
SQL Dev Design 
 

Parser 
The parser is the first stage of converting a SQL-92 query from string representation to 
the internal AST representation.  The parser provides a first line of defense against 
malicious queries, by ensuring that queries conform to the limited subset of SQL-92 
grammar that we support, and handling basic string escaping. 
 
The parser is invoked for SQL provided by the analyst, who may be untrusted.  The 
parser is also invoked for generated SQL that is being sent to the database, on behalf of 
the platform. 
 
The parser can only enforce basic conformance to grammar.  There are many additional 
rules that must be enforced in the AST, validator, rewriter, or private reader. 
 
ANTLR offers both listener and visitor calling patterns to hook into parsing.  We do 
not use the listener pattern.  The visitor pattern can be thought of as a recursive 
pattern matching consumer of the parsed tree.  ANTLR4 auto-generates the visitor 
interface in SqlSmallVisitor.py, and we override the methods to build the AST in 
parse.py.  This section covers just the parsing functions.  The visitor functions which 
build the AST are covered in the next section. 
 
Caller API 
 

 
 
The most common calling pattern will be QueryParser().query(query_string, metadata).  
This parses the supplied SQL, builds the AST, and annotates the AST with symbols 
from the metadata. 
 
The queries() method will parse a batch of queries separated by semicolon.   



 
The parse_only() method is useful for checking conformance with the grammar, and does 
not use metadata or build an AST.  This is particularly useful when debugging the 
grammar, since this method will only throw errors based on grammar problems, and will 
not trigger any errors related to AST construction or symbol resolution. 
 
The parse_expression() method may be useful for parsing fragments of text, such as 
arithmetic expressions. 
 
Grammar 
 
The grammar, SqlSmall.g4, is designed for ANTLR4.  The rules are matched from 
bottom upwards, so the lexer rules are at the bottom of the file, and the more complex 
parser grammar is at the top. 
 
The grammar starts with definition of tokens to allow the SQL-92 grammar to be case-
insensitive.  This is because we deal with some databases where SQL statements are 
lowercase, and others with strictly uppercase SQL statements. 
 
The ESCAPED_IDENTIFIER rule supports different database engines’ syntax for 
escaping identifiers, such as table names or column names that contain spaces.  The QN 
rules are used for qualified names, such as table.column or schema.table.column. 
 
ANTLR4 uses “Adaptive LL(*)” parsing for ambiguity resolution.  We enable strict 
mode when parsing, so the parser will throw errors if any ambiguities are detected.  It is 
possible to configure ANTLR4 to raise ambiguities to the caller, where they can be 
resolved.  However, our design is to ensure that the grammar doesn’t encounter 
ambiguities in supported scenarios. 
 
When ambiguities occur in the grammar, the suggested resolution is to split the 
ambiguous grammar into multiple components.  For example, SQL-92 allows qualified 
column names to be used as a non-boolean expression (e.g. an integer), as in SELECT 
WHERE colname - 12 == 3, and also as a Boolean, as in SELECT … WHERE colname.  Because the 
identifier matching rules are lower in the grammar file, and thus earlier in precedence, 
the parser would encounter ambiguity whenever a qualified name is encountered in a 
spot where both non-boolean and Boolean expressions are permitted.  To eliminate this 
ambiguity, we break apart these rules into separate grammar segments.  This creates 
some redundancy in the grammar. 



 
The grammar syntax allows parsed values to be assigned to variable names in the parser 
context, via the “=” annotation, and allows rules to be named.  For example: 
 
CASE (whenExpression)+ (ELSE elseExpr=expression)? END #caseWhenExpr 

 
Assigns the expression that comes after the “ELSE” keyword to a context variable 
named “expression”, and all CASE expressions which match this grammar will be 
processed in the “caseWhenExprVisitor” during parse. 
 
In cases where our supported engines have different grammars, we try to support a 
superset.  For example, TOP K and LIMIT K are supported by SQL Server and 
PostgreSQL, respectively.  The grammar supports both.  The parser can ensure that 
queries supply only an integer for “K”, when TOP or LIMIT are supplied, but the parser 
does not enforce that only one syntax is used.  PrivateReader throws an error if both 
are supplied.  This final check is something that could, conceivably, be done in the 
parser, and this would be the best place to catch the error.  But that would complicate 
the grammar. 
 
It is probably a good idea to review all similar constraints which are applied in 
subsequent layers, to decide if any should be moved to earlier layers.  In general, we 
should catch errors at the earliest possible processing stage. 
 
Build 
 
After editing the grammar file (SqlSmall.g4), you need to re-generate SqlSmallVisitor.py 
and the supporting files.  This can be done by invoking make from the sql/parse folder.  
The default make target builds the required python files, if the SqlSmall.g4 grammar file 
has been touched. 
 
You can use make gui to try out the grammar changes and see a visual parse tree.  You 
can type a query (or query batch, with queries separated by semicolon), and then press 
CTRL-D on the keyboard to see what the parser thinks of the input.  For example, the 
below is the parse tree for query: 
SELECT educ, SUM(income) AS income FROM PUMS GROUP BY educ ORDER BY income DESC LIMIT 

10. 
 
 



 
Unit Tests 
 
Unit tests for the parser are included in the test_ast.py harness.  Although this harness 
performs AST tests, it also performs tests for bare parsing, including queries that should 
pass, and queries that should fail.  Test queries are stored as text batches with extension 
*.sql, in the queries folder, organized by processing stage.  For example, queries in the 
queries/parse folder will be tested against only the parser, while queries in the 
queries/validate folder will be tested against parsing, AST, and validation. 
 
The test harness has a GoodQueryTester and BadQueryTester, which filter out SQL batches 
that are intended to pass, and queries that are intended to fail.  All SQL batches named 
*_fail.sql will be tested to ensure failure of parsing, and all other batches in the parse 
folder will be tested for success. 
 
Any changes to the grammar should be accompanied by success and failure unit test 
queries, placed in the queries/parse folder. 

Abstract Syntax Tree 
 
The AST is the in-memory representation of the parsed query tree.  It’s goals are: 
 

• Transform the parse tree into a Python object model that can be validated for 
differential privacy 

• Object model useful for the rewriter 
• Allow serialization back to SQL text 
• Helper methods such as evaluate, find_nodes 



• Object model for propagation of data curator metadata, such as sensitivity and 
symbols. 
 

AST Construction 
 
The AST is built in the QueryParser().query() method in parse.py.  The root of the 
parse tree is a batch, which includes one or more query objects.  We use ANTLR’s visitor 
pattern, which walks the parse tree recursively.  Each visitor has a visit() method, 
which extracts the parsed subtree and returns the appropriate typed objects.  Thus, we 
start with the BatchVisitor object, and BatchVisitor invokes QueryVisitor for each query 
in the batch.  The QueryVisitor.visit() method returns a Query object, and the 
BatchVisitor.visit() method returns a list of Query objects. 
 
All objects in the typed AST object model are contained under the 
opendp.smartnoise._ast namespace. 
 
The AST object model is closely related to the grammar, but eliminates many 
intermediate grammar elements which are not needed outside of parsing. 
 
AST construction also merges grammar fragments that may have been broken out 
separately in the grammar to avoid ambiguities.  For example, the ColumnBoolean AST 
object, which represents a column that is to be treated as a Boolean (e.g. in SELECT … 
WHERE married), is created in the BooleanExpressionVisitor’s visitQualifiedColumnName 
method.  The grammar breaks out qualifiedColumnName into multiple fragments, to avoid 
ambiguities when parsing, and these differing contexts are collapsed back into the 
appropriate objects by the AST. 
Object Model 
 
Diagrams are shown here as PNG.  EPS versions of the diagrams are available in the 
sqldocs repo. 
 



Tokens 

 
 
The root objects are defined in tokens.py.  These serve as root types with some helper 
methods, and allow disambiguation between Column and Literal identifiers. 
 
The Op class is used for operators, such as < or +. 
 
The Token class is a placeholder for grammar fragments that have no special processing, 
but which need to round-trip when being serialized back to text.  This is mainly useful 
for specifying tokens that need to be serialized, such as ( and ).  The Tokens class 
should not be used as a destination object in AST construction, since this could result in 
unsafe behavior. 
 
The Seq class represents sequences of other classes, such as NamedExpressions.  We use 
Seq, rather than python lists, so that serialization can add commas automatically. 
 
 
AST (Query) 

 
The top-level SQL grammar objects are defined in ast.py. 
 
All SQL grammar objects inherit from the Sql base class, defined in tokens.py.  This 
base class implements the find_nodes() helper method, discussed below. 
 



The classes for simple SQL clauses, such as Select, Having, Where, Order, From, and 
Aggregate, all inherit directly from the Sql object.  Note that the Aggregate object is used 
to represent a GROUP BY clause. 
All SQL relations defined in ast.py, such as Table, Query, and Join, inherit from the 
SqlRel subclass, also defined in tokens.py.  The SqlRel subclass extends Sql by adding 
methods and properties used for symbol resolution, discussed below. 
 
The TableColumn class is used to represent a resolved column, not a parsed column 
reference from the grammar.  The AST uses the Column class, defined in tokens.py, to 
represent a column that has been parsed, but not yet resolved.  The symbol resolution 
process converts Column classes to TableColumn classes, by matching metadata with the 
query columns. 
 
Expressions 

 
The NamedExpression object represents any evaluable column which may or may not have 
an output alias.  The SQL SELECT statement is a sequence of one or more named 
expressions, such as SELECT AVG(income) AS inc, SUM(2 * educ) AS educ. 
 
A NestedExpression is an anonymous expression surrounded by parenthesis. 
 
The bare Expression object can be used as a placeholder for expression grammar 
fragments which do not have a dedicated AST object, which need to round-trip through 
serialization.  The symbol() method on this class raises ValueError exception, because 



there is no way to attach symbols for arbitrary unknown grammar.  This means that 
this class can be used in round-tripping ASTs, but cannot be used in any queries that 
need differential privacy. 
 
Logical 

 
 
The expressions/logical.py module defines a variety of classes representing SQL logical 
operations.  These classes all inherit from the SqlExpr subclass, which defines the helper 
method, evaluate(). 
Numeric 

 
 
expressions/numeric.py defines the numeric expressions, all inheriting from the SqlExpr 
subclass and implementing evaluate(). 
 
BareFunction maps to bareFunction in the grammar, and is used to represent functions 
with no arguments, such as PI() or RANDOM(). 
 
Sql 

 
A handful of additional expression types are defined in expressions/sql.py. 



 
The AllColumns class is a special case, representing either * or table.*.  Because it 
represents all columns in one or all relations, symbol resolution must walk the relevant 
relation or relations and bring in all columns.  This step must be careful to prohibit 
duplicate column names. 
 
Resolving the AllColumns object to the underlying column names creates some 
complication for serialization.  Serialization operates by recursively walking and 
serializing all children().  In the case of symbol resolution, we want all of the children to 
be available in the AST, but they should be emitted as * on round-trip. 
 
(What do we do about missing columns from metadata?  Rewriter should ensure calling 
all columns by name) 
 
The AggFunction class represents an aggregation, such as SUM or AVG.  Because these 
functions are often called in an anonymous named expression (e.g. SELECT SUM(income * 
100) FROM foo), SQL engines have the ability to automatically choose the output column 
name.  The symbol_name() method on AggFunction attempts to return a sensible default 
column name.  Because different engines have different default column naming rules for 
aggregate functions, this means that the AST will not always result in the same column 
names as a query fed directly to the engine.  If this is a concern, we could push the 
symbol_name() functionality to the SqlReader subclasses, allowing engine-specific overrides.  
However, this has not been a problem so far. 
 
Serialization 
Every descendant of Sql must implement the python built-in __str__() method, which 
emits the text serialization in SQL grammar for that component. 
 
The children() method must be implemented, and returns the list of children of the 
component, in the correct serialization order.  For example, the BareFunction class 
returns three children: the function name, Token(“(“) and Token(“)”).  This allows 
serialization to function by concatenating the str() output of all children in order. 
Evaluation 
The evaluate() method is defined on all SqlExpr descendants.  It allows a python 
dictionary to be passed in with variable bindings, to be plugged in anywhere that a 
column name is referenced.  If no column names are referenced in the expression, 
bindings can be None. 
 



Different database engines have different rules for identifier matching.  For example 
PostgreSQL may have column names which are case-sensitive, and SQL Server does not.  
Because of this, the evaluate() function uses the NameCompare class on the engine-specific 
SqlReader.  This could become a source of bugs, if a query written for one engine is 
executed against via an AST that uses a different engine’s name comparison rules. 
 
Helpers 
The find_nodes() and find_node() helper methods can be used to recursively walk the 
AST to find a specified node, based on type.  The function allows an option parameter 
specifying a node that’s descendants should not be searched. 
The xpath and xpath_first helper methods can be used to select nodes in the SQL AST 
using XPath syntax. 
The is_count helper property should return true for expressions that should be treated 
as counts, and is_key_count returns true for expressions that count the private identifier. 
 
Unit Tests 
The unit tests are contained in test_ast.py, as described above in the Parsing section.  
In addition to the standard parsing tests, the test queries for the AST go through an 
extra set of tests, which include round-tripping from AST back to text and ensuring the 
query is unchanged, and round tripping back to a new AST and ensuring objects test as 
identical. 
 

Symbol Resolution 
 
Symbol resolution is the process of annotating all referenced columns in the query with 
the appropriate metadata.  The metadata is organized in tables and columns, so the 
first step in symbol resolution is to walk all relations in the query, ultimately matching 
table names with metadata.  This step is implemented in the load_symbols(metadata) 
function that is implemented on SqlRel subclasses which can reference tables or queries.  
This pass results in the m_symbols and m_sym_dict properties being populated.  These data 
structures represent all fields that are queryable from the relation.  In SQL, a relation is 
simply a collection of rows and columns, with columns being referenceable by name.  
load_symbols() is the way that we expose al queryable columns on any relation. 
 
m_symbols is an ordered list of symbols, with order being important for the main Query 
object.  m_sym_dict is just a dictionary with the symbols keyed for lookup by name.  The 



dictionary may be missing columns which are anonymous (or may contain them with an 
inferred name). 
 
(We should make a call one way or another here). 
 
m_symbols is a list of (name, symbol) tuples, where the name is the value used for 
referencing the symbol, and the symbol is a typed object or object tree.  For any Table 
object, load_symbols() pulls in all column names from the metadata, as TableColumn 
objects. 
 
Other types of relations are more complex, as they can include columns from multiple 
tables, or can even construct totally new columns, as in the case of a Query relation.  In 
all cases, however, the m_symbols property will list the columns that are queryable from 
that relation. 
 
Once the queryable columns have all been loaded into the lookup tables, with attached 
metadata, the second step of symbol resolution begins.  This step resolves all identifiers 
that are used in expressions, to map them to underlying table columns.  This is done via 
the symbol(expression) method, which is traversed recursively until all Column objects 
have associated TableColumn objects.  For expressions that do not reference a Column, the 
symbol() function simply returns a clone of the object’s tree.  You can think of symbol() 
as building a “shadow” AST which has Column objects replaced with TableColumns 
containing metadata. 
 
(is this really a clone?) 
 
(why do we return a shadow?  Why not replace in-place?) 
 
As the symbol() function is called recursively, it handles aliasing.  The following example 
uses superscript annotations to show the steps that are taken in a symbol resolution 
that has table aliases. 
 
SELECT SUM(o.Sales4)3 FROM Order2 o, Customer1 c USING cid 

1. load_symbols attaches all of the TableColumn objects from Customer metadata to that 
Table object’s m_symbols 

2. load_symbols attaches all of the TableColumn objects from Order metadata to that 
Table object’s m_symbols 



3. The symbol() method gets called on AggFunction, which returns an AggFunction 
with expression (which is a Column in the original non-resolved AST) replaced by 
the call to the child object’s symbol() 

4. The Column symbol() walks through all relations in the query, skipping any relation 
where the alias doesn’t match.  In this example, the Customer relation will be 
skipped, and the Sales column will be matched to the TableColumn in Order. 

 
As with evaluation, the mapping of symbol() to TableColumn depends on engine-specific 
rules for identifier matching.  We use the engine-specific identifier matching code 
implemented in the NameCompare of the engine-specific SqlReader. 
 
Because the job of symbol resolution is to ensure that proper sensitivity and other 
important constraints (such as max_ids) propagate through the query, bugs in this code 
could lead to privacy exploits.  For example, if an adversary can trick a query into using 
a metadata column with lower sensitivity, privacy would be compromised.  There are 
several tricky edge cases with JOINS and nested relations that could expose bugs if not 
carefully tested.  For example, aliases can be nested and scoped.  This code should be 
rigorously reviewed and tested before re-enabling JOINS. 
 
We do not expose the m_symbols property on all SqlRel objects.  The current design 
philosophy is that m_symbols is only exposed on objects which create columns, and those 
include only Table and Query objects.  All other relations expose their symbols through 
the all_symbols() method, which simply recurses to find columns from their source 
relation(s).  This might not be an optimal design, since it requires callers to know 
whether a relation can create columns or not, and perhaps it would be better if all 
relations can be treated the same.  This might be an issue when/if we add support for 
deeply nested SELECT subqueries and JOINs. 
 
Symbol resolution occurs before Validator is called, because validation relies on 
information obtained through symbol validation.  Some level of validation happens 
during symbol resolution, and is not postponed to Validator.  For example, queries must 
reference columns that are available in the metadata.  Because symbol resolution is 
triggered automatically as part of parsing (as long as metadata is supplied), this means 
that the API limits the degree to which callers can construct ASTs which are not valid 
for differential privacy. 
 
This separation is not as clean as could be imagined.  Ideally, the AST would allow any 
number of privacy-invalid queries to be constructed, as long as the queries adhered to 



the formal grammar, and implied grammar such as non-duplication of identifiers.  
Privacy-enforcement would only kick in at the Validator stage, and all stages after.  This 
is important, because the AST is used in other parts of the platform, for privacy-
important work that is nevertheless not intended to validate.  For example, reservoir 
sampling is implemented in the rewriter using AST fragments rather than strings, for all 
of the other benefits that come from using the AST. 
 
The original intention was that AST parsing would branch based on presence of 
metadata, such that symbol resolution would be a separate and optional step.  However, 
this code path is not well-factored or well-tested, and the current assumption is that 
metadata is always passed in to parser, and symbol resolution always happens 
automatically at parse.  
 
Sensitivity 
 
The sensitivity() helper method propagates the sensitivity for columns through the 
AST from metadata.  This is how the postprocessing determines how much noise to 
add, so bugs here can impact privacy directly.  The metadata allows columns to specific 
unbounded sensitivity, which allows the column to be used in a COUNT or GROUP BY, 
but not in SUM or related numeric aggregates.  sensitivity() returns None when 
metadata are unavailable, or where sensitivity doesn’t make sense (such as categorical 
data). 
 
sensitivity() attempts to handle interval arithmetic.  For example, SUM(2 * foo) will 
result in sensitivity being doubled, while SUM(2 + foo) will result in unchanged 
sensitivity. 
 
For columns marked as unbounded in the metadata, sensitivity is set to np.Inf.  In cases 
where sensitivity is not sensible, None is returned.  Care should be taken to make sure 
that columns with sensitivity of None are not returned improperly. 
 
Note that we currently use add-remove neighboring definition, and core defaults to 
substitute.  For parity with core, we should update to support both, and default to 
substitute.  Stochastic validator will need to support both. 



SqlReader 

 
 
The SqlReader base class represents a connection to a database that returns rowsets from 
SQL queries.  It derives from the Reader base class, which returns rowsets from arbitrary 
(potentially non-SQL queries).  Both classes implement an execute() method, which 
takes a query in text format and returns a rowset, as an iterator over tuples. 
 
The execute() method should always return an iterator, and should stream rows as they 
are received from the database. 
 
Both classes have an execute_df() helper method, which converts the output results to a 
Pandas DataFrame before returning. 
 
(Add metadata validation here?  Or in validate? Or in ConnectionMetadata?) 
 
Each engine-specific reader (e.g. SqlServerReader, PostgresReader, PandasReader) derives 
from SqlReader.  The purpose of each custom reader is to: 

1. Accept connection information, and establish a connection with the database, 
wrapping whatever engine-specific libraries are needed to support that database. 

2. Implement identifier comparison rules that are engine-specific 
3. Plug in serialization rules to ensure executed queries use engine-compatible 

syntax 
4. Wrap engine-specific idiosyncrasies in a common interface 

 
Connection Information 
 
Each constructor tries to copy the parameter definition and order that are common to 
that engine’s connection API.  Going forward, we will recommend callers to use 
SqlReader’s from_connection factory method, which takes an engine parameter and 
instantiates the correct concrete reader implementation, attaching the appropriate 



NameCompare and Serializer.  A future update will allow probing of a connection to 
determine the engine, making the engine parameter optional. 
 
NameCompare 
 
Implementations of the NameCompare base class, shown in the diagram above, override the 
identifier_match method, to support engine-specific identifier matching rules.  For 
example, table names in Postgres are case-sensitive, while table names in SQL Server 
are not.  Table names with spaces can be escaped with square brackets in one database 
engine, and quotes in another.  The name compare also handles default schema search 
rules.  For example, table1 and dbo.table1 refer to the same table on SQL Server, since 
dbo is the default schema. 
 
identifier_match takes two parameters, query_identifier, and meta_identifier, and 
reports on whether or not they match.  This method is called during symbol resolution 
and evaluation to link identifiers used in the SQL query with objects in the database 
that are described in the metadata. 
 
The implementor’s only responsibility is to implement the engine-specific equality rules.  
Callers (e.g. symbol resolution) must carefully consider edge cases when calling this 
method.  For example, if a caller attempts to resolve symbols by stopping at the first 
match, this could result in privacy bugs, because duplicate columns are engine-specific. 
 
Serializer 
 
The Serializer base class, shown above, is intended to implement engine-specific rules 
for serialization of ASTs to string.  This is envisioned as a sanitization and 
canonicalization step that can help ensure compatibility and mitigate SQL injection 
attacks.  There are two places where sanitization on query serialization is done with 
simple string replaces.  Doing sanitization through the AST (e.g. with find_nodes) is 
more robust.  Example serialization benefits could include: 

• Quoted strings can be converted from generic query representation to engine-
specific quotes.  We currently strip all quote characters, which is overly 
aggressive. 

• Automatically handle escaping rules, like identifiers with spaces 
• Handle casing conventions (e.g. Postgres all lowercase, SQL Server all upper) 
• Switch engine-specific grammar.  For example, TOP K and LIMIT support are 

disjoint by engine.  Subquery syntax can be idiosyncratic. 



• Canonicalize identifiers 
 
Out of Scope 
 
Other engine-specific behavior not mentioned here, is out of scope for this design.  These 
may be important to consider in the future.  Examples include collations and code 
pages, date/time handling rules, and behavior of inferred column names. 

Validator 
 
Validation occurs after symbol resolution, but before the query is rewritten.  The goal of 
validation is to ensure that the query meets all requirements to be processed with 
differential privacy. 
 
The philosophy is that AST and symbol resolution may freely represent queries that are 
disallowed from a differential privacy standpoint, and validation should be used to 
verify that a given query meets the requirements to be processed with differential 
privacy. 
 

 
 
The validateQuery() method receives a Query AST object and metadata, and checks all 
QueryConstraints objects in _ast/validate.py by executing each check_() method against 
the AST.   Each constraint defined in the object is tested for The design is intended to 
allow constraints to be defined and tested independently and incrementally.  Constraints 
can use find_nodes helper method to be more declarative. 
 
The validation code was originally designed to return a tuple with True or False, and 
applicable error message for any failed constraint.  The intention was that validation 
could be used to see a full list of failing constraints.  However, several of the constraints 



now raise exceptions, which means the validator will fail fast on error.  This should be 
cleaned up to use only one pattern. 
 
There are some additional validation steps which take place before the validator, during 
symbol resolution, and some which take place after, in the rewriter and private_reader.  
These should be examined, and any which can be duplicated in the validator should be 
duplicated.  Philosophically, the validator should provide as complete a validation as 
possible, even if the caller never intends to execute the query with private_reader. 
 
Some examples of validation that should be duplicated from symbol resolution or 
private_reader to validator include: 

• Ensuring that columns in aggregates do not have unbounded sensitivity 
• Ensuring that bounded columns have both upper and lower 

 
It is fine for subsequent layers to catch the same errors, for defense in depth.  It is less 
obvious that preceding layers should catch error that are unrelated to privacy (see 
discussion under symbol resolution section). 
 
Validation should use NameCompare when matching identifiers. 
 
Out of Scope 
 
Currently, the validator does not validate some user contribution limits, because we do 
not support joins or subqueries where these may be problematic.  However, we will need 
to figure out how to validate these in the future, and it’s not clear that the 
AST+metadata will be sufficient information for the validator to reason about these 
queries. 
 
These queries may arise even without joins.  For example, SELECT url, COUNT(DISTINCT 
userId). 

Rewriter 
 
The rewriter takes a valid, analyst-provided query, and rewrites it into a query plan 
that can be used for differential privacy.  Rewriting the query plan allows us to add 
functionality such as: 

• Clamping values to be within the upper and lower bound 
• Reservoir sampling IDs to enforce user contribution 



• Rewriting certain supported aggregates to execution forms.  For example AVG(x) 
becomes SUM(x) / COUNT(x) 

• Obtaining hidden columns used for filtering or computation.  This step allows re-
use of noisy answers 

 
The rewritten query will typically have more output columns than the original query.  
For example, a SELECT AVG will result in a SELECT SUM, COUNT.  The private 
reader will convert the columns supplied from the rewritten query back into the shape 
requested in the original query.  To do this, it needs to keep track of all the names used 
in the rewritten query, which may nest several layers deep. 
 
Scope 
 
The Scope object keeps track of names in each nested query, and successive layers can 
ask for a symbol, name pair, ensuring that names are not duplicated. 
 
There is some arbitrary handling for anonymous expressions, which does not follow 
engine-specific conventions. 
 
Pushing Aggregate SELECT Expressions 
 
We support a limited set of differentially private expressions, such as SUM, AVG, 
COUNT, and VAR.  The SUM and COUNT expressions are pushed through to the 
rewriter as SUM and COUNT expressions, while AVG and VAR are converted to 
formulas that use SUM and COUNT.  This creates some additional work for the private 
reader, since the private reader needs to decide which output columns need noise, and 
ensure that the rewritten query is parsed to get sensitivity.  This is not entirely 
straightforward, since numeric columns can be used in a GROUP BY statement, in 
which case they don’t need noise, and ints may be used in SUMs or COUNTs, with 
differing sensitivity requirements. 
 
It might be desirable for the rewriter to convert these output columns to ANON_SUM 
and ANON_COUNT, or even ANON_AVG on the outer.  This would require that 
these grammar elements be added to the grammar, and these obviously would not work 
in typical engines.  This is a benefit, since it would prevent the outer expressions from 
being executed in a SQL engine, and these expressions are intended to be handled in 
post-processing.  All of the inner queries, which are intended to run in the engine, would 
remain compatible with SQL-92.  This has some advantages: 



• Callers could pass in their own ANON_SUM, etc. to PrivateReader to get 
custom differential privacy queries 

• Using outer functions like ANON_AVG and ANON_VAR would allow the 
rewriter to more easily plug these functions to external implementations, such as 
the core library 

• Could allow capturing of errors where outer query passes through non-noisy 
column.  Final validation pass could ensure no non-ANON, unbounded sensitivity 
aggregates 

 
An open issue is how we handle quantiles.  The current proposal is to select an 
underlying histogram of (e.g.) 100 items, and then use a differentially private histogram 
to report the requested quantile(s).  This would require the rewriter to return one or 
more vector columns with each row. 
 

PrivateReader 
 
The private reader is an implementation of SqlReader that wraps an engine-specific 
reader, and performs the following steps: 

1. Parse query and add symbols 
2. Validate 
3. Rewrite 
4. Execute 
5. Postprocess: add noise, evaluate formulas, filter, sort 

 
The from_connection factory method is available on PrivateReader, and requires a Privacy 
parameter in addition to the connection and engine.  Going forward, the Privacy class 
will be the preferred way to pass in privacy definitions. 



 
 
 



The implementation uses a functional (map/filter/sort) pattern to allow the code to run 
in pure Python or in PySpark.  Because queries may run over very large result sets, 
execute() should return an iterator that streams records. 
 
The rewriter returns a nested query, with the outer query not intended to execute 
against the database engine, but instead to be used in post-processing.  This outer query 
returned by the rewriter should have the exact same column names and types as the 
original query that was passed in. 
 
The private reader has a lot of code for handling key counts and identifiers.  This is tied 
to the is_key and is_private_key helper methods on the AST, which relies on symbol 
resolution.  Bugs in this code path would likely result in privacy bugs. 
 
Privacy 
 
The Privacy class is a property bag for setting and querying privacy information, such 
as epsilon, delta, alphas (for accuracy), neighboring definition, floating point protection, 
etc.  The constructor is keyword-only, to minimize breaking changes when new 
capabilities are added or removed.  All properties have a default value. 
 
Accuracy 
 
PrivateReader has an execute_with_accuracy method, which calls the normal execute 
method, and adds accuracy information for each row and column of output.  Each alpha 
in privacy.alphas represents the probability that a noisy value falls outside of the 
computed accuracy range.  For example, alpha of 0.05 corresponds to a 95% interval, 
where 95% of noisy values will fall within the range returned for accuracy. 
 
Accuracy of SUM and COUNT is fixed for a particular epsilon, delta, and alpha.  
Accuracy of AVG, VAR, and STD is dependent on the noisy count, and may change for 
each row of output. 
 
To support the existing pattern where rows are streamed one at a time, we need to 
return the accuracies with each tuple output row.  Because the caller can request 
multiple alphas, we return the accuracies in order of alphas, wrapped in a tuple 
alongside the row tuple: 
 
tuple(row, ((accuracies_alpha_1), (accuracies_alpha_2)) 



This supports a calling pattern like: 
 
privacy = Privacy(epsilon=1.0, delta=1/1000, alphas=[0.05, 0.01]) 

private_reader = PrivateReader.from_connection(conn, engine=”postgres”, 

privacy=privacy) 

result = private_reader.execute_with_accuracy(query) 

for row, accuracies in result: 

 acc95, acc99 = accuracies 

 print(row) 
 
The accuracy computation needs to be done within the body of the main execute_ast 
method, when mapping output rows, so we pass an accuracy parameter with default of 
False through all execute methods.  This flag is set to True when called from 
execute_with_accuracy.  In the body of execute_ast, we always maintain output rows as a 
tuple of (row, accuracies), with accuracies set to None when accuracy is not requested.  
This allows for consistent processing in the postprocessing stages of filtering, sorting, 
and thresholding.  However, to preserve compatibility with DB-API interface when 
calling execute with no accuracy information, the execute_ast method will check to see 
if accuracy is False, and if so, will map all (row, accuracies) tuples to an iterator over 
rows, as the final step of processing.  
 
 
 


