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Abstract

The magnitude of a metric space is a novel invariant that provides a measure of the
‘effective size’ of a space across multiple scales, while also capturing numerous
geometrical properties, such as curvature, density, or entropy. We develop a family
of magnitude-based measures of the intrinsic diversity of latent representations,
formalising a novel notion of dissimilarity between magnitude functions of finite
metric spaces. Our measures are provably stable under perturbations of the data,
can be efficiently calculated, and enable a rigorous multi-scale characterisation and
comparison of latent representations. We show their utility and superior perform-
ance across different domains and tasks, including (i) the automated estimation of
diversity, (ii) the detection of mode collapse, and (iii) the evaluation of generative
models for text, image, and graph data.

1 Introduction

Diversity is a key concept in representation learning, referring to the relative abundance and distinct-
iveness of model outputs. Given the inherent complexity of deep learning models, the evaluation of
diversity is thus crucial, enabling (i) the assessment of the intrinsic richness of latent representations,
and (ii) the evaluation of the extent to which models are capable of preserving the properties of
an input distribution. While the quantitative evaluation of generative models in particular relies on
assessing trade-offs between fidelity and diversity with regards to a known reference distribution,
reference-free diversity measures are becoming increasingly relevant when a ground-truth distribution
is unknown or intractable. However, reference-based diversity metrics such as recall are notoriously
fallible, sensitive to parameter choices and therefore prone to incorrectly approximate the true data
manifold, whereas reference-free diversity measures often rely on simple mean summaries that fail to
pass basic consistency checks [13]. Thus, existing methods lack expressivity to fully capture what it
means for a space to be diverse, resulting in a critical need for novel measures that are (i) theoretically
motivated, (ii) robust to noise, and (iii) capable of encoding the intrinsic diversity of data across
varying levels of similarity rather than at a single fixed threshold.

Our contributions. Addressing this need, we propose a novel family of diversity measures based
on metric space magnitude, a mathematical invariant that captures numerous important multi-scale
geometric characteristics of metric spaces, including curvature, density, and entropy of an input space.
Metric space magnitude merely requires a notion of dissimilarity between data points, permitting
it to operate on both local and global scales. Hence, magnitude is poised to compare latent spaces,
yielding a compact holistic summary of diversity that satisfies relevant theoretical requirements. Our
work is the first to (i) introduce magnitude as a general tool for evaluating the diversity of latent
representations, and (ii) formalise a notion of difference between the magnitude of two spaces across
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multiple scales of similarity. We demonstrate that magnitude is stable and can detect curvature,
highlighting its use as a multi-scale summary of the local and global geometry of data. Moreover, we
empirically showcase the utility of our magnitude-based diversity measure across different modalities,
namely text, image, and graph embeddings, for which we observe that our measure outperforms
alternative embedding-based measures of intrinsic diversity. Finally, when a reference distribution is
known, our magnitude-based notion of difference reliably detects mode collapse and mode dropping,
thus assisting practitioners in model evaluation and selection.

In a nutshell: We propose novel multi-scale diversity measures based on the magnitude of latent
representations and show their theoretical and empirical advantages for evaluating the diversity of
text, image, and graph embeddings arising from generative models.

2 Related Work

Latent representations and embeddings have become indispensable tools for analysing data types
such as images, text, and graphs. As evidenced by LLMs, understanding semantic relationships in
data requires meaningful embeddings. Our work focuses on improving representation-based diversity
evaluation and we thus consider the role diversity plays in this context.

Diversity measures. Assessing generative model diversity remains a challenge irrespective of
the domain [39], as ground truth reference distributions or labelled data are often unavailable,
and human evaluation remains costly. Thus, there exists a need for interpretable, automated and
unsupervised measures of intrinsic diversity. Reference-free evaluation is of particular importance
for assessing generated text given the black-box-nature of LLMs [6], but also applicable across
modalities. Motivated by this, a varied collection of diversity measures has been proposed, many of
which are task-, domain- or model-specific [13]; only a fraction of them are applicable to analysing
latent representations specifically. The most flexible methods summarise intrinsic diversity using
average pairwise dissimilarities like Lp distances or BERT-scores [38]. More recently, Friedman
and Dieng [13] proposed the Vendi Score, inspired by principles from theoretical ecology. Other
diversity measures are computed directly on embedding spaces, using e.g. the geometric mean
of the standard deviation across each embedding dimension [20] or cluster-based measures [10].
However, as we explore in Section 3.1, none of these measures satisfy all theoretical guarantees
required by an axiomatic approach to diversity, and they are limited in expressivity, providing
only snapshots of diversity at a single fixed resolution. Reference-based metrics define diversity
as the extent to which generated samples cover the full variability of the real data [28]. Examples
include the Fréchet Inception Distance (FID) or the Inception score (IS). However, they do not
exclusively measure diversity but are also concerned with evaluating fidelity, i.e. the assessment of
similarity between generated data and real data, making it unclear how single-number summaries
such as FID and IS account for each aspect in the trade-off between diversity and quality. Thus,
precision and recall have been suggested as more informative summary metrics [32] and seen
various improvements [19, 28, 35]. Unfortunately, as Naeem et al. [28] show, even the improved
versions of precision and recall fail to satisfy the useful conditions for strong evaluation metrics, such
as (i) detecting identical reference and generated distributions, (ii) capturing mode dropping, and
(iii) simplicity in selecting hyperparameters. To address these concerns, density and coverage have
been proposed [28]. Nevertheless, these metrics still rely on fixed-scale manifold approximations
to assess diversity making them sensitive to parameter choices. By contrast, our magnitude-based
measures have less stringent assumptions and can be defined in a parameter-free fashion.

Magnitude in machine learning. Since its introduction to measure biological diversity [36],
magnitude was formalised by Leinster [21]. Nevertheless, despite strong geometric properties [22],
magnitude has only rarely been applied in a machine learning context. Recent publications started to
bridge this gap, linking magnitude to boundary detection [5], edge detection in images [1], and the
generalisation error of neural networks [3], as well as demonstrating its utility for multi-objective
optimisation [18]. However, the full potential of magnitude for measuring diversity remains largely
unexplored since existing works ignore the nature of magnitude as an intrinsic multi-scale summary,
which captures both local and global geometry and diversity of the data manifold. Our work is thus
the first to leverage magnitude as a flexible, multi-scale measure of diversity in latent representations.
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3 Methods

We first discuss the theoretical properties a suitable diversity measure should satisfy and then
introduce metric space magnitude. Based on this, we outline our proposed method using magnitude
for measuring the diversity of latent representation and its practical implementation.

3.1 Desiderata for Diversity Measures

Given the difficulty in defining diversity, diversity metrics never measure diversity itself, but rather
quantify related ideas. Entropy-based approaches, including magnitude, in particular share close
links to diversity, often favoured in ecology for their computational benefits and agreement with
fundamental axioms of diversity [8]. Following this axiomatic approach, we highlight the following
key requirements [22]:

• Effective size: A dataset with a fixed number of points is more diverse when points are
separated e.g. distributed uniformly or maximally disordered and becomes less diverse as
observations cluster together. Diversity is maximised when points are completely distinct
and minimised when all observations are identical.

• Monotonicity in observations: Including a new observation does not decrease diversity.
• Twin property: Including a duplicate observation does not change diversity.
• Multi-scale: Diversity is summarised across multiple scales of (dis)similarity and thus

captures both local and global trends in the data manifold.

This list is not conclusive; Appendix C.3 provides a more rigorous discussion of desirable properties
and their definitions. We observe that many diversity measures for evaluating representations in
ML do not satisfy these requirements as shown via counterexamples in Appendix C.4. For example,
average similarity (AVGSIM), the most frequently-used diversity measure in ML, cannot capture
nuances in diversity and fails even in simple toy scenarios [13]. Specifically, it does not give a
measure of effective size and does not encode the entropy or disorder of a space, which is a key
aspect of diversity. Consequently, AVGSIM fails to distinguish that a more clustered representation is
less diverse than a more uniformly sampled space as illustrated in Appendix C.5.1. Likewise, the
geometric mean of the standard deviations across each embedding dimension [20, GMSTDS] does
not measure effective size, and even worse it equals zero whenever an embedding feature is constant.
Even the Vendi Score [13, VS], a more purpose-built diversity measure, calculated as the exponential
of the Shannon entropy of the eigenvalues of a normalised similarity matrix, shows undesirable
behaviour under the inclusion of observations. Moreover, neither one of the aforementioned diversity
measures fulfil the twin property nor monotonicity in observations [22], leading to counter-intuitive
behaviour when capturing changes in diversity. For example, an exact repetition of the reference data
could be wrongly judged to be more diverse than a model that generates more samples with small
but relevant deviations from the reference. Further, we argue that diversity is a multi-scale trend that
should describe the effective size of a space across multiple levels of (dis)similarity rather than rely
on fixed-scale snapshots. Indeed, summarising both the coarse and more granular geometry of the
data manifold is necessary to get a complete picture of both local and global differences in entropy,
clusterability and diversity.

This discussion thus points out a glaring need for more principled diversity measures. Addressing
this, magnitude functions are particularly promising candidates for improved diversity measures that
inherently satisfy all desiderata listed above, as shown in Appendix C.3. Many alternative summaries
trivially fulfil a number of basic properties of diversity. However, it is non-trivial to satisfy all the
desired axioms, making magnitude functions unique in their formulation. This axiomatic justification
as well as our multi-resolution approach to diversity are the distinguishing characteristics and main
advantage of our proposed diversity evaluation methods.

3.2 The Magnitude of a Metric Space

Magnitude is an invariant that measures diversity by describing the ‘effective number of points’ of a
metric space as a function of its scaled distances [21].

Definition 3.1 (Magnitude of a metric space). Let X = {x1, . . . , xn} ⊆ RD be a finite metric space
with an associated distance metric d. For 1 ≤ i, j ≤ n, the similarity matrix of X is calculated as
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ζX(i, j) := exp(−d(xi, xj)). If ζX is invertible, the magnitude of X is defined as

Mag(X) :=
∑
ij

(ζ−1
X )ij . (1)

The existence of magnitude is thus contingent on the existence of ζ−1
X . For negative definite metrics d

like the L1 and L2 distance, ζX is invertible [12]. Subsequently, we assume that (X, d) permits the
calculation of magnitude; in particular, X must not have any duplicate points. While the magnitude
of a metric space is expressive even at a single scale [5, 21, 23], magnitude unleashes its full potential
in a multi-scale setting, assigning to a metric space not just a scalar but a function. To this end, we
scale the distances in X , effectively viewing the same space through different lenses, or at different
‘zoom factors,’ for example by converting distances from centimetres to metres. Computing the
magnitude for all such scales then yields the magnitude function.
Definition 3.2 (Magnitude function). Let (X, d) be a metric space and tX := (X, dt) its scaled
version with dt(x, y) := t · d(x, y) for a scaling factor t ∈ R+. The magnitude function of (X, d) is
the function MagX : t 7→ Mag(tX).

For t ∈ (0,∞), the magnitude function is defined for all but finitely many values of t [21]. The mag-
nitude function is also continuous [26, Corollary 5.5] for negative definite metrics.1 For finite metric
spaces, we have limt→∞ Mag(tX) = |X| = n, i.e. the cardinality of X [21, Proposition 2.2.6]. This
limit behaviour exemplifies to what extent the magnitude function describes the diversity of a space
as ‘the effective number of points at scale t.’ Here, we extend magnitude functions to the domain
[0,∞) by defining MagX(0) := 1.2 Intuitively, this extension means that any metric space, when
viewed from far away, looks like a single point. Notice that neither Definition 3.1 nor Definition 3.2
explicitly require specific properties of a metric (like the triangle inequality) and we find magnitude
computable for generalised distance functions, including cosine distances, provided the similarity
matrix ζX is invertible. Figure 1 illustrates how magnitude functions measure the effective number of
distinct points for toy data, thus describing their diversity. Moreover, it provides an overview of our
diversity evaluation framework, which we will now introduce.

3.3 Magnitude for Evaluating Diversity

As a multi-scale geometric invariant, magnitude can be extended to evaluate the diversity of latent
representations. Here, we are studying a set of latent representations X = {X1, X2, . . . }, where each
Xi ∈ X is a finite subset of some latent space sharing the same notion of distance, e.g. Xi ⊆ RD.
Given a latent representation X ∈ X , e.g. a text, image, or graph embedding, we can use the L1

or L2 distance as a metric or semi-metrics like the cosine distance. Based on the choice of metric,
we can interpret MagX(t) as the effective number of points at scale t. In practice, this summarises
how diverse points in the space are when observed at said scale factor. This multi-scale behaviour
motivates us to propose a simple but expressive summary of a representation’s magnitude function.
Definition 3.3 (Area under the magnitude function, MAGAREA). Let X be a metric space whose
magnitude function MagX(t) has been evaluated across the interval T = [t0, tcut]. We define the area
under the magnitude function to be MAGAREA :=

∫ tcut

t0
MagX(t)dt.

Moreover, we extend this proposed summary to measure the difference in diversity between two
representations generated by the same (embedding) model. Notice that distances in these spaces are
directly comparable and the respective magnitude functions can be compared across the same domain.

Definition 3.4 (Magnitude function difference, MAGDIFF). Let X and Y be two metric spaces
that share the same notion of distance. Assume the associated magnitude functions MagX(t) and
MagY (t) have been evaluated across the same interval T = [t0, tcut]. We define the magnitude
function difference to be MAGDIFF :=

∫ tcut

t0
(MagX(t)−MagY (t)) dt.

Definition 3.3 and Definition 3.4 constitute novel multi-scale approaches for summarising and
comparing magnitude functions, leading to theoretically well-founded diversity measures. MAGAREA

1MagX is continuous for t > tcrit, where tcrit is the supremum of its finitely many singularities.
2This assumes the so-called one-point property, i.e. limt→∞ MagX(0) = 1, which was shown to hold

generically for almost all finite metric spaces [31].
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Figure 1: Overview of our diversity evaluation pipeline. (a) We start with an example of four
latent spaces with 200 points, varying in diversity. (b) The magnitude function measures the effective
number of points at t, a scale of distance between observations. When the scale factor t almost equals
zero, magnitude is close to 1, and a space effectively looks like one point. For large t, the number of
effective points is noticeably higher and magnitude converges towards the cardinality. We find the
approximate convergence scale, tconv, at which magnitude almost equals the cardinality, and use it to
define the evaluation interval T across which diversity changes most notably. (c) The more diverse
the space, the higher the value of its magnitude function. By construction, X1 is more diverse than
X2, X3, and X4, respectively, as we can see from the effective size of each space. We leverage this
behaviour to define novel multi-scale indicators of diversity. (d) Our proposed measure of intrinsic
diversity, MAGAREA, summarises the area under each magnitude function for reference-free diversity
evaluation. (e) In a reference-based setting, we assess the difference in diversity using MAGDIFF, the
area between two magnitude functions.

measures the cumulative value of magnitude summarising a space’s intrinsic diversity while MAGDIFF
measures the accumulated difference in diversity between two spaces. As we will later demonstrate
in our experiments, integrating the changes in magnitude across a range of scale factors retains
the desirable properties of single-scale magnitude, but yields more robust multi-scale summaries
of diversity (see Appendix A.2 for an investigation of stability to perturbations). Furthermore, this
comparison in terms of the effective number of points across scales remains directly interpretable.

3.4 Practical Usage and Implementation

In order to use our magnitude metric for reference-free and reference-based diversity evaluation,
we obviate the choice of evaluation interval using knowledge about the convergence behaviour of
magnitude functions. As a consequence, our magnitude-based diversity measures do not require
manual parameter selection. First, we define a magnitude function’s convergence scale.
Definition 3.5 (Convergence scale, tconv). Given a magnitude function MagX(t), we define its
approximate convergence scale as tconv ∈ R, with MagX(tconv) = |X| − ϵ for some small ϵ > 0. We
set ϵ ≤ 0.05|X| in this work.

This convergence scale thus indicates the resolution at which at least 95% of observations are
recognised by magnitude as being distinct. After reaching this convergence scale, we know that
magnitude functions and hence diversity can increase by at most ϵ based on the convergence of
magnitude towards the cardinality as illustrated in Figure 1. In practice, however, we find that all
relevant changes in diversity happen at smaller scales of distance when individual points are not yet
clearly separated. We thus choose the convergence scale defined in Definition 3.5 to be the upper
bound of the evaluation interval T to determine the most informative range of scales. We then find
the convergence scale using numeric root-finding procedures as illustrated in Appendix B.2. When
comparing the intrinsic diversity of multiple embeddings without a reference dataset, we compute
MAGAREA across T = [0, tcut] and choose tcut to equal the median of the convergence scales of
the embeddings. Taking the median here provides a stable compromise between the convergence
behaviour of all functions. For reference-based comparisons, we simply calculate MAGDIFF, the
difference between the magnitude functions, across T = [0, tref] where tref is the convergence
scale of the reference embedding. In practice, we approximate the integrals in Definition 3.3 and
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Figure 2: Magnitude detects curvature. Left:
Magnitude functions for unit disks with varying
curvature between [−2, 2]. Right: MAGAREA
exhibits a linear relationship with curvature, in-
dicating that it serves as a expressive predictor.

Table 1: Magnitude estimates curvature.
MAGAREA outperforms more complex meth-
ods [41] using a single feature.

Method MSE (↓)

SVR (selected PH features) 0.27 ± 0.07
SVR (PH vectorisation) 0.17 ± 0.05
SVR (all PH features) 0.16 ± 0.03

SVR (distance matrices) 0.24 ± 0.04
MLP (shallow) 1.15 ± 0.52
MLP (deep) 1.56 ± 0.68

MAGAREA (quantile) 0.10 ± 0.05
MAGAREA (piecewise linear) 0.05 ± 0.03

Definition 3.4 via numerical integration across evenly-spaced scales sampled from the evaluation
interval T . Choosing the number of scales is a trade-off between accuracy and computational
performance as computational costs increase linearly with the number of times magnitude is evaluated.
In terms of implementations, we also improve the efficiency of magnitude computations using a
Cholesky decomposition (see Appendix A.5 for more details). Together with our automated scale-
selection procedure, we thus overcome the main algorithmic hurdles that hitherto prevented the wider
use of magnitude functions. Finally, we implement our methods in a Python package.3

3.5 Limitations

MAGDIFF is a reference-free measure of intrinsic diversity, but does not measure fidelity. It should
therefore not be interpreted in isolation, but jointly with coverage-based metrics, for instance.
Moreover, while we improve the efficiency of magnitude computations (see Appendix A.5) compared
to previous implementations [5], thus making magnitude calculations feasible for practical analyses,
novel approximation methods would be required to enable scaling to hundreds of thousands of
observations. Finally, we focus on evaluating representation-based diversity and show that, given
a latent representation, magnitude yields a better notion of diversity than current embedding-based
methods. We do not investigate whether embedding-based similarities are outperformed by alternative
task- or domain-specific similarities. Instead, our evaluation relies on the utility of embedding models
and assumes that latent spaces encode useful/realistic relationships between samples.

4 Experiments

Our experiments demonstrate how magnitude leads to a better understanding of representational
diversity. We show the following results: (i) Magnitude functions capture the curvature of a space.
(ii) Magnitude functions are interpretable measures of the intrinsic diversity of embeddings, yielding
superior results than other diversity measures when predicting the diversity of sentence embeddings
across different text-generation tasks. (iii) Magnitude functions characterise and distinguish latent
representations of large language models. (iv) Magnitude functions successfully detect mode dropping
in distributions of image, and graph embeddings, while also reliably detecting mode collapse in graph
embeddings. We subsequently use MAGAREA in reference-free settings to characterise intrinsic
diversity (i, ii), while using MAGDIFF for reference-based comparisons (iii, iv).

4.1 Magnitude Functions Summarise Geometry

Magnitude functions encode the ‘shape,’ i.e. the geometry that is characteristic of the intrinsic data
manifold, by capturing curvature and diversity. Curvature estimation is an important task in numerous
domains like computer vision, computational geometry, and computer-aided design. The notion
of curvature is inherently linked to diversity: The more positively curved a space is, the lower its
diversity as points on the more curved surface move closer and closer together, thus decreasing its
diversity. For specific examples of manifolds, magnitude can be expressed in terms of volume and
total scalar curvature [44], a theoretical connection that we are the first to investigate empirically for

3The code for computing magnitude is available at https://github.com/aidos-lab/magnipy.
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Figure 3: MAGAREA outperforms alternative diversity measures at predicting the ground truth-
diversity of generated sentences, controlled by the softmax-temperature across 3 tasks and 5 embed-
ding models. Baseline measures, AVGSIM and GMSTDS, perform worse in terms of the R2 scores.
Points show the mean of the R2 scores, while lines represent the standard deviations across 5-fold
cross-validation (repeated 10 times).

a broader class of spaces. Previous works have shown that alternative multi-scale methods, such as
persistent homology, are able to detect curvature [4, 41]. Here, we demonstrate that the magnitude
function is capable of achieving comparable performance, using simpler methods and only a single
feature, namely MAGAREA. To this end, we generate a balanced dataset of point clouds of different
curvature (following Turkes et al. [41] and detailed in Appendix D.1). We first assess to what extent
the magnitude function can detect whether a unit disk has positive or negative curvature. Our main
observation from plotting the functions for both groups in Figure 2 is that there is a clear separation
between spaces of negative and positive curvature. We further test if we can predict curvature as a
regression task. To this end, we try both piecewise linear and quantile regression,4 using the area
under the magnitude curve, MAGAREA, as a single feature. With 5-fold cross validation, we achieve
an MSE of 0.05± 0.03 with the piecewise linear model and 0.10± 0.05 using quantile regression.
Both scores substantially improve on previous methods [41] that made use of highly-sophisticated
topology-based features and more heavily-parametrised deep learning models (see Table 1). These
results underscore the expressivity and power of magnitude-based metrics, which enable us to solve
the same task with a highly-simplified model. Moreover, this also demonstrates how magnitude
describes the data manifold across multiple resolutions, motivating the use of magnitude functions as
flexible, geometry-aware descriptors of diversity.

4.2 Magnitude Measures the Intrinsic Diversity of Text Embeddings
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Figure 4: MAGAREA correlates well with dec in-
dicating the true diversity. Here, we use mpnet em-
beddings for the resp dataset. ρ denotes the rank
correlation between MAGAREA and dec (95% boot-
strap interval, 1000 resamples).

Next, we demonstrate the utility of us-
ing magnitude for intrinsic diversity evalu-
ation and study its correspondence to known
ground-truth diversity of text data. We ana-
lyse data from Tevet and Berant [38], con-
sisting of 1K sets of 10 sentences each, gen-
erated for unique input prompts for 3 differ-
ent sentence generation tasks, namely story
completion (story), dialogue response gen-
eration (resp), and 3-word prompt comple-
tion (prompt). Per task, 10 response sets
have been generated using the same decod-
ing parameter, the softmax-temperature dec,
which controls the diversity and randomness
of the generated text. As dec decreases, models are skewed towards avoiding low-probability
tokens. This leads to potentially higher quality and fidelity but lower diversity and creativity in
generated text. We embed each set of responses using 5 pre-trained sentence transformer mod-
els [30], i.e. (1) bert-large-nli-stsb-mean-tokens, (2) roberta-base-nli-mean-tokens,
(3) all-mpnet-base-v2, (4) all-distilroberta-v1, and (5) all-MiniLM-L12-v2. For each
dataset and model, we compute the area under the magnitude function MAGAREA, evaluated until the

4Both models were chosen after explanatory analysis to offer multiple proposals on how to interpolate
between the MAGAREA scores for surfaces of negative and positive curvature. The piecewise linear model better
fits the trend in Figure 2, which is why it outperforms the quadratic relationship modelled via quantile regression.
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median convergence scale across all embeddings as detailed in Section 3.4 using cosine distances. We
compare this to the Vendi Score (VS), AVGSIM, and GMSTDS, calculated using cosine similarities.
Moreover, we analyse the performance of each diversity metric at predicting the ground-truth diversity
scores, dec, using 5-fold cross-validation repeated 20 times, trained via isotonic regression models;5
and report their performance in terms of the coefficient of determination, R2. Figure 4 depicts the
positive rank correlation between magnitude and the softmax-temperature for one example setting,
while Figure 3 shows results concerning the predictive performance of different diversity measures.

We observe that MAGAREA consistently outperforms alternative diversity measures computed from
the same representations. MAGAREA achieves a median rank of 1 across experiments in terms
of R2 scores, followed by VS, AVGSIM and GMSTDS. Indeed, MAGAREA is most frequently
the best-performing diversity measure for 77% of resamples when predicting decoding parameters,
ranking second in the remaining cases. Meanwhile, VS most often achieves second place. This
demonstrates the strength of MAGAREA as a theoretically-motivated and entropy-based measure
of intrinsic diversity. By contrast, the baseline measure GMSTDS fails for any embedding that has
at least one constant dimension, even reaching negative R2 values for three of the five embedding
models. This is followed by AVGSIM, which, while being less fallible than GMSTDS, simply
measures average similarity and even ranks last across 27% of resamples. A further comparison of
performance scores shows that MAGAREA outperforms AVGSIM by 0.12 higher mean R2 scores
on story and 0.07 on resp or prompt across embedding models. We find no dataset for which
either AVGSIM or GMSTDS can be considered preferable predictors of the ground-truth diversity of
text. Our results thus show the benefits of replacing simple summaries as the current standard for
automated diversity evaluation with more sophisticated diversity measures like MAGAREA.

4.3 Magnitude Distinguishes and Characterises Embedding Models

Motivated by the capability of magnitude functions to encode representations, we now check whether
the embedding spaces of different large language models can be distinguished via their intrinsic
structure. To this end, we analyse 16384 documents of four different HuggingFace datasets, as
embedded by Wayland et al. [43] using six different models (see Appendix D.3 for more details). We
then either use PCA and normalisation to reduce each embedding space to 384 dimensions (to obtain
a comparable dimensionality) or use the original embeddings without preprocessing. Further we
subsample 300 documents at random from each space, repeating this procedure 200 times. Finally we
use a 5-NN classifier to predict the embedding model based on the values of each diversity measure.
This task is chosen to assess whether a simple classifier can distinguish embedding spaces solely based
on their intrinsic diversity estimates. Table 2 reports the results of 5-fold cross-validation with 20
repetitions for both prepossessing choices. We either use Euclidean distances between single number
summaries or, in the case of magnitude, use MAGDIFF directly as precomputed input distances
for k-NN classification. We first observe that MAGDIFF best predicts the embedding model (with
accuracies typically above 90%). Supplementary results in Table S.5 verify that these performance
scores are almost identical for varying hyperparameter choices of k neighbours. Surprisingly, the
results further remain consistent for both pre-processing choices. This indicates that there are inherent
differences in the structure and diversity of embedding spaces, which are preserved throughout
dimensionality reduction and captured by magnitude. By using the difference between magnitude
functions as a holistic summary, we once again surpass other summary statistics (which we observe
to fail in distinguishing the smaller embedding models). Our results thus demonstrate that using
MAGDIFF for comparing latent spaces across multiple scales is considerably more expressive than
using single-number summaries of diversity.

4.4 Magnitude Evaluates Image Embeddings

Mode dropping is a common issue in generative modelling, referring to the inability of a model
to capture all parts of an input distribution (for instance, a model trained to generate images of
animals suffers from mode dropping if it can only generate images of dogs). To simulate this, we
randomly sample 100 images from each of the 10 classes in CIFAR10 and embed them using a
pre-trained Inception V3 model [37]. Subsequently, we re-sample increasingly more observations
from one preferred image class. We either drop modes sequentially, or we move the same number of
observations simultaneously from all other classes. Thus, diversity decreases gradually with the same

5We use these models to capture the non-linear monotonic relationship between dec and diversity.
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Table 2: Magnitude characterises text embedding models. We show the accuracy (↑) of different
diversity scores for distinguishing between six embedding models, using a 5-NN classifier.

No pre-processing PCA pre-processing

Dataset
Method MAGDIFF AVGSIM VS GMSTDS MAGDIFF AVGSIM VS GMSTDS

cnn 0.94 ± 0.02 0.87 ± 0.01 0.63 ± 0.01 0.66 ± 0.02 0.90 ± 0.02 0.88 ± 0.02 0.67 ± 0.03 0.66 ± 0.03
patents 0.99 ± 0.01 0.92 ± 0.01 0.63 ± 0.02 0.66 ± 0.02 0.96 ± 0.01 0.91 ± 0.02 0.64 ± 0.03 0.66 ± 0.03
arXiv 0.99 ± 0.01 0.89 ± 0.01 0.78 ± 0.01 0.66 ± 0.02 0.99 ± 0.01 0.88 ± 0.02 0.78 ± 0.02 0.66 ± 0.03
bbc 0.98 ± 0.01 0.74 ± 0.01 0.84 ± 0.02 0.66 ± 0.02 0.95 ± 0.01 0.73 ± 0.03 0.84 ± 0.02 0.66 ± 0.03

‘speed’ across both procedures, but fidelity should not change. We treat each class as the preferred
image class twice, leading to 20 re-samples per mode dropping scenario [28]. Our analysis compares
the changes in recall and coverage, setting the number of nearest neighbours to k = 10. Further,
we calculate the relative change in Mag(0.5tref), i.e. magnitude computed at half the convergence
scale of the reference using Euclidean distances. Similarly, MAGDIFF is the difference between the
magnitude functions relative to the area under the reference magnitude function.
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Figure 5: Magnitude correctly detects that diversity
decreases in the same manner across simultaneous
and sequential mode dropping outperforming recall and
coverage. Lines show the mean values of each metric
across 20 resamples, shaded areas the standard deviations.

Figure 5 shows the changes in diversity
as modes are being dropped. Ideally,
every diversity measure should show
the same decrease in diversity, irre-
spective of resampling strategy. How-
ever, we observe that both recall and
coverage wrongly assess that diversity
decreases faster during sequential res-
ampling. Even worse, coverage only de-
tects simultaneous mode dropping after
around 70% of all points have shifted to
one mode. This undesirable behaviour
of both metrics is caused by their reli-
ance on a fixed neighbourhood size for
approximating the underlying manifold, thus overestimating the extent to which the perturbed samples
reflect the diversity of the reference distribution. In comparison, MAGDIFF as well as magnitude
evaluated at a single scale both successfully measure the gradual decrease in diversity across both
mode dropping scenarios.

4.5 Magnitude Evaluates Graph Generative Models

Diversity evaluation in graph learning is fraught with difficulties, in particular when aiming to
detect common problems like mode collapse or mode dropping [29, 40]. In the following, we will
study graph generative models (GGMs), which take a set of input graphs and generate new samples
that should follow the same distribution. The question that we aim to answer here is whether our
proposed magnitude-based metric is more expressive in capturing the diversity of the generated
graphs than classical metrics like maximum mean discrepancy (MMD) and measures inspired from
evaluating image generative models (precision, recall, coverage, density). To this end, we analyse
3 synthetic (Lobster, Grid, and Community) and 2 real-world (Proteins and Ego) graph datasets,
and compute commonly-used evaluation metrics [29, 40] as detailed in Appendix D.5. To test the
diversity of generated samples, we replicate the experimental setup of Thompson et al. [40] and add
our own measure, MAGDIFF computed using L2 distances from Graph Isomorphism Network [45,
GIN] embeddings with varying hyperparameters. For the mode collapse experiments, we substitute
each embedded graph with its cluster centre. Thus, the degree of perturbation p equals the proportion
of clusters collapsed in this manner. The larger the value of p, the more clusters have been perturbed
decreasing the diversity. For the mode dropping experiments, we remove clusters, and keep the size of
the generated dataset the same as the reference by randomly resampling from the remaining classes.

Figure 6 shows the results of both mode collapse and mode dropping for the Lobster dataset. We
observe similar trends across all datasets, but have chosen this dataset as a running example. Ideal
measures should exhibit high rank correlation to the degree of perturbation, indicating that they

9



Figure 6: MAGDIFF outperforms existing graph diversity metrics at detecting mode collapse
and mode dropping. We report the Spearman correlation between each metric and the degree of
perturbation p for the Lobster dataset (the same pattern holds for Proteins, Community, Ego, Grid, see
Appendix D.5). Violin and box plots show the distributions across different hyperparameter choices.
Measures that capture the decrease in diversity accurately should increase as a function of p. Rank
correlation of 1 corresponds to an ideal metric. Our metric best captures the changes in diversity for
both mode dropping and collapse.

are capable of capturing the decrease in diversity properly, i.e. as a function of p. We note that in
contrast to our magnitude-based metric, recall and coverage exhibit worse results, as evidenced by
their lower mean correlation coefficient. Despite being specifically designed to measure the diversity
of a dataset [40], they only catch up to our magnitude metric when the degree of perturbation p is
around 0.9 (see Figure 6, right-hand plots). Magnitude dominates in the majority of the values of
p best showing the steady decrease in diversity, while recall and coverage become more sensitive
for exceedingly large values of p, i.e. in unrealistic situations where most of the modes have been
dropped. Moreover, their performance is highly contingent on k, the parameter used to construct a
k-NN graph for computing these neighbourhood-based metrics. Magnitude functions meanwhile give
more holistic summaries of both local and global patterns in diversity. Please refer to Figure S.16 for
the aggregated results over all datasets, which exhibit a similar pattern (in that our metric outperforms
both recall and coverage).

5 Discussion

We have proposed novel diversity measures for evaluating latent representations. Our measures are
based on metric space magnitude, a multi-scale invariant summarising geometrical characteristics
of the input data. We have demonstrated axiomatically and empirically that our magnitude-based
measures are superior to current baseline measures of intrinsic diversity. In a reference-free scenario,
we observe that magnitude outperforms alternative measures when predicting the ground truth
diversity for text embeddings. Given a reference dataset, we find that magnitude captures mode
collapse and mode dropping better than existing metrics for evaluating generative models for both
image and graph modalities. Furthermore, we have shown that magnitude can measure the intrinsic
curvature of input data, outperforming previous methods. Magnitude thus gives a provably stable,
unsupervised diversity metric that can be computed efficiently and allows users to flexibly choose
a notion of dissimilarity. For future work, we believe that magnitude exhibits a strong potential
for applications to unaligned spaces with varying notions of distances. Moreover, we believe that
integrating magnitude into deep learning models would be beneficial for obtaining novel diversity-
and geometry-based regularisation strategies.
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A Extended Theory and Empirical Validation

A.1 Illustration of Magnitude and Magnitude Weights

While we did not use magnitude weights, which are the individual contribution of each point in a
space to its overall magnitude, throughout our experiments, they play a more central role in some of
the later proofs and the computation of magnitude in practice. Further, magnitude weights give an
intuitive explanation on how each individual observation influences magnitude and the magnitude
function as illustrated in Figure S.1.
Definition A.1 (Magnitude weights). Let X = {x1, . . . , xn} be a finite metric space with an
associated distance metric d. The similarity matrix of X is defined as ζX(i, j) = exp(−d(xi, xj))
for 1 ≤ i, j ≤ n. If ζX is invertible, the magnitude weighting vector wX is defined as wX :=
ζ−1
X 1 = 1⊤ζ−1

X . Denoting the ith element of wX by wxi
, we obtain an equivalent characterisation

of magnitude as Mag(X) =
∑

i wxi

zooming in

t

Figure S.1: Example of magnitude weights and the magnitude function for a metric space with
5 points. When the scaling factor t is very small, e.g. t = 0.01, the magnitude weights of all points
sum up to approximately 1, so that magnitude is very close to 1, and the space effectively looks like
one point. Following this, as we zoom in further, magnitude grows and at t = 0.41, 3 distinct clusters
or points are visible. Finally, for t = 100, all the points are clearly separated, their magnitude weights
converge to one, and the value of magnitude approaches 5, i.e. the cardinality of the space.

A.2 Stability Proof

Next to the theoretical properties linking magnitude to geometrical properties of a space, which
we previously outlined, we further prove that magnitude, as a metric space invariant, also satisfies
properties that are advantageous in the setting of analysing latent representations. Specifically, we
prove that magnitude and thus the proposed magnitude differences satisfy certain stability properties
in light of perturbations of metric space. By this, we mean that if two metric spaces X,Y are close,
we want to obtain bounds on the differences between their magnitude values. The canonical choice to
measure closeness would be the Gromov–Hausdorff distance, but in the absence of strong results
concerning the behaviour of magnitude under this distance [21], we resort to a more general—but also
weaker—notion of similarity in terms of continuity. More precisely, we will show that the similarity
matrices used in the calculation of magnitude are well-behaved in the sense that closeness of metric
spaces (under some matrix norm) translates to a continuous bound on the variation of the similarity
matrices. We first prove a general result about matrices and their associated transformations.
Lemma A.2. Let ∥A∥2 := sup {∥Ax∥2 : x ∈ Rn with ∥x∥2 = 1} refer to the induced 2-norm for
matrices, and let A,B be two n× n matrices with ∥A−B∥2 ≤ ϵ. Moreover, let f(M) := 1⊤M1.
Then ∥f(A)− f(B)∥2 ≤ nϵ.

Proof. Because ∥·∥2 is a consistent norm, we have ∥f(M)∥2 ≤ ∥1⊤∥2∥M∥2∥1∥2 = n∥M∥2 for all
n× n matrices M . Without loss of generality, assume that ∥f(A)∥2 ≥ ∥f(B)∥2 and ∥A∥2 ≥ ∥B∥2.
Thus, ∥f(A)∥2 − ∥f(B)∥2 ≤ d(∥A∥2 − ∥B∥2) ≤ d(∥A−B∥2) = nϵ.
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Treating A,B as inverse similarity matrices, the preceding statement shows that if the two inverse
similarity matrices are close with respect to their spectral radius, the difference between their
magnitude can be bounded. The following lemma shows that the similarity matrices satisfy a general
continuity condition.6

Lemma A.3. Let (X, dX) and (Y, dY ) be two metric spaces with corresponding distance matrices
DX , DY and cardinality n. For all ϵ > 0, there exists δ > 0 such that if |DX − DY | < δ holds
elementwise, then ∥ζX − ζY ∥2 ≤ ϵ.

Proof. As a consequence of the continuity of the exponential function, we know that there is δ such
that |ζX − ζY | < n−1ϵ. The row sums of ζX − ζY are therefore upper-bounded by ϵ. We thus have
∥ζX − ζY ∥2 ≤ ϵ [27, Theorem 1.1, p. 24].

As a consequence of Lemma A.3, and the continuity of matrix inversion, we know that magnitude
is well-behaved under small perturbations of the respective distance matrices. Given a pre-defined
threshold ϵ, we can always find perturbations that preserve the magnitude difference accordingly.
Notice that this result does not make any assumptions about the Gromov–Hausdorff distance of
the metric space and only leverages the distance matrices themselves. Moreover, this result applies
in case X,Y are close with respect to the Hausdorff distance. If dH(X,Y ) < δ, the elementwise
condition |DX −DY | < δ is satisfied a fortiori. This stability of single-scale magnitude then further
ensures the stability of the difference between magnitude functions as defined in 3.4 in the same
sense. Nevertheless, from a theoretical point of view, this result could be made stronger by showing
bounds in terms of distances between the metric spaces. We leave such a result for future work,
noting in passing that such strong results remain elusive at the moment [14]; it is known, however,
that the magnitude function is at least lower semicontinous [25, Theorem 2.6].

A.3 Empirical Stability

We further investigate the empirical stability of the magnitude function difference. Given the
difficulty in proving strong theoretical stability results, we verify that, in practice, the magnitude
function difference remains stable when adding noise to the input space. We thus sample points
from a Laplace distribution with mean µ = 0 and variance 2b2 with different levels of noise, i.e.
b ∈ {0.0001, 0.001, 0.005, 0.01, 0.05}. Figure S.2 depicts the errors in magnitude function difference
relative the the area under the magnitude function of the unperturbed data across three different
datasets (circles, Swiss Roll, Gaussian blobs), using a different number of samples (varying between
100 and 5000 across 50 repetitions). The bound of 5000 points has been chosen given the clear
downwards trend across multiple noise levels; we expect the same trend to hold for larger sample sizes.
We observe that the magnitude function difference does not increase above the value of 1 × 10−3

with increasing sample size. In fact, the difference fluctuates more for smaller number of points, but
this is still within a very small range. We therefore conclude that the magnitude function difference
between the original space and its noisy version does not change much, which indicates that our
measure is reliable and stable across multiple experimental conditions.

A.4 Isometry Invariance

A measure of the difference (in diversity) between latent spaces should fulfill certain desirable
properties from both practical and theoretical perspectives. In the following we will show a minimum
requirement, namely that the magnitude difference between isomorphic spaces equals zero.
Definition A.4 (Isometry). Let (X, dX) and (Y, dY ) be two metric spaces. A map f : X → Y is
called an isometry, or distance-preserving, if for any a, b ∈ X , we have dX(a, b) = dY (f(a), f(b)).
X and Y are called isometric if there is a bijective isometry from X to Y .

Lemma A.5 (Isometry invariance). Given two isometric spaces X,Y , we have MagX = MagY .

Proof. Let (X, dX) and (Y, dY ) be metric spaces with cardinality n and let f : X → Y denote
their isometry. Then, the similarity matrix of X is ζX(i, j) = exp(−dX(xi, xj)). Since f is

6It is clear that the mapping itself is continuous because of the functions involved in its calculation. However,
we find it important to remark on the bound obtained with respect to the spectral norm of the two similarity
matrices.
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Figure S.2: Empirical stability of magnitude. Magnitude difference is stable across different
datasets (from left to right: Circles, Swiss Roll, Gaussian blobs) and sample sizes. The lines show the
mean magnitude difference relative to the magnitude area of the unperturbed data and the shaded
area the standard deviation calculated across 50 repetitions.

an isometry, we have, dX(xi, xj) = dY (f(xi), f(xj)). Hence, ζX(i, j) = exp(−dX(xi, xj)) =
exp(−dY (f(xi), f(xj))) = ζY (i, j). Since X and Y have the same similarity matrix, we have
MagX = MagY .

Corollary A.6. The magnitude functions of two isometric spaces X,Y are equal for all t ≥ 0.

Notice that the converse of this statement is not true in general, i.e. there are non-isometric spaces
whose magnitude functions are the same [21].

Corollary A.7. Let X be a metric space and Y = cX with c ∈ R+. Then the magnitude functions
of X and 1/cY are equal. Also, the magnitude functions of 1/diamXX and 1/diamY Y are equal, where
diamX := max(dX).

Corollary A.8. Magnitude function difference equals zero for isomorphic spaces.

A.5 Computing Magnitude

A naïve calculation of magnitude according to Definition 3.1 requires inverting the similarity mat-
rix ζX , which has a worst-case complexity of O(n3) and is numerically unstable. However, inverting
ζX is not required in practice; instead, it suffices to solve certain linear equations as also poin-
ted out by Huntsman [17]. First, we notice that the calculation of magnitude can be written as
Mag(X) := 1⊤ζ−1

X 1. For finite metric spaces and negative definite metrics, ζX is a symmetric
positive definite matrix, thus affording a Cholesky decomposition, which factorises ζX = LL⊤, with
L being a lower triangular matrix. This operation is numerically stable and more efficient than matrix
inversion [16]. We thus have Mag(X) := 1⊤ζ−1

X 1 = 1⊤(LL⊤)−11 = (L−11)⊤(L−11). This is
equivalent to calculating x⊤x with x = L−11, which we can efficiently obtain by solving Lx = 1
since L is lower triangular. Likewise, we can reformulate the calculation of the magnitude weight
vector wX = ζ−1

X 1 as solving ζXwX = 1, which also benefits from the Cholesky factorisation.

A.6 Benchmarking Computational Times

To assess the improvements in computational efficiency discussed in Appendix A.5, we benchmark
the following computational methods in Python:

• Numpy inv: Inversion of the whole matrix ζ using numpy.linalg.inv as
suggested by Bunch et al. [5]; see also https://github.com/AmFamMLTeam/
metric-space-magnitude for an implementation.

• Scipy solve: Solving for the magnitude weights using scipy.linalg.solve and assuming
ζ to be positive definite.

• Cholesky weights: Cholesky decomposition using scipy.linalg.cho_factor to com-
pute the magnitude weights.

• Cholesky: Using a Cholesky decomposition as suggested above to compute the value of
magnitude directly. This is the method we implemented to compute magnitude throughout
this work.
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Figure S.3: Benchmark of computational times in seconds for magnitude functions evaluated
across 10 scales. We observe that Cholesky decomposition performs well, even for larger number of
observations ensuring that magnitude functions can be computed in a matter of seconds. Lines show
the time in seconds across five repeats, shaded areas the standard deviations.

• Cg weights: Conjugate gradient iteration using scipy.sparse.linalg.Cg and an absolute
tolerance of 1e-3 to solve for the magnitude weights.

• Krylov weights: Pre-conditioned conjugate gradient iteration using krypy.linsys.Cg as
implemented by Salim [33] to calculate magnitude weights.

All methods are evaluated on simulated data of a Swiss Roll with an increasing number of points. For
each space, magnitude is evaluated at ten scales evenly spaced between zero and the convergence
point. The computational times and their standard deviations are recorded across five re-runs in
Figure S.3. Results clearly show that naive inversion of the whole similarity matrix is by far the most
costly method for computing magnitude. This is followed by the two conjugate gradient methods
described above, where the pre-conditioned version is somewhat faster than the implementation
without pre-conditioning for larger numbers of points. However, for evaluating magnitude at only 10
scales these approaches do not necessarily lead to improved performance compared to solving for the
weights simply using scipy.linalg.solve. Finally, we note that our proposed implementation
using Cholesky decomposition is the fastest computational method achieving less than a third of
the computational time of the most naive implementation for larger datasets. Indeed, these results
confirm that even for thousands of points magnitude functions are efficiently computable in a matter
of seconds. Overall, this computational performance is more than sufficient for the relevant diversity
evaluation tasks discussed in this study. State-of-the-art graph datasets are typically small, the
output of text generation models is often assessed on specific tasks and even image embeddings are
frequently evaluated in terms of meaningful subsets, e.g. by studying intra-class diversity. Indeed, we
ran all our experiments locally with the following hardware specifications:

• CPU: 12th Gen Intel(R) Core(TM) i7-1265U,
• RAM: 16 GB DDR4,
• SSD: 512 GB NVMe SSD

B Additional Details for Our Methods

B.1 Embedding Data

Creating latent representation or embedding X = M(I), whose diversity should be evaluated,
depends on the complexity of the specific model M and the input data I that should be represented.
This step is independent of our design choices. Given a latent representation we then choose a suitable
notion of distance, for example cosine distances are a natural choice for text embeddings, which
(compared to e.g. Euclidean distances) better represent similarity in meaning rather than text lengths;
or Euclidean distances to understand more general latent spaces.
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B.2 Scale-Finding Procedure

Next, we give a brief illustration of the scale-finding procedure developed to automate mag-
nitude computations. We use TOMS 748 root-finding algorithm [2] as implemented via
scipy.optimize.toms748. Our aim is to find the scale tconv at which MagX(tconv) ≈ |X|− ϵ such
that |ttrue − tconv| ≤ atol + rol · |tconv| where ttrue is the true scale at which MagX(tconv) = |X| − ϵ,
rtol is the relative error and atol the absolute error. We initialise the algorithm at the search interval
[a, b] setting a = 0 and b = 100 as an initial guess. We then check if (MagX(a) − |X| + ϵ) and
(MagX(b)− |X|+ ϵ) have opposite signs. If not we update a = b and b = 100 · b repeating this at
most 100 times and raising an error if they still share the same sign indicating the root-finding failed.
Otherwise, we run TOMS 748 algorithm to find tconv as specified above using at most 100 iterations.
This algorithm requires MagX(tconv) to be continuous to perform reliably, which holds for negative
definite metric spaces X as proven in Appendix A.2.

After reaching the convergence scale as defined in Definition 3.5 we know that magnitude and
hence diversity can change by at most ϵ, which directly follows from the convergence behaviour
of magnitude. Based on this, the default parameter ϵ = 0.05|X| or ϵ = 0.01|X| is chosen as a
sensible compromise for determining the scales of interest across which diversity changes most
notably. To support this choice of convergence scale, we empirically investigate the impact it has on
the results reported in our work. In particular, Figure S.12 investigates how the choice of ϵ influences
the correspondence between human evaluation scores and the diversity of generated text, while
Figure S.17 outlines the results of the graph generative model evaluation experiment for varying
values of ϵ. We note that choices of ϵ ≤ 0.05|X| give stable and generally very good results for both
reference-free and reference-based diversity evaluation as further detailed in Appendix D.

Figure S.4 gives some further intuition on this scale finding procedure. In particular, it demonstrates
how taking the median convergence scale across four example spaces gives a suitable evaluation
interval across which their magnitude can be compared as explained in more detail in Section 3.4.
This simple example also illustrates why to compare latent spaces in a reference-free setting we
recommend using the median or another suitable quantile of the converge scales rather than the
minimum or the maximum, which are less robust and more sensitive to outliers.

Finally, we note that the scale-finding approach can not only be used to compute MAGAREA or
MAGDIFF, but also to find a suitable scale at which to evaluate magnitude at a single resolution,
leading to a summary of diversity at a single threshold. In practice, we recommend choosing this
single scale to be less or equal to the convergence scale of a space and that the best resolution to
choose depends on the question of interest. Lower scales give a more coarser view summarising the
diversity of large clusters while higher scale parameters show a clearer separation between individual
observations.

B.3 Integration

In practice, we evaluate the integral from Definition 3.4 and Definition 3.3 using Trapezoidal
integration as implemented via scipy.integrate.trapezoid across a certain number, nts, of
evenly spaced evaluation scales in T = [t0, tcut]. This numerical integration method is chosen due to
its simplicity and computational efficiency, but more complex approximation methods can also be
employed.

C Extended Discussion on Diversity Measures

C.1 Definitions of Intrinsic Diversity Measures

The difficulty in defining diversity in representation learning has led to a few varying proposals for
evaluating the intrinsic diversity of latent representations. Amongst these we consider the following
three methods as baseline measures:

GMSTDS: For a X , a D-dimensional embedding, it is directly computed as

GMSTDS = D

√√√√ D∏
i=j

σj (2)
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Figure S.4: Illustration of the proposed scale finding procedure for comparing the diversity of four
examples from Figure 1. We compute the approximate convergence scale for each space as defined in
Definition 3.5 at which magnitude has reached a certain value |X| − ϵ close to the cardinality. We
then take the median of these scales to find a shared endpoint tcut for defining a shared evaluation
interval T = [0, tcut].

where σj =
√

1
n (

∑
i=1,..,n xij − x̂j)2 is the standard deviation across the j-th embedding dimension

[20]. Thus, GMSTDS regards an embedding as a cluster and assessing diversity by quantifying its
spread.

AVGSIM: Average mean similarity (or variations of it) is the most frequently used diversity measure
in ML. It is simply computed as

AVGSIM =
1(
n
2

) ∑
i,j≤n,j>i

ζ(i, j) (3)

across all distinct pairs of points in X assuming ζ is symmetric [38]. This approach simply summar-
ises that in a more diverse space, observations should on average be less similar.

Vendi Score (VS): We also consider the Vendi Score, which is the only entropy-based diversity
measure proposed in related ML literature. Let ζ be a positive semi-definite similarity matrix with
ζ(i, i) = 1 for all i ≤ n. Compute λi, the eigenvalues of ζ/n. Then the Vendi Score is defined as

VS = exp(−
n∑

i=1

λi log(λi)) (4)

taking 0 log(0) = 0 by convention. That is, the Vendi Score is the exponential of the Shannon entropy
of the eigenvalues of ζ/n [13]. It can thus be interpreted as summarising the effective number of
modes in a space at a specific scale of similarity.

C.2 Defining Reference-based Evaluation Metrics

Here we define the metrics used in the image and graph embedding experiments.

Precision =
1

M

M∑
j=1

1Yj∈manifold(X1,...,XN ) (5)

Recall =
1

M

N∑
i=1

1Xi∈manifold(Y1,...,YM ), (6)

where the manifold is defined as manifold(X1, . . . , XN ) =
⋃N

i=1 B(Xi,NNDk(Xi)). Here, B(x, r)
is the sphere in Rd of radius r around x, NNDk(X) is the distance to the k-th nearest neighbour, and
1(·) is the indicator function.
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Similarly, density and coverage are defined as follows:

Density =
1

M

M∑
j=1

N∑
i=1

1Yj∈B(Xi,NNDk(Xi)), (7)

Coverage =
1

N

N∑
i=1

1∃j s.t.Yj∈B(Xi,NNDk(Xi)), (8)

Maximum Mean Discrepancy (MMD) [15, 46] is a metric based on graph statistics. MMD Linear
is computing MMD with a linear kernel [29]. We define Sr = {xr

1, . . . , x
r
m} ∼ Pr and Sg =

{xg
1, . . . , x

g
n} ∼ Pg, where xi is a feature vector from a corresponding graph Gi. Therefore, MMD

is defined as follows:

MMD(Sr,Sg) =
1

m2

m∑
i,j=1

(k(xr
i , x

r
j)) +

1

n2

n∑
i,j=1

(k(xg
i , x

g
j ))−

2

nm

n∑
i=1

m∑
j=1

(k(xg
i , x

r
j)), (9)

where k(·, ·) is a general kernel function. For the case of the metric MMD Linear, used in our graph
experiments, we use a linear kernel.

C.3 An Axiomatic Approach to Defining Intrinsic Diversity

The attempt to define, prove and interpret a theoretically well-founded notion of diversity has
inspired decades of heated debate in theoretical ecology. While in the context of machine learning,
diversity is still very seldomly explored axiomatically, measures of biodiversity are often defined
in a more well-established and unified framework built on mathematically complex ideas, such as
entropy and extended notions of size. However, there is a lot of benefit to be gained by a more
theoretical discussion on evaluating diversity in representation learning. Indeed, as pointed out by
Leinster [22], if a diversity measure does not pass basic logical tests, it is likely to be misleading and
potentially useless for practical applications, which can have far-reaching detrimental consequences.
By discussing some of these fundamental properties we thus uncover exactly how existing diversity
measures for evaluating latent representations fail at essential requirements. We further discuss how
magnitude functions improve upon alternative diversity metrics.

Throughout this section let m(X) ∈ R be a diversity measure of the (metric) space X , let dX be a
distance metric on this space and ζX a matrix of pairwise similarities.

Diversity measures the absolute richness in observations. Metric space magnitude as a diversity
measure has been introduced with the following three properties fundamental properties in mind [36]:

• Monotonicity in observations. Including a new observation with all positive distances to a
metric space with a negative definite metric does not decrease diversity. Formally, for all
x0 /∈ X where (X, dX) is a metric space define (Z = X ∪ x0, dZ) via inclusion so that dZ
is a valid metric. If dZ(x0, x) > 0 for all x ∈ X , the diversity measure m is monotone in
observations if mX ≤ mZ . For magnitude, when taking m = Mag, this directly follows
from Corollary 2.4. in Leinster [21].

• Twin property. Diversity does not change when including a duplicate observation. Formally,
for x0 ∈ X define Z = x0 ∪X . A diversity measure m then respects the twin property if
mZ = mX . Magnitude fulfils this property, which follows directly from the definition of
a metric space because X is a set and cannot include duplicate observations. That is, for
x0 ∈ X where (X, d) is a metric space, we get that Z = x0 ∪X = X and MagZ = MagX .

• Monotonicity in distances. For |Y | = |X| ≥ 2, when f : (X, dX) → (Y, dY ) is a
bijective mapping so that no distance is decreasing and at least distance is increasing and
dX and dY are negative definite, diversity does not decrease. Formally, when dX(x1, x2) ≤
dY (f(x1), f(x2)) for all x1, x2 ∈ X and dX(a, b) < dY (f(a), f(b)) for some a, b ∈ X ,
a diversity measure m is monotone in distances if mX ≤ mY . Magnitude fulfils this
conjecture for all known examples of negative definite metric spaces [21, 36].

Given that these three essential properties hold for magnitude at every choice of t, they also hold for
the area under the magnitude function for a space with a negative definite distance metric, whose
magnitude function is necessarily continuous as demonstrated in Appendix A.2. However, none of
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the alternative diversity measures defined in Appendix C.1 fulfil the twin property or the condition of
being monotonic in observations as demonstrated in Appendix C.4. This can lead to an undesirable
decrease in diversity when including novel observations to a space that adds information and should
thus not reduce the total diversity but is similar to existing points. Indeed, given this behaviour we
argue that a decrease in diversity as measured by the existing metrics can actually be misleading.

Diversity requires basic invariances. Elaborating on the idea that diversity measures should pass
basic sanity checks, the following more basic properties are desirable for measuring the intrinsic
diversity of a space as intended [22]:

• Isometry invariance: Diversity does not change under isometric transformations of a space.
Magnitude is isometry invariant as defined and proven in Appendix A.4.

• Symmetry: Diversity is invariant under permutations of the input observations. Formally,
let σ : X → X be a permutation of X . Then, a diversity measure m is symmetric if
m(X) = m(σ(X)).

• Absence invariance: Diversity only depends on the samples and features present in the
dataset. Formally, let X ′ ⊆ RD′

be dataset with feature space of dimension D′, and
X ⊆ X ′ be the subset of observed samples and non-zero features X ⊆ RD. Then, a
diversity measure m is absence-invariant if m(X) = m(X ′). That is, diversity does not
change when removing elements or features that have not been observed or have zero
probability.

Magnitude and thus MAGAREA fulfil the aforementioned conditions by definition. Specifically,
magnitude is absence-invariant, symmetric and isometry-invariant because the distance metric dX
itself is absence-invariant, symmetric and isometry-invariant. These properties can be proven as
in Appendix A.4. Overall, invariances are key properties when studying the diversity of latent
representations. Indeed, symmetry is so essential that all diversity measures evaluated in this study
fulfil it. GMSTDS however, is not absence invariant as it always equals zero whenever one feature or
dimension in the embedding space is constant, which limits its usefulness and makes it sensitive to
the absence of information.

Diversity measures the effective number of distinct observations. Originating from using entropy
to define a suitable notion of diversity for theoretical ecology, the following aspects of measuring
diversity in deserve to be highlighted:

• Effective size: A dataset with a fixed number of points is more diverse when points are
separated e.g. distributed uniformly or maximally disordered and becomes less diverse as
observations cluster together. Diversity is maximised when points are completely distinct and
minimised when all observations are identical. Formally, let e : X → X ′ be a transformation
that decreases the entropy of space X .7 We then require that m(X) ≤ m(e(X)). Say a
diversity measure m(X) ∈ R has a minimum mmin and maximum value mmax. We further
require that limt→0 m(tX) = mmin and limt→∞ m(tX) = mmax.

• Effective number: Diversity should be measured the effective size of a space in the range
[1, |X|] ∋ m(X), so diversity is expressed as the effective number of distinct points or
clusters in a space.

We note that the latter condition on diversity being measured as effective number is very helpful
for measuring biodiversity [8] and to give a sensible summary of the clustering structure of a
dataset, but being interpretable as a number of points is potentially not necessary in all applications.
Nevertheless, we find that relating diversity to assessing entropy and requiring that diversity is aware
of clusterability and uniformity in the data, is essential for a useful diversity measure as further
illustrated in Appendix C.5.1. Note that magnitude fulfils the conditions of measuring both an
effective size and an effective number by definition as defined in Section 3.2 and discussed in more
detail by Leinster [22]. Based on this, MAGAREA as a multi-scale summary of magnitude also fulfils
the condition of measuring the effective size of a space and can easily be converted into an effective
number.

7We leave the precise definition of entropy up to discussion [22], but give examples of what we consider to be
entropy-decreasing operations. One example is scaling through a negative definite metric space tX by increasing
the similarity between observations i.e. by decreasing t. Removing informative features, mode dropping or
mode collapse are further phenomena that decrease diversity.
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Table S.1: Counterexamples demonstrating that alternative diversity measures fail to fulfil funda-
mental axioms of diversity, whereas magnitude passes these sanity checks.

Space MAGAREA (↑) VS (↑) AVGSIM (↓) GMSTDS (↑)

X two point space 4.602 1.867 0.368 0.500
Q absence 4.602 1.867 0.368 0
Z duplicate point 4.602 1.77 0.579 0.471
Y three point space 4.613 1.809 0.577 0.469

Diversity is a multi-scale summary of (dis)similarities. Finally, we note that diversity should be
seen as a continuous function of the scale of similarity and behave accordingly:

• Similarity-sensitivity: Diversity is computed from and determined by the (dis)similarities
between observations. That is, a diversity measure m ∈ R of a dataset X is defined as
m := f(DX) or m(X) := f(ζX) for some function f , where DX is a matrix of distances
between observations in X and similarly ζX is a matrix of similarities.

• Scale-dependence: Further, we require that a diversity measure mt ∈ R is a continuous
function of the scale of (dis)similarity t. Thus, diversity is not just a one-number summary,
but a function of said scale. Formally, mt(X) := f(DX(t)) or mt(X) := f(ζX(t)).

• Multi-scale: A multi-scale measure encodes both local and global trends in the data
manifold by considering multiple levels of scale or resolution simultaneously. Let mt be a
scale-dependent diversity measure. A multi-scale measure, m, further summarises diversity
across multiple scales i.e. m = f(mt1 , (mt2 , ..., (mtn)) ∈ R for n > 2 and some summary
function f .

Rather than giving a snapshot of diversity at a fixed degree of (dis)similarity, multi-scale methods
summarise diversity across varying scales of (dis)similarity. We reason that this property is advant-
ageous to capture a more complete picture on how both coarse and more nuanced dissimilarities in
observations affect diversity. Being a multi-scale summary is a distinguishing characteristic of our
proposed diversity measure, MAGAREA. Alternative diversity measures, such as average similarity,
the Vendi Score or magnitude computed at one scale, do not fulfil this criterion as they are single
resolution snapshots computed from a fixed similarity matrix.

C.4 Counterexamples

In the following, we now demonstrate how the diversity measures introduced in Appendix C.1 fail
at some of the fundamental axioms of diversity introduced in Appendix C.3 via simple examples.
Consider the following feature matrices:

X =

[
1
0

]
, Q =

[
1 0
0 0

]
, Z =

[
1
0
0

]
and Y =

[
1
0

0.01

]
(10)

First, consider the two point space as given by X as a reference space. We then use Manhattan
distances dX and the similarity matrix ζX as given in Definition 3.1 to compute each diversity
measure. In particular, to compute MAGAREA we use the convergence scale of X as a reference.
The resulting diversity values are summarised in Table S.1.

Absence invariance. To check for absence invariance, we include a constant feature dimension
to X and get Q. Clearly, Q has the same diversity as X . Indeed, all diversity values are equal for
these spaces other than GMSTDS. This counterexample thus shows that GMSTDS is not absence
invariant.

Twin property. Next, we include a duplicate observation to X and get Z to examine the twin property.
Note that including a repeated observation does not change diversity as the space still consists of only
two unique observations. However, VS, AVGSIM and GMSTDS all assess that Z is less diverse than
X and thus do not fulfil the twin property.

Monotonicity in observations. Lastly, include one new observation to X and consider the three
point space Y . While Y is very similar to X , we can see that overall, in terms of absolute diversity,
X is not more diverse than Y . However, MAGAREA is the only measure in Table S.1 that indicates
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Table S.2: MAGAREA shows the correct order in diversity when comparing the simulated examples
in Figure 1a) from the main text. In contrast, two baseline diversity measures, AVGSIM and GMSTDS,
as well as the discrepancy measure L2STAR fail to distinguish that the random point pattern, X1, is
more diverse than the clustered point pattern, X2.

MAGAREA (↑) VS (↑) AVGSIM (↓) GMSTDS (↑) L2STAR (↓)

X1 Poisson Process 133 14.6 0.39 0.59 0.004
X2 Hawkes Process 99 13.1 0.39 0.59 0.004
X3 Two Gaussians 69 5.7 0.51 0.53 0.041
X4 One Gaussian 48 3.1 0.79 0.14 0.260

that Y is slightly more diverse than X . Indeed, all of VS, AVGSIM and GMSTDS indicate that Y is
less diverse than X and they are thus not monotone in observations.

New or duplicate observations. Including a duplicate observation should lead to lower diversity
than including a new unseen observation to a space. However, GMSTDS actually indicates that
Z, the space with duplicate points, is less diverse than the three point space Y , which is clearly
counterintuitive.

C.5 Simulation Studies

C.5.1 Effective Size and Uniformity

To gain more insights, we further compare diversity metrics on the examples from Figure 1a) and
report them in Table S.2. That is, we simply ask the question, which of these simulated examples are
more diverse. Note that each space has the same number of points, but the examples vary in their
effective size and clustering behaviour. We know a ground truth ordering, namely that the uniform
pattern in X1 is the most diverse example as points are most clearly separated and more evenly spread
across the entire sampling domain.

Results then show that two of the baseline measures, AVGSIM and GMSTDS, fail to capture notable
differences in diversity on simple simulations as they do not detect that the random pattern in X1 is
more diverse than a clustered pattern in X2. Here, the difference in diversity between X1 and X2

is driven by the difference in the disorder or clustering behaviour of their respective observations.
Linking back to the axioms of diversity, these examples illustrate how diversity should be aware of
an effective number of distinct clusters or points and evaluate diversity via assessing entropy.

Our results thus demonstrate how magnitude gives a superior notion of diversity, that captures
variations in effective size, clustering behaviour and uniformity. In contrast, both AVGSIM and
GMSTDS are unaware of these differences. In practice, this could further lead to misleading
assessments of diversity for e.g. generative model evaluation. For example, a clustered sentence
embedding, corresponding to a few distinct groups of sentences that share the same meaning, might
be wrongly deemed to have the same diversity as a more varied set of generated sentences, which
notably differ in meaning and show a more uniform distribution in the embedding space.

To further contrast diversity measures against uniformity criteria, we also compute the L2-star
discrepancy of each sample, L2STAR. Discrepancy measures in general assess how much an
empirical distribution deviates from a uniform distribution on the unit hypercube [42, 47]. Lower
discrepancy implies higher agreement with uniformity, which in our context corresponds to higher
diversity. However, we observe that that L2STAR does not clearly distinguish a difference between
X1 and X2, but rather assesses that both examples are close to uniformity. Results indicate that
this classical discrepancy measure gives a global summary of evenness, which assesses X2 appears
uniform on a large-scale, but does not pick up on local difference in effective size and small-scale
clustering behaviour. This illustrates the necessity of evaluating both local and global trends in
diversity via a multi-scale summary of diversity as given by MAGAREA.

C.5.2 Investigating the Twin Property for Diversity Measures

To link our investigation to the theoretical axioms of diversity, we examine the twin property. This
requirement asserts that diversity should not change when including duplicate observations into a
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duplicated 
points

Figure S.5: Our method, MAGAREA, is the only diversity measure that satisfies the twin
property, one of the fundamental axioms of diversity. MAGAREA correctly assesses that
diversity does not change when including duplicate observations. All baseline diversity scores
fail to fulfil this property and show inconsistent changes. V S even switches trends from increasing
initially to decreasing after a certain number of replicates has been reached for X6. We investigate
two simulations: X5 shows a Gaussian distribution with 100 points, whose centre gets duplicated.
X6 shows a Gaussian blob with 100 observations as well as 10 outliers, which get duplicated with
the specified multiplicity. Changes in the diversity scores as increasing numbers of duplicate copies
are added are shown below. Dashed horizontal lines show the ground truth value of each diversity
measure prior to including duplicate points.

given dataset. When evaluating generative models, diversity measures that satisfy the twin property
are advantageous because they penalise models that just repeat existing observations again, as opposed
to providing genuinely ‘novel’ outputs. Results of this case study are reported in Figure S.5, showing
how the popular baseline diversity measures, AVGSIM, VS and GMSTDS as well as the discrepancy
measure L2STAR, the L2-star discrepancy, all fail to fulfil the twin property, instead exhibiting
highly-inconsistent behaviour. Our proposed method meanwhile is the only diversity measure that
respects the twin property and remains consistent, demonstrating one of its practical advantages.

D Additional Details for Our Experiments

In the following we give further details and elaborate on the experimental setup and datasets used for
our experiments as well as showcase extended results.

D.1 Curvature Experiments

Here we provide more details about the curvature experiments, which builds on the approach by Turkes
et al. [41]; see https://github.com/renata-turkes/turkevs2022on for an implementation.
We generate a unit disks Dκ of surfaces of constant curvature κ, with 3 cases: the first one is when
κ = 0 (we then have the Euclidean plane), κ < 0 (we have a space of negative curvature, the Poincaré
disk model of the hyperbolic plane), κ > 0 (sphere with radius 1/

√
κ). We vary the curvature κ to

be in the interval [−2, 2]. For each value of κ, we construct point clouds by sampling 500 points
from Dκ. We generate 201 surfaces with equally spaced curvature in the interval [−2, 2]. Then, we
compute magnitude for each space using Euclidean distance and 30 evenly spaced intervals until the
scale tcut = 73.

From the resulting values of MAGAREA plotted against the curvature values in Figure 2, we can
intuitively explain the relationship between diversity i.e. magnitude and curvature. For unit disks of
positive curvature, the higher the curvature the lower the value of MAGAREA. This indicates that
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points move closer and closer the more curved the surface is decreasing the diversity in Euclidean
space. For surfaces with negative curvature we see the opposite trend. The more negatively curved
the Poincaré disk the lower the value of MAGAREA. This is because Euclidean distances between
points and thus diversity are decreasing.

For the results reported in Table 1 we further apply 5-fold cross-validation and aim to predict the
curvature values from the diversity score. We first train a quantile regression model on the MAGAREA
after applying polynomial feature transformation of degree 2 to the training data suspecting a
quadratic-looking relationship between MAGAREA and curvature after exploratory analysis. Further,
we compare this to piecwise linear regression with two breakpoints under the assumption that the
relationship between MAGAREA and curvature as plotted in Figure 2 rather depicts a piecewise linear
relationship clearly separating spaces of positive and negative curvature. Both regression models
were compared in the final results in Table 1 to investigate multiple proposals on how to interpolate
between the MAGAREA scores for surfaces of negative and positive curvature.

We further report six alternative models from Turkes et al. [41], which are using features from
persistent homology (PH) summarising persistence diagrams (PDs). See Bubenik et al. [4] for a more
detailed explanation on PH and its relationship to curvature. Specifically, in Table 1 we reproduce the
following models from Figure 4. and Table 3. of Turkes et al. [41]:

• SVR (all PH features) referred to as 0-dim PH simple by Turkes et al. [41], which uses the
lifespans of the persistence diagram computed on the samples;

• SVR (selected PH features) denoted 0-dim PH simple 10 by Turkes et al. [41], which uses
the 10 longest lifespans; and

• SVR (PH vectorisation) corresponding to 0-dim PH by Turkes et al. [41], which selects
the best PD vectorisation amongst a number of options, namely persistence images (PI) or
persistence landscapes (PL).

All the PH-based methods use support vector regression (SVR) with a RBF kernel. Hyperparameter
tuning for these models is conducted as reported by Turkes et al. [41] using grid search with a choice
of C parameters in {0.001, 1, 100}. We further reproduce 1 method based on pairwise distance
matrices:

• SVR (distance matrices) denoted as ML by Turkes et al. [41].

Finally, we restate the performance scores of these two methods directly from Turkes et al. [41]:

• MLP (shallow) denoted as NN shallow by Turkes et al. [41]; and
• MLP (deep) denoted as NN deep by Turkes et al. [41].

We also note that the other models achieve different performance scores on our dataset than reported
by Turkes et al. [41] due to a slight difference in dataset and cross-validation splits. We use a smaller
subset of samples than Turkes et al. [41] each having a unique curvature value as described above, and
ensure that all models are evaluated on the same splits of data across 5-fold CV for fair comparison.
Finally, we summarise the MSE achieved by each model in Table 1. Illustrating this, Figure 2 further
shows examples of both magnitude functions for negative and positive curvature as well as the clear
piecewise-linear trend between MAGAREA and curvature.

D.2 Measuring the Intrinsic Diversity of Text Embeddings

We analyse data from Tevet and Berant [38], consisting of 1K sets of 10 sentences each generated
for unique input prompts for 3 sentence generation tasks. The code by Tevet and Berant [38]
is available at https://github.com/GuyTevet/diversity-eval under an MIT licence and
data can be downloaded from http://diversity-eval.s3-us-west-2.amazonaws.com/data.
zip. These tasks are story completion (storyGen) and dialogue response generation (respGen), both
using MASS model fine-tuned on each dataset, and 3-word prompt completion (promptGen) using
GPT-2-large without fine tuning. From the 1K response sets per task, 10 have been generated
using the same decoding parameter, the softmax-temperature dec, sampled evenly across the range
[0.2, 1.2], which controls the trade-off between quality and diversity by skewing models towards
avoiding low-probability tokens as dec decreases. This leads to potentially higher quality or fidelity
but lower diversity or creativity in generated text. Further, for 200 response sets per task, mean
human evaluation scores of text diversity were collected. Human workers rated the level of diversity
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of the response set on a scale from 5 (highest) to 1 (lowest). The mean of these scores, absolute HDS
(ABSHDS), measures the human perception of text diversity.

We then create embeddings for each set of sentences utilise the sentence-transformer library by
Reimers and Gurevych [30]. In particular, we apply the following five embedding models:

• all-distilroberta-v1: general-purpose model, embedding dimension 768;
• all-MiniLM-L6-v2: general-purpose model, embedding dimension 384;
• all-mpnet-base-v2: general-purpose model, embedding dimension 768;
• bert-large-nli-stsb-mean-tokens: general-purpose model, embedding dimension 1024; and
• roberta-base-nli-mean-tokens: general-purpose model, embedding dimension 768.

For each text embedding we compute magnitude functions and our diversity measure, MAGAREA,
across 20 evenly sampled scales in [0, tcut] where tcut is the median of the convergence scales across all
embeddings setting ϵ = 0.01|X|. We then run prediction tasks as described in Section 4.2 repeating
the same procedure for predicting both human scores and decoding parameters. Figure S.10 details
the results for predicting human scores. Figure S.11 then shows summaries of the ranks achieved
by each metric across the two experiments. For additional context on the choice of convergence
scales, Figure S.12 shows that changing the value of ϵ for computing MAGAREA has a small effect
on its correspondence with human evaluation scores indicating that our measure is relatively robust
to this choice. Results from Figure 3 are further expanded is expanded in Table S.3 which shows
the mean R2 scores and median ranks across datasets and Table S.4 summarising the difference in
performance scores between MAGAREA and other diversity measures highlighting that entropy-based
diversity metrics give superior notions of diversity. Illustrating the relationship between magnitude
and diversity, Figure 4 and Figure S.7 plot both magnitude functions and the values of MAGAREA
against both human scores and decoding parameters for one of the embedding models (plots for other
embeddings follow similar trends). Indeed, these visualisations then demonstrate that MAGAREA
can be used as a descriptor of diversity in generated text achieving high rank correlation with known
ground truth values of diversity.
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Figure S.6: MAGAREA and magnitude functions computed using all-mpnet-base-v2 plotted against
the decoding parameters. The value ρ shows the mean rank correlation between MAGAREA and the
softmax-temperature as well as 95% bootstrap intervals computed by resampling 1000 times.
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Figure S.7: MAGAREA and magnitude functions computed using all-mpnet-base-v2 embeddings
plotted against the human scores. The value ρ shows the mean rank correlation between MAGAREA
and ABSHDS as well as 95% bootstrap intervals computed by resampling 1000 times.
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Figure S.8: MAGAREA shows higher rank correlation with the ground truth softmax temperat-
ure than alternative diversity measures across 3 tasks and 5 embedding models. Baseline measures,
AVGSIM and GMSTDS, show noticeably worse rank correlation. Points show the mean Spearman
correlation and lines represent 95% bootstrap intervals computed across 1000 resamples.
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Figure S.9: MAGAREA shows higher rank correlation with human evaluation scores than
alternative diversity measures across 3 tasks and 5 embedding models. Baseline measures, AVGSIM
and GMSTDS, show noticeably worse rank correlation. Points show the mean Spearman correlation
and lines represent 95% bootstrap intervals computed across 1000 resamples.
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models. Baseline measures, AVGSIM and GMSTDS, perform worse in terms of the mean R2 scores.
Points show the mean of the R2 scores, while lines represent the standard deviations across 5-fold
cross-validation (repeated 10 times).

Figure S.11: The area under the magnitude function outranks baseline diversity measures at
(a) predicting decoding parameters and (b) predicting human-evaluated diversity scores across all
experiments and cross-validation resamples.
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Figure S.12: Impact of the choice of convergence scales on predicting human evaluation scores.
Both the rank correlation between MAGAREA and absHDS as well as the R2 scores achieved by
MAGAREA for predicting absHDS remains consistent across different choices of convergence scales.
Here we take the median convergence scale across embeddings as a cutoff scale, but change the ϵ
parameter from Definition 3.5. In the left plot, points show the mean rank correlation across 1000
repeated bootstrap resampling and lines the corresponding standard deviations. The right plot, points
show the mean performance scores with standard deviations from 20 repeated 5-fold CV.
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Table S.3: The mean performance of each diversity measure in terms of R2 scores for predicting
the decoding parameter. We also report 95% percentile intervals of these scores as well as standard
deviations.

Model Median Rank Mean R2 Standard Deviation Lower 95% PI Upper 95% PI Task

MAGAREA 1 0.62 0.05 0.50 0.70 Prompt
VS 2 0.61 0.06 0.49 0.71 Prompt
AVGSIM 3 0.55 0.06 0.42 0.66 Prompt
GMSTDS 4 0.19 0.24 −0.02 0.55 Prompt
MAGAREA 1 0.70 0.04 0.62 0.77 Resp
VS 2 0.69 0.04 0.60 0.76 Resp
AVGSIM 3 0.64 0.07 0.50 0.74 Resp
GMSTDS 4 0.23 0.30 −0.02 0.66 Resp
MAGAREA 1 0.53 0.05 0.44 0.62 Story
VS 2 0.49 0.06 0.38 0.58 Story
AVGSIM 3 0.41 0.06 0.29 0.51 Story
GMSTDS 4 0.17 0.22 −0.03 0.50 Story

Table S.4: The difference between each diversity measure and MAGAREA in terms of the
difference in R2 scores when predicting the decoding parameter. We also report 95% percentile
intervals of these differences and standard deviations.

Measure Mean Difference in R2 Scores Standard Deviation Lower 95% PI Upper 95% PI Dataset

VS 0.00 0.02 −0.02 0.06 Prompt
AVGSIM 0.07 0.03 0.03 0.15 Prompt
GMStds 0.42 0.26 0.05 0.71 Prompt
VS 0.01 0.01 −0.01 0.04 Resp
AVGSIM 0.07 0.05 0.00 0.17 Resp
GMStds 0.47 0.30 0.07 0.77 Resp
VS 0.04 0.02 0.01 0.09 Story
AVGSIM 0.12 0.03 0.06 0.18 Story
GMStds 0.36 0.23 0.06 0.62 Story
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D.3 Characterising Text Embedding Spaces

For further experiments, we analyse 16384 embedded documents of from four different HuggingFace
datasets as processed by Wayland et al. [43]. In particular, we use the following datasets:

• arXiv: abstracts of all arXiv articles up to the end of 2021;
• bbc: summaries of BBC news articles;
• cnn: summaries of news articles from CNN and DailyMail; and
• patents: abstracts of U.S. patent applications.

The first 214 samples from the corresponding training datasets were embedded using the sentence-
transformer library by Reimers and Gurevych [30]. The following pre-trained models were used:

• all-distilroberta-v1: general-purpose model, embedding dimension 768;
• all-MiniLM-L6-v2: general-purpose model, embedding dimension 384;
• all-mpnet-base-v2: general-purpose model, embedding dimension 768; and
• multi-qa-distilbert-cos-v1: QA-specialized model, embedding dimension 768, maximum

sequence length 512 word pieces.

Further, embeddings from two large language models, ada-002 (embedding dimension: 1 536) and
mistral-embed (embedding dimension: 1 024) were obtained through queries via the corresponding
APIs of their providers (OpenAI and MistralAI, respectively).

We then use PCA to reduce each embedding space to 384 dimensions to obtain a comparable
dimensionality. This is done to mitigate some of the influence the difference in dimensionalities can
have on the results of the analysis. Further, we sample 300 points at random from each space, repeating
this procedure 200 times, which yields a dataset of 1000 embeddings generated by different models
for each dataset. We further compute MAGAREA across 20 scales up to the median convergence point
across all embeddings per dataset again using cosine distances and setting ϵ = 0.05|X|. Similarly,
we take the pairwise magnitude differences MAGDIFF between all subsample’s magnitude functions.
This is compare it to alternative diversity measures, VS, GMSTDS and AVGSIM computed as defined
in Appendix C.1. For each dataset we then use a simple 5-NN classifier to classify the embedding
model based on the one number summaries such as MAGAREA and report the mean and standard
deviation of the accuracy across 5-fold cross-validation with 20 repetitions. We compare this to the
more expressive descriptor MAGDIFF, which we similarly use as a pre-computed distance matrix
for 5-NN classification. Figure S.13 illustrates the pairwise magnitude differences between all
subsamples for each dataset. Table 2 then shows the results of this classification task. For further
sensitivity analysis, Table S.5 shows analogous results that were computed across varying choices
of k neighbours for k-NN classification. Results demonstrate that classification accuracy remains
consistent across varying parameter choices.

Table S.5: Classification performance remains consistent across varying choices of k for k-NN
classification. We show the accuracy (↑) of different diversity scores for distinguishing between
six embedding models of the bbc dataset, using PCA pre-processing and a k-NN classifier across
varying values of k. These results are analogous to Table 2 in the main text.

k MAGDIFF AVGSIM VS GMSTDS

1 0.93 ± 0.01 0.84 ± 0.02 0.72 ± 0.03 0.66 ± 0.03
3 0.94 ± 0.01 0.84 ± 0.02 0.72 ± 0.02 0.66 ± 0.03
5 0.95 ± 0.01 0.84 ± 0.02 0.72 ± 0.03 0.66 ± 0.03
7 0.95 ± 0.01 0.84 ± 0.02 0.73 ± 0.02 0.66 ± 0.03
9 0.95 ± 0.01 0.84 ± 0.02 0.74 ± 0.02 0.66 ± 0.03
11 0.95 ± 0.01 0.84 ± 0.02 0.74 ± 0.02 0.66 ± 0.03
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Figure S.13: Pairwise MAGDIFF for subsamples from six different embedding models and four
document datasets. For each dataset, magnitude is computed until the median convergence scale.
The plot shows the absolute MAGDIFF normalised by this cut-off scale to show the average absolute
difference in magnitude across the evaluation interval. We see a clear block-wise structure between
the pairwise magnitude differences of each subsample highlighting that the magnitude functions of
these samples are clearly distinct between different embedding models.

D.4 Image Experiments

We adapt code by Friedman and Dieng [13] to download and process the CIFAR10 test dataset
using torchvision. Specifically, we use utility functions from https://github.com/vertaix/
Vendi-Score available under an MIT licence. Further, these data are embedded using Incep-
tion_v3 [37]. We then simulate sequential and simultaneous mode dropping for this embeddings. We
compute magnitude for 10 scales sampled uniformly from t0 = 0 until the 95% convergence scale of
the reference embedding where each class is still evenly represented. The main results in Figure 5
then report the relative changes in MAGDIFF across the evaluation interval. In Figure S.14 we further
report the precision and density for the same simulated mode dropping scenarios as explained in the
image embedding experiments. We also show the relative decrease in magnitude computed at three
fixed scales at 33%, 50% and 100% of the convergence scale of the reference space chosen to explore
a variation of resolutions. Finally, Figure S.15 summarises analogous results for different variations
of the Vendi Score, which has also been proposed to measure mode dropping. We observe that while
VS shows steady trends when computed using a linear kernel or the Laplacian kernel on normalised
embeddings. However, VS does not perform well at when simply using the Laplacian kernel without
preprocessing, which demonstrates that finding the right scale of similarity is also important for VS
and it is possible to misspecify the degree of similarity between observations leading to unreliable
performance.
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Figure S.14: Line plots of the proportion of points on the first mode against recall, coverage, relative
difference in magnitude at t = 0.5 and magnitude function difference relative to the reference across
simultaneous sampling vs. sequential sampling. Lines show the mean values of each normalised
metric across 20 resamples, shaded areas the standard deviations.
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Figure S.15: Line plots of the proportion of points on the first mode against the relative change in
different variations of the Vendi Score, VS, across two different mode dropping scenarios. VS is
computed using a Laplacian kernel without (left) and with normalisation (right) as well as a linear
kernel (right). Lines show the mean values of each normalised metric across 20 resamples, shaded
areas the standard deviations.

D.5 Graph Embedding Experiments

To assess our new diversity measure’s utility for graph generative model evaluation we reproduce
the benchmark by Thompson et al. [40] and include our proposed reference-based diversity measure,
MAGDIFF, to the diversity evaluation benchmark. The code for reproducing this graph evaluation
benchmark is available at https://github.com/uoguelph-mlrg/GGM-metrics under an MIT
licence. Specifically, we conduct this experiment on five graph datasets:

• Lobster: A dataset consisting of 100 stochastic graphs generated so that each node is at
most 2 hops removed from a backbone path and the number of vertices varies between 10
and 100.[7, 40]

• Grid: A dataset of 100 two-dimensional graphs consisting of 100 to 400 vertices [7, 24, 40,
46].

• Proteins: A dataset of 918 protein networks. Each vertex is an amino acid and edges
connect amino acids that are less than 6 Angstroms away from each other [9]. Only graphs
with between 100 to 500 vertices are selected [7, 24, 40, 46].

• Ego: A dataset of 757 graphs that are 3-hop networks with 50 to 399 vertices [40, 46]. These
graphs were extracted from the CiteSeer citation network where nodes represent documents
[34].

• Community: A dataset with 500 two-community graphs with between 60 to 160 vertices,
where each community has been generated using the Erdős-Rényi model [11] setting n
equal to half the number of vertices and p = 0.3. Additional edges amounting to 5% of the
number of vertices have been added to each graph with uniform probability [40, 46].

Further, this experiment uses a Graph Isomorphism Network [45, GIN] architectures as an embedding
model and following the procedure by [40] we vary the following hyperparameters for these models:
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We vary the number of layers between [2, 3, . . . , 7] and vary the hidden dimensions in the interval
[5, 30] with an increment of 5 resulting in a total of 36 architectures. We repeat the experiments
for 5 different random seeds. The experimental setup used to evaluate the evaluation metrics for
both mode collapse and mode dropping then is as follows: First Pr ≈ Pg, so that Pr, the real
distribution, is identical to Pg , the generated distribution. Then the perturbation parameter p ∈ [0, 1]
is introduced, which transforms the generated graph datasets step-wise and increases the dissimilarity
(and hence diversity) between the reference and generated datasets. Therefore, we use it as a proxy
to measure the difference in diversity between Pr and Pg. To evaluate this decrease in diversity, we
compute magnitude for the corresponding graph embeddings across 40 evenly-spaced scales until the
convergence scale of the reference choosing ϵ = 0.05|X|. For precision, recall, density and coverage
we take the parameter k = 5, as proposed previously by [28], to ensure a fair comparison. We then
normalise all metrics such that their value is 0 when Pr = Pg (which is exactly when the degree of
permutation is 0). For this, we follow the normalisation strategy by [40] and normalise MAGDIFF
by the cardinality of each embedding. Next, we vary the parameter p and compute each evaluation
metric. We report the Spearman correlation coefficient between each metric and the degree of the
perturbation p. Hence, the value of a metric which captures the decrease in diversity accurately should
increase with the increase of p, and rank correlation of 1 corresponds to an ideal metric. Results
for the whole experiment across all datasets are presented in Figure S.16. The violin and boxplots
reported in this figure then summarise the distribution of each evaluation measures rank correlation
to the degree of perturbation across the 5 random seeds and the aforementioned hyperparameter
choices influencing the embedding models. Finally, Figure S.17 investigates the influence the choice
of convergence scale has on the results of these experiments and we observe that low values of ϵ lead
to better agreement with the true degree of perturbation. Further, the trends in the value of MAGDIFF
are stable across choices of ϵ ≤ 0.05|X| as chosen throughout this study.
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(b) Proteins dataset
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(e) Ego dataset

Figure S.16: Results for the mode collapse and mode dropping experiments. The patterns for
each of the datasets is similar to the results on the Lobster graphs, which we show in the paper.
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(d) Community dataset
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(e) Ego dataset

Figure S.17: Rank correlation between MAGDIFF and the degree of perturbation for different
choices of convergence scale. Here we vary the choice of ϵ influencing the reference scale that is
chosen to compute MAGDIFF(|X|−ϵ/|X|) for the mode collapse and mode dropping experiments. We
clearly observe that low values of ϵ as given by MAGDIFF95 or MAGDIFF99 lead to higher rank
correlation and better agreement with the true decrease in diversity.
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Answer: [Yes]
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as motivated throughout the abstract and introduction.
Guidelines:
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made in the paper.
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much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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putational performance as well as our assumptions on the utility of using embeddings for
diversity evaluation in Section 3.5. Properties and theoretical assumptions of our proposed
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• The answer NA means that the paper has no limitation while the answer No means that
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
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should reflect on how these assumptions might be violated in practice and what the
implications would be.
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• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an import-
ant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Yes, all theoretical contributions have been carefully checked and referenced
as for example reported in Section 3 and Appendix A.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, all of our contributions are reproducible. Our submission includes the
necessary code to compute the algorithms and novel magnitude-based diversity measures
introduced and detailed in this work. All our experimental results rely on publicly avail-
able datasets and pre-trained embedding models and can be reproduced by following the
instructions detailed in our submission e.g. in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Our submission includes the necessary code to compute the al-
gorithms and novel magnitude-based diversity measures introduced and detailed in this
work. A reproducibility package is available at https://github.com/aidos-lab/
magnitude-diversity and code for computing our algorithms can be found at https:
//github.com/aidos-lab/magnipy. We further detail how to access the data for each
experiment. Merely the experiment on graph generative model evaluation is omitted, but
it can easily be reproduced by including our measure into an existing benchmark (see
Appendix D).
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, all necessary experimental settings are reported in the main text and
expanded on in the supplementary materials (Appendix D) and supplementary code, which
we also published at https://github.com/aidos-lab/magnitude-diversity.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Yes, all our main claims are supported by uncertainty estimates and it is clearly
stated how these have been computed.
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of the mean.
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of Normality of errors is not verified.
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error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All our experiments have been run locally on a personal laptop highlighting the
fact that they are readily reproducible. We further benchmark the computational times of our
proposed method highlighting it can be computed in a matter of seconds (see Appendix A.5).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, our work complies with the ethics guidelines.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our work has little potential for negative impact and includes impact statement.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our contributions pose no such safety risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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Justification: We clearly cite each existing assets our results build upon. We publish our own
code and implemented methods in our Python package MAGNIPY under a BSD 3-Clause
licence and further respect all licences for existing assets such as datasets or benchmarks
used for our experiments. The code is available at https://github.com/aidos-lab/
magnipy.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We publish our proposed algorithms as a reproducible Python package, named
MAGNIPY, under a BSD 3-Clause licence including detailed documentation. The code is
available at https://github.com/aidos-lab/magnipy.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Neither crowd-sourcing nor research with human subjects has been employed.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Neither crowd-sourcing nor research with human subjects has been employed.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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