
Not Just Object, But State: Compositional
Incremental Learning without Forgetting

Yanyi Zhang 1, Binglin Qiu 1, Qi Jia 1, Yu Liu ∗1, Ran He 2

1 International School of Information Science & Engineering, Dalian University of Technology
2 MAIS&CRIPAC, Institute of Automation, Chinese Academy of Sciences

yanyi.zhang@mail.dlut.edu.cn, m1andy@mail.dlut.edu.cn
jiaqi@dlut.edu.cn, liuyu8824@dlut.edu.cn, rhe@nlpr.ia.ac.cn

Abstract

Most incremental learners excessively prioritize coarse classes of objects while
neglecting various kinds of states (e.g. color and material) attached to the objects.
As a result, they are limited in the ability to reason fine-grained compositionality
of state-object pairs. To remedy this limitation, we propose a novel task called
Compositional Incremental Learning (composition-IL), enabling the model to
recognize state-object compositions as a whole in an incremental learning fash-
ion. Since the lack of suitable benchmarks, we re-organize two existing datasets
and make them tailored for composition-IL. Then, we propose a prompt-based
Composition Incremental Learner (CompILer), to overcome the ambiguous com-
position boundary problem which challenges composition-IL largely. Specifically,
we exploit multi-pool prompt learning, which is regularized by inter-pool prompt
discrepancy and intra-pool prompt diversity. Besides, we devise object-injected
state prompting by using object prompts to guide the selection of state prompts.
Furthermore, we fuse the selected prompts by a generalized-mean strategy, to
eliminate irrelevant information learned in the prompts. Extensive experiments on
two datasets exhibit state-of-the-art performance achieved by CompILer. Code and
datasets are available at: https://github.com/Yanyi-Zhang/CompILer.

1 Introduction

Class Incremental Learning (class-IL) [37, 22, 16, 10] gathers increasing attention due to its ability
to make the models learn new tasks rapidly, without forgetting previously acquired knowledge. Yet,
traditional class-IL sets a strict limit on the old classes such that they should not recur in newly
incoming tasks. To break such a strict limitation, recent studies develop a new setting mostly called
Blurry Incremental Learning (blur-IL) [24, 11], where the incremental sessions allow the recurrence
of previous classes, resulting in a more realistic and flexible scenario. Despite such empirical
progresses on incremental learning, they aim to improve object classification only, while overlooking
fine-grained states attached to the objects. For instance, analyzing how the clothing styles (akin to
states) have changed over time is important for forecasting the future trends that will emerge.

To simultaneously model objects and their states, some efforts are dedicated to Compositional
Learning whose aim is how to equip the models with compositionality [4, 31, 45]. The core of
compositional learning lies in the structure of class labels, which conceptualizes a state-object pair
(e.g. “Brown Pants” and “Yellow Dress”) as a whole, rather than a lonely object label. In this way, the
model can dissect and reassemble learned knowledge, achieving a more fine-grained understanding
about the objects. However, existing works are mainly focused on zero-shot generalization from seen

∗corresponding author

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/Yanyi-Zhang/CompILer

(a) Class Incremental Learning (c) Compositional Incremental Learning(b) Blurry Incremental Learning

D
at

a
1

𝑇!

𝑇"

⋯

D
at

a
2

Class Recurrence

Class Label: Object

⋯

D
at

a
1

𝑇!

𝑇"

⋯

D
at

a
2

No Recurrence

Class Label: Object

⋯
D

at
a

1

𝑇!

𝑇"

⋯

D
at

a
2

⋯

Class Label: State-Object

Primitives Recurrence
Pants Suit

Shorts

Dress

Skirt Shoes
Yellow
Shorts

Black
Suit

Brown
Pants

White
Suit

Yellow
Dress

Sliver
Skirt

Pants Suit

Suit

Dress

Skirt Shoes

Figure 1: Differences between Class Incremental Learning (class-IL), Blurry Incremental Learning
(blur-IL), and Compositional Incremental Learning (composition-IL). The object classes are not
allowed to recur in the class-IL scenario, whereas they may recur randomly in the blur-IL scenario.
Different from them, the classes in composition-IL involve state-object compositions apart from the
object classes. Besides, the compositions do not reoccur, but the primitives (states or objects) may
randomly reappear across incremental sessions.

compositions to unseen ones [26, 27, 5, 15], whereas none of them consider the challenging fact that
the model must deal with a significantly larger number of composition classes than object classes. As
a result, it is hardly feasible to learn all compositions by training the model once.

To remedy the limitations inherent in incremental learning and compositional learning, we conceive a
novel task named Compositional Incremental Learning (composition-IL), enabling the model to
continually learn new state-object compositions in an incremental fashion. As compared in Fig. 1,
we can see that composition-IL integrates the characteristics of class-IL and blur-IL. Although the
composition classes are disjoint across incremental tasks, the primitive classes (i.e. objects and
states) encountered in old tasks are allowed to reappear in new tasks. Unfortunately, existing incre-
mental learning approaches are challenged by such a compositional scenario, because their models
excessively prioritize the object primitives while neglecting the state primitives. Consequently, the
compositions with the same object but with different states become ambiguous and indistinguishable.

To tackle the problem, we propose a rehearsal-free and prompt-based Compositional Incremental
Learner (CompILer). Specifically, our model comprises of three primary components: multi-pool
prompt learning, object-injected state prompting, and generalized-mean prompt fusion. Firstly, we
construct three prompt pools for learning the states, objects and compositions individually. Upon
that, we add extra restrictions to regularize the inter-pool prompt discrepancy and intra-pool prompt
diversity. This multi-pool prompt learning paradigm strengthens the fine-grained understanding
and reasoning towards primitive concepts and their compositions. In addition, as the state classes
are more difficult to distinguish than the object ones, we propose object-injected state prompting
which incorporates object prompts to guide the selection of state prompts. Furthermore, we fuse the
selected prompts by a generalized-mean fusion manner, which helps to adaptively eliminate irrelevant
information learned in the prompts. Last but not least, we also leverage symmetric cross-entropy loss
to alleviate the impact of noisy data during training.

In summary, the main contributions in this work are encapsulated as follows: (1) We devise a new
task coined compositional incremental learning (composition-IL). It enables learning fine-grained
state-object compositions continually while the isolated primitive concepts can randomly recur in
incremental tasks. (2) To address the lack of datasets, we re-organize two existing datasets such
that they are tailored specifically for composition-IL. For the two new datasets (Split-Clothing and
Split-UT-Zappos), we split them into 5 and 10 incremental tasks for evaluating the methods. (3)
We propose a novel learning-to-prompt model for composition-IL, namely CompILer. Our state-
of-the-art results on Split-Clothing and Split-UT-Zappos validate the effectiveness of CompILer for
incrementally learning new compositions without forgetting old ones.

2 Related Work

Incremental Learning. The approaches to addressing catastrophic forgetting for incremental learning
can be broadly grouped into four categories: regularization based methods [6, 39] aim to protect

2

Figure 2: Data Statistics of Split-Clothing and Split-UT-Zappos for tasking composition-IL. Split-
Clothing is divided into a 5-task scenario, while Split-UT-Zappos includes both 5-task and 10-task
scenarios. In all settings, the number of images per task has been balanced properly.

influential weights of old experiences from updating; knowledge distillation based methods [16, 34]
distill knowledge from the model trained on the previous tasks and adapt it to new tasks; rehearsal
based methods [32, 48, 20] require a memory buffer to store some old data, so as to make the
network remember previous tasks; parameter isolation methods allocates different model parameters
to each task, to prevent any possible interference. Different from the methods, L2P [43] proposes an
innovative learning-to-prompt paradigm, which incorporates plasticity and stability through adapting
a set of learnable prompt tokens on top of a frozen pre-trained backbone. Inspired by L2P [43], more
recent works [42, 36, 2, 28] take full advantage of various prompt tuning strategies, achieving new
state-of-the-art performance for incremental learning. However, such methods take into account
object classes solely, while neglecting various kinds of state classes associated with the objects. To
this end, our work proposes compositional incremental learning with the purpose to continually
identifying the composition classes of state-object pairs. Note that, Liao, et al [18] conduct an
initial study toward the compositionality in incremental learning, whereas their attention is on the
composition of multiple object classes (e.g. “Car” and “Person”) in one image, rather than the
state-object compositions in this work.

Compositional Learning. A major line of compositional learning research focuses on Compositional
Zero-Shot Learning (CZSL) [23], which aims to infer unseen state-object compositions by acquiring
knowledge from seen ones. Subsequent approaches building upon the CZSL setting further incor-
porate graph neural networks to model the dependency between primitives and compositions [25],
and employ cosine classifiers to avoid being overly biased toward seen compositions [21]. Other
approaches [13, 14, 12] propose training two classifiers to identify states and objects separately. The
latest works [19, 3, 38, 8, 47] model both composition and primitives simultaneously, achieving
state-of-the-art results. Albeit the numerous attempts made in compositional learning, they fail to
consider an incremental learning paradigm given the increasing number of composition classes in
open-world scenarios. Besides, directly applying CZSL methods to composition-IL might lead to
a stale and decaying performance on forgetting. By contrast, our proposed CompILer markedly
bypasses catastrophic forgetting with the help of multi-pool prompt learning.

3 Preliminaries

In this section, we firstly define the task of composition-IL, and then introduce two datasets we
construct for the task, followed by revealing the ambiguous composition boundary problem.

3.1 Problem Definition

For composition-IL, a model sequentially learns N tasks T = {T1, T2, · · · TN} corresponding to
a set of composition classes C = {C1, C2, · · · CN}. We note that the composition classes between
incremental tasks are always disjoint, which means Ci ∩ Cj = ∅ for any i ̸= j. Different from the
composition classes, the primitive classes are allowed to recur in different tasks. That means it allows
the tasks to share some primitive concepts of objects and states. Therefore, we can define the set
of all state and object classes with S = {s1, s2, · · · , sn} and O = {o1, o2, · · · , om}, respectively.
Given each image x, it has a composition label c which is constructed with a state label s and an
object label o, i.e. c =< s, o >, where c ∈ C, s ∈ S and o ∈ O. We take the example of “red shirt”,
where “red” is denoted with s, “shirt” corresponds to o, and “red shirt” is expressed with c.

3

Figure 3: t-SNE feature distributions of seven compositions from the Split-Clothing benchmark.
For the compositions with the same object but with different states, our CompILer achieves more
distinguishable boundaries than the L2P baseline.

3.2 Dataset Construction

As there are no existing datasets suitable for composition-IL, we re-organize the data in Cloth-
ing16K [46] and UT-Zappos50K [44], and construct two new datasets tailored for composition-IL,
namely Split-Clothing and Split-UT-Zappos. To be more specific, we firstly sort the composition
classes based on the number of their images, and then select the foremost 35 compositions from Cloth-
ing16K and the top 80 from UT-Zappos50K, so as to construct Split-Clothing and Split-UT-Zappos,
respectively. In this way, Split-Clothing encompasses 9 states and 8 objects while Split-UT-Zappos
consists of 15 states and 12 objects in total. For Split-Clothing, we randomly partition the composi-
tions into 5 tasks. Regarding Split-UT-Zappos, the compositions are sorted by count and are evenly
divided into 5 and 10 tasks. The image distribution for each task is shown in Fig. 2. Note that, we
elaborate more details on both datasets in the following technical appendix.

3.3 Revealing the Ambiguous Composition Boundary

The main stumbling block in composition-IL is the ambiguous composition boundary. Although the
composition label consists of two primitives (i.e. object and state), we note that the model excessively
prioritizes the object primitive while neglecting the state primitive. Consequently, the compositions
with the same object but with different states become ambiguous and indistinguishable. To prove
that, we apply L2P [43] to composition-IL, whereas it is challenged by significant ambiguities
in composition classification. As illustrated in Fig. 3 (a), the t-SNE visualization showcases the
entanglement among the compositions like “white dress”, “black dress” and “blue dress”. We
conjecture that this ambiguous problem tends to become more severe when more tasks are arriving
incrementally. To address it, we propose a new model namely CompILer, which disentangles
compositions and primitives via a multi-pool prompt learning. Advantageously, our method promotes
the learning on the states and establishes clearer composition boundaries, as shown in Fig. 3 (b).

4 Methodology

Overview. We leverage the learning-to-prompt paradigm [43] and develop a novel compositional
incremental learner (CompILer) tailored specifically for composition-IL. As depicted in Fig. 4,
CompILer comprises three primary components: multi-pool prompt learning, object-guided state
prompting, and generalized-mean prompt fusion. Firstly, we initialize three prompt pools dedicated
to learning and storing visual information related to states, objects and their compositions. In order to
differentiate the knowledge learned across and within prompt pools, we define inter-pool discrepant
loss and intra-pool diversified loss jointly. We then employ object prompts to guide the selection of
state prompts, thereby improving the state representation learning. Moreover, we utilize a generalized-
mean fusion to integrate the selected prompts in a learnable manner. Ultimately, we optimize the
classification objective with symmetric cross-entropy loss, to alleviate the effect of noisy data.

4.1 Multi-pool Prompt Learning

The learning-to-prompt paradigm [43, 35], especially suitable for large pre-trained backbones, has
opened up a new path for incremental learning. It has proven to incorporate plasticity and stability

4

ℒ!"#$

Object Prompt Pool

State Prompt Pool

Composition Prompt Pool

Embedding Layer 𝑓!(#)

Transformer Encoder 𝑓"(#)

𝜑𝑐(#) 𝜑𝑠(#) 𝜑𝑜(#)

ℒ!"#(ℒ!"#)

❄🔥

···

Selection
𝑲#

Selection
𝑲$

Selection
𝑲%

GeM
Fusion

Object-injected
State Prompting

Feature
Extractor
𝑓($)

❄

❄

GeM
Fusion

GeM
Fusion

❄

{𝑃#
$!}&'()

{𝑃$
$!}&'()

{𝑃%
$!}&'()

𝑷#

𝑷$

𝑷%

PromptImage Token Prompt-Key Pair 𝜑𝜔(#) ClassifierLearnable ❄ Frozen Composition State Object

Yellow Dress

Figure 4: Overall architecture of our composition incremental learner (CompILer), which comprises
multi-pool prompt learning, object-injected state prompting, and generalized-mean prompt fusion.
The multi-pool prompt learning mechanism captures information related to states, objects, and their
compositions, each through a dedicated pool. The object-injected state prompting utilizes the object
prompt to promote the state representation learning. Moreover, the generalized-mean prompt fusion
is used to prioritize the useful prompts and diminish the irrelevant ones.

better through adapting a set of learnable tokens in a prompt pool to a frozen pre-trained backbone.
Nevertheless, existing prompt-based approaches are initially designed for class-IL, thereby building
a single prompt pool for object classification solely. when dealing with state-object composition
classification, they tend to excessively prioritize the object primitive while neglecting the state
primitive. To this end, we propose to construct three discrepant and diversified prompt pools Ps,
Po and Pc, which serve to learn visual information related to states, objects and their compositions,
respectively. Besides, each pool is associated with a set of learnable keys Kω for query-key prompt
selection. The three prompt pools and their keys are defined as:

Pω =
{
P 1
ω , P

2
ω , · · ·PM

ω

}
,Kω =

{
K1

ω,K
2
ω, · · ·KM

ω

}
, ω ∈ {s, o, c} , (1)

where P i
ω ∈ RL×D is a single prompt with token length L and embedding dimension D. Ki

ω ∈ RD,
the key of P i

ω , is a learnable token with the same size. M is the number of prompts in each pool.

One important concern in such multi-pool prompt learning is how to enrich the prompts with the
avoidance of identical pools. To achieve it, we consider integrating inter-pool prompt discrepancy
and intra-pool prompt diversity jointly. On the one hand, the inter-pool prompts should be discrepant
as the visual information about states, objects, and compositions should be different. One the other
hand, within each pool, the intra-pool prompts should be diversified so to capture more comprehensive
features from all the classes.

In practice, we formulate a unified objective to regularize both inter-pool discrepancy and intra-pool
diversity, by leveraging a simple and effective directional decoupled loss used in [17]. The directional
decoupled (dd) loss between any two pools (e.g. Pi and Pj) is formulated as:

L(i,j)
dd =

2

M(M − 1)

M∑
n=1

M∑
m=1

max (0, θthre − θnm) , (2)

θnm = cos−1
((Pn

i)
TPm

j

max(∥Pn
i ∥2, ϵ) ·max(∥Pm

j ∥2, ϵ)

)
, (3)

where θnm measures the angle between any two prompts, n and m; ϵ is a scalar to avoid division by
zero. Note that, L(i,j)

dd encourages the angles between each prompt to be at least θthre degrees. Since
(i, j) is unordered Cartesian product of ω, i.e. (i, j) ∈ {(i, j) | i ∈ ω ∧ j ∈ ω}, the inter-pool prompt
discrepancy loss for the three pools can be expressed with Linter = L(s,o)

dd + L(s,c)
dd + L(o,c)

dd , and the
intra-pool prompt diversity loss becomes Lintra = L(s,s)

dd + L(o,o)
dd + L(c,c)

dd . As opposed to Linter,
Lintra computes the angle between any two prompts within the same pool. Thus, it contains the case
when n = m, for which we set θthre − θnm = 0.

5

4.2 Object-injected State Prompting

··· ··· ···

···

···

Query Feature 𝑞(𝑥)

Q

K

V

Fused Object Prompt 𝑷!

Injected Query Feature 𝑞"(𝑥)

···

Token 1 Token 2 Token N

Dot
Product

Figure 5: Architecture of object-injected state
prompting. Query feature serves as Q, while fused
object prompt serves as both K and V.

Akin to the query-key matching mechanism in
other work [43, 42, 40], we utilize a fixed fea-
ture extractor f(·) to obtain a query feature
q(x) = f(x)[0, :], determining which prompts
in the pool to be selected. However, pre-trained
backbones are typically trained for object clas-
sification, thus under-performing for state rep-
resentation learning. In addition, it is more dif-
ficult to predict the state classes due to their
more abstract and fine-grained characteristics.
To tackle this problem, we strategically inject
object prompts to guide the selection of state
prompts. Intuitively, once we have learned
knowledge about the object class, it may be eas-
ier to predict the correct state class and avoid
mistaken results. For instance, given an object
is “heels”, we can expect that the corresponding
state is unlikely to be “canvas” or “plastic”. To summarize, we select object and composition prompts
in each pool based on the original query feature, which means qo(x) = qc(x) = q(x); but for the
selection of state prompts, we propose object-injected state prompting to ameliorate the query feature
as shown in Fig. 5.

Specifically, we employ the fused object prompt P o (see Sec. 4.3) to perform cross attention on the
query feature q(x), resulting in object-injected query feature qs(x) for the state prompt selection:

qs(x) = CrossAttn(q(x),P o) = Softmax(
q(x)WQ · P oW

K

√
D

) · P oW
V , (4)

where WQ, WK and WV are learnable projections. To establish alignment between the query and
the selected prompts, we optimize a surrogate loss for state, object and composition prompting jointly:

Lsur =
∑
ω

∑
qω

COS(fω(x),Ksi
ω), ω ∈ {s, o, c} , (5)

where COS(·, ·) denotes cosine similarity, Kω represents the subset of top-k keys selected from Kω ,
and {si}ki=1 is a subset of top-k indices from [1,M] (prompt number). Despite the simplicity of the
object-injected state prompting, it facilitates more judicious prompt selection within the state prompt
pool, alleviating the hurdles posed by state learning.

4.3 Generalized-mean Prompt Fusion

After obtaining the selected top-k prompts {P si
ω }ki=1, the next step is fusing these prompts into

a single prompt. It is general to utilize a simple mean pooling whereas it overlooks the relative
importance of each prompt. Besides, when the prompts contain information that is unrelated or
contradictory to current task, it is critical to strengthen useful prompts and eliminate irrelevant ones.
To this end, we draw inspiration from generalized-mean pooling [29] and exploit generalized-mean
(GeM) prompt fusion which is given by:

P ω = GeMω(P
s1
ω , P s2

ω , · · · , P sk
ω) =

(
1

k

k∑
i=1

P si
ω

η

) 1
η

, ω ∈ {s, o, c} , (6)

where η is a learnable parameter. When η = 1, GeM becomes mean pooling; as η approaches infinity
(η → ∞), it converges to max pooling. By taking over mean and max pooling, GeM learns to achieve
an optimal fusion, mitigating the influence of irrelevant information present in the prompts.

4.4 Training and Inference

Classification Objective. We prepend three fused prompts (i.e. P s, P o and P c) with xe, which is
the output from a ViT embedding layer fe(·). The extended token sequence is xp = [P c;P s;P o;xe].

6

Table 1: Avg Acc and FTT results on Split-Clothing (5 tasks) and Split-UT-Zappos (5 and 10 tasks).
The best results are marked in bold. All results with standard deviations are averaged over three runs.

Datasets Split-Clothing (5 tasks) Split-UT-Zappos (5 tasks) Split-UT-Zappos (10 tasks)
Metrics Avg Acc(↑) FTT(↓) Avg Acc(↑) FTT(↓) Avg Acc(↑) FTT(↓)
Upper Bound 97.02±0.10 - 68.71±0.41 - 68.71±0.41 -
EWC [10] 47.89±0.87 52.75±0.44 37.59±2.06 55.70±2.76 24.63±0.94 61.31±2.29
LwF [16] 49.96±0.68 44.22±0.53 40.15±0.43 49.61±0.68 30.38±1.41 58.15±0.20
iCaRL [32] 68.65±0.41 31.74±1.89 37.78±2.14 55.06±3.50 31.40±1.96 59.65±2.40
L2P [43] 80.22±0.41 14.23±0.44 42.20±2.18 20.41±2.76 31.65±0.16 31.02±1.62
Deep L2P++[43, 33] 80.55±0.45 12.60±1.90 42.37±0.65 30.10±1.56 30.68±0.35 32.20±1.96
Dual-Prompt [42] 87.87±0.63 7.71±0.25 43.30±0.19 19.41±2.80 33.01±1.65 24.61±1.11
CODA-Prompt [33] 86.35±0.20 8.99±0.71 43.35±0.29 21.76±2.45 31.40±0.36 30.54±2.63
LGCL [7] 87.32±0.10 7.58±0.06 - - 33.56±0.31 24.37±0.56
Sim-CompILer 88.38±0.08 8.01±0.42 45.70±0.68 20.06±0.62 33.30±0.10 30.31±0.03
CompILer 89.21±0.24 7.26±0.60 46.48±0.26 19.27±0.75 34.43±0.07 28.69±0.82

Then, we feed xp to a transformer encoder layer fr(·) and achieve P r
s, P r

o and P r
c for classifying

state, object and composition classes, respectively. We estimate the probability via a classifier φω(·):
p(ω | x) = φω(P

r
ω). For each image x, we denote its ground-truth distribution over labels with

q(ω | x). When ω is consistent with the ground truth, then q(ω | x) = 1; otherwise, q(ω | x) = 0.
As a result, the cross entropy (CE) loss used for classification objective is:

Lω
CE = −

Ω∑
ω=1

q(ω | x) log p(ω | x),Ω ∈ [|S| , |O| , |C|] , (7)

where Ω represents the number of classes. However, the model optimized with a standard CE loss
is easily affected by noisy samples during training. Instead, we advocate using a symmetric cross
entropy loss (SCE) [41], which incorporates an additional term called reverse cross entropy (RCE),
to mitigate the impact of noisy data. Contrary to CE, the formula for RCE loss is defined as:

Lω
RCE = −

Ω∑
ω=1

p(ω | x) log q(ω | x), ω ∈ {s, o, c} . (8)

Then, the SCE loss combines two loss terms by Lω
SCE = Lω

CE + αLω
RCE , where α is a hyper-

parameter that controls the weight of the RCE term. As a result, the whole SCE loss becomes LSCE =
Lc
SCE + β(Ls

SCE + Lo
SCE), where β adjusts the weights between primitives and compositions.

Total Loss. The total loss for training the whole CompILer model is:
Ltotal = λ1Linter + λ2Lintra + λ3Lsur + LSCE , (9)

where λ1, λ2, λ3 are hyper-parameters balancing different terms.

Inference. During inference, we incorporate the primitive probabilities to aid the composition
probability. Hence, the final probability for composition classification is expressed with:

pfinal(c | x) = p(c | x) + µ(p(s | x) + p(o | x)), (10)
where µ adjusts the probabilities.

5 Experiments

5.1 Datasets and Metrics

We conduct experiments on two newly split datasets: Split-Clothing and Split-UT-Zappos as eluci-
dated in Section 3.2. We assess the overall performance on compositions using Average Accuracy
(Avg Acc) and Forgetting (FTT). A higher Avg Acc signifies stronger recognition abilities, while a
lower FTT indicates improved resilience against forgetting. Additionally, we provide individual Aver-
age Accuracy scores on states and objects, denoted as State and Object for simplicity. These metrics
imply the ability to recognize fine-grained primitives. Furthermore, we calculate the Harmonic Mean
(HM) between State and Object, i.e. HM = 2× (State×Object)

(State+Object) . We provide more emphasis to Avg
Acc and HM due to their more comprehensive assessment. Avg Acc encompasses the plasticity and
stability [33, 2] and HM provides a holistic evaluation on both state and object.

7

5.2 Implementation Details

Table 2: State, Object and HM results on Split-Clothing. The
best results are marked in bold.

Datasets Split-Clothing (5 tasks)
Metrics State Object HM
Upper Bound 97.44±0.08 97.09±0.10 97.26±0.08
EWC [10] 86.49±0.97 52.72±1.30 675.50±0.97
LwF [16] 87.11±0.66 54.57±0.69 67.10±0.33
iCaRL [32] 91.21±1.05 71.70±0.99 80.28±0.74
L2P [43] 83.03±0.42 95.56±0.57 88.85±0.16
Dual-Prompt [42] 90.77±0.25 94.18±0.31 92.45±0.20
LGCL [7] 91.45±0.20 94.87±0.33 93.13±0.10
Sim-CompILer 91.15±0.10 96.32±0.02 93.66±0.02
CompILer 91.81±0.23 96.67±0.01 94.18±0.06

For a fair comparison with previous
works [43, 42, 2, 33], we also employ
ViT B/16 [1] pretrained on the Ima-
geNet 1K dataset as the feature ex-
tractor and backbone. For multi-pool
prompt learning, the size of each pool
is set to 20, and each prompt has 5
tokens. We select top-5 prompts from
each pool and generate a fused prompt.
During training, we utilize the Adam
optimizer [9] with a batch size of
16. The whole CompILer undergoes
training for 25 epochs on the Split-
Clothing, for 10 epochs on the 5-task
Split-UT-Zappos, and for 3 epochs on
the 10-task Split-UT-Zappos. For the Split-Clothing and the 10-task Split-UT-Zappos, we set the
learning rate to 0.03, while we use a learning rate of 0.02 for the 5-task Split-UT-Zappos. Note
that, for all the methods, their results are averaged over three runs with the corresponding standard
deviations reported to mitigate the influence of random factors.

As there are a few hyper-parameters in the model, we conduct a rigorous tuning on them. For instance,
we set θthre to π

2 for all settings. For Split-Clothing, the loss weights λ1 and λ3 are set to 0.1; λ2 is
set to 10−7; α and β for SCE loss are 0.006 and 0.3, and the parameter µ during inference is 0.5.
For 5-task Split-UT-Zappos, λ1, λ2, λ3, α, β and µ are set to 1.0, 3× 10−6, 0.7, 0.01, 0.7 and 0.02,
respectively. For 10-task Split-UT-Zappos, λ1, λ2, λ3, α, β and µ are set to 0.5, 10−7, 0.1, 0.05, 0.4
and 0.03. We elaborate more details on hyper-parameter analysis in the appendix.

5.3 Compared Baselines

To demonstrate the effectiveness of the proposed method, we compare CompILer with state-of-the-art
incremental learning methods, including prompt-free approaches [10, 16, 32] and prompt-based
methods [43, 42, 33, 7]. All the methods are rehearsal-free except iCaRL [32]. Note that, due to
LGCL [7] relying on CLIP [30] to achieve language guidance at the task level, it is limited by the
length of class names per task. Thereby, LGCL fails to operate on the 5-task Split-UT-Zappos since
the total length of class names exceeds the limitation.

To streamline our CompILer, we further implement a simplified version named Sim-CompILer and
report its results. Sim-CompILer is optimized using cross entropy loss and is comprised solely of
multi-pool prompt learning and generalized-mean prompt fusion. In other words, we exclude the
object-injected prompting, directional decoupled loss, and reverse cross entropy loss, resulting in a
large reduction of hyperparameters to only β, λ3, and µ.

5.4 Comparison with the State-of-the-arts

The compared results on Avg Acc and FTT are reported in Table 1. Overall, CompILer consistently
outperforms all competitors on Avg Acc by a significant margin. For FTT scores, CompILer excels
previous methods with 0.32% on the 5-task Split-Clothing and with 0.14% on the 5-task Split-UT-
Zappos, while falling behind Dual-Prompt [42] and LGCL [7] for the 10-task Split-UT-Zappos. We
notice that, the main reason is these methods sacrifice more plasticity for lower forgetting rates.
Besides, the number of model parameters in these methods dynamically increases along with more
incremental tasks arriving, whereas our CompILer does not rely on imposing task-specific parameters
to reduce the forgetting.

We also report the primitives accuracy and their HM in Table 2 and Table 3. Likewise, our method
surpasses other methods considerably in terms of State and HM. Interestingly, the prompt-free
methods [16, 10, 32] achieve higher accuracy in state prediction than object prediction for Split-
Clothing, which is contrary to other results. This is because the states in Split-Clothing are color-
related descriptions, which are easier to capture with the help of parameter fine-tuning. The prompt-
based methods do not exhibit this phenomenon because their pre-trained backbones are initially

8

Table 3: State, Object and HM results on Split-UT-Zappos (5 tasks) and Split-UT-Zappos (10 tasks).
Datasets Split-UT-Zappos (5 tasks) Split-UT-Zappos (10 tasks)
Metrics State Object HM State Object HM
Upper Bound 75.10±0.10 88.13±0.03 81.90±0.06 75.10±0.10 88.13±0.03 81.90±0.06
EWC [10] 47.95±1.26 76.53±0.91 58.90±0.53 39.29±2.69 67.64±1.97 49.69±2.30
LwF [16] 53.13±1.08 75.48±0.82 62.35±0.31 38.70±2.33 68.90±1.97 49.54±1.30
iCaRL [32] 51.71±0.95 75.03±0.49 61.22±0.78 38.94±2.01 67.10±1.05 49.27±1.58
L2P [43] 52.20±2.92 79.05±0.01 62.87±1.61 42.66±0.87 76.60±0.03 54.80±0.55
Dual-Prompt [42] 52.25±0.77 77.46±0.05 62.40±0.34 44.34±1.61 77.92±0.37 56.51±1.11
LGCL [7] - - - 43.44±0.79 78.64±0.64 55.96±0.43
Sim-CompILer 55.93±1.23 79.69±0.06 65.72±0.53 45.88±0.38 75.72±0.67 57.14±0.06
CompILer 56.85±0.34 79.56±0.04 66.31±0.15 46.27±1.56 76.65±1.19 57.69±0.42

Table 5: Ablative experiments for (a) object-injected state prompting, (b) prompt fusion method.
(a) Object-injected state prompting.

Dataset Split-Clothing (5 tasks)
Metrics Avg Acc FTT(↓) HM
None 88.45±0.10 7.93±0.11 93.70±0.03
S→O 88.27±0.02 7.99±0.05 93.67±0.01
O→S 89.21±0.24 7.26±0.60 94.18±0.06

(b) Prompt fusion method.
Dataset Split-Clothing (5 tasks)
Metrics Avg Acc FTT(↓) HM

Max 84.70±0.64 12.24±2.25 91.54±0.30
Mean 87.80±0.12 7.82±0.01 93.38±0.03
GeM 89.21±0.24 7.26±0.60 94.18±0.06

trained for object classification, and are frozen across incremental sessions. As the performance
improvements are mainly attributed to the accuracy of state recognition, it suggests that our model
enhances the understanding on fine-grained compositionality.

5.5 Ablation Study and Analysis

Table 4: Ablation study on multi-pool prompt learning
with Split-Clothing dataset.

Prompt Pool Split-Clothing (5 tasks)
C S O Avg Acc FTT(↓) HM
✓ 80.22±0.41 14.23±0.44 88.85±0.16
✓ ✓ 88.10±0.11 7.79±0.04 93.55±0.04
✓ ✓ 88.09±0.50 7.26±0.54 93.52±0.13
✓ ✓ ✓ 88.38±0.08 8.01±0.42 93.66±0.02

Effect of multi-pool prompt learn-
ing. This experiment aims to delineate
the contribution of three pools in Com-
pILer. We firstly implement a baseline
model with composition prompt pool
only. Building upon the baseline, we
develop two additional models, which
incorporate either object or state prompt
pool. As reported in Table 4, the in-
clusion of primitive prompt pool yields
consistent gains over the baseline. Fur-
thermore, the best results are achieved when the model integrates all three pools simultaneously. This
experiment signifies the significant necessity of exploiting multiple prompt pools for composition-IL.

Effect of object-injected state prompting. To provide insights into object-injected state prompting,
we compare three models: None (vanilla model), S→O (state-injected object prompting) and O→S
(object-injected state prompting). As shown in Table 5a, compared to the None model, the S→O
exhibits a decrease in all metrics, implying that state prompts may interfere with the selection of
object prompts. On the contrary, O→S outperforms the None model as we expect. This phenomenon
validates our motivation that state recognition is harder than object recognition, and thereby the
former cannot help the latter easily. Yet, it is a promising direction for future research.

Effect of generalized-mean prompt fusion. This study aims to study the impact of prompt fusion
on CompILer. As shown in Table 5b, GeM performs better than both max and mean pooling across
various metrics. It validates the benefit of GeM on mitigating irrelevant information in the selected
prompts. as it may hamper the model’s attention on image tokens.

Effect of loss functions. As shown in Table 6, we investigate the influence of loss functions used in
our model, including directional decoupled loss (Linter and Lintra) and symmetric cross entropy
loss (LCE and LRCE). The baseline model (the first row) includes all modules but is trained by cross
entropy loss only. By adding the RCE loss, the model is equivalent to training with the SCE loss,
which help to improve the robustness to noisy labels. The use of either Linter or Lintra improves the
performance on both datasets, and synchronously applying them witnesses all-around improvements

9

Table 6: Ablate the loss functions on Split-Clothing and Split-UT-Zappos.
Loss function Split-Clothing (5 tasks) Split-UT-Zappos (5 tasks)

LCE LRCE Linter Lintra Avg Acc FTT(↓) Avg Acc FTT(↓)
✓ 88.17±0.08 8.08±0.27 44.83±0.15 19.49±2.93
✓ ✓ 88.36±0.37 8.33±0.11 45.47±0.07 20.14±0.43
✓ ✓ 88.32±0.56 7.82±0.64 45.58±0.04 19.64±0.37
✓ ✓ 88.42±0.30 8.23±0.06 45.62±0.13 20.13±0.14
✓ ✓ ✓ 88.61±0.61 7.72±0.87 46.01±0.69 19.50±0.86
✓ ✓ ✓ ✓ 89.21±0.24 7.26±0.60 46.48±0.26 19.27±0.75

(d) Prediction Results

Suede Heels

Suede Heels
Satin Heels

Brown Hoodie

Brown Hoodie
Red Hoodie

Leather Ankle

Leather Ankle
Suede Ankle

Yellow Skirt

Yellow Skirt
Yellow Dress

Canvas Sneakers

Canvas Sneakers
Suede Slippers

Black Suit

Black Suit
Green Suit

(a) Composition Accuracy

99.49

97.77

94.17

92.97

92.80

96.34

92.98

85.95

83.66

92.37

83.80

83.80

93.24

93.24 90.20

T1 T2 T3 T4 T5

After Tk

T1

T2

T3

T4

T5

(b) State Accuracy

99.68

98.46

97.08

96.74

96.57

97.25

93.44

86.40

85.19

95.33

86.16

86.60

96.14

96.62 93.08

T1 T2 T3 T4 T5

After Tk

T1

T2

T3

T4

T5

(c) Object Accuracy

99.83

98.97

96.47

96.06

96.06

98.32

98.32

98.60

97.25

96.26

97.04

96.10

95.81

95.33 96.97

T1 T2 T3 T4 T5

After Tk

T1

T2

T3

T4

T5

Figure 6: Results and analysis. (a) to (c) show accuracy of CompILer on composition, state, and
object for each task in Split-Clothing. The x-axis represents the test stream, and the y-axis denotes the
status after training the Tk task. Darker background color indicates higher accuracy. (d) displays some
images and their predictions: top row is GT, middle row is CompILer prediction, and bottom row is
L2P [43] prediction. Green indicates correct predictions, while red indicates incorrect predictions.

compared to the baseline. Eventually, we achieve the best results when combing all the loss terms
during training.

5.6 Additional Results and Analysis

In order to study the repeatability characteristic in composition-IL, we exhibit more results on
Split-Clothing in Fig. 6: in (a), it shows a decreasing trend in composition accuracy along with the
introduction of new tasks; however, the green rectangles in (b) and (c) showcase that the accuracy
occasionally increases as more tasks are learned. We conjecture the reason is mostly attributed to
the re-occurrence of primitive concepts. This forward transfer is critical for incremental learners.
We compare the composition predictions between CompILer and L2P [43] in Fig. 6 (d). CompILer
predicts all the images correctly, while L2P makes some mistakes, particularly for state labels. This
limitation arises from an excessive focus on the dominant object primitive, while weakening the
attention toward state primitive. Fortunately, CompILer relieves the bias toward object classes, and
enhances the perception on state classes.

6 Conclusion

In this paper, we have proposed a novel task coined compositional incremental learning (compostion-
IL), which is stumbled by ambiguous composition boundary. To tackle it, we develop a learning-
to-prompt model, namely CompILer. Our model exploits multi-pool prompt learning to model
composition and primitive concepts, object-injected state prompting to improve the selection of
state prompts, and generalized-mean prompt fusion to eliminate irrelevant information. Extensive
experiments on two tailored datasets show that CompILer achieves state-of-the-art performance. In
the future, it is challenging yet potential to consider reasoning multiple state classes per object.

7 Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grant
Numbers 62102061, 62272083 and 62472066, and in part by the Open Projects Program of State Key
Laboratory of Multimodal Artificial Intelligence Systems.

10

References
[1] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,

Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. In International
Conference on Learning Representations, 2020.

[2] Zhanxin Gao, Jun Cen, and Xiaobin Chang. Consistent prompting for rehearsal-free continual
learning. In IEEE Conf. Comput. Vis. Pattern Recog., 2024.

[3] Shaozhe Hao, Kai Han, and Kwan-Yee K Wong. Learning attention as disentangler for
compositional zero-shot learning. In IEEE Conf. Comput. Vis. Pattern Recog., pages 15315–
15324, 2023.

[4] Geoffrey Hinton. Some demonstrations of the effects of structural descriptions in mental
imagery. Cognitive Science, 3(3):231–250, 1979.

[5] Chenchen Jing, Yukun Li, Hao Chen, and Chunhua Shen. Retrieval-augmented primitive
representations for compositional zero-shot learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, pages 2652–2660, 2024.

[6] Sangwon Jung, Hongjoon Ahn, Sungmin Cha, and Taesup Moon. Continual learning with
node-importance based adaptive group sparse regularization. Adv. Neural Inform. Process. Syst.,
33:3647–3658, 2020.

[7] Muhammad Gul Zain Ali Khan, Muhammad Ferjad Naeem, Luc Van Gool, Didier Stricker,
Federico Tombari, and Muhammad Zeshan Afzal. Introducing language guidance in prompt-
based continual learning. In Int. Conf. Comput. Vis., pages 11429–11439, 2023.

[8] Hanjae Kim, Jiyoung Lee, Seongheon Park, and Kwanghoon Sohn. Hierarchical visual primitive
experts for compositional zero-shot learning. In Int. Conf. Comput. Vis., pages 5675–5685,
2023.

[9] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[10] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al.
Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of
sciences, 114(13):3521–3526, 2017.

[11] Hyunseo Koh, Dahyun Kim, Jung-Woo Ha, and Jonghyun Choi. Online continual learning on
class incremental blurry task configuration with anytime inference. In International Conference
on Learning Representations, 2022.

[12] Xiangyu Li, Xu Yang, Kun Wei, Cheng Deng, and Muli Yang. Siamese contrastive embedding
network for compositional zero-shot learning. In IEEE Conf. Comput. Vis. Pattern Recog.,
pages 9326–9335, 2022.

[13] Yong-Lu Li, Yue Xu, Xiaohan Mao, and Cewu Lu. Symmetry and group in attribute-object
compositions. In IEEE Conf. Comput. Vis. Pattern Recog., pages 11316–11325, 2020.

[14] Yong-Lu Li, Yue Xu, Xinyu Xu, Xiaohan Mao, and Cewu Lu. Learning single/multi-attribute of
object with symmetry and group. IEEE Trans. Pattern Anal. Mach. Intell., 44(12):9043–9055,
2021.

[15] Yun Li, Zhe Liu, Hang Chen, and Lina Yao. Context-based and diversity-driven specificity in
compositional zero-shot learning. In IEEE Conf. Comput. Vis. Pattern Recog., 2024.

[16] Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE Trans. Pattern Anal. Mach.
Intell., 40(12):2935–2947, 2017.

[17] Zilong Li, Yiming Lei, Chenglong Ma, Junping Zhang, and Hongming Shan. Prompt-in-prompt
learning for universal image restoration. arXiv preprint arXiv:2312.05038, 2023.

11

[18] Weiduo Liao, Ying Wei, Mingchen Jiang, Qingfu Zhang, and Hisao Ishibuchi. Does continual
learning meet compositionality? new benchmarks and an evaluation framework. Adv. Neural
Inform. Process. Syst., 2023.

[19] Yu Liu, Jianghao Li, Yanyi Zhang, Qi Jia, Weimin Wang, Nan Pu, and Nicu Sebe. Pmgnet:
Disentanglement and entanglement benefit mutually for compositional zero-shot learning.
Computer Vision and Image Understanding, 2024.

[20] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
Adv. Neural Inform. Process. Syst., 30, 2017.

[21] Massimiliano Mancini, Muhammad Ferjad Naeem, Yongqin Xian, and Zeynep Akata. Open
world compositional zero-shot learning. In IEEE Conf. Comput. Vis. Pattern Recog., pages
5222–5230, 2021.

[22] Marc Masana, Xialei Liu, Bartłomiej Twardowski, Mikel Menta, Andrew D Bagdanov, and
Joost Van De Weijer. Class-incremental learning: survey and performance evaluation on image
classification. IEEE Trans. Pattern Anal. Mach. Intell., 45(5):5513–5533, 2022.

[23] Ishan Misra, Abhinav Gupta, and Martial Hebert. From red wine to red tomato: Composition
with context. In IEEE Conf. Comput. Vis. Pattern Recog., pages 1792–1801, 2017.

[24] Jun-Yeong Moon, Keon-Hee Park, Jung Uk Kim, and Gyeong-Moon Park. Online class
incremental learning on stochastic blurry task boundary via mask and visual prompt tuning. In
IEEE Conf. Comput. Vis. Pattern Recog., pages 11731–11741, 2023.

[25] Muhammad Ferjad Naeem, Yongqin Xian, Federico Tombari, and Zeynep Akata. Learning
graph embeddings for compositional zero-shot learning. In IEEE Conf. Comput. Vis. Pattern
Recog., pages 953–962, 2021.

[26] Tushar Nagarajan and Kristen Grauman. Attributes as operators: factorizing unseen attribute-
object compositions. In Eur. Conf. Comput. Vis., pages 169–185, 2018.

[27] Senthil Purushwalkam, Maximilian Nickel, Abhinav Gupta, and Marc’Aurelio Ranzato. Task-
driven modular networks for zero-shot compositional learning. In Int. Conf. Comput. Vis., pages
3593–3602, 2019.

[28] Jingyang Qiao, Xin Tan, Chengwei Chen, Yanyun Qu, Yong Peng, Yuan Xie, et al. Prompt
gradient projection for continual learning. In The Twelfth International Conference on Learning
Representations, 2023.

[29] Filip Radenović, Giorgos Tolias, and Ondřej Chum. Fine-tuning cnn image retrieval with no
human annotation. IEEE transactions on pattern analysis and machine intelligence, 41(7):1655–
1668, 2018.

[30] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision. In Interna-
tional Conference on Machine Learning, pages 8748–8763, 2021.

[31] Pasko Rakic, Jean-Pierre Bourgeois, and Patricia S Goldman-Rakic. The self-organizing brain:
from growth cones to functional networks. Elsevier, 1994.

[32] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In IEEE Conf. Comput. Vis. Pattern Recog.,
pages 2001–2010, 2017.

[33] James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla, Donghyun
Kim, Assaf Arbelle, Rameswar Panda, Rogério Feris, and Zsolt Kira. Coda-prompt: Continual
decomposed attention-based prompting for rehearsal-free continual learning. In IEEE Conf.
Comput. Vis. Pattern Recog., pages 11909–11919, 2023.

12

[34] Filip Szatkowski, Mateusz Pyla, Marcin Przewięźlikowski, Sebastian Cygert, Bartłomiej Twar-
dowski, and Tomasz Trzciński. Adapt your teacher: Improving knowledge distillation for
exemplar-free continual learning. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pages 1977–1987, 2024.

[35] Yu-Ming Tang, Yi-Xing Peng, and Wei-Shi Zheng. When prompt-based incremental learning
does not meet strong pretraining. In IEEE Conf. Comput. Vis. Pattern Recog., pages 1706–1716,
2023.

[36] Liyuan Wang, Jingyi Xie, Xingxing Zhang, Mingyi Huang, Hang Su, and Jun Zhu. Hierarchical
decomposition of prompt-based continual learning: Rethinking obscured sub-optimality. Adv.
Neural Inform. Process. Syst., 36, 2024.

[37] Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual
learning: Theory, method and application. IEEE Trans. Pattern Anal. Mach. Intell., 2024.

[38] Qingsheng Wang, Lingqiao Liu, Chenchen Jing, Hao Chen, Guoqiang Liang, Peng Wang, and
Chunhua Shen. Learning conditional attributes for compositional zero-shot learning. In IEEE
Conf. Comput. Vis. Pattern Recog., pages 11197–11206, 2023.

[39] Wenjin Wang, Yunqing Hu, Qianglong Chen, and Yin Zhang. Task difficulty aware parameter
allocation & regularization for lifelong learning. In IEEE Conf. Comput. Vis. Pattern Recog.,
pages 7776–7785, 2023.

[40] Yabin Wang, Zhiwu Huang, and Xiaopeng Hong. S-prompts learning with pre-trained trans-
formers: An occam’s razor for domain incremental learning. Adv. Neural Inform. Process. Syst.,
35:5682–5695, 2022.

[41] Yisen Wang, Xingjun Ma, Zaiyi Chen, Yuan Luo, Jinfeng Yi, and James Bailey. Symmetric
cross entropy for robust learning with noisy labels. In Int. Conf. Comput. Vis., pages 322–330,
2019.

[42] Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren,
Guolong Su, Vincent Perot, Jennifer G. Dy, and Tomas Pfister. Dualprompt: Complementary
prompting for rehearsal-free continual learning. In Eur. Conf. Comput. Vis., pages 631–648,
2022.

[43] Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su,
Vincent Perot, Jennifer G. Dy, and Tomas Pfister. Learning to prompt for continual learning. In
IEEE Conf. Comput. Vis. Pattern Recog., pages 139–149, 2022.

[44] Aron Yu and Kristen Grauman. Fine-grained visual comparisons with local learning. In IEEE
Conf. Comput. Vis. Pattern Recog., pages 192–199, 2014.

[45] Alan L Yuille and Chenxi Liu. Deep nets: What have they ever done for vision? Int. J. Comput.
Vis., 129(3):781–802, 2021.

[46] Tian Zhang, Kongming Liang, Ruoyi Du, Xian Sun, Zhanyu Ma, and Jun Guo. Learning
invariant visual representations for compositional zero-shot learning. In Eur. Conf. Comput.
Vis., pages 339–355, 2022.

[47] Yanyi Zhang, Qi Jia, Xin Fan, Yu Liu, and Ran He. Cscnet: Class-specified cascaded network
for compositional zero-shot learning. In IEEE International Conference on Acoustics, Speech
and Signal Processing, pages 3705–3709, 2024.

[48] Yaqian Zhang, Bernhard Pfahringer, Eibe Frank, Albert Bifet, Nick Jin Sean Lim, and Yunzhe
Jia. A simple but strong baseline for online continual learning: Repeated augmented rehearsal.
Adv. Neural Inform. Process. Syst., 35:14771–14783, 2022.

13

A Appendix

In addition to the content in the main paper, this appendix elaborates more details on the datasets,
algorithm procedure, empirical analysis, hyper-parameter analysis, and quantitative and qualitative
experiments. Meanwhile, please refer to the source code and some data samples included in the
supplementary material we submit.

0

1000

2000

3000

T1 T2 T3 T4 T5

(ⅰ) Split-Clothing (5 tasks)

0

2000

4000

6000

T1 T2 T3 T4 T5

(ii) Split-UT-Zappos (5 tasks)

0

1000

2000

3000

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

(iii) Split-UT-Zappos (10 tasks)

Figure 7: Number of images per task. The horizontal axis indicates the task ID, while the vertical
axis represents the corresponding number of images. The colors pink and blue denote training and
testing datasets, respectively. Overall, the data distributions are relatively balanced across tasks.

A.1 More on Dataset Details

We provide more information about two newly tailored datasets (Split-Clothing and Split-UT-Zappos)
and extensively discuss the limitations of Split-UT-Zappos. The number of images in each task is
shown in Fig. 7.

Split-Clothing is derived from Clothing16K, which is originally used for multi-label classification
tasks and consists of 37 state-object compositions and 16,170 images scraped from Google, Bing,
and DuckDuckGo. We sorted these compositions by the number of images and selected the top 35
compositions, resulting in a total of 15,915 images in the Split-Clothing dataset. Specifically, the
object in Split-Clothing includes various types of garments such as “dresses” and “hoodies”, while
the state delineates the color of the clothing, such as “silver” and “yellow”. We allocate 80% of the
dataset for training and the remaining 20% for testing. We split this dataset for 5 incremental tasks.

Split-UT-Zappos is a subset of UT-Zappos50K, which is a large shoe dataset consisting of 50,025
catalog images collected from Zappos.com. This dataset is originally created for an online shopping
task and we selected a total of 28,497 images to comprise the Split-UT-Zappos. The state classes
in Split-UT-Zappos describe different materials (e.g. canvas and leather) and the object classes are
related to footwear (e.g. heels and slippers). Consistent with Split-Clothing, we employ 80% of the
images for training and 20% for testing. We split this dataset for either 5 or 10 incremental tasks.

Limitations of Split-UT-Zappos. It is noteworthy that, even for the upper bound model (i.e.
supervised learning with all the data), satisfactory performance remains elusive on Split-UT-Zappos
as shown in Table 1 and Table 3. This deficiency can be attributed to the pronounced long-tail
distributions and invisible states inherent in UT-Zappos50K. For example, the composition “Faux
Fur Slippers” comprises a mere 25 training images, whereas “Leather Sandals” accounts for 1783.
This disproportionate distribution predisposes the severe bias towards the compositions prevalent
in the head of the distributions, while inadequately capturing those in the tail. Besides, some states
in Split-UT-Zappos lik,e “Leather” vs “Synthetic Leather”, are material differences that are not
always visible as visual transformations. The deficient state description poses a greater challenge
for classification, thereby resulting in suboptimal upper bound results. We contend that tackling the
long-tail distribution challenge within Split-UT-Zappos and constructing more balanced datasets
conducive to composition-IL represent promising avenues for future research.

A.2 More on Training Procedure

We summarize the training procedure of the proposed CompILer in Algorithm 1.

14

Algorithm 1: Training Procedure of CompILer for composition-IL
1 Input: Training data for T tasks, where each image x has a set of three labels: c, s and o. Three

prompt pools Pω with corresponding keys Kω , where ω ∈ {s, o, c}. Pre-trianed feature
extractor f(·), pre-trained input embedding layer fe(·), pre-trained transformer encoder layer
fr(·), cross attention layer CrossAttn(·, ·), classifiers φω(·), GeM fusion GeMω(· · ·).

2 Initialize: Pω , Kω , CrossAttn(·, ·), φω(·), GeMω(· · ·)
3 for t = 1, · · · , T do
4 for each sample in the batch do
5 Estimate the prompt-specific loss Lp = λ1Linter + λ2Lintra;
6 Calculate query feature of object and composition qo(x) = qc(x) = f(x)[0, :];
7 Lookup top-k object keys Ko and composition keys Kc;
8 Select top-k prompts associated with the keys in Po and Pc;
9 Fuse the selected prompts by P o = GeMo(P

s1
o , P s2

o , · · · , P sk
o) and

P c = GeMc(P
s1
c , P s2

c , · · · , P sk
c);

10 Perform object-injected state prompting by: qs(x) = CrossAttn(f(x)[0, :],P o);
11 Lookup top-k state keys Ks;
12 Select top-k state prompts associated with the keys in Ps;
13 Fuse the selected state prompts by P s = GeMs(P

s1
s , P s2

s , · · · , P sk
s);

14 Calculate the input embedding sequence xe = fe(x);
15 Prepending xe with fused prompts by xp = [P c;P s;P o;xe];
16 Feed xp to a transformer encoder layer fr(·) and achieve P r

s, P r
o and P r

c
17 Calculate the probability by p(ω | x) = φω(P

r
ω);

18 Estimate per sample loss Lx = LSCE + λ3Lsur;
19 end
20 Calculate per batch loss LB by accumulating (Lx + Lp).
21 end
22 Output:The network and its network parameters Φ.

A.3 Empirical Analysis on Learned Prompts

In Section 4.1, we design multi-pool prompt learning to learn visual representations of state, object,
and composition, respectively. By applying inter-pool discrepant loss and intra-pool diversified loss,
we ensure discrepancy across pools and diversity within each pool. To validate the effectiveness of the
approach, we conduct t-SNE visualization on the prompt pools within the three experiment settings.
Figure 8 illustrates that the learned knowledge across the three pools is remarkably discriminative,
suggesting that each pool has effectively captured unique features. Meanwhile, the prompts within
each pool exhibit a relatively wide dispersion demonstrating that the learned information within each
pool is diversified.

A.4 Empirical Analysis of Generalized-mean Prompt Fusion

The detailed operation of Generalized-mean Prompt Fusion is elaborated on Section 4.3. The
parameter η in Eq. 6 can be learnable as this operation is differentiable, allowing it to be included in
the whole back-propagation process. To prove that, the corresponding derivatives of Eq. 6 are given
by:

∂P ω

∂P si
ω

=
1

k
P ω

1−ηP si
ω

η−1,

∂P ω

∂η
=

P ω

η2

(
log

k∑k
i=1 P

si
ω

η
+ η

∑k
i=1 P

si
ω

ηlogP si
ω∑k

i=1 P
si
ω

η

)
.

(11)

A.5 Empirical Analysis of Symmetric Cross Entropy Loss

In this section, we delve into why symmetric cross entropy (SCE) loss can effectively mitigate noisy
data in the dataset. We define two distributions, q and p, where q = (k | x) represents the ground
truth class distribution for sample x and p = (k | x) represents the predicted class distribution. The

15

(a) Split-Clothing (5 tasks) (b) Split-UT-Zappos (5 tasks) (c) Split-UT-Zappos (10 tasks)

Figure 8: The t-SNE visualization of learned prompts on Split-Clothing (5 tasks), Split-UT-Zappos(5
tasks), and Split-UT-Zappos (10 tasks). The composition prompts are colored in yellow, the state
prompts in green, and the object prompts in blue.

46.0

46.4

46.8

47.2

0.8 0.9 1.0 1.1 1.2

Av
g

A
cc

 (%
)

45

45.8

46.6

47.4

3e-
6
1e-
5
3e-
5
1e-
4
3e-
4

Av
g

A
cc

 (%
)

(a) Impact of 𝜆! (b) Impact of 𝜆"

45

45.8

46.6

47.4

0.5 0.6 0.7 0.8 0.9

Av
g

A
cc

 (%
)

(b) Impact of 𝜆#

7 7 6 6 5

Figure 9: Impact of hyper-parameters on average accuracy in Split-UT-Zappos (5 tasks).

relation between the cross entropy H(q, p) and KL-divergence KL(q ∥ p) is expressed as:

KL(q ∥ p) = H(q, p)−H(q), (12)

in which H(q) denotes the entropy of q. From the perspective of KL divergence, the optimization
objective is to make the prediction distribution p closely resemble the ground truth distribution q,
essentially minimizing their KL divergence. However, in the presence of noise within the dataset,
q may not accurately reflect the ground-truth class distribution, whereas p might reveal the real
distribution. Therefore, it becomes necessary to consider the reverse direction of KL divergence, i.e.
KL(p ∥ q) and construct symmetric KL divergence represented by:

SKL(q ∥ p) = KL(q ∥ p) +KL(p ∥ q). (13)

By transferring this idea from KL divergence to cross entropy, the formula for symmetric cross
entropy is given by:

SCE = CE +RCE = H(q, p) +H(p, q), (14)

where RCE = H(p, q) is the reverse counterpart of H(q, p), known as reverse cross entropy.

A.6 More on Hyper-parameter Analysis

We investigate the impact of several hyper-parameters, as depicted in Fig. 9. Specifically, we explore
the influence of weights in the total loss. We present the results of tuning the weight λ1, λ2, and
λ3 on the Split-UT-Zappos (5 tasks). The average accuracy shown in Fig. 9(a), (b), and (c) initially
exhibits an increasing trend, followed by an overall decreasing trend. CompILer reaches its peak
performance when λ1 = 1.0, λ2 = 3e− 6, and λ3 = 0.7.

A.7 More on Ablation Studies

Effect of multi-pool prompt learning. In addition to presenting the results of Avg ACC, FTT,
and HM on Split-Clothing (5 tasks) for multi-pool prompt learning, we also include the remaining
results for State and Object in Table 7. An intriguing observation is that the model achieves the best

16

Table 7: Ablate the multi-pool prompt learning on Split-Clothing (5 tasks). C, S, and O denote the
composition pool, state pool, and object pool, respectively.

Prompt Pool Split-Clothing (5 tasks)
C S O Avg Acc FTT(↓) State Object HM
✓ 80.01 12.85 83.25 94.45 88.50
✓ ✓ 88.10±0.11 7.79±0.04 90.42±0.02 96.91±0.10 93.55±0.04
✓ ✓ 88.09±0.50 7.26±0.54 91.67±0.19 96.00±0.03 93.52±0.13
✓ ✓ ✓ 88.38±0.08 8.01±0.42 91.15±0.10 96.32±0.02 93.66±0.02

Table 8: Ablate the guidance on Split-Clothing (5 tasks).
Dataset Split-Clothing (5 tasks)

Guidance Avg Acc FTT(↓) State Object HM
None 88.45±0.10 7.93±0.11 91.26±0.11 96.28±0.01 93.70±0.03
S→O 88.27±0.02 7.99±0.05 90.99±0.22 96.53±0.19 93.67±0.01
O→S 89.21±0.24 7.26±0.60 91.81±0.23 96.67±0.01 94.18±0.06

results for Object when the object pool is used exclusively, while it reaches the peak performance
for State when only the state pool is introduced. This phenomenon suggests that incorporating
the primitive prompt pools significantly aids in learning the representations of the corresponding
primitives. Furthermore, when the model integrates the state prompt pool alone, not only does the
accuracy of state is improved, but the accuracy of object also experiences significant gains, and
vice versa. This implies that the learning of one type of primitive representation is crucial for the
learning of another. Only when all three pools are integrated does the model achieve state-of-the-art
performance in the most important metrics, namely average accuracy and HM.

Effect of object-injected state prompting. In this section, we report the remaining results for
object-injected state prompting on Split-Clothing (5 tasks) as shown in Table 8. State-injected object
prompting (S→O) introduces interference information for composition learning, resulting in a decline
across all metrics expect Object. By contrast, object-injected state prompting (O→S) leads to a
significant improvement across all metrics, demonstrating the effectiveness of the proposed method.

Effect of generalized-mean prompt fusion. We show the intact results of the ablation study on
pooling methods on Split-Clothing (5 tasks) in Fig. 9. It is obvious that max pooling hits the lowest
result, while integrating mean pooling leads to a stable growth. Only deploying Generalized-mean
pooling achieves the state-of-the-art results, surging from 84.70 to 89.21 in Avg Acc and plunging to
7.26 in FTT. Consequently, the theory that GeM pooling can diminish the irrelevant information and
emphasize the crucial aspects is proved.

Effect of loss functions. Eventually, we present supplementary ablation experiments on loss functions
in Table 10 and 11. The first row indicates that the model is optimized using cross entropy loss
exclusively which achieves the poorest results. Furthermore, integrating either reverse cross entropy
loss, inter-pool prompt discrepancy loss, or intra-pool diversity loss contributes to improvements
across all metrics. Notably, the effectiveness of reverse cross entropy loss is higher on Split-UT-
Zappos (5 tasks) compared to that on Split-Clothing (5 tasks). To conclude, the best performance is
achieved when all loss functions are simultaneously employed.

A.8 More on Qualitative Results

More qualitative results are presented to demonstrate the effectiveness of CompILer. We conducted a
comparative analysis of the prediction results between CompILer and L2P [43] on Split-Clothing (5
tasks), Split-UT-Zappos (5 tasks) and Split-UT-Zappos (10 tasks). The ground truth is presented in
the first row, followed by the prediction results of CompILer and L2P in the second and third rows,
respectively. As illustrated in the Fig. 10, CompILer achieves correct predictions for all the images,
while L2P consistently yields wrong classification results due to ambiguous composition boundary.
Specifically, L2P exhibits a higher occurrence of misclassification on states compared to objects,
which can be attributed to the disproportionate emphasis placed on objects, diminishing the model’s
focus on states. This experiment proves that CompILer effectively enhances the model’s attention
towards states, resulting in an improved overall fine-grained perception capability.

17

Table 9: Ablate the pooling on Split-Clothing (5 tasks).
Dataset Split-Clothing (5 tasks)
Pooling Avg Acc FTT(↓) State Object HM

Max 84.70±0.64 12.24±2.25 86.79±0.96 96.84±0.01 91.54±0.30
Mean 87.80±0.12 7.82±0.01 90.78±0.12 96.14±0.01 93.38±0.03
GeM 89.21±0.24 7.26±0.60 91.81±0.23 96.67±0.01 94.18±0.06

Table 10: Ablate the loss function on Split-Clothing (5 tasks).
Loss function Split-Clothing (5 tasks)

LCE LRCE Linter Lintra Avg Acc FTT(↓) State Object HM
✓ 88.17±0.08 8.08±0.27 90.99±0.21 96.41±0.08 93.62±0.03
✓ ✓ 88.36±0.37 8.33±0.11 90.88±0.30 96.64±0.05 93.67±0.06
✓ ✓ 88.32±0.56 7.82±0.64 90.85±0.57 96.61±0.07 93.66±0.12
✓ ✓ 88.42±0.30 8.23±0.06 91.18±0.04 96.44±0.10 93.73±0.06
✓ ✓ ✓ 88.61±0.61 7.72±0.87 90.94±0.68 96.85±0.02 93.81±0.17
✓ ✓ ✓ ✓ 89.21±0.24 7.26±0.60 91.81±0.23 96.67±0.01 94.18±0.06

Table 11: Ablate the loss function on Split-UT-Zappos (5 tasks).
Loss function Split-UT-Zappos (5 tasks)

LCE LRCE Linter Lintra Avg Acc FTT(↓) State Object HM
✓ 44.83±0.15 19.49±2.93 55.07±0.25 79.06±0.06 64.92±0.18
✓ ✓ 45.47±0.07 20.14±0.43 55.92±0.05 79.14±0.13 65.47±0.03
✓ ✓ 45.58±0.04 19.64±0.37 56.02±0.04 79.25±0.01 65.64±0.01
✓ ✓ 45.62±0.13 20.13±0.14 55.98±0.24 79.45±0.20 65.68±0.08
✓ ✓ ✓ 46.01±0.69 19.50±0.86 56.31±0.72 79.53±0.05 65.94±0.40
✓ ✓ ✓ ✓ 46.48±0.26 19.27±0.75 56.85±0.34 79.56±0.04 66.31±0.15

Green Shoes

Green Shoes
Brown Shoes

Blue Shoes

Blue Shoes
White Shoes

Yellow Skirt

Yellow Skirt
Yellow Dress

Blue Shirt

Blue Shirt
Blue Shorts

Silver Skirt

Silver Skirt
Pink Skirt

Black Shoes

Black Shoes
White Shoes

Black Suit

Black Suit
Green Suit

Pink Skirt

Pink Skirt
Yellow Dress

Satin Sandals

Satin Sandals
Synthetic Sandals

Suede Heels

Suede Heels
Patent Leather Heels

Full-grain Leather Loafers

Full-grain Leather Loafers
Leather Loafers

Rubber Sandals

Rubber Sandals
Faux Leather Sandals

Synthetic Mid-Calf Boots

Synthetic Mid-Calf Boots
Nylon Mid-Calf Boots

Suede Ankle

Suede Ankle
Leather Ankle

Leather Oxfords

Leather Oxfords
Full-grain Oxfords

Leather Ankle

Leather Ankle
Faux Leather Ankle

Faux Leather Sandals

Faux Leather Sandals
Full-grain Sandals

Canvas Sneakers

Canvas Sneakers
Synthetic Sneakers

Rubber Sandals

Rubber Sandals
Synthetic Sandals

Wool Slippers

Wool Slippers
Suede Slippers

Leather Flats

Leather Flats
Canvas Boat

Leather Heels

Leather Heels
Satin Heels

(a) Split-Clothing (5 tasks) (b) Split-UT-Zappos (5 tasks)

(c) Split-UT-Zappos (10 tasks)

Figure 10: More qualitative results. For each sample, top row is ground-truth label (in black), middle
row is CompILer prediction, and bottom row is L2P [43] prediction. The primitives in green and red
refer to correct and incorrect predictions.

18

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction effectively summarize the paper’s contributions
and scope, outlining the key claims and objectives.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in both the paper and the appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

19

Justification: We provide the full set of assumptions and a complete proof for each theoretical
result.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide comprehensive implementation details and code to ensure the
experiments are reproducible.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

20

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper provides open access to the data and code, along with sufficient
instructions to faithfully reproduce the experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all the training and test details, including but not limited to: data
splits, hyperparameters, how they were chosen, type of optimizer, etc.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper appropriately reports the relevant information about the statistical
significance of the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide sufficient information on the computer resources in implementation
details section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper aligns with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss potential societal impacts of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

22

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly credited the creators and original owners of assets used our paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

23

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The new assets introduced in the paper are well documented and the documen-
tation is provided alongside the assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

24

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

25

	Introduction
	Related Work
	Preliminaries
	Problem Definition
	Dataset Construction
	Revealing the Ambiguous Composition Boundary

	Methodology
	Multi-pool Prompt Learning
	Object-injected State Prompting
	Generalized-mean Prompt Fusion
	Training and Inference

	Experiments
	Datasets and Metrics
	Implementation Details
	Compared Baselines
	Comparison with the State-of-the-arts
	Ablation Study and Analysis
	Additional Results and Analysis

	Conclusion
	Acknowledgments
	Appendix
	More on Dataset Details
	More on Training Procedure
	Empirical Analysis on Learned Prompts
	Empirical Analysis of Generalized-mean Prompt Fusion
	Empirical Analysis of Symmetric Cross Entropy Loss
	More on Hyper-parameter Analysis
	More on Ablation Studies
	More on Qualitative Results

