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Abstract

The following write up presents a simple mechanism (closely based on existing literature) to
track DP budget while handling basic SQL queries, namely, COUNT, SUM, MEAN, and VAR, while
providing record level privacy.

1 Problem Statement

Given a data set D = {d1, · · · , dN} from some domain D, design differentially private algorithms
to allow the following types of SQL queries:

1. SELECT COUNT(*) FROM D WHERE 〈predicate〉

2. SELECT SUM(column) FROM D WHERE 〈predicate〉

3. SELECT MEAN(column) FROM D WHERE 〈predicate〉

4. SELECT VAR(column) FROM D WHERE 〈predicate〉

Furthermore, we want to effectively keep track of the privacy budget if multiple of these queries
are made to the data set D.

2 Privacy guarantees

We assume that individual records in the database correspond to different users. Our goal is to
protect user level privacy, i.e., ensure that an adversary that interacts with the database through
our mechanism may learn very little (in a strict formal sense) about any specific record, no matter
how much auxiliary information he can access. We measure users’ privacy loss in terms of (ε, δ)-
differential privacy [1, Definiton 2.4].

The values of ε and δ need to be fixed in advance. They should be thought of as our privacy
budget. One possible setting for δ is

δ =
1

N
√
N
, (1)
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where N is the total number of rows in the database. In existing deployments in industry, e.g., [3, 2],
the value of ε is usually set between 1 and 4. Smaller values correspond to higher privacy guarantees
but yield lower accuracy or smaller number of queries that can be asked against the database.
Depending on the application it may be deemed acceptable to refresh the privacy budget after
some period of time, e.g., one month. The high level view of our protocol is detailed in Section 5.2.

3 Notation

In what follows

• log denotes the natural logarithm;

• N (0, σ2) represents a sample from a normal distribution with mean zero, and variance σ2.

• We use t to denote our privacy budget. We discus this parameter in Section 5.

• When we talk about a specific column in a database, let M denote the maximum absolute
value that may appear in it.

4 Handling a single query

Below we present algorithms for handling individual queries. The basic algorithms are quite simple,
and proceed by computing the exact answer based on raw data, and then adding Gaussian noise.
The magnitude of that noise depends on the range of values in the corresponding database column,
query budget t, and a key parameter σ that is discussed in detail in Section 5.

1. COUNT query: Let X be the correct integer value representing the response to the query. Our
algorithm outputs X +N (0, σ21), where

σ1 =
√
t · σ. (2)

We note that issuing multiple COUNT queries that correspond disjoint predicates (e.g., as done
when computing a histogram) does not lead to additional privacy losses, and can be accounted
for as a single query.

2. SUM query: For the column on which the sum is calculated on, let M be the maximum possible
absolute value that may appear in it. Let X be the real number which is the correct response
to the query. Our algorithm outputs X +N (0, σ22), where

σ2 =
√
t · |M | · σ. (3)

3. MEAN query: For the column on which the sum is calculated on, let M be the maximum
possible absolute value that may appear in it. In order to compute the MEAN one needs to
issue two basic queries, i.e., SUM and COUNT and then divide the output of MEAN by the output
of COUNT.

Given that outputs of COUNT and SUM are noisy, and the fact that we are dividing by the
output of COUNT; we only get a reliable estimate for true value of the MEAN, when the COUNT
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is sufficiently large. In particular, let n̂ denote the output of the COUNT query, and n be the
exact value. Similarly, let Σ̂ denote the output of the SUM query, and Σ be the exact value.
We guarantee that with probability (1− α), the following logical implication is valid:

If
(
n̂ > 2

√
2 ln(4/α) · σ1

)
; then (4)∣∣∣∣∣ Σ̂n̂ − Σ

n

∣∣∣∣∣ <
√

2 ln(4/α) · σ2
n̂

+
2
√

2 ln(4/α) · |Σ̂| · σ1 + 4 ln(4/α) · σ1 · σ2
n̂2

. (5)

The detailed analysis of the our accuracy guarantees for MEAN is given in Section 6. One
important thing to note is that our algorithm for the MEAN does not produce an unbiased
estimator. Also, the error bound (5) is just an upper bound; and the error is typically
smaller.

4. VAR query: For a set of n real numbers Z = {z1, · · · , zn},

Var(Z) =
1

n

n∑
i=1

(zi − µ)2 =
1

n

n∑
i=1

z2i −

(
1

n

n∑
i=1

zi

)2

.

Our algorithm for the VAR query is based on our algorithm for the MEAN. Given the predicate,
we issue the COUNT query, the SUM query, and the SUM query for squares of the values {zi}.
Let n,Σ,Σ2 be the true answers to the above queries, and n̂, Σ̂, Σ̂2 be the noisy answers. To
compute Σ̂2, we set Σ̂2 = Σ2 +N (0, σ23), where

σ3 =
√
t ·M2 · σ. (6)

Our estimate for VAR is given by

VAR′(Z) =
Σ̂2

n̂
−

(
Σ̂

n̂

)2

. (7)

Our accuracy guarantee is similar to the one that we have for the MEAN. Specifically, we ensure
that with probability 1− 3α/2 the following logical implication is valid:

If
(
n̂ > 2

√
2 ln(4/α) · σ1

)
; then (8)

∣∣VAR(Z)− VAR′(Z)
∣∣ < f(n̂, σ1, Σ̂2, σ3) + f(n̂, σ1, Σ̂, σ2) ·

(
f(n̂, σ1, Σ̂, σ2) +

2 · Σ̂
n̂

)
, (9)

where f(n̂, σ1, Σ̂, σ2) denotes the expression in the right hands side of (5). The detailed
analysis of the our accuracy guarantees for VAR is given in Section 7. Again we remark that
our algorithm for the VAR does not produce an unbiased estimator. Also, the error bound (5)
is just an upper bound; and the error is typically smaller.
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5 Handling multiple queries

Our approach is as follows. On the onset, we choose the query budget, which is an integer q that
is initially set to some value t. When we respond to a COUNT or SUM query, or when we compute a
histogram; we reduce our query budget q by 1. When we answer a MEAN query, we reduce q by 2.
When we answer a VAR query, we reduce q by 3. We spread our privacy budget uniformly, expecting
that we will exhaust the query budget. When the query budget is exhausted the database has to
be taken offline, as no more queries can be answered.

5.1 Technical details

Here are are the technical details of our privacy accounting with references to the literature.

• When we discuss differential privacy neighboring relation between databases is with respect
to a single user leaving or joining the database.

• Note that all basic privacy mechanisms described in Section 4 (i.e., the COUNT, SUM, and SUM

of squares of values) are instances of the standard Gaussian mechanism [1, Appendix A]. By
simple scaling (respectively by 1,M−1 and M−2 all these mechanisms can be made to have
sensitivity 1. Therefore by [4, Corollary 3], each of the mechanisms satisfies

(
α, α

2·t·σ2

)
-Renyi

Differential Privacy (RDP), for all α > 1.

• By [4, Proposition 1], by the time we exhaust our query budget of t, our privacy loss satisfies(
α, α

2·σ2

)
-RDP.

• Finally, by [4, Proposition 3], our privacy loss satisfies(
α

2 · σ2
+

log 1/δ

α− 1
, δ

)
−DP. (10)

• We set α = σ ·
√

2 · log 1/δ + 1. Clearly, α > 1. This yields(
σ ·
√

2 · log 1/δ + 1

2 · σ2
+

log 1/δ

σ ·
√

2 · log 1/δ
, δ

)
−DP (11)

• The expression above yields (ε, δ)-DP when

σ =

√
log 1/δ +

√
log 1/δ + ε√

2 · ε
. (12)

5.2 The protocol

In what follows N denotes the number of records (rows) in the database.

• Set δ according to (1).

• Set ε between 1 and 4.

• Set σ according to (12).
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• Initialize the query budget q with an initial value t.

• Execute queries against the database using the single query mechanisms from Section 4.
Decrement q when computing COUNT or SUM, or when computing a histogram. Reduce q by
two, when computing MEAN (as with our algorithm a single MEAN query amounts to two basic
queries). Similarly, reduce q by three, when computing VAR, as a single VAR query amounts
to three basic queries.

• Terminate the algorithm and take the database offline when the query budget runs out.

5.3 Example

Suppose we have a database with n = 100, 000 records. We set δ as in (1) and we set ε = 3. Now
by (12) σ ≈ 2.04. We set our query budget to t = 2, 000. With such a query budget we could, for
instance, answer 1, 000 COUNT queries, and 500 SUM queries, and 250 MEAN queries. Imagine that
we are dealing with numeric data that is in the range [0,M ]. Our accuracy guarantees would be as
follows:

• For COUNT queries, the standard deviation of our noise is: 92;

• For SUM queries, the standard deviation of our noise is: 92 ·M ;

• For MEAN and VAR queries estimates of our accuracy guarantees are given by formulae (5)
and (9).

5.4 Remark

Imagine that we are in a situation where we do not know (even approximately) the number of
queries that will be asked against the database. In such scenarios we may choose to answer queries
that arrive earlier with higher accuracy, consuming more of the privacy budget. With this approach
we may be able to handle an unbounded number of queries, although queries that arrive late will
have very noisy answers. We do not work out the corresponding math in the current version of this
manuscript.

6 Accuracy of the MEAN estimation

In this section we present a detailed analysis of the our accuracy guarantees for the MEAN query. As
in Section 4, let n̂ denote the output of the COUNT query, and n be the exact value. Similarly, let Σ̂
denote the output of the SUM query, and Σ be the exact value. We have n̂ = n+ξ1, where ξ1 is drawn
according to the normal distribution N (0, σ21) Similarly, Σ̂ = Σ + ξ2, where ξ2 is drawn according
to the normal distribution N (0, σ22). By the standard tail bound for the normal distribution, for ξ
that is drawn from N (0, σ′2),

Pr[|ξ| > x · σ′] ≤ 2 · e−x2/2. (13)

Thus with probability 1− α, we have both

|ξ1| ≤
√

2 ln(4/α) · σ1 and |ξ2| ≤
√

2 ln(4/α) · σ2. (14)
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We now need to show that in case inequalities (14) and (4) are satisfied; then the inequality (5) is
well defined and valid. Our assumptions clearly imply,

|ξ1|
|n̂|
≤ 1

2
. (15)

Our goal is to bound∣∣∣∣∣ Σ̂− ξ2n̂− ξ1
− Σ̂

n̂

∣∣∣∣∣ =

∣∣∣∣∣ Σ̂− ξ2n̂
·
(

1 +
ξ1/n̂

1− ξ1/n̂

)
− Σ̂

n̂

∣∣∣∣∣
=

∣∣∣∣∣ Σ̂ · ξ1/n̂
n̂ · (1− ξ1/n̂)

− ξ2
n̂
− ξ2 · ξ1/n̂
n̂ · (1− ξ1/n̂)

∣∣∣∣∣
≤

√
2 ln(4/α) · σ2

n̂
+

2
√

2 ln(4/α) · |Σ̂| · σ1 + 4 ln(4/α) · σ1 · σ2
n̂2

,

where the latter inequality relies on (14) and (15).

7 Accuracy of the VAR estimation

In this section we present a detailed analysis of the our accuracy guarantees for the VAR query.
Recall that n,Σ,Σ2 denote the true values of COUNT, SUM, and SUM of squares. Similarly, n̂, Σ̂, Σ̂2

denote the noisy answers to the respective queries. We have

n̂ = n+ ξ1 Σ̂ = Σ + ξ2 Σ̂2 = Σ2 + ξ3,

where ξ1 is drawn N (0, σ21), ξ2 is drawn N (0, σ22), ξ3 is drawn N (0, σ23). By (13), with probability
1− 3α/2, we have

|ξ1| ≤
√

2 ln(4/α) · σ1 and |ξ2| ≤
√

2 ln(4/α) · σ2 and |ξ3| ≤
√

2 ln(4/α) · σ3. (16)

We now need to show that in case inequalities (16) and (8) are satisfied; then the inequality (9)
is well defined and valid. Our assumptions clearly imply,

|ξ1|
|n̂|
≤ 1

2
. (17)

Our goal is to bound

∣∣VAR(Z)− VAR′(Z)
∣∣ =

∣∣∣∣∣∣ Σ̂2 − ξ3
n̂− ξ1

−

(
Σ̂− ξ2
n̂− ξ1

)2

− Σ̂2

n̂
+

(
Σ̂

n̂

)2
∣∣∣∣∣∣

≤ f(n̂, σ1, Σ̂2, σ3) +

∣∣∣∣∣∣
(

Σ̂− ξ2
n̂− ξ1

)2

−

(
Σ̂

n̂

)2
∣∣∣∣∣∣

≤ f(n̂, σ1, Σ̂2, σ3) + f(n̂, σ1, Σ̂, σ2) ·

∣∣∣∣∣
(

Σ̂− ξ2
n̂− ξ1

)
+

(
Σ̂

n̂

)∣∣∣∣∣ .
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To obtain the bound (9), it suffices to note that∣∣∣∣∣
(

Σ̂− ξ2
n̂− ξ1

)
+

(
Σ̂

n̂

)∣∣∣∣∣ =

∣∣∣∣∣ Σ̂− ξ2n̂
·
(

1 +
ξ1/n̂

1− ξ1/n̂

)
+

Σ̂

n̂

∣∣∣∣∣
=

∣∣∣∣∣ Σ̂ · ξ1/n̂
n̂ · (1− ξ1/n̂)

− ξ2
n̂
− ξ2 · ξ1/n̂
n̂ · (1− ξ1/n̂)

+
2 · Σ̂
n̂

∣∣∣∣∣
≤

√
2 ln(4/α) · σ2

n̂
+

2
√

2 ln(4/α) · |Σ̂| · σ1 + 4 ln(4/α) · σ1 · σ2
n̂2

+
2 · Σ̂
n̂

.
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