
Spherical Frustum Sparse Convolution Network for
LiDAR Point Cloud Semantic Segmentation

Supplemental Material

In the supplemental material, we first introduce the detailed architecture of the Spherical Frustum
sparse Convolution Network (SFCNet) in Sec. A. Then, the additional implementation details of
SFCNet are presented in Sec. B. Next, the additional experimental results are illustrated in Sec. C.
Finally, more visualization of the semantic segmentation results on the SemanticKITTI [1] and
nuScenes [2] datasets are presented in Sec. D.
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Figure 1: The Detailed Architecture of SFCNet. (a) presents the detailed pipeline of SFCNet. In
addition, (b), (c), and (d) show the detailed module structures of the SFC layer, SFC block, and
downsampling SFC block respectively, where SFC means spherical frustum sparse convolution, and
F2PS means the frustum farthest point sampling.

A Detailed Architecture

Fig. 1 shows the detailed architecture of SFCNet. In SFCNet, the spherical frustum structure of the
input point cloud is first constructed. Then, the encoder, which consists of the context block and
extraction layers 1 to 4, is adopted for the point feature extraction. Next, in the decoder, the point
features extracted in extraction layers 2 to 4 are upsampled by the upsampling Spherical Frustum
sparse Convolution (SFC). The upsampled features are concatenated with the features extracted in
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Table 1: The Detailed Hyperparameters of the Components and Modules in SFCNet. Component
shows the names of components in SFCNet. Module Type shows the types of basic modules used
in the components. Kernel Size shows the convolution kernel size of Spherical Frustum sparse
Convolutions (SFCs) used in the modules. In the column of Stride, [1, 1] strides mean the SFC
treats all the points as the center points, while [2, 2] strides show the strides used in Frustum
Farthest Point Sampling (F2PS). The column of Upsampling Rate shows the upsampling rate used
in the upsampling SFCs. Number of Modules shows the number of composed modules used in
corresponding components. Width shows the output channel dimensions of the modules. In addition,
in the column of Width, C means the channel dimensions of the extracted point features, which is 128
for the SemanticKITTI dataset and 256 for the nuScenes dataset. n means the number of semantic
classes, which is 19 for the SemanticKITTI dataset and 16 for the nuScenes dataset.

Component Module Type Kernel Size Stride Upsampling Rate Number of Modules Width

Context Block SFC Layer [3,3] [1,1] — 3 [C/2,C,C]
Extraction Layer 1 SFC Block [3,3] [1,1] — 3 [C,C,C]

Downsampling SFC Block [3,3] [2,2] — 1 [C]
Extraction Layer 2

SFC Block [3,3] [1,1] — 3 [C,C,C]
Downsampling SFC Block [3,3] [2,2] — 1 [C]

Extraction Layer 3
SFC Block [3,3] [1,1] — 5 [C,C,C,C,C]

Downsampling SFC Block [3,3] [2,2] — 1 [C]
Extraction Layer 4

SFC Block [3,3] [1,1] — 2 [C,C]
Upsampling SFC for Extraction Layer 2 [3,3] [1,1] [2,2] 1 [C]
Upsampling SFC for Extraction Layer 3 [7,7] [1,1] [4,4] 1 [C]Upsampling
Upsampling SFC for Extraction Layer 4 [15,15] [1,1] [8,8] 1 [C]

SFC Layer [3,3] [1,1] — 2 [2·C,C]
Head Layer

Linear — — — 1 [n]

the context block and the extraction layer 1. The concatenated features are fed into the head layer to
decode the point features into the semantic predictions.

In addition, Fig. 1 also shows the three basic modules in SFCNet, including the SFC layer, SFC block,
and downsampling SFC block. Moreover, we present the detailed hyperparameters of SFCNet in
Tab. 1.

Basic Modules of SFCNet. Specifically, the SFC layer is composed of the SFC, batch normalization,
and the activation function. Inspired by [3], we use Hardswish [4] as the activation function. The
formula of Hardswish is:

Hardswish(x) =


0 if x ≤ −3

x if x ≥ 3

x · (x+ 3)/6 otherwise

. (1)

The SFC block consists of two SFC layers. In addition, the residual connection [5] is adopted in the
SFC block to overcome network degradation.

The downsampling SFC block combines the downsampling of Frustum Farthest Point Sampling
(F2PS) and the feature aggregation of the SFC block. Notably, in the downsampling SFC block, the
first SFC treats the sampled points as the center points and the features of the point cloud before
sampling as the aggregated features.

Moreover, after the downsampling, the 2D coordinates of each spherical frustum are divided by the
stride to gain the 2D coordinates on the downsampled 2D spherical plane. Meanwhile, each point is
assigned a new point index in the downsampled spherical frustum point set according to the sampled
order in F2PS.

Components in the Encoder of SFCNet. In the encoder, the context block consists of three SFC
layers to extract the initial point features from the original point cloud. The subsequent four extraction
layers are composed of 3, 3, 5, and 2 SFC blocks respectively. In addition, a downsampling SFC
block with (2, 2) strides is adopted in the last three layers to downsample the point cloud into different
scales. Thus, the multi-scale point features are extracted.

Components in the Decoder of SFCNet. We implement the upsampling SFC in the decoder of
SFCNet according to the deconvolution [6] used in the 2D convolutional neural networks. In the
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upsampling SFC, we first multiply the 2D coordinates of the spherical frustums in the corresponding
layer by the upsampling rate to obtain the 2D coordinates on the original spherical plane. Then, each
point in the raw point cloud is treated as the center point in SFC. The spherical frustums fall in the
convolution kernel are convolved. As shown in Tab. 1, we set the appropriate kernel size according to
the upsampling rate for each upsampling SFC.

After the upsampling, the point features from different extraction layers are of the same size. Thus,
the point features can be concatenated. In the head layer, two SFC layers and a linear layer are
adopted for the decoding of the concatenated features.

B Additional Implementation Details

Data Normalization. For the k-th point in the LiDAR point cloud P , the combination of the
3D coordinates xk = [xk, yk, zk]

T , the range rk =
√

x2
k + y2k + z2k, and the intensity is treated as

the input point feature fk. Because of the different units of the different data categories, the input
features should be normalized.

Table 2: The statistics of each input data cate-
gory on SemanticKITTI dataset.

Statistics x y z range intensity

Mean 10.88 0.23 -1.04 12.12 0.21
Standard Deviation 11.47 6.91 0.86 12.32 0.16

Specifically, for the SemanticKITTI [1] dataset, like
RangeNet++ [7], we minus the features by the mean
and divide the features by the standard deviation to
obtain the normalized features. The mean and stan-
dard deviation are obtained from the statistics of each
input data category on the SemanticKITTI dataset,
which are presented in Tab. 2.

For the nuScenes [2] dataset, like Cylinder3D [8],
a batch normalization layer is applied on the input
point features to record the mean and standard deviation of the nuScenes dataset during training.
During inferencing, the recorded mean and standard deviation are used to normalize the input point
features.

Spherical Frustum Construction. We construct the spherical frustum structure by assigning each
point with the 2D spherical coordinates (uk, vk) and the point index mk in the spherical frustum
point set, where k is the index of the point in the original point cloud. The 2D spherical coordinates
can be calculated through Eq. ??. Thus, the key process is to assign the point index mk for each point
based on the 2D spherical coordinates.

We implement this by sorting the 2D coordinates (uk, vk) of the points. The points with smaller
uk and vk are ranked ahead of the points with larger uk and vk. Thus, the points with the same 2D
coordinates are neighbors in the sorted point cloud. For each point, we count the number of points
that have the same 2D coordinates and appear ahead or behind the point in the sorted point cloud
separately. The number of the points appearing ahead is treated as the point index mk of each point.

In addition, we assign each point an indicator ξk ∈ {0, 1} according to the number of the points
appearing behind. The point with zero point appearing behind is assigned a zero indicator. Otherwise,
the point is assigned with an indicator equal to one. The indicator indicates the end of the frustum
point set and is used for the subsequent spherical frustum point set visiting.

The sorting and the point number counting are implemented through the Graphics Processing Unit
(GPU)-based parallel computing using Compute Unified Device Architecture (CUDA). Thus, the
construction is efficient in practice.

Hash-Based Spherical Frustum Representation. After the construction of the spherical frustum
structure, we build the hash-based spherical frustum representation. Specifically, we construct the
key-value pairs between the key (uk, vk,mk) and the value k. The key-value pairs are inserted into a
hash table, which represents the neighbor relationship of spherical frustums and points.

In practice, we adopt an efficient GPU-based hash table [9]. The GPU-based hash table requires
both key and value to be an integer. The value k satisfies the integer requirement. However, the key
(uk, vk,mk) in the hash-based spherical frustum representation is not an integer.

To adopt the GPU-based hash table for efficient processing, (uk, vk,mk) is transferred to an integer
as vk · (W ·M) + uk ·M +mk, where W is the width of the spherical projection, M is the maximal
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point number of the spherical frustum point sets. Through this process, any point represented by the
coordinates (uk, vk,mk) can be efficiently queried through the GPU-based hash table.

Spherical Frustum Point Set Visiting. Both the SFC and F2PS require visiting all the points in any
spherical frustums. Thus, we propose the spherical frustum point set visiting algorithm. The visiting
obtains all the points in the given spherical frustum, whose 2D coordinates are (u, v), by sequentially
querying the points in the hash table.

Specifically, we first query the first point in the spherical frustum using the key (u, v, 0). If the key
(u, v, 0) is not in the hash table, the spherical frustum on (u, v) is invalid. Otherwise, the first point
in the spherical frustum can be queried through the hash table.

Then, the points in the spherical frustum are sequentially visited. We first initialize the point index
m = 0 in the spherical frustum. At each step, the point index m increases by one. Through the
hash table, the point with m-th index in the spherical frustum is queried using the key (u, v,m).
Meanwhile, the indicator ξ of this point is obtained. ξ indicates whether (u, v,m + 1) refers to a
valid point. Thus, the visiting ends when the indicator of the current point is zero.

Detailed Implementation of Frustum Farthest Point Sampling. In F2PS, we first sample the
spherical frustums by stride. Then, we sample the points in each sampled spherical frustum by
Farthest Point Sampling (FPS) [10]. As mentioned in Sec. ??, FPS is an iterative algorithm. The
detailed process of the j-th iteration can be expressed by the following formula:

Sj = Sj−1 ∪ {arg max
p∈Ps\Sj−1

min
s∈Sj−1

dist(p, s)}, (2)

where Ps is the spherical frustum point set to be sampled, Sj and Sj−1 are the sampled point sets in
j-th and (j − 1)-th iterations respectively. Notably, S0 contains the point randomly sampled from Ps.
In addition, dist(p, s) is the distance between point p and point s in 3D space. The iteration starts at
j = 1, and ends when the size of Sk equals the number of sampling points.

Moreover, since the distances between the points in Sj−2 and the points in Ps\Sj−1 have been
calculated before the j-th iteration, we just need to calculate the distance between each p in Ps\Sj−1

and the point sampled in (j − 1)-th iteration for the calculation of mins∈Sj−1
dist(p, s), which is

the minimal distance from point p to the point set Sj−1. Thus, the computing complexity of FPS
for Ps of size n is O(n2). Since the point number of each spherical frustum is O(1), the computing
complexity of FPS for the spherical frustum is also O(1), which ensures the efficiency of F2PS.

Loss Function. We use multi-layer weighted cross-entropy loss and Lovász-Softmax loss [11] to
help the network learn the semantic information from different scales. To get the semantic predictions
of extraction layers 1 to 4, we apply a linear layer to decode the extracted point features of each
extraction layer into the semantic predictions.

Specifically, for extraction layer 1, the linear layer is applied on the extracted point features F1 to
gain the prediction L̃1. For the other extraction layers, the linear layer is applied on the upsampled
point features F ′

2, F ′
3, and F ′

4 to obtain the predictions L̃2, L̃3, and L̃4 respectively.

Based on the predictions of each layer and the final predictions of SFCNet L̃1, the loss function is
calculated as:

L =

4∑
i=1

Lwce(L̃i, L) + LLov(L̃i, L), (3)

where Lwce is the weighted cross-entropy loss, LLov is the Lovász-Softmax loss, and L is the ground
truth. In addition, the weights of weighted cross-entropy loss are calculated as wc = (fc + ϵ)−1,
where c is the semantic class, fc is the frequency of class c in the dataset, and ϵ is a small positive
value to avoid zero division.

C Additional Experiments

C.1 Efficiency Comparison

We evaluate the efficiency of the proposed SFCNet with the previous works and our 2D projection-
based baseline model on a single Geforce RTX 4090Ti GPU.
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Table 3: Efficiency comparison. The inference time of a single LiDAR scan, the processed point
number, and the normalized time, the inference time per thousand points, are evaluated on the
SemanticKITTI validation set with a single Geforce RTX 4090Ti GPU.

Approach Time (ms)/Points ↓ Normalized Time (ms/K) ↓
PointNet++ [10] 131.0/∼ 45K 2.91

RandLA [14] 212.2/∼ 120K 1.77
Cylinder3D [8] 67.5/∼ 40K 1.69

SphereFormer [13] 108.2/∼ 90K 1.20
RangeViT [15] 104.8/∼ 120K 0.87

Baseline 46.4/∼ 90K 0.52
SFCNet (Ours) 59.7/∼ 120K 0.49

Table 4: The quantitative results of different resolutions used in the baseline model with KNN-based
post-processing [7] on the SemanticKITTI validation set.

Resolution Preserved Points/All Points mIoU (%) ↑
64× 1800 88K/120K 59.7
64× 2048 97K/120K 58.9
64× 4096 113K/120K 57.0

We adopt the same baseline model used in Sec. ??. For RangeViT, we adopt the official code for
efficiency evaluation. Notably, in the inference, RangeViT splits the projected LiDAR image, inputs
each image slice into the network to gain the predictions, and merges the predictions to gain the
prediction of the entire projected LiDAR image. Thus, the inference time of RangeViT includes the
time of all the processes. In addition, since RangeViT adopts the KPConv refinement [12], which
restores the complete predictions from the partial predictions, we use the point number of the entire
point cloud as the processed point number. For PointNet++ [10], we sample 45K points from the
point cloud before inputting into the network as its original setting. For 3D voxel-based methods,
Cylinder3D [8] and SphereFormer [13], only the points preserved after the voxelization are counted
since these points are exactly processed in the 3D sparse convolution network.

The results are presented in Tab. 3. The results show that SFCNet costs 59.7 ms for a single scan
inference, which reaches real-time LiDAR scan processing. In addition, our SFCNet also has the
highest efficiency evaluated by normalized time (0.49 ms/K) compared to the previous 3D and
2D methods and the 2D baseline model, which indicates that SFCNet can adopt the 2D projection
property to efficiently segment the large-scale point cloud.

C.2 Analysis on Different Resolutions of the Baseline Model

Since the limited projection resolution is the reason for quantized information loss, expanding the
resolution of the projected range image can preserve more points during the spherical projection and
ease the quantized information loss. However, expanding the resolution increases the sparsity of the
projected points and makes the convolution hard to aggregate the local features. Thus, resolution
expansion is not a feasible solution for resolving quantized information loss. To validate this, we
expand the image horizon resolution of the baseline model to 2048 and 4096 and conduct the ablation
studies of different resolutions on the SemanticKITTI validation set to show the effect of a larger
resolution. As shown in Tab. 4, the increment of resolution preserves more points but results in worse
performances. In contrast, SFCNet not only overcomes quantized information loss but also effectively
aggregates local features with a suitable resolution by preserving all points using spherical frustum.

C.3 Additional Ablation Studies

In this subsection, we conduct additional ablation studies to evaluate the sensitivity of our SFCNet to
the key parameters.

Stride Sizes in Frustum Farthest Point Sampling (F2PS). The ablation studies of four different
settings of the stride sizes in the F2PS on the three downsampling layers are conducted, including
(1, 2), (2, 1), (2, 4), and (4, 2). The results are shown in Tab. 5. The results show on all the down-
sampling layers, the (2, 2) stride sizes show a better segmentation performance than the other stride
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Table 5: Ablation study on the stride sizes of the Frustum Farthest Point Sampling in the downsam-
pling layers on the SemanticKITTI validation set.

Stride Sizes (Sh, Sw)
mIoU (%) ↑

Layer 1 Layer 2 Layer 3

(2,1) 60.7 61.3 61.1
(1,2) 62.4 62.2 62.3
(2,4) 62.3 62.6 61.9
(4,2) 60.5 61.6 61.9

(2,2) (Ours SFCNet) 62.9

Table 6: Ablation study on the maximal number of points in spherical frustums on the SemanticKITTI
validation set.

Maximal Number of Points in Spherical Frustum mIoU (%) ↑
2 61.0
4 61.9

Unlimited (Ours SFCNet) 62.9

size settings. (2, 2) stride sizes suitably downsample the point cloud in the vertical and horizon
dimensions. Higher or lower downsampling rates result in the oversampling or undersampling of the
point cloud respectively.

Number of Points in the Spherical Frustums. In the spherical frustum structure, the number
of points in the frustum is unlimited and only depends on how many points are projected onto the
corresponding 2D location. To analyze the effect of the number of points in the frustum, we set the
maximal number of points in each spherical frustum and the points exceeding the maximal point
number are dropped. As shown in Tab. 6, preserving more points in the spherical frustum results in
better segmentation performance, since more complete geometry information is preserved. These
results further indicate the significance of overcoming quantized information loss in the field of
LiDAR point cloud semantic segmentation.

Configuration of the Hash Table. The number of hash functions is the main parameter of the hash
table, which means the number of functions used for the hash table retrieval. In the implementation,
if the first hash function can successfully retrieve the location of the target point, the other functions
will not be used. We change the number of hash functions to show the model sensitivity of hash
table configurations. As shown in Tab. 7, the performance and inference time of SFCNet have
little difference under different numbers of hash functions. The results show that in most cases, the
first function can successfully retrieve the location, and thus the inference times change slightly
in different function numbers. These results indicate that SFCNet is robust to different hash table
configurations.

C.4 Comparison of Sampling Methods

We further validate the effectiveness and efficiency of the proposed Frustum Farthest Point Sampling
(F2PS) by the qualitative comparison with stride-based 2D sampling and the comparison of time
consumption with Farthest Point Sampling (FPS).

Qualitive Comparison. As shown in Fig. 2(a), Stride-Based 2D Sampling (SBS) only samples the
point cloud based on 2D stride. The visualization shows that the stride-based sampled point cloud
is relatively rough. Due to the lack of 3D geometric information, SBS fails to sample the 3D point
cloud uniformly. Thus, the loss of geometric structure in the sampled point cloud is obvious, such as
many broken lines on the ground. Our F2PS takes into account the 3D geometric information based
on the FPS in the spherical frustum, which enables F2PS to sample the 3D point cloud uniformly and
preserve the significant 3D geometric structure during the sampling.

Time Consumption Comparison. As shown in Fig. 2(b), with the increment of sampled point
number, the cost time of our F2PS increases slowly, while the cost time of FPS increases dramatically.
This result shows performing FPS on the frustum point sets is efficient and does not increase the
computing burden.
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Table 7: Ablation study on the configuration of the hash table for the spherical frustum structure on
the SemanticKITTI validation set.

Number of Hash Functions Inference Time (ms) ↓ mIoU (%) ↑
2 59.5 62.9
3 60.1 62.9
5 59.5 62.9

4 (Ours SFCNet) 59.7 62.9

Original Point Cloud Stride-Based Sampled Point Cloud F2PS Sampled Point Cloud (Ours)

Broken Lines

(a) Qualitative Comparison (b) Time Consumption Comparison

Figure 2: In this figure, (a) presents the qualitative comparison between stride-based 2D sampling
and our Frustum Farthest Point Sampling (F2PS). The red boxes show the zoomed view of the point
clouds in the close areas. (b) illustrates the time consumption comparison between Farthest Point
Sampling (FPS) and our F2PS.

C.5 Comparison between SFCNet and Baseline Model on Small Object Categories

To further show the improvement of small object segmentation, we compare the quantitative results
on the small object categories between SFCNet and the baseline model with the KNN-based post-
processing [7] on SemanticKITTI and nuScenes validation sets. As shown in Tabs. 8 and 9, our
SFCNet has higher performances on all small object categories compared to the baseline model. The
results show overcoming quantized information loss preserves complete geometric information of the
small objects and thus makes them better recognized and segmented by our SFCNet.

D More Visualization

To better demonstrate the effectiveness of SFCNet for LiDAR point cloud semantic segmentation, we
conduct more visualization on the SemanticKITTI and nuScenes datasets. The results are shown in
Figs. 3, 4, 5, 6 and the supplementary video SupplementaryVideo.mp4.

Qualitative Comparison on NuScenes Validation Set. The results of qualitative comparison
between our SFCNet and RangeViT [15] are shown in Fig. 3. On the nuScenes validation set, SFCNet
can also have fewer segmentation errors than RangeViT as the results in the SemanticKITTI dataset.
Moreover, the better segmentation accuracy of the 3D small objects, like pedestrians and motorcycles,
can also be observed on the nuScenes validation set. The results once more demonstrate semantic
segmentation improvement of SFCNet due to the overcoming of quantized information loss.

More Qualitative Comparison on SemanticKITTI Test Set. The ground truths on the Se-
manticKITTI test set are not available. Thus, we search for the corresponding RGB image and project
the semantic predictions on the image to compare the semantic segmentation accuracy between the
state-of-the-art 2D image-based method CENet [3] and our SFCNet on the SemanticKITTI test set.
As shown in Figs. 4 and 5, compared to CENet, SFCNet can more accurately segment the LiDAR
point cloud in various challenging scenes on the SemanticKITTI test set.

Specifically, SFCNet recognizes the thin poles in distance on the rural road of Fig. 4(a) and in the
complex intersections of Fig. 5(c), while CENet predicts the poles as wrong classes. In addition,
SFCNet recognizes the thin trunks inside the vegetation on the rural scenes of Fig. 4(b) and Fig. 5(b)
while CENet wrongly predicts the trunk as the fetch and vegetation respectively. Moreover, SFCNet
successfully segments the boxed persons in the complex intersection of Fig. 4(c) and in the urban
scene of Fig. 5(a) while CENet gives wrong predictions due to the information loss of the distant
persons during 2D projection. These results further validate the better segmentation performance of
SFCNet to 3D small objects.
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Table 8: Quantative comparison of semantic segmentation between baseline model and SFCNet
for the small object categories on SemanticKITTI validation sets. Bold results are the best in each
column. The performance improvement of each category is highlighted in green.

SemanticKITTI
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Baseline w/ KNN-Based Post-processing 44.2 46.0 48.8 71.6 73.6 67.4 63.1 45.7

SFCNet (Ours) 44.9(+0.7) 60.6(+14.6) 50.5(+1.7) 73.1(+1.5) 83.1(+9.5) 68.5(+1.1) 64.6(+1.5) 47.8(+2.1)

Table 9: Quantative comparison of semantic segmentation between baseline model and SFCNet for
the small object categories on the nuScenes validation sets. Bold results are the best in each column.
The performance improvement of each category is highlighted in green.

nuScenes
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Baseline w/ KNN-Based Post-processing 30.6 77.0 73.9 62.8
SFCNet (Ours) 40.4(+9.8) 82.0(+5.0) 78.0(+4.1) 65.8(+3.0)

More Qualitative Comparison on NuScenes Validation Set. As the visualization on the Se-
manticKITTI test set, we provide the additional qualitative comparison between our SFCNet and
RangeViT on the nuScene validation set with the projected predictions illustrated in Fig. 6. The
results further demonstrate the better semantic segmentation of SFCNet for the challenging street
scenes on the nuScenes validation set compared to RangeViT.

Specifically, in the first scene, the close motorcycle can be correctly segmented by SFCNet, while
RangeViT recognizes the motorcycle as a car, which shows that SFCNet can help the autonomous car
correctly recognize the type of close obstacles, and enable the car to make appropriate decisions.

In the second scene, the distant pedestrians on the other side of the crossing can also be correctly
segmented by SFCNet due to the elimination of quantized information loss. In contrast, RangeViT
wrongly predicts the pedestrians as traffic cones.

In the third scene, since the boxed pedestrian is close to the manmade, RangeViT confuses it with the
manmade and does not segment the pedestrian, while our SFCNet can clearly recognize the boundary
and successfully segments the pedestrian.

Sequential Qualitative Comparison on SemanticKITTI Validation Set. We demonstrate the
qualitative comparison between our SFCNet and the SoTA 2D projection-based segmentation meth-
ods, CENet and RangeViT, on a continuous sequence on the SemanticKITTI validation set in the
supplementary video SupplementaryVideo.mp4. In this video, the semantic predictions in both
the 3D point cloud view and the RGB image view (where the colored point cloud is projected onto
the RGB images) are presented. The results show that our SFCNet can consistently show higher
segmentation accuracy on the point cloud of each frame in the sequence than 2D projection-based
methods, which further indicates the stronger semantic segmentation capability of our SFCNet.
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Figure 3: Qualitative Comparison on NuScene Validation Set. In this figure, we conducted the
qualitative comparison between RangeViT [15] and our SFCNet of semantic segmentation on the
nuScenes validation set. The first column presents the ground truths, while the following two columns
show the error maps of the predictions of RangeViT and our SFCNet respectively. In addition, the
reference from point color to the semantic class in the ground truths is shown at the bottom. Moreover,
the false-segmented points are marked as red in the error maps. Furthermore, we use circles with the
same color to point out the same objects in the ground truth and the two error maps.
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Figure 4: More Qualitative Comparison on Semantic Segmentation on SemanticKITTI Test Set. We
show the qualitative comparison between our SFCNet and the state-of-the-art 2D image-based method
CENet [3] on the SemanticKITTI test set. The visualized challenging autonomous driving scenes
include urban, rural, and complex intersection scenes. The predictions projected on the corresponding
RGB images are also illustrated. In addition, we use the same color boxes to point out the same
objects in the point clouds and images for each scene. Meanwhile, we provide the zoomed-in view of
some boxed objects for clear visualization. Moreover, the reference from point color to the semantic
class in the predictions is shown at the bottom of the figure.
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Figure 5: More Qualitative Results on Semantic Segmentation on SemanticKITTI Test Set. This
figure shows more qualitative results of our SFCNet and the state-of-the-art 2D image-based method
CENet [3] on the urban, rural, and complex intersection scenes of the SemanticKITTI test set. As in
Fig. 4, the predictions projected on the corresponding RGB images are also illustrated. In addition,
the same color boxes are adopted to point out the same objects in the point clouds and images for each
scene. Meanwhile, the zoomed-in view of some boxed objects is illustrated for clear visualization.
Moreover, the reference from point color to the semantic class in the predictions is shown at the
bottom of the figure.
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Figure 6: More Qualitative Comparison of Semantic Segmentation on NuScenes Validation Set.
We show more comparisons between our SFCNet and the state-of-the-art 2D image-based method
RangeViT [15] on the nuScenes dataset. The predictions projected on the corresponding RGB images
are also illustrated. In addition, we use the same color boxes to point out the same objects in the
point clouds and images for each scene. Meanwhile, we provide the zoomed-in view of some boxed
objects for clear visualization. Moreover, the reference from point color to the semantic class in the
predictions and ground truths is shown at the bottom of the figure.
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