
Handling of Escaped Identifiers

This design document covers handling of identifier escaping in SmartNoise SDK.

Identifiers

Identifiers in SQL-92 refer to database objects, such as databases, schemas, tables, and
columns. Database names are usually case-sensitive, while schema, table, and column
identifiers are case-insensitive by default. For example, a table created like

CREATE TABLE Foo (Col1 …)

Can be queried equivalently from any SQL-92 database using syntax like:

SELECT * FROM FOO;
SELECT * FROM foo;
SELECT * FROM fOo;

However, if the object name uses a reserved SQL keyword, or used mixed case, it needs
to be escaped. The default SQL-92 escape character is double-quotes (single-quotes are
used for string literals).

CREATE TABLE “Select” (“Group” int, …)

SELECT * FROM “Select”;
SELECT * FROM select; # Fails!
SELECT “Group” FROM “Select”;
SELECT “group” FROM “select”; # OK on SQL Server, fails on PostgreSQL

Note that PostgreSQL treats escaped identifiers as case-sensitive, while SQL Server
treats everything as case-insensitive by default.

Non-escaped identifiers must start with a character and cannot contain spaces. Escaped
identifiers such as “35” and “New Column” are permitted.

Although SQL Server supports the standard SQL-92 escape sequence, identifiers can
also be escaped with square brackets in SQL Server. MySQL requires backticks (`) to
escape identifiers.

Note that each component of an identifier is escaped independently. So, for example, if
the schema is named “My Schema” and the table is named “Group”, the query would
need to specify:

SELECT * FROM “My Schema”.“Group”

Aliases can be escaped:

SELECT col_1 AS “My Column” FROM FOO;

Search Path

SQL-92 supports fully-qualified object names like database.schema.table. Most
commonly people use schema.table syntax. Most databases have a default schema, such
as ‘dbo’ on SQL Server and ‘public’ on PostgreSQL. Queries that reference a naked
table name are searched in a search path that typically looks in the default schema, and
may be configured to search in a schema named after the logged-in user.

While it is recommended to query full schema.table names, use of naked schema is very
common, and we need to be able to tell that, for example, dbo.Table1 is equivalent to
Table1.

ODBC Driver Handling

In general, data access APIs pass through identifiers exactly as specified by the user.
The database engine automatically resolves names and checks case-sensitivity.

The response from data access APIs typically removes escaping, because the
programming language bindings just treat the column names as strings. Therefore,
mapping aliases to output column names requires understanding of database identifier
handling.

SmartNoise Identifier Handling

Because we do extensive identifier processing outside the database engine, there are
several places where we need to ensure compatibility with various database backend
behavior.

AST

The AST built in AST.Parse maintains full fidelity with input SQL syntax. Executing
with a DataReader passes through with no changes, so everything works the same as
when calling from the database engine’s native API.

Database-specific readers know how to convert escape characters, for example to convert
double-quotes to backticks, so identifiers parsed in one dialect should run without errors
in another dialect.

Metadata

The Metadata class is used to attach type and sensitivity to nodes in the AST, via
load_symbols on SqlRel relation objects. The load_symbols functions work by
recursing relations down to terminal table references in relations. Each table name in
the query is checked against the metadata file. Because the semantics of escaped
identifiers vary based on database engine, the load_symbols function needs to adapt
based on database engine, if the query uses escaped identifiers. For example:

SELECT * FROM “Table1” JOIN Table1 USING(ID);

Will join two different tables on Postgres, but will join the same table to itself on SQL
Server. Because Postgres treats these as two different tables, both tables will need
metadata in the YAML file. Therefore, the YAML metadata needs to store metadata
using engine-specific escaping rules. The load_symbols function must also handle cases
where multiple expressions match the same table name. For example, the YAML might
store a Postgres table name as lowercase with no escaping, such as table1, and both
queries:

SELECT * FROM “table1” JOIN Table1 USING(ID);
SELECT * FROM Table1 JOIN Table1 USING(ID);

Should resolve to the same table definition in the metadata.

This means that Metadata.Metadata, Metadata.ConfigFile, and Metadata.Database all
need to support escaped identifiers with engine-specific semantics. The calls to SqlRel
relation objects load_symbols must maintain the engine-specific escaping from the

YAML, and load_symbols must be able to load from metadata that may not match the
exact syntax the user supplied in the query definition.

Note that queries over system tables to list database objects do not escape identifiers.
Therefore the database inference needs to determine if an identifier needs to be escaped
before loading into metadata.

TableColumn and Column

The TableColumn object represents a piece of resolved metadata that has been attached
as the result of a load_symbols call. The TableColumn maps to the metadata, while
Column objects represent select expressions which may query a TableColumn or some
transformed expression over TableColumns. Because the Column and TableColumn
represent two different inputs (from the analyst and from the data curator,
respectively), they may not always match exactly syntactically. The system must be
able to perform engine-specific comparisons to determine whether a given Column
references a given TableColumn.

Expressions

Expressions can be value or Boolean expressions, and represent a collection of
transforms and aggregates over any number of source columns. Expressions are analyst-
provided, and can appear in select statements, predicates, join criteria, and aggregates.
The symbol() method on all SqlExpr object will walk down the tree recursively until
resolving all Column references to TableColumn references in the associated relations.

NamedExpressions are a special type of expression that maps an arbitrary expression to
a new name that will be available to Column expressions in the parent scope. The new
name, called an ‘alias’, can be escaped like any other identifier. Calls to symbol() must
be able to walk arbitrary names.

For expressions in select statements which are not provided with a name, SQL-92
defines name inference rules. For example, if a select statement selects a single column
with no transformation, the new column will be named the same as the original column.
Names that cannot be inferred will typically be anonymous in the parent scope, and will
show some arbitrary placeholder name such as ‘???’ in ODBC result column names.
Our AST allows expressions to define a symbol_name function which is used by the
rewriter to generate friendly-looking names for complex expressions we do not wish to

be anonymous. The symbol_name function must be escaping-aware. For example,
mapping a count expression to ‘count_’ + column_name might fail, because column
name might be escaped, leading to invalid identifiers with escape character in the
middle of the name, like count_[Group].

Expression Evaluation

All expressions can be evaluated against a dictionary of bindings, for example:

bindings = {
 'temperature': [50.0, 60.0, 44.0],
 'crashes': [10, 8, 3],
 'refurbished': [True, True, False]
}

Can be passed to an expression like “SELECT Temperature / 10, NOT Refurbished”
using expr.evaluate(bindings), which will result in two named expressions with
anonymous names and vectors [5.0, 6.0, 4.4] and [False, False, True]
respectively.

Similar to other cases with escaped identifiers, the column names used in bindings may
be the result of an ODBC-style call, while the query string will be user-supplied. The
bindings may include spaces or uppercase characters, and may or may not include
escape characters. The system will need to use a comparer to ensure that identifiers
used in the query attach to the appropriate column in the bindings.

Validator

The validator requires that symbols have been resolved, and relies on ability to
determine whether or not particular columns are key columns or numeric. As long as
the AST properly matches using engine-specific identifier matching, validation will work
with no additional effort.

Rewriter

The rewriter works by transforming an initial query into a sequence of queries with
intermediate transformations to support differential privacy.

To create each new subquery, specific transformations are created as fragmented AST
expressions, and a NamingScope is established to manage name creation and avoid
collisions in each child scope. The naming scope manager must be escaping-aware, both
to ensure that new names use consistent escaping that looks similar to the user-supplied
expressions, and to avoid name collisions where escaped and non-escaped identifiers are
syntactically different but otherwise the same.

Implementation

Engine-specific escaping rules are implemented as a standard interface NameCompare
object with an identifier_match method that can be used to compare two identifiers
using engine-specific semantics. Each engine-specific implementation of DataReader
provides a NameCompare object that can be attached to the query before resolving
symbols.

Note that NameCompare is only necessary when resolving escaped identifiers. Because
ASTs can be constructed, manipulated, and executed against database engines without
ever loading symbols (and escaped identifiers will still work fine in scenarios that do not
require symbols), the comparerer is not always necessary.

Conversely, it may sometimes be desirable to manipulate queries with symbols and
escaped identifiers without ever connecting to a database. In this case, the default
comparer may be used, or the comparer from an engine-specific reader can be used
without using the rest of the reader.

Supplement: Metadata Resolution Flow

This section recaps the flow of resolution for metadata.

1. Ast.Parse accesses a text representation of SQL. The statement is parsed with
the Lexer and Parser, and then an AST is built. The system may stop at this
point, if metadata processing is not desired. The AST can still be used and
executed against various backend engines.

2. If metadata is supplied, the AST now walks all relations recursively to map input
relations to metadata. Relations include subqueries, tables, and joins, and are
represented by SqlRel objects. This loading process results in all relations having

a list of resolved metadata entries representing database objects accessible to that
relation, including sensitivities, types, and keys.

3. If metadata was available for all relations, the parser now connects all output
expressions to input metadata, by recursively walking all expressions, represented
by SqlExpr objects. Resolution of SqlExpr sources must follow SQL-92 relation
aliasing rules. For example, SELECT A.Foo, B.Bar FROM X AS B JOIN Y AS A;
must ensure that the first expression searches the second relation, and the second
expression searches the first relation. The output of this final pass is a list of
both named and anonymous expressions at each scope containing expressions.
These resolved expressions are parallel to the original AST, and reference
TableColumn (metadata) objects rather than Column expressions.

