experiments except the MLP experiment are efficient due to parallelization and low
memory requirements. Specifically, for linear regression, both experiments on synthetic and UCI
datasets run under 20 seconds. As for logistic regression, the experiment finishes in 2 minutes.

On the other hand, for the MLP experiments on MNIST, one step of the adaptive greedy selection
algorithm for a test data point on 5000 train data points takes roughly 200 seconds with an average
GPU memory usage of 40000MiB. Therefore, we can’t afford any parallelization over test points due
to the high memory usage. Without parallelization, using the warm start and a step size of ℓ = 5, the
whole evaluation (5000 train data points, 50 test data points, k = 50) takes roughly takes 28 hours.

D Omitted details from Section 6

D.1 Discussion on the quadratic optimization

Recall from Eq.(13) that

Q−S = x⊤
testN

−1X⊤
S

(
Ik +XSN

−1X⊤
S

)
(XS θ̂ − yS)

=
∑
i∈S

x⊤
testN

−1xiri +
∑
i∈S

(x⊤
testN

−1xi)x
⊤
i ·
∑
i∈S

xiri. (107)

Denote v = (v1, · · · , vn)⊤ and B = (bij), where bij = (x⊤
testN

−1xi)x
⊤
i xjrj . Under the second-

order approximation, k-MISS can be cast as a constrained quadratic optimization problem:

max
w∈{0,1}n

w⊤v + w⊤Bw (108)

s.t. ∥w∥0 ≤ k

D.2 Discussion on the submodular property

From Eq.(107), we have
Q−S =

∑
i∈S

vi +
∑
i,j∈S

bij , (109)

Note Q−S is submodular ⇐⇒ for every S1 ⊂ S2 and index k /∈ S1,

Q−S1∪{k} −Q−S1
≥ Q−S2∪{k} −Q−S2

. (110)

Plugging Eq.(109) into Eq.(110), the submodular property requires that∑
i∈S2\S1

(bik + bki) ≤ 0, (111)

which is equivalent to
bij + bji ≤ 0, ∀i, j ∈ [n]. (112)

Eq. (112) is unlikely to hold especially if n is large, since it requires that the off-diagonal entries
of SB := B + B⊤ are all non-positive. For a more rigorous analysis, we focus on the case where
the negative residuals ri’s are i.i.d. and symmetrically distributed with respect to the origin. Denote
sij = sgn(x⊤

testN
−1xix

⊤
i xj) for i, j ∈ [n], and the event in Eq. (112) as E . Under this probability

model, we have

Pr(E) ≤
∏

i is odd

Pr(si(i+1)ri+1 + s(i+1)iri ≤ 0) =

(
1

2

)⌊n
2 ⌋

, (113)

which decays exponentially with n.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly define the scope of both the theoretical
and empirical results.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations are discussed in the last paragraph of Section 6. Our work
focuses on analyzing the strengths and weaknesses of existing algorithms in MISS; however,
the main limitation is that it does not contribute to algorithmic development in this field.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Given the theoretical nature of this paper, we have diligently ensured the
accuracy of the theorem statements and proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our code is publicly available at https://github.com/
InfluentialSubset/MISS.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our code is publicly available at https://github.com/
InfluentialSubset/MISS

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The details of the experiments are discussed in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The experiments involve enumerating all subsets with size k, which is too
computationally expensive.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The information on the computer resources is reported in Appendix C.6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Every author of this submission has reviewed the code of ethics guidelines and
confirms compliance.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work is theoretical in nature, and we don’t see immediate societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly cite the datasets and include their licenses in Section 5.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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