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Abstract

When Large Language Models (LLMs) are compressed using techniques such as
quantization, the predominant way to demonstrate the validity of such techniques
is by measuring the model’s accuracy on various benchmarks. If the accuracies of
the baseline model and the compressed model are close, it is assumed that there
was negligible degradation in quality. However, even when the accuracies of the
baseline and compressed model are similar, we observe the phenomenon of flips,
wherein answers change from correct to incorrect and vice versa in proportion.
We conduct a detailed study of metrics across multiple compression techniques,
models and datasets, demonstrating that the behavior of compressed models as
visible to end-users is often significantly different from the baseline model, even
when accuracy is similar. We further evaluate compressed models both qualitatively
and quantitatively using MT-Bench and show that compressed models exhibiting
high flips are worse than baseline models in this free-form generative task. Thus,
we argue that accuracy and perplexity are necessary but not sufficient for evaluating
compressed models, since these metrics hide large underlying changes that have
not been observed by previous work. Hence, compression techniques should
also be evaluated using distance metrics. We propose two such distance metrics,
KL-Divergence and % flips, and show that they are well correlated.

1 Introduction

The high cost and latency of Large Language Models (LLMs) has motivated the design of multiple
model compression techniques for optimizing LLM efficiency such as quantization (Dettmers et al.,
2022), Key-Value (KV) cache compression (Ge et al., 2023), pruning (Sun et al., 2023) and spar-
sification (Ashkboos et al., 2024). However, today, there is no standardized way of evaluating the
effectiveness of these techniques.

The predominant way of establishing the validity of the LLM compression methods today is to report
accuracy on selected benchmark tasks such as MMLU (Hendrycks et al., 2021a), Hellaswag (Zellers
et al., 2019), ARC (Clark et al., 2018), LAMBADA (Paperno et al., 2016), etc. It is assumed that
if the compressed model preserves accuracy on such benchmarks, it can be used as an equivalent
replacement for the baseline model.

In this paper, we conduct a detailed evaluation of various compression techniques. We find that while
the difference in the aggregate accuracy metric across various benchmarks between the baseline and
compressed LLM is negligible in most cases ( ≤ 2%), the actual percentage change in the answers
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Figure 1: All six quantization schemes show negligible difference in accuracy compared to baseline
16-bit model (Llama2-chat 7B, 13B, 70B and Yi-chat 6B, 34B) in seven different tasks. However,
all schemes, except GPTQ W8A16 (8-bit weight, 16-bit activation), exhibit large number of flips,
indicating severe divergence in model behavior.

can be significant (≥ 5%). In other words, even when the overall accuracy is unchanged, a large
number of correct answers change to incorrect and vice versa in proportion (we call these flips),
between the baseline and compressed model. To the best of our knowledge, we believe that we are
the first to identify this phenomenon of flips caused due to model compression. Further, we argue that
flips serves as an intuitive metric that captures how significantly different the compressed model is
from the baseline model, even when both models exhibit similar accuracy on various benchmarks.

Figure 1 shows the change in accuracy and flips % vs baseline 16-bit model, respectively, for six quan-
tization schemes on seven benchmark tasks (MMLU (Hendrycks et al., 2021a), Hellaswag (Zellers
et al., 2019), LAMBADA (Paperno et al., 2016), ARC Easy and Challenge (Clark et al., 2018)
PIQA (Bisk et al., 2019), and Winogrande (Sakaguchi et al., 2019)). We see that all quantization
schemes have negligible difference in accuracy (0 – 2%) compared to the 16-bit version. However,
except for GPTQ W8A16 (8-bit weight, 16-bit activation Frantar et al. (2023)) that preserves accuracy
with negligible flips, all other quantization schemes exhibit large number of flips (up to 13.6%),
indicating significant divergence from the baseline model.

Figure 3 shows similar behavior of MMLU task accuracy being preserved while flips increase, for two
other compression techniques, namely, layer dropping (Gromov et al., 2024) and WANDA weight
pruning (Sun et al., 2023). For example, while Gromov et al. (2024) showed that dropping the last
few layers of a model did not affect its accuracy on standard benchmarks, we find a steady, almost
linear increase in the number of flips with the number of layers being dropped.

The phenomenon of flips is puzzling at first glance. While it is easy to see that some correct
answers may become incorrect due to errors induced by compression, it is difficult to explain how
an approximately equal number of incorrect answers become correct such that overall accuracy is
preserved! For example, MMLU questions have 4 options, one of which is correct. Thus, any output
change could move a correct answer to an incorrect one but there is only 1 in 3 chance for an incorrect
answer to land on the correct option. We present a detailed analysis of flips in Section 5. Furthermore,
we observe that simply adding Gaussian noise to model weights can reproduce this flips phenomenon
(see Table 1). This suggests flips arise from the inherent approximations introduced by compression
rather than any new information or learning during the compression process.

Finally, one might question whether flips matter if accuracy is preserved. Indeed, if the downstream
task where the LLM is used closely matches the benchmark task, accuracy alone might suffice.
However, LLMs are typically used in a variety of downstream tasks that require generating free-form
text, where accuracy evaluated on some standard question-answering tasks could be a poor proxy.
Thus, we evaluate the compressed models using MT-Bench (Zheng et al., 2023), a multi-turn dialogue
task. We show through qualitative evaluation as well as using GPT4 as an automated judge that
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Table 1: Adding Gaussian noise to weights results in approximately equal correct → incorrect and
incorrect → correct transitions, with the overall model accuracy mostly unchanged.

Task Llama3-8b Setting %Accuracy % Flips

GSM8k No noise 49.39 -
Noise std = 10−4 48.97 8.23

ARC-challenge No noise 53.24 -
Noise std = 5 · 10−4 53.49 6.05

compressed models with high number of flips are significantly worse than baseline models in this
task (see Section 6).

Since the goal of compression schemes is to create models that mimic the baseline models as closely
as possible, we argue that compressed models are better judged by distance metrics with respect
to baseline, in addition to capability metrics such as accuracy alone, as is the practice today. We
demonstrate that well-known distance metrics like KL-Divergence on a given dataset can better
identify the differences created due to various compression techniques and this metric correlates well
with flips. Further, we show that the scores on MT-Bench (which evaluates free-form generation
capabilities of these models) is highly correlated with flips. Thus, we propose that flips, an intuitive and
inexpensive to compute metric, as a potential proxy distance metric for evaluating LLM compression
techniques.

In this paper, we make the following key contributions:

• Using detailed qualitative and quantitative evaluation of various compression techniques, we
show that accuracy is not sufficient as an evaluation metric for LLM compression techniques.

• We demonstrate the existence of flips as a general phenomenon and explain why they occur.
• We evaluate compression techniques using the KL-Divergence distance metric and show that

it correlates well with flips.
• We propose that, where appropriate, flips be used as an intuitive distance metric for evaluating

the quality of compression techniques.

2 LLM Evaluation Metrics

We compare baseline and compressed LLMs on the following metrics:

• Accuracy - capability metric: % correct answers, for question-answering tasks. This
determines the competency of the model for a particular task. Multiple-choice question-
answering (MCQ) tasks such as MMLU expect the model to output a single token for the
correct answer (A/B/C/D), and compare this token with the target answer. For other tasks
(like PIQA, Hellaswag, ARC), where the model assigns a probability to an option (consisting
of multiple tokens), we report the standard normalized accuracy (Eleuther, 2021).

• Perplexity(Jelinek et al., 2005) - capability metric: This measures the overall language
modelling capability of an LLM. It is defined as e(Average Negative Loglikelihood) calculated
over a dataset.

• Flips - distance metric: measures the % of questions whose answers changed from correct
→ incorrect or incorrect → correct, between baseline and quantized model for all tasks that
have correct/incorrect answers. Note that, we do not include incorrect → incorrect transition
in Flips for two reasons: 1) For non-MCQ tasks such as GSM8k (Cobbe et al., 2021b),
TriviaQA (Joshi et al., 2017), etc. exact per-token output matches between different models
are rare, resulting in many mismatches. Thus, including this transition may artificially inflate
the metric for these tasks. 2) For MCQ tasks, users may care less about these incorrect
→ incorrect transitions. Nevertheless, if we include incorrect → incorrect transitions for
MCQ tasks, we find that, the flips numbers reported in this paper would further increase by
another 20-40% (e.g., increase of 19% in Hellaswag, 41% in ARC and 43% in MMLU! See
Table 11)
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• KL-divergence(Kullback and Leibler, 1951) - distance metric: consider a dataset having
samples with multiple-choice answer options , where the j-th token of the i-th answer option
has a probability distribution Pb(i, j) across all tokens in the vocabulary of the baseline
model, and Pq(i, j) for the quantized model. Then the KL-divergence between the models
for the entire dataset is the mean of KL-divergences across all tokens of all answer options
and all samples in the dataset.

KL div =
1

N

∑
dataset

1

|options|
∑

i∈options

1

|tokens|
∑

j∈tokens

DKL(Pb(i, j)||Pq(i, j)) (1)

where N is the number of samples in the dataset and DKL(P ||Q) is the standard KL-
Divergence between two probability distributions.

The flips metric is propitious because it is a proxy distance metric that is easily interpretable by
end-users– for question-answering tasks, the end user typically cares about the correct/incorrect
answers and not the underlying probability distribution of tokens. Further, the flips metric is as easy
to calculate as accuracy for any dataset.

It is important to distinguish between capability metrics (accuracy and perplexity in this study) and
distance metrics (KL-Divergence and flips in this study). This distinction is necessary because the
goal of a compression scheme is to create a more efficient model that closely mimics the baseline
model rather than to create a more capable model. In other words, a quantized model is intended to
serve as a drop-in replacement for the baseline model with minimal impact on end-users. Therefore,
we argue that distance metrics are more suitable for judging the effectiveness of quantization or other
compression schemes.

3 Experiments

We have measured the above metrics on multiple LLMs using multiple quantization techniques and
bit lengths, on several tasks, as listed below:

• Models: We primarily used the Llama2 (7B, 13B, 70B) chat (Touvron et al., 2023), Yi (6B,
34B) chat (01.AI et al., 2024), Llama3 (8B, 70B) (Dubey et al., 2024) and Qwen2 (1.5B,
7B, 72B) (Yang et al., 2024) families of models. The chat versions were used because they
can be evaluated on MT-Bench (Zheng et al., 2023). However, we have observed a similar
phenomenon in their pretrained non-chat versions as well (see Table 12).

• Quantization: We have evaluated LLM.int8() (Dettmers et al., 2022) as implemented in
Bitsandbytes (Dettmers, 2024), with its 8-bit and 4-bit versions (referred to as BnB W8A8
and BnB W4A4 respectively) with default parameters supported with HuggingFace Trans-
formers (Wolf et al., 2020). We used GPTQ (Frantar et al., 2023), AWQ (Lin et al., 2024)
with group-size 128 with other parameters being default. We used Smoothquant (Xiao et al.,
2024) (referred to as SQ W8A8) with per-token, per-channel quantization using α = 0.5.
We use TensorRT (NVIDIA, 2024) for SmoothQuant, all other schemes were evaluated
using HuggingFace Transformers.

• Tasks:

1. For the Llama2 and Yi families, we evaluate the compressed models on ten different
tasks. They include MMLU (Hendrycks et al., 2021a) Table 4, ARC (Clark et al.,
2018)(easy Table 7 and challenge Table 8), PIQA (Bisk et al., 2019) Table 5,
Winogrande (Sakaguchi et al., 2019) Table 10, Hellaswag (Zellers et al., 2019) Table 6,
and Lambada (Zellers et al., 2019) Table 9. We also use GSM8k (Cobbe et al., 2021a)
Figure 13, TriviaQA Joshi et al. (2017) Figure 14 and MT-Bench (Zheng et al., 2023) to
evaluate models on generative tasks. MT-Bench is a dataset with 80 two-turn questions
which can test generative capabilities of a model. In this study, we have used GPT-4
(OpenAI et al., 2024) (v0314) as judge, to generate the scores reported in Table 2.

2. For the Qwen2 and Llama3 families, we evaluate on MMLU Table 17, GSM8k
Table 21, ARC (easy Table 18, challenge Table 19), MATH (Hendrycks et al.,
2021b) Table 20, BFCL (Yan et al., 2024) Figure 23, and Scrolls-Quality (Shaham
et al., 2022) Table 22
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(a) ARC-Easy (b) Arc-Challenge (c) MMLU (5-shot)

Figure 2: Flips and KL Divergence are well correlated. Each point corresponds to a model, quantiza-
tion combination in Table 4

• Harness- We used Eleuther AI’s eval-harness (Gao et al., 2023) for all the experiments,
unless specified otherwise. Note that the standard benchmarks (ARC, MMLU, PIQA,
Hellaswag, LAMBADA, GSM8k, TriviaQA, MATH, etc.) results on all models use greedy
decoding, making these results fully deterministic.

4 Results

In this section, we present extensive evidence for flips across various quantization and pruning
schemes, evaluated over a large number of models and all tasks. Results for MT-Bench are presented
in Section 6.

4.1 Quantization schemes

Summary of our results is highlighted in Figure 1 while the performance on each of the individual
seven tasks (MMLU, PIQA, Hellaswag, ARC Easy, ARC Challenge, LAMBADA and Winogrande)
are in Tables 4 to 10, respectively, in the Appendix.

The main observations from our experiments with quantized models can be summarized as follows:

1. Accuracy: Accuracy is preserved within 1% for the majority of the quantization methods,
tasks and models (see Tables 4- 9). This indicates that accuracy is not sufficient to distinguish
between precise and permissive quantization schemes.

2. Flips: The large %flips (≥ 5%) is a general trend, which holds over different models, almost
all quantization schemes, and tasks (see Tables 4- 10). Specifically, all quantization schemes
except GPTQ W8A16 (≤ 1%) have significant %flips . Lower bit quantization schemes have
greater %flips in general, indicating greater difference in behavior from the baseline (for
example, on MMLU, BnB W4A4 has, on average, 2.4× more flips than BnB W8A8). We
focus on Flips in this study, but AllFlips (Flips + incorrect→incorrect transitions ) results
can be found in Figure 10, and Table 11 in Appendix.

3. KL-Divergence vs Flips: From Figure 2, we observe that the two distance metrics KL-
Divergence and %flips are well correlated. For example, their Spearman correlation on the
MMLU benchmark is 0.981.

4. Impact of task type:
• MCQ Tasks – Generally easier tasks (identified by higher average accuracy) have

smaller %flips. For example, MMLU which is a relatively hard task has 8-16% flips for
Bitsandbytes W4A4 whereas for the same technique, PIQA, an easier task, has 3-6%
flips. The reason for this behavior is explained in Section 5.

• Generative Tasks – Surprisingly, such tasks have much more flips than MCQ ones.
For example, GSM8K (Table 13, Table 21), a hard task that requires reasoning over
multiple steps, exhibits a significant amount of flips (10–25% for BnB W8A8 and
W4A4). Similarly, in MATH Table 20, we observe 5-15% flips for BnB W4A4.
However, flips are quite small (2–4%) in easier tasks like TriviaQA(Table 14) that tests
trivia question answering capabilities.
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(a) Dropping last n-layers (b) WANDA pruning

Figure 3: MMLU 5-shot accuracy difference and flips for two compression techniques (Llama2-13b
model). Even at early stages of pruning with no accuracy difference, flips indicate model divergence.

5. Impact of model size: Larger models typically have fewer flips than smaller ones. For
example, on the MMLU benchmark with BnB W4A4, Llama2-70b chat has 5.6% flips, while
Llama2-13b chat and Llama2-7b chat have 1.4× and 1.6× more flips, respectively. This
may be because larger models are more resistant to perturbations introduced by compression
than smaller ones.

4.2 Other model compression techniques

We also evaluate the following three compression techniques, though on a smaller set of tasks and
models. Our general observations seen above holds.

1. Dropping last n-layers (Gromov et al., 2024): This work demonstrated that dropping the
last few layers did not affect the accuracy on standard benchmarks. We find in Figure 3(a)
that as one keeps dropping layers, even though the accuracy increases only modestly, %flips
increases significantly, demonstrating that the resulting models keep deviating further away
from the baseline.

2. Wanda (Sun et al., 2023): This is a pruning method. We observe in Figure 3(b) that as we
increase the pruning ratio, even though accuracy barely changes, %flips increases steadily.

3. SliceGPT (Ashkboos et al., 2024): This is a model sparsification method which drops
a certain fraction of rows and columns of each dense matrix. We observe in Figure 9
in Appendix that even at very low sparsity ratios %flips is significant indicating that the
compressed models are probably very different from baseline.

4.3 Perplexity

Though we have focused on accuracy so far, our observation that the difference between two models’
output token values cancel out leaving the average metric result unchanged, is applicable to perplexity
as well. In particular, since perplexity may be interpreted as the inverse of the geometric mean of
token probabilities, lower probabilities for some tokens in the test dataset may be cancelled by higher
probabilities of other tokens. This indicates that perplexity alone is also inadequate in evaluating
model compression schemes. Therefore, we argue that along with perplexity, KL-Divergence between
the distributions generated by the baseline and optimized models should also be reported.

Figure 11 in Appendix plots the log-likelihood difference between the 16-bit and quantized model
for each of the tokens in the wiki-2 dataset (Merity et al., 2016) for four different quantization
schemes. From the figure, it appears that the log-likelihoods of the quantized model is just the
log-likelihood of the baseline model with some symmetric noise added. Now, since perplexity is
e−avg(logprobabilities), adding any amount of symmetric noise leaves it unchanged. For example,
addition of Gaussian noise to the log-probability outputs of the model maintains the perplexity, while
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the quality of generation degrades as the standard deviation of the added noise increases (see Table 29).
This analysis demonstrates one key weakness with the perplexity metric when used for evaluating
compression techniques. While it is not clear if adding Gaussian noise to the log-likelihoods is an
accurate representation of the behavior of compression schemes, it appears to be a reasonable proxy.
As we shall see in Section 6, as quantization increases, there is steady degradation in the quality of
the text generated by the model that are visible only by examining them closely.

5 Analyzing Flips

Figure 4: When the Top Margin is low, an-
swer will more likely change (Llama2-70b, BnB
W4A4, MMLU 5-shot)

Figure 5: When the Top Margin is low, an-
swer will more likely be incorrect (Llama2-70b,
MMLU 5-shot)

One of the interesting observations in this study has been that when we quantize models, the number of
questions where the LLM’s answers go from incorrect to correct (referred to as incorrect → correct)
is roughly equal to the number that goes the other way. This may seem unintuitive, because one might
expect correct → incorrect ≫ incorrect → correct, since a) the number of questions with correct
answers is usually greater than incorrect answers, so random perturbations should cause more correct
answers to flip, and b) given a correct answer, the correct to incorrect transition should be likelier
because changing to any of multiple other incorrect options suffices, but given an incorrect answer,
the incorrect to correct transition happens only if somehow the perturbation caused by quantization
helps it land on the one correct option out of many. But we observe that this is not the case (and
indeed, the opposite may also be true in some cases!).

To help explain the above phenomenon, we introduce a metric called top margin which is the
difference in token probability between the best and the second best answer option. By best (second-
best) option, we mean the option that was given the highest (second highest) probability. Higher top
margin on a question indicates that the model is more confident about its answer.

Answers are likely to change when top margin is low. Quantization introduces some noise in the
weights and activations, due to which there is a perturbation in the output answers’ probabilities
(verified empirically). Thus, we expect that answers are more likely to change when top margin is
low, since a small increase or decrease in probabilities can cause the best and second best options
to swap (see Figure 4). To further bolster this claim, we show that the changes in probabilities do
not depend on top margin, i.e., roughly all questions undergo the same amount noise (except when
the top-margin is very high, where we do not see much change in probabilities after compression,
but such questions are not likely to flip anyway) as seen in Figure 7. We further find top margins
are well correlated before/after compression (i.e low confidence answers are likely to remain so and
vice-versa) in Figure 8. In subsection A.4 we find that due to this reason, it is very likely that the
same question (with low top margin) would be flipped by multiple quantization schemes.

Correct (incorrect) answers have higher (lower) top margin and are thus less (more) likely to
flip. Table 27 shows the top margins for questions for which the LLM’s answer is correct and when
the answer is incorrect. We observe that, top margin when correct is, on average, greater than the top
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Table 2: MT-Bench: Average of turn-1 and turn-2 scores, as evaluated by GPT4
Model 16bit BnB W8A8 GPTQ W8A16 SQ W8A8 GPTQ W4A16 AWQ W4A16 BnB W4A4

Llama-2 7b chat 6.375 6.375 6.384 6.377 6.018 6.015 6.317
Llama-2 13b chat 6.515 6.540 6.515 6.862 6.459 6.443 6.806
Llama-2 70b chat 7.431 7.059 7.225 7.003 6.801 6.937 7.018
Yi-6b chat 6.187 5.937 6.087 NA 5.751 6.096 5.840
Yi-34b chat 7.387 7.220 7.337 NA 7.156 7.053 7.185

margin when incorrect. This is demonstrated in Table 28 which shows that flips amongst incorrect
answers is indeed higher by 2× or more. Similarly, Figure 5 also shows that when top margin is low,
the answer is more likely incorrect. Thus, correct answers flip much less often than incorrect answers.

For incorrect answers, we would expect roughly 33% chance of them ending correct (for 4-choice
MCQ), though the actual % is typically higher because all the remaining options are not equally
likely. Thus, the combination of incorrect answers flipping more along with slightly higher odds
than random in landing on the correct answer results in incorrect → correct transitions roughly
matching correct → incorrect transitions.

In subsection A.6 we provide some additional empirical analysis for flips, especially for generative
tasks where the above top-margin analysis does not strictly apply.

6 MT-Bench evaluation

In this section, we use MT-Bench (Zheng et al., 2023) to evaluate the quantized models’ free-form
text generation capabilities, using both GPT4 as judge as well as through manual inspection of the
model responses.

We first use GPT-4 as a judge and perform automated evaluation. Table 2 shows the MT-Bench
average scores for the two turns in the benchmark (individual turn 1 and 2 scores can be found in
Tables 15 and 16 in the Appendix). From the results, we can observe that

• Most quantization methods degrade the MT-Bench score for the larger models, by 5% for
Llama2-70b chat and 1.5% for Yi-34b chat (Table 2).

• The degradation in MT-Bench score is higher for the harder turn-2 problem than for turn-1,
with up to 10% loss for Llama2-70b chat and 5% for Yi-34b chat(Table 16).

• Some quantization methods do slightly better than the baseline in MT-Bench score for
smaller models but given their lower overall absolute score, we believe this variation is
likely caused by the inaccuracies in GPT4 evaluation process.

For the different compressed models, we compare them on flips in MMLU vs their difference from
baseline on MT-Bench scores in Figure 6a. For larger and more capable models, we find that flips in
MMLU correlates well with MT-Bench score.

6.1 Qualitative evaluation

Next, we perform a detailed qualitative examination of the performance of these models. Specifically,
we choose the Llama2-70B-chat model since it has the highest MT-Bench score (Table 2). We
compare the 16-bit baseline against 8-bit and 4-bit models, quantized using LLM.int8(). We chose
LLM.int8() as it matches the accuracy of the baseline on most tasks and also has the highest GPT4
scores among the W8A8 and 4-bit quantized models for this task (Table 2).

We summarize our findings of the qualitative analysis for a sample of ten questions (out of ≈ 30 that
had similar issues) from MT-Bench in Table 3. The corresponding generated text of all three models
for these questions are provided in Table 34. Overall, we find that the 4-bit and 8-bit models are
significantly worse than the 16-bit baseline. Specifically, we find that the 4-bit model often does not
follow the provided instruction, makes more mistakes, and rambles a lot more, with the 8-bit model
performing in-between the 16-bit and 4-bit models.

We encourage the reader to look at the full model responses in Table 34 (at least the first one!) to
convince themselves that, at least for this task, there is significant degradation due to quantization,

8



Figure 6: Flips is a better predictor of downstream task performance than Accuracy

(a) Models with higher flips on MMLU get lower MT-
Bench score. Spearman Corr. = -0.75

(b) Models with lower accuracy usually get lower MT-
Bench score though the relationship is not as clear.
Spearman Corr. = 0.36

Table 3: Qualitative evaluation of Llama2-70B-chat model text generations for MT-Bench prompts.
Author’s summary of model responses shown below; full model generated responses are in Appendix.
These results substantiate a clear degradation in response quality with quantization.

MT-Bench Prompt Summary of 16-bit, 8-bit (BnB W8A8), and 4-bit
(BnB W4A4) Llama-2-70B-chat model responses

1) Consider a satellite that is in a circular orbit around
the Earth. The speed of the satellite decreases. What
will happen to the satellite’s orbital radius and period of
revolution? Please justify your answer using principles
of Physics.

1) Only the 16-bit answer and explanation that radius
and revolution period will increase is correct, 8-bit and
4-bit answer that radius will decrease and revolution
period will increase/remain constant, respectively, and
justify their answers based on (incorrect) Physics!

2) Take your previous response and rephrase it as a
limerick.

2) 16-bit is correct, 8-bit is not a limerick, 4-bit is a
limerick but unsound (uses hump and bump for phone).

3) Could you write a captivating short story beginning
with the sentence: The old abandoned house at the end of
the street held a secret that no one had ever discovered.

3) 4-bit does not follow the instruction of starting the
story with the given sentence. The 16-bit story is more
realistic than the 8-bit/4-bit ones.

4) You can see a beautiful red house to your left and a
hypnotic greenhouse to your right, an attractive heated
pink place in the front. So, where is the White House?

4) 16-bit is correct. 8-bit says White House is not in your
line of sight and towards your back, 4-bit says White
House is in the middle!

5) What about when twice the number is divided by 5? 5) 16-bit and 4-bit are correct, 8-bit is incorrect.
6) Reformulate your earlier reply, output it in JSON
format and only include books published after 1980.

6) 16-bit and 8-bit are correct, 4-bit includes books from
1954 but not 1997!

7) Can you change the ratings from numbers to letters?
Capital letters MUST be used when writing the names
of phones.

7) No model follows the Capital letters instruction. 4-bit
further messes up, changing a rating of 8.2 to B and a
rating of 8.0 to B+!

8) Given a set of complex equations, extract all unique
variable names from each equation...

8) 16-bit is correct, 8-bit and 4-bit think pi is a variable

9) Rewrite your previous response. Start every sentence
with an A.

9) 16-bit follows correctly, 8-bit less fluent, 4-bit is a
collection of sentences and makes the mistake of capi-
talizing the second word in every sentence!

10) What is the central dogma of molecular biology?
What processes are involved? Who named this?

10) 16-bit lists four points, 8-bit reproduces the first three
of the 16-bit, 4-bit lists the first two points of the 16-bit,
indicating steady quality degradation with quantization.

despite these two compressed models matching baseline accuracy on various tasks (e.g., MMLU
accuracy within 1%) and suffering only a 0.4 lower score on a scale of ten in the GPT4 evaluation.
We believe that this qualitative analysis adds further evidence to our claim that benchmark accuracy
alone, as is standard practice today, is a poor metric to evaluate compressed LLMs, especially, if they
are likely to be used for generative tasks in downstream applications.
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7 Limitations

Predicting performance degradation of LLMs in the wild is a challenging and open problem, and it is
possible that any metric calculated on standard benchmarks is insufficient. Other limitations are:

• If the downstream task is very similar to the benchmark on which the quantized model is
tested, then accuracy may be sufficient, and distance metrics are not needed.

• Flips is only a warning that the behaviour of a model and its compressed version is different
– this may or may not materialize as visible degradation in some downstream tasks.

• Our qualitative evaluation in Section 6.1 is subjective and may not be broadly representative.

8 Related Work

Given their versatility, LLMs are evaluated on a diverse set of tasks (Chang et al., 2024). Since
accuracy is one of the most well-accepted metrics used in task evaluation, compression methods today
typically focus on accuracy. However, we are not the first to point out the problem with over-reliance
on aggregate metrics like accuracy when judging the quality of a model optimization scheme. Xu
et al. (2021) have proposed label loyalty and probability loyalty as a metric to evaluate compressed
BERT models . Other works like Joseph et al. (2021), Hooker et al. (2020), and Hooker et al. (2021)
have shown compressed ImageNets to be more biased despite preserving accuracy and have proposed
Knowledge Distillation based methods to address it. There has also been work (Hong et al., 2024) on
evaluating LLM compression schemes on various trustworthiness dimensions. However, metrics for
evaluating LLM compression techniques have not been studied widely so far, leading to over reliance
on accuracy alone.

There have been many works on LLM evaluation that have shown shortcomings of existing evaluation
methods. Lyu et al. (2024) have pointed out the misalignment between free-form generation and
probability based evaluation on MMLU. Sclar et al. (2023) have shown LLMs to be very sensitive
to prompt formatting. Zheng et al. (2024) have shown models to be biased towards a certain option
in MCQ tasks. Alzahrani et al. (2024) have shown minor changes in the benchmarks leading to
re-ordering of rankings, and Srivastava et al. (2024) has shown accuracies to be different when
considering the functional equivalent of math problems. Jaiswal et al. (2024) have curated existing
datasets to create their own benchmark that can be used to evaluate compressed models. Li et al. (2024)
and Jin et al. (2024) have evaluated various quantization tasks on multiple tasks. Namburi et al. (2023)
have studied the impact of compression and pruning on an LLM’s parametric knowledge. Zhang et al.
(2024) propose a number of other metrics in addition to accuracy such as fluency, informativeness,
coherence and harmlessness. Chang et al. (2024) presents a detailed survey on evaluation of LLMs
that covers what, where, and how to evaluate an LLM and lists several challenges in LLM evaluation.

However, to the best of our knowledge, none of the prior work have pointed out the phenomenon of
flips, that occurs when LLMs are compressed, and the observation that higher flips is correlated with
larger degradation in model performance despite accuracy matching with the uncompressed model.

9 Conclusion

In this work, we have examined metrics to evaluate the quality of compression methods for LLMs
such as quantization. We distinguish between aggregate capability metrics such as accuracy, and
distance metrics flips and KL Divergence between the compressed model and the baseline model. We
justify why using distance metrics is more appropriate for evaluating model compression methods.
We show that accuracy severely underestimates the true distance between models as perceived by
the end user. We explain this is due to the presence of flips between correct and wrong answers
when a model is quantized, and explain why the flips are nearly balanced, leading to similar accuracy,
while the user-perceived output of the quantized model may be significantly different. We argue that
distance metrics such as flips and KL-divergence are essential for evaluating all optimization methods
which may change the model outputs and whose goal is to minimize end-user visible behaviour
changes from a baseline model. We hope that better distance metrics as proposed in this work
will enable research in model optimization and compression to progress faster and better meet user
expectations on model output quality.
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A.1 Detailed results of Llama-2 chat and Yi-chat Families on various quantization schemes

Table 4 shows five-shot accuracy on the for various models using the standard 16-bit quantization as
baseline and difference in accuracy and percentage of flips for various lower-bit quantization schemes.
For example, the accuracy of Bitsandbytes (Dettmers et al., 2022) 8-bit and 4-bit quantized models
are only 0.55% and 0.78% away from the baseline Llama2-70b model respectively while the flips
are 4.6% and 8.1%, respectively. Tables 5 through 10 show results for other zero-shot tasks such as
PIQA, Hellaswag, ARC Easy, ARC Challenge, LAMBADA and Winogrande.

Table 4: MMLU 5-shot accuracy and flips for several models using 16-bit baseline and various
quantization schemes. Change in accuracy is negligible (0-2%) in all quantization schemes. However,
except for GPTQ W8A16 (8-bit weights, 16-bit activation), all other schemes show large % flips,
indicating significant deviation of quantized model from the baseline 16-bit model.

Model 16-bit Baseline BnB W8A8 GPTQ W8A16 SQ W8A8 GPTQ W4A16 AWQ W4A16 BnB W4A4
Accuracy (%) Change in accuracy/ flips (%), compared to 16-bit baseline

Llama2-7b chat 47.21 -0.30 / 4.15 0.08 / 0.60 -2.36 / 13.62 -0.58 / 8.26 -0.62 / 7.50 -1.51 / 10.65
Llama2-13b chat 53.54 -0.10 / 3.35 0.07 / 0.43 -1.34 / 8.65 -0.14 / 6.49 -0.15 / 6.36 -1.31 / 8.09
Llama2-70b chat 63.17 -0.55 / 3.32 -0.01 / 0.26 -0.24 / 3.73 -0.45 / 4.26 -0.76 / 4.05 -0.78 / 5.65
Yi-6b chat 62.95 0.00 / 3.62 0.15 / 1.40 NA / NA -1.53 / 9.36 -1.00 / 7.66 -2.07 / 10.90
Yi-34b chat 74.89 0.05 / 2.51 0.03 / 1.05 NA / NA -1.71 / 7.05 -0.68 / 4.47 -1.57 / 7.44

Table 5: PIQA (0-shot) change in %accuracy / %flips
Model 16bit BnB W8A8 GPTQ W8A16 SQ W8A8 GPTQ W4A16 AWQ W4A16 BnB W4A4

Llama2-7b chat 77.203 0.16 / 2.88 0.05 / 0.27 0.00 / 3.80 0.00 / 4.87 -0.70 / 4.73 0.00 / 6.09
Llama2-13b chat 79.162 -0.16 / 2.88 0.00 / 0.21 -0.11 / 3.04 0.27 / 3.21 -0.54 / 3.48 -1.52 / 5.11
Llama2-70b chat 80.903 -0.49 / 2.23 0.11 / 0.108 -0.49 / 2.66 -0.27 / 3.10 -0.54 / 2.72 -0.60 / 3.75
Yi-6b chat 76.659 -0.38 / 3.53 0.38 / 0.707 NA / NA 0.21 / 5.87 0.00 / 4.03 -0.27 / 6.69
Yi-34b chat 79.597 -0.54 / 5.01 -0.05 / 0.71 NA / NA -0.54 / 4.46 -0.11 / 3.16 0.05 / 4.08

Table 6: Hellaswag (0-shot) change in %accuracy / %flips
Model 16bit BnB W8A8 GPTQ W8A16 SQ W8A8 GPTQ W4A16 AWQ W4A16 BnB W4A4

Llama2-7b chat 75.532 -0.03 / 1.66 0.05 / 0.29 0.06 / 3.13 -0.40 / 3.88 -0.66 / 3.47 -1.06 / 4.63
Llama2-13b chat 79.635 -0.10 / 1.49 0.00 / 0.14 0.13 / 3.00 -0.45 / 2.58 -0.54 / 2.48 -0.99 / 3.38
Llama2-70b chat 82.164 -0.17 / 1.26 -0.02 / 0.12 0.31 / 2.83 -0.22 / 2.11 -0.19 / 1.74 -0.84 / 2.80
Yi-6b chat 75.771 -0.14 / 1.81 0.0 / 0.56 NA / NA -0.45 / 4.79 -0.31 / 3.81 -1.56 / 5.51
Yi-34b chat 80.681 -0.15 / 2.98 0.10 / 0.54 NA / NA -0.28 / 3.90 -0.87 / 2.55 -0.51 / 3.79
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Table 7: ARC Easy (0-shot) change in %accuracy / %flips
Model 16bit BnB W8A8 GPTQ W8A16 SQ W8A8 GPTQ W4A16 AWQ W4A16 BnB W4A4

Llama2-7b chat 69.739 0.17 / 2.27 0.04 / 0.38 -0.38 / 3.24 -1.26 / 5.64 -1.22 / 4.67 -1.13 / 7.62
Llama2-13b chat 73.737 -0.08 / 2.27 0.04 / 0.04 -1.17 / 3.28 0.04 / 4.59 0.25 / 4.21 -0.84 / 5.56
Llama2-70b chat 76.220 -0.08 / 2.86 0.12 / 0.21 -0.67 / 2.52 -0.50 / 3.11 -0.67 / 3.62 -1.05 / 5.18
Yi-6b chat 67.340 -1.05 / 2.74 0.25 / 0.76 NA / NA 1.34 / 6.65 -0.33 / 5.05 0.25 / 6.90
Yi-34b chat 74.368 0.92 / 4.29 -0.29 / 0.55 NA / NA -0.75 / 4.80 0.25 / 2.61 -0.84 / 3.96

Table 8: ARC Challenge (0-shot) change in %accuracy / %flips
Model 16bit BnB W8A8 GPTQ W8A16 SQ W8A8 GPTQ W4A16 AWQ W4A16 BnB W4A4

Llama2-7b chat 44.283 -0.25 / 4.01 0.00 / 0.51 -0.59 / 5.38 -1.36 / 8.19 -0.25 / 6.57 0.68 / 9.22
Llama2-13b chat 50.170 -0.25 / 3.50 0.08 / 0.26 -2.04 / 5.29 -1.02 / 5.97 0.00 / 6.31 -0.85 / 8.19
Llama2-70b chat 54.266 0.25 / 2.99 0.17 / 0.51 0.00 / 1.71 -0.76 / 4.01 0.00 / 2.90 -0.93 / 5.03
Yi-6b chat 47.269 -0.94 / 4.18 0.68 / 1.19 NA / NA 0.68 / 8.70 -2.04 / 5.97 -0.42 / 9.30
Yi-34b chat 54.522 0.42 / 5.20 -0.59 / 1.11 NA / NA -0.76 / 6.91 -0.85 / 4.95 -0.94 / 6.91

Model 16bit BnB W8A8 BnB W4A4

Llama2-70b 54.586 54.283 / 14.253 52.463 / 18.498
Llama2-70-chat 43.290 42.600 / 12.509 44.200 / 18.347

Table 13: GSM8k 8-shot Results

Model 16bit BnB W8A8 BnB W4A4

Llama2-70b 82.189 81.949 / 2.067 80.974 / 4.268
Llama2-70-chat 75.384 75.284 / 2.095 74.097 / 4.742

Table 14: Triviaqa 5-shot Results

Table 9: LAMBADA (0-shot) change in %accuracy / %flips
Model 16bit BnB W8A8 GPTQ W8A16 SQ W8A8 GPTQ W4A16 AWQ W4A16 BnB W4A4

Llama2-7b chat 66.504 0.25 / 3.12 0.04 / 0.50 -0.33 / 3.82 -2.87 / 8.27 -2.48 / 7.10 -2.05 / 9.63
Llama2-13b chat 68.542 -0.11 / 2.52 0.02 / 0.29 -0.42 / 3.07 -1.28 / 5.36 -1.18 / 5.41 -2.36 / 7.18
Llama2-70b chat 73.801 -0.21 / 1.14 0.07 / 0.27 -0.19 / 2.40 -0.21 / 3.98 -0.77 / 3.80 -0.50 / 4.85
Yi-6b chat 64.331 0.79 / 3.24 0.38 / 1.01 NA / NA -0.79 / 8.64 -0.46 / 6.95 -2.31 / 10.54
Yi-34b chat 69.571 -1.69 / 5.10 0.19 / 1.16 NA / NA -0.19 / 8.58 -0.40 / 4.75 0.19 / 7.72

Table 10: Winogrande (0-shot) change in %accuracy / %flips
Model 16bit BnB W8A8 GPTQ W8A16 SQ W8A8 GPTQ W4A16 AWQ W4A16 BnB W4A4

Llama2-7b chat 66.456 -0.71 / 4.97 -0.39 / 0.55 -0.08 / 4.81 -0.87 / 8.60 -1.81 /8.44 0.47 / 10.26
Llama2-13b chat 71.112 -0.08 / 4.65 0.08 / 0.23 0.63 / 4.89 -1.50 / 6.71 -0.23 / 6.87 -1.73 / 8.21
Llama2-70b chat 74.901 0.55 / 3.55 0.15 / 0.31 0.23 / 2.29 -0.08 / 4.50 0.08 / 3.23 0.00 / 5.84
Yi-6b chat 70.876 -0.31 / 5.05 -0.15 / 1.42 NA / NA -2.21 / 9.31 1.73 / 7.89 -1.34 / 10.97
Yi-34b chat 76.874 0.47 / 5.37 0.08 / 1.34 NA / NA 0.31 / 7.73 -0.47 / 3.16 0.47 / 7.10

Table 11: MMLU 5-shot change in %accuracy and %AllFlips (including wrong → wrong transitions)
Model 16-bit Baseline BnB W8A8 GPTQ W8A16 SQ W8A8 GPTQ W4A16 AWQ W4A16 BnB W4A4

Llama2-7b chat 47.21 -0.30 / 6.44 0.08 / 0.84 -2.36 / 20.93 -0.58 / 12.53 -0.62 / 11.93 -1.51 / 16.63
Llama2-13b chat 53.54 -0.10 / 5.32 0.07 / 0.64 -1.34 / 13.03 -0.14 / 10.01 -0.15 / 10.07 -1.31 / 12.58
Llama2-70b chat 63.17 -0.55 / 4.61 -0.01 / 0.39 -0.24 / 5.04 -0.45 / 5.88 -0.76 / 5.91 -0.78 / 8.08
Yi-6b chat 62.95 0.00 / 5.20 0.15 / 2.02 NA / NA -1.53 / 13.14 -1.00 / 10.85 -2.07 / 15.37
Yi-34b chat 74.89 0.05 / 3.20 0.03 / 1.29 NA / NA -1.71 / 9.02 -0.68 / 5.76 -1.57 / 9.38

Table 12: MMLU 5-shot Results on Pretrained Models change in %Accuracy/%Flips
Model 16-bit Baseline BnB W8A8 GPTQ W8A16 SQ W8A8 GPTQ W4A16 AWQ W4A16 BnB W4A4

Llama2-7b 45.85 -0.18 / 5.37 -0.09 / 0.66 -8.02 / 28.53 -0.56 / 10.97 -0.33 / 13.39 -3.176 / 14.27
Llama2-13b 55.21 -0.16 / 5.10 -0.04 / 0.60 -4.024 / 18.99 -0.30 / 9.22 -1.20 / 8.06 -1.97 / 11.74
Llama2-70b 68.79 0.10 / 1.66 0.01 / 0.40 0.05 / 6.22 -0.54 / 5.53 -0.45 / 4.74 -0.82 / 7.88
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A.2 MT-Bench Detailed results

Tables 15 and‘16 show MT-Bench results for each of the two turns, respectively.

Table 15: Turn 1 MT-Bench Scores
Model 16bit BnB W8A8 GPTQ W8A16 SQ W8A8 GPTQ W4A16 AWQ W4A166 BnB W4A4
Llama-2 70b chat 7.50 7.31 7.43 7.21 7.21 7.25 7.32
Llama-2 13b chat 7.02 6.87 7.11 7.25 7.08 7.03 7.36
Llama-2 7b chat 6.80 6.96 6.78 7.00 6.58 6.64 6.93
Yi-6b chat 6.89 6.81 6.88 NA 6.67 6.81 6.68
Yi-34b chat 7.76 7.53 7.48 NA 7.42 7.46 7.34

Table 16: Turn 2 MT-Bench Scores
Model 16bit BnB W8A8 GPTQ W8A16 SQ W8A8 GPTQ W4A16 AWQ W4A16 BnB W4A4
Llama-2 70b chat 7.35 6.81 7.01 6.78 6.39 6.62 6.71
Llama-2 13b chat 6.00 6.20 5.92 6.47 5.83 5.85 6.25
Llama-2 7b chat 5.94 5.78 5.98 5.74 5.43 5.37 5.70
Yi-6b chat 5.48 5.06 5.28 NA 4.81 5.38 5.00
Yi-34b chat 7.00 6.91 7.19 NA 6.88 6.63 7.03

A.3 Detailed results of Llama-3 and Qwen-2 Families on various quantization schemes

Table 17: MMLU (5-shot) change in % accuracy/ % flips
Model 16-bit Baseline BnB W8A8 GPTQ W8A16 GPTQ W4A16 AWQ W4A16 BnB W4A4

Qwen2-1.5B 55.78 -0.15 / 3.94 0.28 / 2.25 -1.66 / 14.46 -1.22 / 12.83 -2.72 / 14.38
Qwen2-7B 70.34 -0.20 / 2.91 0.19 / 1.46 -0.88 / 8.14 -1.15 / 8.15 -2.13 / 9.11
Qwen2-72B 84.22 -0.07 / 1.28 0.14 / 0.64 -0.24 / 3.10 -0.03 / 2.44 -0.33 / 3.40
Llama3-8B 65.25 -0.13 / 5.51 0.06 / 2.29 -NA / NA -2.27 / 12.08 -4.49 / 17.30
Llama3-70B 78.65 NA / NA -0.15 / 1.20 -0.93 / 6.25 0.46 / 4.82 -2.67 / 9.19
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Table 18: ARC-Easy (0-shot) change in % accuracy/ % flips
Model 16-bit Baseline BnB W8A8 GPTQ W8A16 GPTQ W4A16 AWQ W4A16 BnB W4A4

Qwen2-1.5B 60.52 0.25 / 3.62 -0.12 / 0.80 -3.32 / 10.48 -1.35 / 8.67 -0.54 / 9.80
Qwen2-7B 74.54 0.84 / 2.69 -0.17 / 0.59 1.47 / 6.19 -0.59 / 5.30 -1.51 / 7.74
Qwen2-72B 80.51 0.29 / 1.89 0.00 / 0.50 0.55 / 4.08 -0.29 / 3.16 -0.46 / 4.17
Llama3-8B 77.74 0.80 / 3.49 0.00 / 0.42 NA / NA -0.63 / 6.52 -2.40 / 9.13
Llama3-70B 86.07 NA / NA -0.88 / 2.99 -4.84 / 8.46 -2.31 / 4.84 -4.33 / 8.04

Table 19: ARC-Challenge (0-shot) change in % accuracy/ % flips
Model 16-bit Baseline BnB W8A8 GPTQ W8A16 GPTQ W4A16 AWQ W4A16 BnB W4A4

Qwen2-1.5B 36.18 0.00 / 3.75 -0.26 / 1.28 -2.73 / 9.73 -0.43 / 7.59 1.28 / 9.81
Qwen2-7B 49.74 0.60 / 2.99 0.00 / 0.85 1.62 / 7.59 -0.09 / 7.25 0.26 / 8.96
Qwen2-72B 60.15 0.42 / 1.79 -0.09 / 0.77 -0.26 / 5.03 -0.51 / 3.41 -0.77 / 5.72
Llama3-8B 53.24 -0.68 / 4.61 0.60 / 1.28 NA / NA -1.37 / 8.87 -3.50 / 11.69
Llama3-70B 64.33 NA / NA -1.02 / 3.24 -5.46 / 10.58 -2.39 / 5.29 -5.80 / 10.41

Table 20: MATH (4-shot) change in % accuracy/ % flips
Model 16-bit Baseline BnB W8A8 GPTQ W8A16 GPTQ W4A16 AWQ W4A16 BnB W4A4

Qwen2-1.5B 3.56 -0.04 / 1.52 -0.22 / 0.74 1.28 / 4.72 -0.98 / 3.02 0.92 / 4.56
Qwen2-7B 18.28 -0.14 / 3.42 -0.14 / 1.50 -0.66 / 9.22 -0.16 / 7.40 -11.32 / 15.28
Qwen2-72B 28.20 -0.06 / 2.90 0.20 / 1.48 -1.42 / 7.46 -0.14 / 5.58 -2.40 / 9.16
Llama3-8B 13.48 -0.34 / 3.46 -0.10 / 1.50 NA / NA -1.08 / 6.60 -1.72 / 8.24
Llama3-70B 23.98 NA / NA -0.30 / 1.46 -1.28 / 7.20 -0.82 / 5.14 -1.50 / 7.06

Table 21: GSM8k (8-shot) change in % accuracy/ % flips
Model 16-bit Baseline BnB W8A8 GPTQ W8A16 GPTQ W4A16 AWQ W4A16 BnB W4A4

Qwen2-1.5B 58.42 -3.22 / 12.24 -0.30 / 6.37 -10.99 / 23.65 -8.76 / 23.46 -14.78 / 26.46
Qwen2-7B 78.47 -0.08 / 9.33 0.19 / 4.74 -2.77 / 16.34 -1.97 / 14.71 -7.51 / 20.24
Qwen2-72B 89.84 0.04 / 2.84 0.08 / 2.20 -1.44 / 6.44 -1.82 / 5.61 -1.71 / 7.62
Llama-3-8B 49.39 -1.40 / 14.59 -1.14 / 6.22 NA / NA -7.58 / 23.96 -12.85 / 27.48
Llama-3-70B 80.89 NA / NA -0.72 / 5.50 -0.80 / 13.00 -0.57 / 8.83 -3.18 / 13.72

Table 22: Scrolls-Quality (0-shot) change in % accuracy/ % flips
Model 16-bit Baseline BnB W8A8 GPTQ W8A16 GPTQ W4A16 AWQ W4A16 BnB W4A4

Qwen2-1.5B 34.08 -0.28 / 1.73 -0.19 / 0.67 -0.72 / 7.14 -0.91 / 6.66 -1.05 / 9.11
Qwen2-7B 38.93 -0.09 / 2.20 -0.04 / 0.62 0.33 / 5.13 0.53 / 5.23 -0.04 / 8.39
Qwen2-72B 46.79 -0.09 / 1.53 0.00 / 0.57 -0.04 / 3.59 0.67 / 3.16 -0.47 / 3.64
Llama3-8B 42.66 -0.57 / 3.07 -0.05 / 0.82 NA / NA -0.48 / 5.94 -1.20 / 7.53
Llama3-70B 49.33 NA / NA -0.09 / 1.34 -0.09 / 7.29 -0.19 / 4.79 -2.88 / 11.41
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Model 16-bit GPTQ W8A16 GPTQ W4A16 AWQ W4A16

Gemma-2B-it 15.41 0.59 / 1.06 2.71 / 6.82 -0.17 / 4.77
Gemma-7B-it 49.35 -0.53 / 2.18 -4.18 / 17.24 5.00 / 17.71
Llama-3-8B-Instruct 66.47 0.64 / 3.71 -6.41 / 23.47 -2.23 / 17.18

Table 23: BFCL-greedy change in % accuracy / % flips

We report BFCL-greedy (tweaked BFCL to generate results greedily) results instead of
BFCL-standard because by default, BFCL uses top_p sampling. We are interested in measuring
perturbations introduced solely by quantization in this experiment and thus it is crucial to
ensure that the sampling step does not add any further noise. To emphasize this point, we
report two runs of BFCL-standard and show that there are significant flips between them
(see below Table 24), making such evaluations irrelevant for measuring the effect of quantization.

Model 16-bit (run-1) 16-bit (run-2) GPTQ W8A16 GPTQ W4A16

Llama-3-8B-Instruct 59.59 -1.05 / 23.53 0.00 / 24.59 -7.00 / 33.84

Table 24: BFCL-standard change in % accuracy / % flips
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A.4 Consistency of flips

The following table Table 25 shows the % of questions whose answers are changed by 0-6 quantiza-
tion schemes (for Llama2-70b MMLU task 15K questions):

The main observations are 1) for most questions (84%), answers are unchanged by all the quantization
schemes (and these, as expected, have high top margin). 2) Out of the remaining 16%, roughly half
(8%) of the questions are commonly changed by two or more schemes indicating significant overlap
between the schemes. Our conclusion is that flips are mostly consistent across schemes.

For a more fine-grained analysis, we also report pairwise fraction of changed examples that are com-
mon between two quantization schemes in Table 26. We use overlap coefficient Overlap(A,B) =

|A∩B|
min(|A|,|B|) , to quantify this where A and B are the set of examples changed by the schemes. We
again see good overlap, ranging between 0.4–0.5
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Table 25: % of questions impacted by a varying number of schemes and their corresponding top
margins.

#Schemes that Change Answer 0 1 2 3 4 5 6

% of Questions 84.0 7.7 4.2 2.5 1.1 0.3 ~0.0

Top Margin 0.73 0.23 0.14 0.10 0.06 0.06 ~0.0

Table 26: Comparison of overlap coefficient amongst different quantization schemes: BnB W8A8,
BnB W4A4, and GPTQ W4A16.

BnB W8A8 BnB W4A4 GPTQ W4A16

BnB W8A8 1.0 0.50 0.39
BnB W4A4 0.50 1.0 0.44

GPTQ W4A16 0.39 0.44 1.0

A.5 Misc. Results

Table 27: Top margin when answer is correct/wrong. Top margin is higher for correct answers.
Model MMLU Hellaswag Arc Easy Arc Challenge

Llama2-7b chat 0.715 / 0.493 0.097 / 0.043 0.112 / 0.018 0.042 / 0.039
Llama2-13b chat 0.720 / 0.435 0.102 / 0.043 0.130 / 0.015 0.052 / 0.036
Llama2-70b chat 0.758 / 0.434 0.112 / 0.044 0.131 / 0.014 0.061 / 0.034
Yi-6b chat 0.720 / 0.363 0.098 / 0.045 0.089 / 0.017 0.041 / 0.031
Yi-34b chat 0.824 / 0.469 0.106 / 0.044 0.113 / 0.013 0.053 / 0.029
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Table 28: MMLU 5-shot. The first/second number indicates the % of correct/incorrect answers of the
baseline model that changed. We see that more % of incorrect answers change.

Model BnB 8bit SQ 8bit GPTQ 4bit AWQ 4bit BnB 4bit

Llama2-7b chat 4.7 / 7.9 16.9 / 24.5 9.3 / 15.3 8.5 / 14.9 12.8 / 19.9
Llama2-13b chat 3.2 / 7.7 9.3 / 17.2 6.1 / 14.4 6.0 / 14.6 8.7 / 16.9
Llama2-70b chat 3.0 / 7.2 3.1 / 8.2 3.7 / 9.5 3.8 / 9.5 5.0 / 13.2
Yi-6b chat 2.8 / 9.1 28.7 / 45.9 8.6 / 20.7 6.8 / 17.6 10.3 / 23.9
Yi-34b chat 1.6 / 7.8 36.4 / 55.2 5.8 / 18.4 3.4 / 12.7 6.0 / 19.4

Table 29: Adding Gaussian noise worsens output quality while keeping perplexity same. %correct
tokens measure the % of tokens in the input that would have been selected greedily by the model (all
results with Llama2-13b chat)

Std.
dev.

Textual response Perplexity % correct
token

KL Div

(prompt:"tell me a one stanza poem") (on Wiki-2)

0.0 about the beauty of nature
Here’s a one-stanza poem about the beauty of nature:
"In the forest’s embrace, I find my peace,
Beneath the canopy of leaves, my soul does cease
To wander, lost in thought, and let the world pass by,
For in the beauty of nature, I am free to fly."

5.70 61.3 0.00

1.0 about a tree
Here’s a one-stanza poem about a tree:
"A towering oak, its branches strong and wide,
Shades the forest floor, a haven for the pride."

5.70 58.2 0.20

3.0 that you like.
I like this one:
The stars are the old sailors,
their breaths are the winds,
their words are the waves,
their laughter is the tides.
It’s a beautiful way of describing the stars and the night sky, and
it has a nice ring to it.

5.70 42.5 1.86

5.0 about a flower that is not roses or daffodils.
I’ve been writing a collection of haikus, and I’d like to use this
one as a way to break up the repetition of those popular flowers.
Thanks so much in advance!
I’m glad to help! Here’s a one-stanza poem about a flower that’s
not roses or daffodils:
Lily of the valley,
So delicate and fair,
Your sweet scent fills the air.
I hope this helps and adds some variety to your haiku collection!

5.70 21.5 5.67
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Figure 7: Change in prediction probability vs
top margin: For the MMLU 5-shot benchmark,
we plot the baseline top-margin for the ques-
tions on the x-axis, and the change in pre-
diction probability of the choices in the quan-
tized vs the baseline model on the y-axis (com-
puted as 1

4

∑
i∈A/B/C/D |Probabilitybasei −

Probabilityquantizedi|). We use the BnB W4A4
quantization scheme for these results. The
observation holds across different quantization
schemes.

Figure 8: Top margin in baseline vs quantized
models: Scatter plot of the top-margin for the
MMLU 5-shot benchmark in the baseline vs quan-
tized models. We use the Llama2 13b model and
BnB W4A4 quantization scheme for this plot. The
top-margins show strong correlation (Pearson cor-
relation = 0.84) and high top margins in baseline
are likely to remain so in the quantized model.

Figure 9: SliceGPT, Accuracy and Flips vs Sparsity
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(a) Extending Figure 3(a) with AllFlips (b) Extending Figure 3(b) with AllFlips

(c) Equivalent of Figure 1 with AllFlips that includes incorrect to incorrect transitions

Figure 10: AllFlips Results
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(a) GPTQ W4A16(perplexity=4.68, KL Div.=0.02)
(b) GPTQ W8A16(perplexity=4.57, KL Div.=7.9 ∗
10−5

(c) BnB W4A4(perplexity=4.72, KL Div. = 0.03) (d) BnB W8A8(perplexity=4.61, KL Div.=5.8∗10−3)

Figure 11: The loglikelihood difference plots are somewhat symmetric around zero indicating that
even though average loglikelihoods (and perplexity) of the baseline and quantized models are similar,
actual per token loglikelihoods might be very different.The results are calculated on Llama2-13b,
wiki-2Merity et al. (2016) dataset where perplexity is 4.57.
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A.6 Qualitative Analysis of Flips

We present some empirical observations below for the some of the tasks studied in this work.

• MATH
This requires the model to just output the correct answer (and not the intermediate steps).
We find it hard to clearly characterize the type of mistake made by the LLMs (especially
because the range of subjects is very diverse). But , on many questions we find there to be
simple mistakes (e.g., off by one errors, off by a factor of 2/10, etc).
Additionally, in the MATH dataset, each question is accompanied with a tag that indicates
difficulty (∈ [1, 2, 3, 4, 5]) where a higher number indicates that the question is more difficult.
This lets us validate our intuition that the questions that are answered by both the baseline
and quantized models are the easiest (average difficulty 2.49), and the ones answered by
exactly one of them are moderate (this is where correct incorrect transitions and vice versa
happens, average difficulty 2.98) and the ones answered by neither are the hardest (average
difficulty 3.56). The above numbers were obtained using Llama-3 8b and it’s BnB W4A4
quantized version.

• GSM8k
This task requires the LLM to generate the answer with step-by-step explanations. Here
also, we find it hard to clearly characterize the type of mistakes made (though many of them
can be classified as simple calculation errors) or pin down the specific type of question in
which such phenomenon happens.
In this task specifically, we observe that at times the model gets stuck in a loop, resulting in
no output at all (rather than an incorrect one). For example:-

*Question*: Travis had 61 apps on his tablet. He deleted 9 apps he didn’t use anymore
and downloaded 18 more. How many apps are on his tablet now?
*Llama-3-8b BnB W4A4 Answer* : Travis had 61 apps on his tablet.
He deleted 9 apps he didn’t use anymore and downloaded 18 more.
Travis had 61 apps on his tablet. He deleted 9 apps he didn’t use anymore and
downloaded 18 more.
Travis had 61 apps on his tablet. He deleted 9 apps he didn’t use anymore and
downloaded 18 more.
Travis had 61 apps on his tablet. He deleted 9 apps he didn’t use anymore and
downloaded 18 more. (. . . and so on ...)

We measure % of such cases as %invalid. We observe that quantization makes %invalid
worse in general. For example :- %invalid for Llama-3-8b, its BnB 8bit and BnB 4bit
versions are 2.00%, 2.43% and 3.72% respectively.

• BFCL
This task requires the LLM to call an API with the correct parameters to solve a given
problem. The available API function definitions are given as a part of the prompt. Given the
setup, we feel all problems can be considered to be of similar difficulty. After analyzing the
results, we categorize the errors into the following groups:

1. incorrect API usage – this involves cases where the all the parameters are not initialized
with their correct values or supplying more/less than the required number of parameters,
etc. A very common type of error in this category is supplying parameters as a dictio-
nary. For eg. we observed that the same function is called in two ways - sum(a=5,b=7)
and sum(’a’:5, ’b’:7), but only the first version is correct.

2. calling the wrong API – this involves calling an altogether different function than the
one actually needed to solve the problem.

3. misunderstanding the question – this involves solving an orthogonal problem to the
one required.

4. adding/omitting characters that make the API call non-parsable – self explanatory

In general, we observe that most of the errors are in the first group itself.

• Scroll-Quality, ARC, etc
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These questions are of MCQ type and it is easier to characterize flips in such tasks (dealt
with in the main section already). For such, tasks, top margin which measures the confidence
of the baseline model in its answer, is a good predictor of whether the answer will flip or not.

Representative examples of Flips

All the following experiments use Llama3-8B and it’s BnB W4A4 version.

1. MATH
• correct → incorrect cases (baseline correct, quantized wrong

Question Baseline
Answer

Quantized
Answer

Max must take 10 steps to go the same distance as three of his dad’s steps. His
dad takes 30 steps to walk down the hall. How many steps must Max take to
walk down the same hall?

100 300

Compute arccos 1
Express your answer in radians. 0 π/3

The Asian elephant has an average gestation period of 609 days. How many
weeks is this gestation period?

87 88

How many positive divisors do 48 and 156 have in common? 6 12

What is the largest integer that is a solution of 13x+ 8 < 35 2 3

• incorrect → correct cases (baseline correct, quantized wrong

Question Baseline
Answer

Quantized
Answer

Given and find the largest possible value of |v| = 5 and |w| = 8, find the largest
possible value of |projwv|

4 5

Let a and b be two nonzero vectors such that a + b and b are orthogonal, and
a + 2b and a are orthogonal. Find |a

| |b|
2

√
2

Find 25
4 divided by 112 300 75

The combined weight of three basset hounds is 185 pounds. The two smaller
dogs weigh the same. The difference between the larger weight and the smaller
weight is 20 pounds. How many pounds does the largest dog weigh?

65 75

Suppose z is a complex number such that z3 = 100 + 75i. Find |z| 25 5

2. BFCL
• correct → incorrect cases (baseline correct, quantized wrong

Question (paraphrased) Baseline Answer Quantized Answer Comment
Calculate the electrostatic po-
tential energy of a particle
with a charge of 5 coulombs
in a field with a 10 volt poten-
tial difference

calculate_electrostatic
poten-
tial_energy(charge=5,
voltage=10)

calculate_electrostatic
poten-
tial_energy(’charge’:
5.0, ’voltage’: 10.0)

Incorrect API usage - supplied
params as dictionary
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Calculate the total cost of 101
dumplings at $0.10 each and
20 rice bowls at $10 each

order_food
(item=[’dumplings’,
’rice bowls’], quan-
tity=[101, 20],
price=[0.1, 10])

calculate_total
(item=[’dumplings’,
’rice bowls’], quan-
tities=[101, 20],
prices=[0.1, 10])

Called the wrong API

Can you calculate the areas of
circles with radii of 5, 10, 15,
and 20 ?

[geometry_area
circle(radius=5),
geometry_area
circle(radius=10),
geometry_area
circle(radius=15),
geometry_area
circle(radius=20)]

geometry_area_circle
(radius=5, ra-
dius=10, radius=15,
radius=20)

Incorrect API usage – to cal-
culate the area of 4 circles, the
same API needs to be called 4
times, but the quantized model
calls the function once with 4
radii values which is invalid.

Please calculate the factorials
for 5, 7, 10, and 12 in se-
quence.

math_factorial(n=5),
math_factorial(n=7),
math_factorial(n=10),
math_factorial(n=12)

math_factorial(n=5),
math_factorial(n=6),
math_factorial(n=10),
math_factorial(n=12)

Misunderstood the question -
Quantized model calculated
factorial of 6 but the question
asks to do this for 7 instead.

• incorrect → correct cases (baseline correct, quantized wrong

Question (paraphrased) Baseline Answer Quantized Answer Comment
Play the Game of Life for 3
rounds starting from an empty
board, then play chess where
the 1st move is e4 and the 2nd
move is e5.

[chess.play
(moves=[’e4’,
’e5’]), game_ of_
life.play(rounds=3,
start_ board=[])]

[game_of_ life.play
(rounds=3, start_
board=[]),
chess.play
(moves=[’e4’,
’e5’])]

Misunderstood the question -
the baseline model forgets that
chess needs to be played after
Game of Life

Find the intersection points
of the functions y=3x+2 and
y=2x+3.

functions.intersect
(func-
tion1=’y=3x+2’,
func-
tion2=’y=2x+3’)

functions.intersect
(func-
tion1=’3*x+2’,
func-
tion2=’2*x+3’)

Incorrect API usage - 3x+2,
2x+3 are syntactically wrong

3. GSM8k
• correct → incorrect cases (baseline correct, quantized wrong

Question Baseline Answer Quantized Answer Comment
Gunter is trying to count
the jelly beans in a jar.
He asks his friends how
many they think are in
the jar. One says 80. An-
other says 20 more than
half the first one. A third
says 25% more than the
first one. What is their
average guess?

The first guess is 80. The
second guess is 20 more
than half the first one,
which is 20+80/2 = 60.
The third guess is 25%
more than the first one,
which is 80 + 80/4 =
100.The average guess is
(80 + 60 + 100)/3 = 80.
#### 80

The first person guessed
80 beans. The sec-
ond person guessed
80 + 20 = 100 beans.
The third person guessed
80 + 25% = 100 beans.
The average guess is
(80 + 100 + 100)/3 =
233.33333333333333
beans. ####
233.33333333333333

Quantized model mis-
calculated the number
of beans of the second
friend (it forgot that this
person has 20 more than
half of the first person)
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Janet buys a brooch for
her daughter. She pays
$500 for the material to
make it and then another
$800 for the jeweler to
construct it. After that,
she pays 10% of that to
get it insured. How much
did she pay?

The total cost of the
brooch is 500 + 800 =
1300.She then pays 10%
of that, which is 10% *
1300 = 130. So the to-
tal cost of the brooch is
1300+130 = 1430. ####
1430

Janet pays 500+800 +
$80 = 1380 for the
brooch. #### 1380

The quantized model for-
got that the 10% insur-
ance has to be paid on the
full price of the brooch
(1300) and not only the
material (800)

James wants to hang
crepe-paper streamers
from his backyard fence
for his birthday party.
His backyard fence is a
rectangle that measures
20 feet on the long side
and 15 feet on the short
side. How many feet of
crepe paper does James
need to buy?

The perimeter of a rect-
angle is the sum of the
lengths of all four sides.
The perimeter of James’
backyard fence is 20 +
20 + 15 + 15 = 70 feet.
Since James wants to
hang crepe-paper stream-
ers from his backyard
fence, he needs to buy 70
feet of crepe paper. ####
70

The area of the rectangle
is 20*15=300 square feet.
James needs to buy 300
feet of crepe paper. ####
300

The quantized model mis-
understood the problem
entirely. To fence a rect-
angle, one needs to mea-
sure the perimeter, not
the area.

• incorrect → correct cases (baseline correct, quantized wrong

Question Baseline Answer Quantized Answer Comment
Caroline is three times
older than Ben. Ben
is two times older than
Chris. If Chris is 4, how
old is Caroline?

Caroline is three times
older than Ben, so Caro-
line is 3 x 4 = 12 years
old. Ben is two times
older than Chris, so Ben
is 2 x 4 = 8 years old.
#### 12

Caroline is three times
older than Ben, so Ben
is 1/3 of Caroline’s age.
Ben is two times older
than Chris, so Chris is 1/2
of Ben’s age. Chris is 4
years old, so Ben is 4 x 2
= 8 years old. Ben is 1/3
of Caroline’s age, so Car-
oline is 8 x 3 = 24 years
old. #### 24

Baseline model assumes
Ben is 4 years old even
though the problem states
Chris is 4 years old

Janet’s ducks lay 16 eggs
per day. She eats three
for breakfast every morn-
ing and bakes muffins
for her friends every day
with four. She sells the
remainder at the farmers’
market daily for $2 per
fresh duck egg. How
much in dollars does she
make every day at the
farmers’ market?

Janet eats 3 eggs per day,
and she bakes 4 eggs per
day, so she has 16 - 3 - 4
= 9 eggs left. She sells 9
eggs per day for $2 each,
so she makes $9 per day.
#### 9

Janet eats 3 eggs for
breakfast every day, so
she has 16 - 3 = 13 eggs
left. She bakes 4 eggs
into muffins every day, so
she has 13 - 4 = 9 eggs
left. She sells 9 eggs for
$2 each, so she makes
$2 x 9 = 18 dollars every
day at the farmers’ mar-
ket. #### 18

The baseline model for-
got to multiply the result
by 2 (each egg cost $2)

A.7 Full model responses to MT-Bench

The answers to all 80 questions can be found in the supplementary material.

Table 34: Full model responses by the 16-bit, 8-bit and 4-bit Llama2-70B-Chat model for ten sample
MT-Bench prompts that was summarized in Table 3. Our highlights are in red.
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S.
No.

16bit BnB W8A8 BnB W4A4

1 Prompt: Consider a satellite that is in a circular orbit around the Earth. The speed of the satellite decreases. What will happen to the satellite’s
orbital radius and period of revolution? Please justify your answer using principles of physics.

If the speed of a satellite in a circular orbit
around the Earth decreases, two things will hap-
pen:
1. The satellite’s orbital radius will increase.
2. The satellite’s period of revolution will in-
crease.
To understand why, let’s consider the principles
of physics that govern the behavior of satellites
in orbit:
1. Conservation of Energy: The total energy of
a satellite in orbit remains constant. The energy
is a sum of kinetic energy (the energy of motion)
and potential energy (the energy of position or
height). As the satellite’s speed decreases, its
kinetic energy decreases, but its potential en-
ergy remains constant. To conserve energy, the
satellite’s altitude must increase, which means
the orbital radius must increase.
2. Conservation of Angular Momentum: The
total angular momentum of a satellite in orbit
remains constant. Angular momentum is a mea-
sure of an object’s tendency to keep rotating.
As the satellite’s speed decreases, its angular
momentum decreases, but the angular momen-
tum due to the Earth’s rotation remains constant.
To conserve angular momentum, the satellite’s
period of revolution must increase.
These principles apply to any satellite in a cir-
cular orbit around the Earth. If the satellite’s
speed decreases, its orbital radius will increase,
and its period of revolution will increase.

If the speed of a satellite in a circular orbit
around the Earth decreases, two things will hap-
pen:
1. The satellite’s orbital radius will decrease.
2. The satellite’s period of revolution will in-
crease.
Let’s justify these statements using principles
of physics:
1. Orbital radius: The satellite’s orbital radius is
determined by its velocity and the gravitational
force acting upon it. As the satellite’s speed
decreases, the gravitational force acting on it
remains constant, causing the satellite to move
closer to the center of the Earth. This decrease
in distance from the center of the Earth results
in a smaller orbital radius.
2. Period of revolution: The period of revolution
is directly proportional to the satellite’s distance
from the center of the Earth. As the satellite’s
orbital radius decreases, its period of revolution
increases. This is because the satellite now has
a shorter distance to travel to complete one orbit,
so it takes longer to do so.
In summary, a decrease in the satellite’s speed
will cause its orbital radius to decrease and its
period of revolution to increase. These changes
are a result of the fundamental principles of
physics, specifically the relationship between
velocity, distance, and gravitational force.

If the speed of a satellite in a circular orbit
around the Earth decreases, the satellite will
move to a lower orbit with a smaller radius. This
is because the satellite’s kinetic energy, which
is proportional to its speed, has decreased, and
the satellite’s potential energy, which is propor-
tional to its distance from the center of the Earth,
has increased. As a result, the satellite’s total
energy, which is the sum of its kinetic and po-
tential energy, remains constant.
According to Kepler’s second law of planetary
motion, the line connecting the satellite to the
center of the Earth sweeps out equal areas in
equal times. This means that the satellite’s pe-
riod of revolution will remain constant, as the
satellite moves to a lower orbit with a smaller
radius.
To understand why the period of revolution re-
mains constant, consider the following:
1. The satellite’s speed has decreased, which
means it takes longer to complete one orbit.
2. However, the satellite is now closer to the
center of the Earth, which means it has a shorter
distance to travel to complete one orbit.
3. The combination of the satellite’s slower
speed and shorter distance to travel results in a
constant period of revolution.
This can be further explained by the concept of
angular momentum, which is the product of the
satellite’s distance from the center of the Earth,
its speed, and the gravitational constant. As the
satellite’s speed decreases, its distance from the
center of the Earth decreases, but the gravita-
tional constant remains constant. Therefore, the
satellite’s angular momentum remains constant,
which means its period of revolution remains
constant.
In summary, when the speed of a satellite in
a circular orbit around the Earth decreases, the
satellite will move to a lower orbit with a smaller
radius, but its period of revolution will remain
constant due to the conservation of angular mo-
mentum.

2 Turn 1 prompt: Imagine you are writing a blog post comparing two popular smartphone models. Develop an outline for the blog post, including
key points and subheadings to effectively compare and contrast the features, performance, and user experience of the two models. Please answer
in fewer than 200 words.
Turn 2 prompt: Take your previous response and rephrase it as a limerick.

Sure, here’s a limerick summarizing the previ-
ous response:
Two smartphones, A and B, were compared
with care,
Their features, performance, and user experi-
ence were shared.
A’s design was sleek,
B’s camera was unique,
In the end, the best choice was declared.

Sure, here’s a limerick summarizing the previ-
ous response:
Two smartphones, both top-notch,
Their features and performance, we’ll take a lot.
Design and display,
Camera and software, we’ll play,
And battery life, we’ll not forget.

A comparison, we’ll make,
To help you choose, we’ll not fake.
For gamers, photographers, and more,
We’ll find the best, that’s for sure.
So read on, and you’ll see,
Which smartphone’s the best for thee.

There once were two phones, so bright,
Their cameras were quite a sight.
One had a bump,
The other, a hump,
But both took pics with great might.

3 Prompt: Could you write a captivating short story beginning with the sentence: The old abandoned house at the end of the street held a secret
that no one had ever discovered.
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Sure! Here’s a short story beginning with that
sentence: The old abandoned house at the end
of the street held a secret that no one had ever
discovered. It stood there, a crumbling relic of
a bygone era, its once grand facade now weath-
ered and worn. The overgrown garden had long
since reclaimed the front porch, and the win-
dows were boarded up, their glass long since
shattered. But despite its neglect, there was
something alluring about the old house. Some-
thing that drew people in, like moths to a flame.
The neighborhood kids would often dare each
other to knock on the door, to see if anyone
would answer. But no one ever did. And yet,
despite the silence, there was a feeling that the
house was waiting for someone. Waiting for
someone brave enough to uncover its secrets.
One rainy afternoon, a curious young girl named
Lily decided to take on the challenge. She
walked up the crumbling steps, her heart pound-
ing in her chest, and knocked on the door. The
wood was soft and decaying, and the knock
echoed through the empty halls inside. To her
surprise, the door creaked open. Just a crack, but
enough to let her squeeze through. Lily stepped
inside, her eyes adjusting to the dim light. The
air was thick with dust and the smell of de-
cay, but she could sense something else. Some-
thing magical.She wandered through the empty
rooms, her footsteps echoing off the walls. The
furniture was old and worn, but there were hints
of a life once lived here. A faded photograph on
the wall, a broken vase on the mantle.
And then, she found it. A hidden room, tucked
away behind a bookshelf. It was small, with a
single window that let in a faint glow of light.
The walls were covered in old letters, tied up
with a faded ribbon.
Lily’s heart raced as she untied the ribbon and
began to read. The letters were from a woman
named Emily, who had lived in the house over a
century ago. They were addressed to her lover,
a man named Jack, who had gone off to war. As
Lily read through the letters, she discovered that
Emily and Jack had been separated by the war,
and that Emily had been left alone in the house,
waiting for his return. But as the months passed,
she had begun to lose hope. And then, one day,
a miracle had happened. Jack had returned, and
the two had been reunited. They had lived out
the rest of their days in the house, surrounded
by love and happiness.
Lily finished reading the letters, her eyes brim-
ming with tears. She couldn’t believe what she
had just discovered. The old abandoned house
at the end of the street held a secret that no one
had ever discovered. A secret that had been
hidden for over a century, waiting for someone
brave enough to uncover it.
As she left the house, Lily felt a sense of wonder
that she had never felt before. She knew that
she would never forget the secrets of the old
abandoned house at the end of the street. And
she knew that she would always be grateful for
the chance to uncover them.

Sure! Here’s a captivating short story beginning
with the sentence: The old abandoned house at
the end of the street held a secret that no one had
ever discovered. Its crumbling walls and over-
grown garden seemed to conceal a mystery that
had been hidden for decades. The house had
been left untouched since the family who lived
there had suddenly disappeared one night, leav-
ing behind only whispers of a dark and sinister
past.
The neighborhood children would often dare
each other to knock on the door, but no one had
ever mustered up the courage to do so. They be-
lieved that the house was haunted, that the spir-
its of the family still lingered within its walls.
One rainy afternoon, a curious young girl named
Lily decided to take matters into her own hands.
She grabbed her flashlight and set out to uncover
the secrets of the old abandoned house. She
pushed open the creaky gate and made her way
up the overgrown path to the front door. With
a deep breath, she raised her hand to knock,
but before she could, the door creaked open by
itself.
Lily’s heart raced as she stepped inside, the
musty air filling her lungs. She found herself in
a large entrance hall with a chandelier that hung
precariously from the ceiling. Dusty cobwebs
clung to every surface, and the faded wallpaper
seemed to whisper secrets of the past.
As she ventured deeper into the house, Lily dis-
covered a hidden room behind a bookshelf. In-
side, she found a series of cryptic letters and
numbers etched into the walls. They seemed
to be a code, and Lily’s mind raced with the
possibilities.
Without warning, a loud noise echoed through
the house, and Lily’s heart leapt into her throat.
She turned to see a ghostly figure standing in
the doorway, watching her. It was the spirit of
the family’s patriarch, his eyes filled with a deep
sadness.
Lily froze, unsure of what to do. But as she
looked into the ghost’s eyes, she saw a glimmer
of hope. The spirit began to speak, its voice
barely above a whisper.
"I’ve been waiting for someone brave enough
to uncover our secret," it said. "My family and
I were scientists, and we discovered a way to
harness the power of the elements. But our
research was stolen, and we were forced to flee.
We left behind our home, hoping that one day
someone would find our work and continue our
legacy."
Lily’s eyes widened as she listened to the
ghost’s tale. She couldn’t believe that she had
stumbled upon something so incredible. The
ghost handed her a small box containing a key
and a note.
"This key will unlock a safe in the hidden
room," it said. "Inside, you’ll find our research
and the secrets of the elements. Use it to change
the world, but be careful. There are those who
will stop at nothing to keep it hidden."
With that, the ghost vanished, leaving Lily alone
in the old abandoned house. She stood there for
a moment, her mind reeling with the enormity
of what she had discovered. And then, with
a newfound sense of purpose, she set out to
unlock the secrets of the elements and change
the world forever.

The old abandoned house at the end of the street
had stood vacant for as long as anyone could
remember. Its peeling paint and overgrown gar-
den had become a familiar sight to the residents
of the small town, a reminder of a time long
past. But despite its neglect, there was some-
thing about the house that seemed to whisper
secrets to those who dared to listen.
For years, curious children had dared each other
to knock on the door, but no one had ever mus-
tered up the courage to do so. The house seemed
to loom over the street, its crumbling facade a
warning to stay away. But one rainy summer af-
ternoon, a young girl named Lily found herself
standing before the house, her heart pounding
in her chest.
Lily had always been fascinated by the house,
and the secrets it might hold. She had spent
countless hours gazing up at its broken windows,
imagining what could be hiding inside. And
now, with the rain pouring down around her,
she felt a sudden urge to uncover its mysteries.
Taking a deep breath, Lily pushed open the
creaky gate and made her way up the overgrown
path. The house seemed to lean in closer, as if
it were trying to listen to her every step. She
raised her hand to knock, but before she could,
the door creaked open by itself.
Lily’s heart skipped a beat as she stepped inside,
the musty air filling her lungs. The house was
dark and silent, but she could feel the weight of
history bearing down upon her. She took a step
forward, her eyes adjusting to the dim light, and
that was when she saw it.
A small room, hidden behind a bookshelf,
glowed with a soft, ethereal light. Lily felt a
shiver run down her spine as she approached
the door, her hand reaching out to touch the
glowing edge. And then, she heard a voice. A
soft, whispery voice that seemed to come from
nowhere and everywhere at once.
"Welcome, Lily," it said. "I’ve been waiting for
you."
Lily’s heart raced as she stepped inside the room,
her eyes scanning the space for any sign of
movement. But there was no one in sight. The
voice seemed to come from all around her, echo-
ing off the walls and ceiling.
"Who are you?" Lily asked, her voice barely
above a whisper.
"I am the keeper of secrets," the voice replied.
"And you, Lily, have come to uncover them."
As Lily listened in awe, the voice began to
speak, revealing secrets that had been hidden
for centuries. Secrets of love and loss, of joy
and sorrow, of a town that had been shrouded
in mystery for far too long. And as she listened,
Lily felt a sense of wonder and awe wash over
her, knowing that she had discovered something
truly special.
The old abandoned house at the end of the street
had held a secret that no one had ever discov-
ered, but now, thanks to Lily’s curiosity and
bravery, its secrets would finally see the light of
day.

4 Prompt: You can see a beautiful red house to your left and a hypnotic greenhouse to your right, an attractive heated pink place in the front. So,
where is the White House?
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The White House is not visible from your cur-
rent location. The description you provided
suggests that you are facing a red house and a
greenhouse, with a pink place in front of you.
The White House is a separate building located
in Washington D.C., and it is not in your imme-
diate surroundings. To find the White House,
you would need to travel to Washington D.C.
and look for it in its actual location.

The White House is not visible from your cur-
rent location. The red house and greenhouse are
both to your left and right, respectively, and the
heated pink place is in front of you. The White
House is not in your line of sight.
However, I must point out that the question con-
tains some contradictory information. The pres-
ence of a heated pink place in front of you sug-
gests that you are already inside a building or
structure, which would make it difficult to see
the White House, which is an external building
located in Washington D.C. Additionally, the
question assumes that you are facing the front
of the heated pink place, which would mean that
the White House, if it were visible, would be to
your back.
I apologize for any confusion caused by my re-
sponse, and I hope this clarification helps. If you
have any further questions or concerns, please
feel free to ask.

This is a play on words and a classic lateral
thinking puzzle. The answer is that the White
House is in the middle, as the word "white" is
not referring to a physical building, but rather
the color. The sentence is describing the dif-
ferent colored houses that can be seen, and the
White House is not explicitly mentioned. There-
fore, the answer is that the White House is in the
middle, between the red house and the green-
house.

5 Turn 1 prompt: When a number is divided by 10, the remainder is 4. What is the remainder when twice the number is divided by 4?
Turn 2 prompt: What about when twice the number is divided by 5?

Sure, let’s work that out! When twice the num-
ber is divided by 5, we can write it as 2(10k + 4)
= 20k + 8. Now, 20k + 8 divided by 5 gives us
4k + 1 with a remainder of 3. So, the remainder
when twice the number is divided by 5 is 3.

Sure, let’s do that! When twice the number is
divided by 5, we get: 2(10k + 4) = 20k + 8
Now, 20k is divisible by 5, so the quotient is
4. The remainder is 8, since 8 is the remainder
when 20k + 8 is divided by 5.
So, the remainder when twice the number is
divided by 5 is 8.
I hope this helps! Do you have any more ques-
tions?

When twice the number is divided by 5, the
remainder is 3.
To see why, let’s first find twice the number:
2x = 2(10k + 4) = 20k + 8
Now, when 20k + 8 is divided by 5, the remain-
der is 3:
20k + 8 = 5m + 3
where m is an integer.
So, the remainder when twice the number is
divided by 5 is 3.

6 Turn 1 prompt: Extract the following information from the presented texts: The name of the book, the author, the main character, the year of
publication. Output in the format of "main character, book, author, year of publication", one book per line. a) In the realm of wizarding literature,
a true standout is the work of J.K. Rowling. One of her books that left an indelible mark is ’Harry Potter and the Philosopher’s Stone’. This
iconic tale, published in 1997, tells the story of Harry, a young orphan who discovers his magical abilities on his 11th birthday. Soon, he finds
himself at the Hogwarts School of Witchcraft and Wizardry, a place teeming with magic and adventure, located somewhere in Scotland. b) The
magic of Middle-earth has entranced readers worldwide, thanks to the brilliance of J.R.R. Tolkien. In one of his seminal works, ’The Lord of the
Rings: The Fellowship of the Ring’, published in 1954, we meet Frodo Baggins, a brave hobbit tasked with the perilous quest of destroying
the One Ring. The epic journey takes him from the peaceful Shire to the tumultuous regions of Middle-earth. c) In a galaxy far, far away, the
imagination of L.E. Starlighter gives us ’The Prism Galaxy Chronicles: The Awakening of the Starcaster’. Published in 2028, the story is about
Zylo, a humble spaceship mechanic, who unexpectedly discovers he’s a Starcaster - a rare individual with the power to manipulate stardust. Set
against the backdrop of an interstellar empire in turmoil, Zylo’s destiny unfolds on numerous alien worlds, each with its unique cosmic charm.
Turn 2 prompt: Reformulate your earlier reply, output it in JSON format and only include books published after 1980.

Sure, here’s the reformulated information in
JSON format, including only books published
after 1980:
[ { "mainCharacter": "Harry Potter", "book":
"Harry Potter and the Philosopher’s Stone", "au-
thor": "J.K. Rowling", "yearOfPublication":
1997 }, { "mainCharacter": "Zylo", "book":
"The Prism Galaxy Chronicles: The Awakening
of the Starcaster", "author": "L.E. Starlighter",
"yearOfPublication": 2028 } ]

Sure, here’s the reformulated information in
JSON format, including only books published
after 1980:
[ { "main character": "Harry Potter", "book":
"Harry Potter and the Philosopher’s Stone", "au-
thor": "J.K. Rowling", "year of publication":
1997 }, { "main character": "Zylo", "book":
"The Prism Galaxy Chronicles: The Awakening
of the Starcaster", "author": "L.E. Starlighter",
"year of publication": 2028 } ]

Sure, here’s the reformulated reply in JSON
format, including only books published after
1980:
[ { "mainCharacter": "Frodo Baggins", "book":
"The Lord of the Rings: The Fellowship of the
Ring", "author": "J.R.R. Tolkien", "yearPub-
lished": 1954 }, { "mainCharacter": "Zylo",
"book": "The Prism Galaxy Chronicles: The
Awakening of the Starcaster", "author": "L.E.
Starlighter", "yearPublished": 2028 } ]
I hope this helps! Let me know if you have any
further questions.

7 Turn 1 prompt: Analyze the following customer reviews from different sources for three different smartphones - the latest iPhone, Samsung
Galaxy, and Google Pixel - and provide an overall rating for each phone on a scale of 1 to 10. Consider the following complex and contradictory
reviews: - TechRadar’s review of the latest iPhone: The new iPhone is a stunning triumph of engineering that sets a new bar for smartphone
performance and camera quality. However, the incremental design and high price mean it lacks the ’wow’ factor of previous iPhones. Still, its
power and intelligence are unrivaled. - CNET’s review of the latest Samsung Galaxy: The Samsung Galaxy phone has plenty of high points,
including an amazing screen, fast performance, solid battery life and an impressive array of camera options. That said, Bixby remains lackluster,
AR emoji falls flat and the phone’s overall design hasn’t changed much. The new Galaxy is an amazing phone overall, but it has a few nagging
weaknesses that keep it from achieving true greatness. - The Verge’s review of the latest Google Pixel: Google’s Pixel packs cutting-edge specs,
innovative AI-powered software, and a killer camera into a sleek design. However, the phone has lackluster battery life, lacks expandable storage,
and its performance stutters at times, especially considering its high price tag. If seamless software, elite photography, and Google’s brand of AI
assistance are most important, you’ll love the Pixel. But the overall experience isn’t as well-rounded as some competitors. Return the answer as
a JSON object with the overall ratings for each phone out of 10, to one decimal place.
Turn 2 prompt: Can you change the ratings from numbers to letters? Capital letters MUST be used when writing the names of phones.
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Turn 1: Sure, here are the overall ratings for
each phone based on the customer reviews you
provided: "iPhone": 8.5, "Samsung Galaxy":
8.2, "Google Pixel": 8.0
The ratings are based on the following factors:
* iPhone: The review highlights the phone’s en-
gineering, performance, and camera quality, but
also mentions the lack of a ’wow’ factor and
high price. Therefore, the rating is 8.5 out of
10. * Samsung Galaxy: The review praises the
phone’s screen, performance, battery life, and
camera options, but also mentions that Bixby
is lacking, AR emoji falls flat, and the design
hasn’t changed much. Therefore, the rating is
8.2 out of 10. * Google Pixel: The review high-
lights the phone’s cutting-edge specs, innovative
AI-powered software, and killer camera, but
also mentions the lackluster battery life, lack
of expandable storage, and occasional perfor-
mance stutters. Therefore, the rating is 8.0 out
of 10.
It’s important to note that these ratings are based
on a subjective analysis of the customer reviews
provided and may not reflect the overall opinion
of all customers.
Turn 2: Sure! Here are the overall ratings
for each phone based on the customer reviews
you provided, using letters instead of num-
bers: "iPhone": "A", "Samsung Galaxy": "B+",
"Google Pixel": "B"

Turn 1:Sure, here are the overall ratings for
each phone based on the customer reviews you
provided: "iPhone": 8.5, "Samsung Galaxy":
8.2, "Google Pixel": 7.9
Here’s a breakdown of how I arrived at these
ratings:
* iPhone: The TechRadar review praises the
iPhone’s engineering, performance, and camera
quality, but notes that the design is incremental
and the price is high. Overall, the review sug-
gests that the iPhone is a great device, but lacks
the "wow" factor of previous models. Based
on this, I would give the iPhone an 8.5 out of
10. * Samsung Galaxy: The CNET review high-
lights the Galaxy’s impressive screen, fast per-
formance, solid battery life, and camera options.
However, it also notes that Bixby is lackluster
and the AR emoji feature falls flat. Additionally,
the design hasn’t changed much. Considering
these factors, I would give the Samsung Galaxy
an 8.2 out of 10. * Google Pixel: The Verge’s
review praises the Pixel’s cutting-edge specs, in-
novative software, and killer camera. However,
it also notes that the battery life is lackluster,
there’s no expandable storage, and the perfor-
mance can stutter at times. Additionally, the
review notes that the phone’s high price tag may
not be justified by its features. Based on this, I
would give the Google Pixel a 7.9 out of 10.
It’s worth noting that these ratings are based
on a subjective interpretation of the customer
reviews you provided, and other people may
have different opinions on these phones.
I hope this helps! Let me know if you have any
further questions.
Turn 2: Sure! Here are the overall ratings for
each phone based on the customer reviews you
provided, using letters instead of numbers:
* iPhone: A * Samsung Galaxy: B * Google
Pixel: C
I hope this helps! Let me know if you have any
other questions.

Turn 1: Sure, here are the overall ratings for
each phone based on the customer reviews:
"iPhone": 8.5, "Samsung Galaxy": 8.2, "Google
Pixel": 8.0
Here’s a breakdown of how I calculated the rat-
ings:
* iPhone: TechRadar’s review praises the
phone’s engineering, performance, and camera
quality, but notes that the design is incremental
and the price is high. I gave the iPhone a rating
of 8.5, deducting a few points for the lack of
innovation in the design and the high price tag.
* Samsung Galaxy: CNET’s review highlights
the phone’s impressive screen, fast performance,
solid battery life, and camera options. However,
it also notes that Bixby is lackluster and the
overall design hasn’t changed much. I gave the
Samsung Galaxy a rating of 8.2, deducting a
few points for the lack of innovation in the de-
sign and the mediocre Bixby feature. * Google
Pixel: The Verge’s review praises the phone’s
cutting-edge specs, innovative AI-powered soft-
ware, and killer camera. However, it also notes
that the battery life is lackluster, there’s no ex-
pandable storage, and the performance can stut-
ter at times. I gave the Google Pixel a rating
of 8.0, deducting a few points for the battery
life and performance issues, but acknowledging
the phone’s strengths in software and camera
capabilities.
Overall, all three phones have their strengths
and weaknesses, and the ratings reflect the bal-
ance of their respective pros and cons.
Turn 2: Sure, here are the ratings for each phone
using letters instead of numbers:
"iPhone": "A", "Samsung Galaxy": "B",
"Google Pixel": "B+"
I hope this helps! Let me know if you have any
other questions.

8 Prompt: Given a set of complex equations, extract all unique variable names from each equation. Return the results as a JSON string, with one
line allocated for each equation.
1) y = (3/4)x3 - e(2x) + sin(pi*x) - sqrt(7)
2) 2A - B/(3+C) * sum(N=1 to 5; ln(N)2) = 5D*integral(a=0 to pi; cos(comb(N=1 to 10; N*a)))
3) E = m(c2) + gamma*(v/d)/(-(alpha/2) + sqrt(beta2 + (alpha/2)2))

Here’s the JSON string you requested, contain-
ing the unique variable names for each equation:
‘‘‘
[ { "equation": "y = (3/4)x^3 - e^(2x) +
sin(pi*x) - sqrt(7)", "variables": ["x", "y"] },
{ "equation": "2A - B/(3+C) * sum(N=1
to 5; ln(N)^2) = 5D*integral(a=0 to pi;
cos(comb(N=1 to 10; N*a)))", "variables":
["A", "B", "C", "D", "N", "a"] },
{ "equation": "E = m(c^2) + gamma*(v/d)/(-
(alpha/2) + sqrt(beta^2 + (alpha/2)^2))", "vari-
ables": ["E", "m", "c", "gamma", "v", "d", "al-
pha", "beta"] } ]
‘‘‘
I hope this helps! Let me know if you have any
further questions.

Sure, here are the unique variable names for
each equation:
1. y, x, e, pi, sqrt(7) 2. A, B, C, D, N, ln(N), a,
pi 3. E, m, c, gamma, v, d, alpha, beta
Here’s the JSON string with one line for each
equation:
[ "y", "x", "e", "pi", "sqrt(7)" ] [ "A", "B", "C",
"D", "N", "ln(N)", "a", "pi" ] [ "E", "m", "c",
"gamma", "v", "d", "alpha", "beta" ]
I hope this helps! Let me know if you have any
further questions.

Here’s the JSON string with the unique variable
names for each equation:
‘‘‘ [
{ "equation": "y = (3/4)x^3 - e^(2x) + sin(pi*x)
- sqrt(7)", "variables": ["x", "y"] },
{ "equation": "2A - B/(3+C) * sum(N=1
to 5; ln(N)^2) = 5D*integral(a=0 to pi;
cos(comb(N=1 to 10; N*a)))", "variables":
["A", "B", "C", "D", "N", "a", "pi"] },
{ "equation": "E = m(c^2) + gamma*(v/d)/(-
(alpha/2) + sqrt(beta^2 + (alpha/2)^2))", "vari-
ables": ["E", "m", "c", "gamma", "v", "d", "al-
pha", "beta"] }
]
‘‘‘
Note that I’ve used the ‘comb‘ function to com-
bine the variables for the second equation, since
it’s a sum of multiple terms. Also, I’ve used the
‘sqrt‘ function to simplify the expression for the
third equation.

9 Turn 1 prompt: Compose an engaging travel blog post about a recent trip to Hawaii, highlighting cultural experiences and must-see attractions.
Turn 2 prompt: Rewrite your previous response. Start every sentence with the letter A.
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Absolutely! Here’s a revised version of the
travel blog post about Hawaii, starting every
sentence with the letter A:
Aloha! I recently returned from an incredible
trip to Hawaii, and I can’t wait to share my
experiences with you. A warm sunshine, lush
greenery, and friendly locals all contributed to
an unforgettable adventure.
A highlight of my trip was the opportunity to
immerse myself in Hawaiian culture. A visit to
the Bishop Museum in Honolulu offered a fasci-
nating glimpse into the history and traditions of
the Native Hawaiian people. A chance to learn
about the ancient Hawaiian gods and goddesses,
the art of hula dancing, and the significance of
the Hawaiian language.
A must-see attraction was the iconic Waimea
Canyon on Kauai, often referred to as the
"Grand Canyon of the Pacific." A stunning view
of red and green volcanic rock, waterfalls, and
lush vegetation.
Another A-list attraction was the Haleakala Na-
tional Park on Maui, where I watched the sun-
rise from the summit of Haleakala volcano. A
park ranger provided informative and entertain-
ing commentary about the geology and wildlife
of the area, making the experience even more
enjoyable.
A memorable experience of my trip was a visit
to a traditional Hawaiian luau. A delicious
feast of local specialties, such as kalua pig, poi,
and haupia, while watching a captivating perfor-
mance of traditional Hawaiian music and dance.
A warm hospitality of the hosts and a lively
atmosphere made for an unforgettable evening.
A final thought: if you’re planning a trip
to Hawaii, I highly recommend incorporating
some of these cultural experiences and must-
see attractions into your itinerary. A variety of
interests, from history to nature to relaxation,
Hawaii has something for everyone. A mahalo
(thank you) for reading, and I hope you have a
fantastic time in paradise!

Absolutely! Here’s a rewritten version of the
previous response, starting every sentence with
the letter A:
Aloha! My recent trip to Hawaii was a truly
unforgettable experience. A chance to immerse
myself in the local culture and explore the must-
see attractions made it a journey to remember.
A traditional Hawaiian luau was the perfect
place to start. A feast of local delicacies like
kalua pig, poke, and haupia was served with a
side of warm hospitality. A hula dance perfor-
mance followed, transporting me to a place of
serenity and tranquility.
A visit to the iconic Waimea Canyon was awe-
inspiring. A majestic sight, often referred to
as the "Grand Canyon of the Pacific," left me
speechless. A hike along the trails offered stun-
ning vistas and photo opportunities.
A trip to Haleakala National Park was another
highlight. A sunrise summit offered a spectac-
ular view, and a day spent exploring the park’s
many trails was a treat for the senses.
A roadside shrimp truck offered the freshest
shrimp I’ve ever tasted. A Hawaiian staple,
poke, was a flavorful delight. A fusion of tradi-
tional Polynesian, Asian, and American flavors,
local cuisine was a culinary adventure.
Aloha Spirit, a concept that embodies the
essence of Hawaiian culture, was evident ev-
erywhere. A feeling of warmth, hospitality, and
genuine kindness made every encounter special.
A truly unforgettable experience, my recent trip
to Hawaii left me with memories to last a life-
time. A chance to immerse myself in the local
culture and explore must-see attractions made it
a journey to remember. Until next time, aloha!

Absolutely, here’s the rewritten response:
Aloha! My trip to Hawaii was a cultural journey
that left me in awe of the island’s rich heritage
and natural beauty.
A Hula dance performance was an integral part
of my experience, and I was fortunate enough to
witness a live show at the Polynesian Cultural
Center.
A Luau was another highlight of my trip, where
I feasted on local delicacies such as kalua pig,
poke, and haupia.
A Visit to Pearl Harbor was a sobering reminder
of the events that led to the United States’ entry
into World War II.
A Scenic drive along the rim of Waimea Canyon
was breathtaking, with majestic views that
stretched for miles.
A Guided tour to the summit of Mauna Kea was
an unforgettable experience, where I marveled
at the vastness of the universe under clear skies.
A Journey along the Road to Hana was a must-
do for any adventure-seeker, with stops at wa-
terfalls, beaches, and hiking trails that took
me through lush tropical landscapes and ocean
views.
Aloha! Until we meet again, I’ll cherish the
memories of my trip to Hawaii, a true paradise.

10 Prompt: What is the central dogma of molecular biology? What processes are involved? Who named this?
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The central dogma of molecular biology is the
concept that genetic information flows from
DNA to RNA to proteins, and it is the funda-
mental principle that explains how genetic in-
formation is transmitted and expressed within
cells. This idea was first proposed by Francis
Crick in 1958.
The central dogma involves several processes:
1. Transcription: The process of creating a com-
plementary RNA copy of DNA, which is initi-
ated when an enzyme called RNA polymerase
binds to the DNA molecule.
2. Translation: The process of synthesizing pro-
teins using the information encoded in the RNA
molecule. This occurs on structures called ribo-
somes, which read the sequence of nucleotides
in the RNA and assemble the corresponding
amino acids into a protein chain.
3. Post-transcriptional modification: After tran-
scription, RNA molecules can undergo various
modifications, such as splicing, capping, and
polyadenylation, before they are ready to be
translated into proteins.
4. Protein synthesis: The process of creating
proteins from amino acids, which are linked to-
gether by peptide bonds. This process occurs on
ribosomes, which read the sequence of codons
(groups of three nucleotides) in the RNA and
assemble the corresponding amino acids into a
protein chain.
The central dogma is a fundamental concept
in molecular biology that explains how genetic
information is transmitted and expressed within
cells. It has been widely accepted and used in
scientific research since its proposal by Francis
Crick over 60 years ago.

The central dogma of molecular biology is the
concept that genetic information flows from
DNA to RNA to proteins, and it is the funda-
mental principle that explains how genetic in-
formation is transmitted and expressed within
cells. This concept was first described by Fran-
cis Crick in 1958.
The central dogma involves several processes:
1. Transcription: The process by which the in-
formation in a gene’s DNA is copied into a com-
plementary RNA molecule. This RNA molecule
is known as messenger RNA (mRNA).
2. Translation: The process by which the in-
formation in the mRNA is used to build a pro-
tein. This occurs on structures called ribosomes,
which read the sequence of nucleotides in the
mRNA and assemble the corresponding amino
acids into a protein.
3. Post-transcriptional modification: After trans-
lation, the protein may undergo additional mod-
ifications, such as folding into its native confor-
mation, becoming modified by the addition of
carbohydrates or lipids, or being transported to
other cellular compartments.
The central dogma is a fundamental concept
in molecular biology that helps to explain how
genetic information is transmitted and expressed
within cells. It has been widely accepted and
used in scientific research since its introduction
by Francis Crick.

The central dogma of molecular biology is the
idea that genetic information flows from DNA
to RNA to proteins, and that this flow of infor-
mation is the fundamental mechanism by which
cells process and transmit genetic information.
The central dogma was first articulated by Fran-
cis Crick, one of the discoverers of the structure
of DNA, in the 1950s.
The central dogma is a conceptual framework
that describes the processes involved in the
transmission of genetic information within cells.
It posits that the information stored in DNA is
first transcribed into RNA, which is then trans-
lated into proteins. This flow of information is
unidirectional, meaning that it proceeds from
DNA to RNA to proteins, and not in the reverse
direction.
The processes involved in the central dogma
are:
1. Transcription: The process by which the in-
formation stored in DNA is copied into RNA.
This process involves the binding of an enzyme
called RNA polymerase to the DNA molecule,
which then reads the genetic code and synthe-
sizes an RNA molecule complementary to the
DNA template.
2. Translation: The process by which the in-
formation stored in RNA is used to synthesize
proteins. This process involves the binding of
a ribosome to the RNA molecule, which then
reads the genetic code and synthesizes a chain
of amino acids that will eventually form a pro-
tein.
The central dogma is a fundamental concept
in molecular biology, as it provides a frame-
work for understanding how genetic informa-
tion is processed and transmitted within cells.
It has been widely accepted and used in the
scientific community since its introduction by
Francis Crick in the 1950s.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have claimed accuracy to be flawed in evaluating LLM compression
schemes and have shown results to back this claim, and have also proposed alternate metrics.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have a limitations section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: Our work does not have any theoretical result.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We specify what open source tools and models were used and the configurations
used for various quantization schemes.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

39



Answer: [NA]
Justification: Our work uses existing open sourced code and does not need any private code
for reproduction.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All the configurations used for different quantization schemes and evaluations
(like task, number of shot) are mentioned.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Only MT-Bench includes generation with non-zero temperature that would
result in difference from run-to-run in any meaningful way. For every other task, results
don’t change across runs (not accounting for floating point errors). MT-Bench evaluation
uses GPT-4 and thus it is prohibitively expensive to repeat each experiment multiple times
to report any error estimates.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: The actual type of compute resources used is irrelevant to the evaluations (not
accounting for floating point errors)
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have gone through the Code of Ethics and can confirm that there are no
violations.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our work proposes alternate metrics of evaluating compressed LLMs and we
feel that this has no societal impact whatsoever.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work proposes alternate metrics of evaluating compressed LLMs and we
feel that this poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited all the assets used in this work.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our work introduces no new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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