
Limited SQL Semantics for Differential Privacy 
 
This document describes a subset of SQL semantics that can be used to safely build 
differentially private reports which target a variety of backends, including non-SQL 
systems.  In addition, the document describes the basic steps that are needed to map 
from parsed SQL language syntax to an intermediate format, in order to support queries 
written in SQL syntax. 
 

Input 
 

• Records: (required) A list of tuples which may contain private data.  We refer to 
each tuple as a ‘record’, and we refer to each positional entry of the tuple as a 
‘column’.    Each record is a tuple of values, which may include values of type 
int, float, boolean, string, or datetime.  Individual tuples in a list must match in 
types, but entries in the same tuple do not need to match.  For example, a valid 
list of records might include tuples of type áfloat, float, string, boolñ, but a list of 
records with a mix of áfloat, string, bool, stringñ and ástring, bool, float, stringñ 
would be invalid.  One of the columns must represent the identity of the private 
item to be protected (e.g. user_id).  Columns in tuples may be referenced by 
name. 

• Metadata: (required) The metadata specifies which column represents the private 
key, and specifies type information about the source tuples, such as min and max 
for numeric columns and cardinality for columns to be used in grouping 
expressions. 

• Predicates (optional): A list of predicates used to filter a subset of records.  
Predicates are simple Boolean expressions, but may include transforms of the 
source tuples.  For example, a simple predicate might filter records where t[0] > 
10, meaning tuples where the first entry is greater than 10.  A more complex 
predicate might transform a tuple value, (t[0] ^ 2)/2 > 10, or transform multiple 
values, (t[0] – t[1])> 0. 

• Inner Transforms (optional): A list of expressions used to transform the tuples 
before aggregation.  Transforms always result in the same number of records, but 
tuples may change in type. 

• Aggregate Expressions (optional):  A list of grouping expressions used to 
partition the source records before summarizing.  The records will be grouped by 
the cross-product of all distinct aggregate expression values.  If aggregate 
expressions are omitted, the entire list of tuples will be aggregated to a single 
partition. 



• Summary Functions (required): A list of summarization functions to apply over 
each aggregated partition.  Examples include Count, Sum, Avg, Var, and so on.  
Tuples from this step may include only summary function results or grouping 
keys from aggregate expressions.  This step will have number of tuples equal to 
the cross-product of distinct aggregates. 

• Outer Transforms (optional): A list of transforms to apply to summary tuples. 
• Outer Predicates (optional): A list of predicates to be used to filter the 

aggregated results. 
• Order Expressions (optional): Specifies how to sort the final output. 
• Truncate Expression (optional): Specifies how many rows of sorted output to 

return. 
 
There are 3 required and 5 optional inputs.  These inputs will be referenced throughout 
the document. 
 
Input Restrictions 
 
Summary functions are restricted to functions for which we know how to compute 
private answers. 
 
We support only one aggregation step.  Summary functions are required, and may be 
surrounded by only one stage of non-summary transforms before and after 
summarization.  For example, the following are permitted: 
 

• 10 + Sum(t[0])  # outer transform 
• Sum(t[0] ^ 2)    # inner transform 
• 10 + Sum(t[0] / 7) 
• 10 + Sum((t[0]/7) + (t[1]/3)) 

 
The following are prohibited, despite being possible in SQL: 
 

• Count(10 + Sum(t[0])) 
• Sum(Count(t[0] / 7)) 

 
Predicates only apply to source tuples, and cannot be used to filter based on the results 
of aggregation, inner transform, or outer transform. 
 



The source records may be constructed by a series of joins, aggregates, and other 
operations independently of the differentially private processing.  The differentially 
private query must receive a single set of tuples, regardless of how they are created. To 
ensure differential privacy, the source records must be created in a way that ensures no 
private key contributes to more than one partition in the source records, and the private 
key must be included as a column in the source records. 
 

Exact Query Semantics 
 
The query processor computes exact (non-private) results in the following order: 
 

1. Filter: The records are first filtered to return only records that match the desired 
predicates.  The number of records may change, but the number columns and 
column types and values of each record do not change. 

2. Projection: Each record is transformed according to any per-record 
transformations.  The number of records does not change, but the number of 
columns and values may change. 

3. Aggregation: Groups of records are partitioned according to the  specified 
partition keys. 

4. Summarization: The specified summary functions are computed over the records 
in each partition.  The number of records will now equal the number of 
partitions, and the columns may change. 

5. Projection: Each summarized record is evaluated against any remaining outer 
(non-aggregate) expressions.  The number of records does not change, but the 
columns may change. 

6. Filter: The final aggregated results are filtered according to the outer predicates. 
7. Sort: The columns are sorted according to the values in the final projection step. 
8. Truncate: The results are truncated to return the number of aggregated rows 

requested. 
 

Private Query Processing 
 

1. Clamp: The clamp operation clamps all source tuples to conform to sensitivity 
bounds specified in the metadata.  This results in the same number of tuples, 
with the same types.  Alternately, the clamp operation can be replaced with a 
filter operation that drops outliers.  Result includes private key. 



2. Filter: Drop all clamped records that do not match the predicates.  Results in 
record set with same shape but may have fewer records.  Result includes private 
key. 

3. Sample:  Perform reservoir sampling to bound the contribution of each private 
key value.  Result will be record set with same shape but may have fewer 
records.  Result includes private key. 

4. Projection: Compute all inner expressions to produce a new set of tuples with the 
same number of records, but may be different types and number of columns. 

5. Aggregation: Partition the records based on aggregation expressions. 
6. Summarization: Compute all summary functions on records within each partition.  

Additionally, count the number of distinct private keys contributing to each 
partition.  This will result in number of tuples equal to the number of partitions, 
and may change the types and number of columns. 

7. Noise: Use privacy mechanisms to add noise to summary results.  Shape of record 
set will remain the same. 

8. Filter:  Drop all partitions where count of distinct keys is below privacy 
threshold. 

9. Projection: Compute any outer expressions that operate on summarized values. 
10. Filter: Drop output aggregates based on outer predicates. 
11.  Sort: Sort operates over the noise results. 
12. Truncate: Return the number of sorted rows specified. 

 

Simplified Example 
 
First consider a simple example, where only the minimum required inputs are provided: 
 

• Records: a list of tuples with one column ákeyñ 
• Metadata: no numeric value, so metadata consists only of key column 

specification 
• Summary Functions: Count(key) 

 
This is equivalent to a SQL query like: SELECT COUNT(key) FROM relation; 
 
Using the numbering for “Private Query Processing” above, we need to perform only 4 
steps: 
 

3. Sample 
6. Summarize 



7. Noise 
8. Filter 

 
We now elaborate on each of these functions: 
 
The sample function is a generic filter function, and only needs to know which column is 
the key, and how many times each key may appear. 
 
Sample { 
 Inputs:  

records: List[ákey, …ñ] # the records 
tau: Int         # integer bounds on private key 

 return reservoir_sample(records, count(key) <= tau) 
} 
 
 
The summary functions are generic reduce functions, and simply take a vector of some 
values and return a result.  Sum, Count, Min, Max, etc. are available in every 
programming language and data processing platform. 
 
For purposes of translating SQL semantics, some summary functions can specify 
whether null values are included, using quantifiers ‘all’ versus ‘distinct’. 
 
The noise function is a generic map function, which only needs to know how much noise 
to add to each mapped output.  The noise is scaled by the sensitivity of the column.  In 
the case of counts, the sensitivity is 1 scaled by the maximum contribution of each key, 
which is our parameter tau. 
 
Noise { 
 Inputs: 
  summaries: List[val1, …] 
  sensitivities: List[scale1, …] 
 return List[val + Random(0, sens) for val, sens in zip(summaries, sensitivities)] 
} 
 
In our simple case, the summaries parameter is a list with one row and one column, 
consisting of the exact count (computed by the summary step).  Our sensitivities list 



also has one row and one column, with a single value of tau.  We add random noise 
scaled to our sensitivity. 
 
The last step is another filter function, which simply drops any rows with too few keys.  
This function needs only one parameter, representing the threshold, for example tau * 
tau. 
 
To recap, our processing involves a filter, a summarize, a map, and then a filter.  The 
summarize function needs no privacy-specific parameters, and the other functions need 
only minimal information.  The computation can be thought of as: 
 
result = relation.filter(max=tau).summarize().map(scale=tau).filter(thresh=tau*tau) 
The final filter operates on a single row, since there is only one row of output.  
Therefore, the final filter step will result in the answer either being shown or not shown.  
In examples with aggregation we will look at later, the filter step may show some 
partitions while dropping other. 
 
Because these 4 functions are fairly simple and generic, we do not need to consider them 
further in the remainder of this document. 
 

Example with Clamping 
 
We now consider an example where we summarize over a value with a sensitivity 
greater than one. 
 

• Records: a list of tuples with two columns ákey, valueñ 
• Metadata: specifies the key column, and also the min and max of the value 

column, for example [5,30] 
• Summary Functions: Sum(value) 

 
This is equivalent to a SQL query like: SELECT SUM(value) FROM relation; 
 

1. Clamp 
3. Sample 
6. Summarize 
7. Noise 
8. Filter 

 



In this example, we have one new function to define.  The clamp function is a generic 
map function. 
 
Clamp { 
 Inputs: 
  vals: List[val1, …] 
  min: Int|Float 
  max: Int|Float 
 return vals.map(v => min if v < min, max if v > max, else v) 
} 
 
There is one min and one max that are applied to all values in the column.  In some 
applications, we might prefer to implement as a filter, dropping any records that are 
outside the min and max bounds. 
 
Note that the sensitivity parameter passed to the noise function in this example with be 
the range of the value (in this example, |30	– 	5|, or 25) multiplied by tau. 
 
Also note that we need to keep track of Count(key) internally, to allow filter step 9 to 
operate. 
 

Aggregates 
 
This is the first example we consider that includes an optional input.  For this example, 
we include an aggregation expression: 
 

• Records: a list of tuples with three columns ákey, value, group_keyñ 
• Metadata: specifies the key column, and also the min and max of the value 

column, for example [5,30] 
• Aggregate Expression: ágroup_keyñ 
• Summary Functions: Sum(value) 

 
This is equivalent to SQL:  
SELECT SUM(value) FROM relation GROUP BY group_key; 
 

1. Clamp 
3. Sample 
5. Aggregation 



6. Summarize 
7. Noise 
8. Filter 

 
The aggregation function is a generic reduce function, and does not need any 
information about differential privacy.  Aggregation reducers are available in all 
programming languages and data processing platforms. 
 
Aggregate { 
 Inputs: 
  records : List[ákey, …, group_keyñ 
  expr: <group_key, …> 
 return List[ágroup_key1, List[ákey, …ñ, ákey, …ñ, …]ñ, 

      ágroup_key2, List[ákey, …ñ, ákey, …ñ, …]ñ, 
 …] 

} 
 
Instead of a single row, there will now be one row of output per distinct value of 
group_key.  All of the steps after aggregation (in this case, summarize, noise, and filter) 
will now be performed on each partition of records.  We now maintain internal 
Count(key) per-partition, so the final filter step can drop partitions with insufficient 
keys. 
 

Predicates and Order 
 
We next consider two more optional inputs. 
 

• Records: a list of tuples with three columns ákey, value, group_keyñ 
• Metadata: specifies the key column, and also the min and max of the value 

column, for example [5,30] 
• Predicates: (value > 10) 
• Aggregate Expression: ágroup_keyñ 
• Summary Functions: Sum(value) 
• Order Expressions: ágroup_key descendingñ 

 
In SQL, this would be: 
 



SELECT Sum(value) FROM relation WHERE value > 10 GROUP BY group_key ORDER 
BY group_key DESC; 
 
To support these, we need to define two new functions. 
 

1. Clamp 
2. Filter 
3. Sample 
5. Aggregation 
6. Summarize 
7. Noise 
8. Filter 
10. Sort 

 
The predicate selection step is a generic filter function, and the sort step is a generic 
sort function.  The predicates must be applied after clamping and before aggregation, 
while the sort must be applied after all other steps. There is nothing specific to privacy 
in either step, and implementations of both filter and sort are widely available, so we 
will not consider these further. 
 

Outer Transforms 
 
For the remainder of this document, we will skip enumeration of the inputs defined at 
the beginning of the document and use SQL syntax.  Consider an example like this: 
 
SELECT Sum(value) + 10 FROM relation; 
 

1. Clamp 
3. Sample 
6. Summarize 
7. Noise 
8. Filter 
9. Projection 

 
This example is an “outer transform”, because the arithmetic expression applies to the 
final sum.  The outer transform is a map function, mapping noisy values to outputs.  
Recall from earlier than the noise function requires sensitivity information to properly 



protect privacy.  Because differential privacy is immune to pos-processing, we can apply 
arbitrary expressions to the noisy summaries without affecting privacy. 
 

Inner Transforms 
 
Now consider a SQL query like this: 
 
SELECT SUM(value * value) FROM relation; 
 

1. Clamp 
3. Sample 
4. Projection 
6. Summarize 
7. Noise 
8. Filter 

 
This projection represents a map function as well, but the values are mapped before 
aggregation and summarization.  Because these transformations occur before the noise 
function, they may affect the sensitivity of the inputs to noise.  Because of this, we can 
only support inner transforms for which we know how to compute appropriate 
sensitivity. 
 

Translating Functions: Outer and Inner Transforms 
 
In some cases, we will prefer to construct noisy summaries from outer expressions.  For 
example, if we want to compute: 
 
SELECT AVG(value) FROM relation; 
 
We will not compute the exact average and then add noise scaled to the range of value.  
Instead, we might compute the exact sum and the exact count, and divide the two: 
 
SELECT SUM(value) / COUNT(value) FROM relation; 
 
As we discussed regarding outer transforms, the expression above is applied after noise 
is added, and immunity to post-processing ensures that we maintain privacy. 
 



Some functions may likewise be possible to translate to inner expressions, which are 
applied before noise is added.  In these cases, we must ensure that sensitivity is 
calculated properly in order to scale noise at the aggregation step. 
 
For example, consider a variance calculation: 
 
SELECT VAR(value) FROM relation; 
 
Rather than computing the exact variance and then adding noise scaled to the range of 
variance, we want something that preserves privacy with better accuracy.  The variance 
is defined as the expected value of the squared difference between each value and the 
mean.  This can be translated to a combination of inner and outer expressions: 
 
SELECT AVG(value * value) – (AVG(value) * AVG(value)) FROM relation; 
 
with the Avg() computations in turn being translated into outer expressions.  
 

Implementation Overview 
 
To review, we have specified the 10 functions necessary to implement a limited subset of 
SQL semantics with differential privacy: 

clamped = relation.map(v => bounded(v)) 
filtered = clamped.filter(where predicates) 
sampled = filtered.filter(reservoir sample) 
projected = sampled.map(v => inner_expr(v)) 
aggregated = projected.reduce(group_by) 
summarized = aggregated.summarize(by key) 
noisy = summarized.map(v => noisy(v)) 
private = noisy.filter(key_count > thresh) 
processed = private.map(v => outer_expr(v)) 
final = process.sort() 

 
These are all very simple, and can be implemented reliably in a variety of languages.  In 
some cases, it may be desirable to split execution across implementations.  For example, 
modern database engines are very good at computing exact aggregates, so one approach 
would be to run everything up to ‘aggregated’ as SQL, and then post-process ‘noisy’ 
through ‘final’ in the data access layer.  In other cases, the entire process can be 
implemented in the database engine, with user-defined functions to add noise.  



Alternately, the entire process can be implemented outside the database engine; for 
example using map/reduce/filter style processing over CSVs in JavaScript, Python, or 
Scala; or perhaps using custom C++ implementations of all 10 operations running in a 
secure SGX enclave. 
 
Because the operations are fixed, and require only a limited number of parameters, it is 
possible to encode operations as a simple tree structure with required parameters 
attached, and easily emit execution plans for various backends, such as PostgreSQL or 
SQL Server, or Spark. 
 
SQL Parser 
 
Completely independent of the intermediate representation and supported execution 
backends, we want to support construction of queries using familiar SQL language 
statements.  This requires a parser that can safely parse SQL, validate that statements 
adhere to the supported subset and source relation requirements, and perform any pre-
processing necessary to build the intermediate format; for example, converting AVG and 
VAR to the equivalent outer and inner expressions. 
 
Discussion of the SQL syntax parser is beyond the scope of this document.  However, 
the input system must handle the following basic steps: 
 

1. Validate that source relation (everything in FROM clause) adheres to 
requirements: includes private key at all subquery and join steps, and private key 
never included in more than one partition. 

2. Validate that query includes only one set of aggregate expressions. 
3. Convert known summary functions to preferred alternates (e.g. AVG and VAR) 
4. Validate that SELECT clause includes only summary functions or GROUP BY 

keys. 
5. Validate that all summary functions can safely compute sensitivity and bounds 

are known. 
6. Transform to intermediate representation 

 
When converting back from intermediate representation to SQL, the system must: 
 

1. Add key_count to support final filter step 
2. Generate platform-specific sampling step 
3. Generate appropriate join semantics, e.g. USING or ON 



4. Use platform-specific handling for booleans, literals, escaped identifiers, etc. 
 

Rewriting Queries 
 
We now describe the transformation steps in more detail. 
 

1. First, rewrite the original query to become the outer query, which will be 
evaluated during post-processing. 

a. Convert all expressions to use SUM and COUNT. 
b. Push all group-by columns into select scope for child query.  These may or 

may not be used in the select statement.  These are needed for the child 
group by clause to work. 

c. Push all column expressions anywhere in select statement which are not in 
summary functions into child select scope.  These column expressions may 
be children of other expressions, such as arithmetic expressions or math 
functions.  Only the column expressions should be pushed to child scope, 
because all outer expression evaluation happens at this layer.  Column 
expressions inside summary functions are not pushed separately here, 
because the entire summary function will be pushed through. 

d. Convert all SUM and COUNT to SUM, and push inner expression to read 
from SUM or COUNT that was pushed to child scope.  For example, 
COUNT(Foo) becomes SUM(count_Foo), with the COUNT(Foo) pushed 
to child scope.  We use SUM in this stage, because the group by clause is 
pushed to child scope.  Throw error if any summary function has summary 
function descendants.  For example, if the original query has something 
like COUNT(3 / SUM(Foo)), we cannot support this. 

e. Keep order by.  Push group by to child scope. 
2. This is the aggregation subquery.  All outer expressions have been dropped, and 

will be evaluated in the parent.  This query contains only aggregation columns 
and summary functions, which may include complex inner expressions. 

a. Select all columns which have been pushed through from parent scope, and 
add a column for SELECT COUNT(key) AS key_count, to allow 
thresholding during postprocessing.   

b. The group by clause must not contain the key. 
c. Convert COUNT and SUM to SUM again, and push through like before.  

We use sums again, because counts are aggregated at a per-key level prior 
to reservoir sampling, and we require keys to contribute to only one 
partition, ensuring that sum of counts is the count. 



3. Aggregate at same group by level, but include key.   
a. Reservoir sample 
b. Push through all Column expressions from inner expressions.  Only 

column expressions are pushed through, because inner expressions are 
evaluated at this layer. 

c. Push through aggregation columns and key to child scope so they are 
available for aggregation in this layer. 

4. Clamp all numeric columns directly from the table.  Do not clamp key column. 
 


