
Limited SQL Semantics for Differential Privacy

This document describes a subset of SQL semantics that can be used to safely build
differentially private reports which target a variety of backends, including non-SQL
systems. In addition, the document describes the basic steps that are needed to map
from parsed SQL language syntax to an intermediate format, in order to support queries
written in SQL syntax.

Input

• Records: (required) A list of tuples which may contain private data. We refer to
each tuple as a ‘record’, and we refer to each positional entry of the tuple as a
‘column’. Each record is a tuple of values, which may include values of type
int, float, boolean, string, or datetime. Individual tuples in a list must match in
types, but entries in the same tuple do not need to match. For example, a valid
list of records might include tuples of type áfloat, float, string, boolñ, but a list of
records with a mix of áfloat, string, bool, stringñ and ástring, bool, float, stringñ
would be invalid. One of the columns must represent the identity of the private
item to be protected (e.g. user_id). Columns in tuples may be referenced by
name.

• Metadata: (required) The metadata specifies which column represents the private
key, and specifies type information about the source tuples, such as min and max
for numeric columns and cardinality for columns to be used in grouping
expressions.

• Predicates (optional): A list of predicates used to filter a subset of records.
Predicates are simple Boolean expressions, but may include transforms of the
source tuples. For example, a simple predicate might filter records where t[0] >
10, meaning tuples where the first entry is greater than 10. A more complex
predicate might transform a tuple value, (t[0] ^ 2)/2 > 10, or transform multiple
values, (t[0] – t[1])> 0.

• Inner Transforms (optional): A list of expressions used to transform the tuples
before aggregation. Transforms always result in the same number of records, but
tuples may change in type.

• Aggregate Expressions (optional): A list of grouping expressions used to
partition the source records before summarizing. The records will be grouped by
the cross-product of all distinct aggregate expression values. If aggregate
expressions are omitted, the entire list of tuples will be aggregated to a single
partition.

• Summary Functions (required): A list of summarization functions to apply over
each aggregated partition. Examples include Count, Sum, Avg, Var, and so on.
Tuples from this step may include only summary function results or grouping
keys from aggregate expressions. This step will have number of tuples equal to
the cross-product of distinct aggregates.

• Outer Transforms (optional): A list of transforms to apply to summary tuples.
• Outer Predicates (optional): A list of predicates to be used to filter the

aggregated results.
• Order Expressions (optional): Specifies how to sort the final output.
• Truncate Expression (optional): Specifies how many rows of sorted output to

return.

There are 3 required and 5 optional inputs. These inputs will be referenced throughout
the document.

Input Restrictions

Summary functions are restricted to functions for which we know how to compute
private answers.

We support only one aggregation step. Summary functions are required, and may be
surrounded by only one stage of non-summary transforms before and after
summarization. For example, the following are permitted:

• 10 + Sum(t[0]) # outer transform
• Sum(t[0] ^ 2) # inner transform
• 10 + Sum(t[0] / 7)
• 10 + Sum((t[0]/7) + (t[1]/3))

The following are prohibited, despite being possible in SQL:

• Count(10 + Sum(t[0]))
• Sum(Count(t[0] / 7))

Predicates only apply to source tuples, and cannot be used to filter based on the results
of aggregation, inner transform, or outer transform.

The source records may be constructed by a series of joins, aggregates, and other
operations independently of the differentially private processing. The differentially
private query must receive a single set of tuples, regardless of how they are created. To
ensure differential privacy, the source records must be created in a way that ensures no
private key contributes to more than one partition in the source records, and the private
key must be included as a column in the source records.

Exact Query Semantics

The query processor computes exact (non-private) results in the following order:

1. Filter: The records are first filtered to return only records that match the desired
predicates. The number of records may change, but the number columns and
column types and values of each record do not change.

2. Projection: Each record is transformed according to any per-record
transformations. The number of records does not change, but the number of
columns and values may change.

3. Aggregation: Groups of records are partitioned according to the specified
partition keys.

4. Summarization: The specified summary functions are computed over the records
in each partition. The number of records will now equal the number of
partitions, and the columns may change.

5. Projection: Each summarized record is evaluated against any remaining outer
(non-aggregate) expressions. The number of records does not change, but the
columns may change.

6. Filter: The final aggregated results are filtered according to the outer predicates.
7. Sort: The columns are sorted according to the values in the final projection step.
8. Truncate: The results are truncated to return the number of aggregated rows

requested.

Private Query Processing

1. Clamp: The clamp operation clamps all source tuples to conform to sensitivity
bounds specified in the metadata. This results in the same number of tuples,
with the same types. Alternately, the clamp operation can be replaced with a
filter operation that drops outliers. Result includes private key.

2. Filter: Drop all clamped records that do not match the predicates. Results in
record set with same shape but may have fewer records. Result includes private
key.

3. Sample: Perform reservoir sampling to bound the contribution of each private
key value. Result will be record set with same shape but may have fewer
records. Result includes private key.

4. Projection: Compute all inner expressions to produce a new set of tuples with the
same number of records, but may be different types and number of columns.

5. Aggregation: Partition the records based on aggregation expressions.
6. Summarization: Compute all summary functions on records within each partition.

Additionally, count the number of distinct private keys contributing to each
partition. This will result in number of tuples equal to the number of partitions,
and may change the types and number of columns.

7. Noise: Use privacy mechanisms to add noise to summary results. Shape of record
set will remain the same.

8. Filter: Drop all partitions where count of distinct keys is below privacy
threshold.

9. Projection: Compute any outer expressions that operate on summarized values.
10. Filter: Drop output aggregates based on outer predicates.
11. Sort: Sort operates over the noise results.
12. Truncate: Return the number of sorted rows specified.

Simplified Example

First consider a simple example, where only the minimum required inputs are provided:

• Records: a list of tuples with one column ákeyñ
• Metadata: no numeric value, so metadata consists only of key column

specification
• Summary Functions: Count(key)

This is equivalent to a SQL query like: SELECT COUNT(key) FROM relation;

Using the numbering for “Private Query Processing” above, we need to perform only 4
steps:

3. Sample
6. Summarize

7. Noise
8. Filter

We now elaborate on each of these functions:

The sample function is a generic filter function, and only needs to know which column is
the key, and how many times each key may appear.

Sample {
 Inputs:

records: List[ákey, …ñ] # the records
tau: Int # integer bounds on private key

 return reservoir_sample(records, count(key) <= tau)
}

The summary functions are generic reduce functions, and simply take a vector of some
values and return a result. Sum, Count, Min, Max, etc. are available in every
programming language and data processing platform.

For purposes of translating SQL semantics, some summary functions can specify
whether null values are included, using quantifiers ‘all’ versus ‘distinct’.

The noise function is a generic map function, which only needs to know how much noise
to add to each mapped output. The noise is scaled by the sensitivity of the column. In
the case of counts, the sensitivity is 1 scaled by the maximum contribution of each key,
which is our parameter tau.

Noise {
 Inputs:
 summaries: List[val1, …]
 sensitivities: List[scale1, …]
 return List[val + Random(0, sens) for val, sens in zip(summaries, sensitivities)]
}

In our simple case, the summaries parameter is a list with one row and one column,
consisting of the exact count (computed by the summary step). Our sensitivities list

also has one row and one column, with a single value of tau. We add random noise
scaled to our sensitivity.

The last step is another filter function, which simply drops any rows with too few keys.
This function needs only one parameter, representing the threshold, for example tau *
tau.

To recap, our processing involves a filter, a summarize, a map, and then a filter. The
summarize function needs no privacy-specific parameters, and the other functions need
only minimal information. The computation can be thought of as:

result = relation.filter(max=tau).summarize().map(scale=tau).filter(thresh=tau*tau)
The final filter operates on a single row, since there is only one row of output.
Therefore, the final filter step will result in the answer either being shown or not shown.
In examples with aggregation we will look at later, the filter step may show some
partitions while dropping other.

Because these 4 functions are fairly simple and generic, we do not need to consider them
further in the remainder of this document.

Example with Clamping

We now consider an example where we summarize over a value with a sensitivity
greater than one.

• Records: a list of tuples with two columns ákey, valueñ
• Metadata: specifies the key column, and also the min and max of the value

column, for example [5,30]
• Summary Functions: Sum(value)

This is equivalent to a SQL query like: SELECT SUM(value) FROM relation;

1. Clamp
3. Sample
6. Summarize
7. Noise
8. Filter

In this example, we have one new function to define. The clamp function is a generic
map function.

Clamp {
 Inputs:
 vals: List[val1, …]
 min: Int|Float
 max: Int|Float
 return vals.map(v => min if v < min, max if v > max, else v)
}

There is one min and one max that are applied to all values in the column. In some
applications, we might prefer to implement as a filter, dropping any records that are
outside the min and max bounds.

Note that the sensitivity parameter passed to the noise function in this example with be
the range of the value (in this example, |30	– 	5|, or 25) multiplied by tau.

Also note that we need to keep track of Count(key) internally, to allow filter step 9 to
operate.

Aggregates

This is the first example we consider that includes an optional input. For this example,
we include an aggregation expression:

• Records: a list of tuples with three columns ákey, value, group_keyñ
• Metadata: specifies the key column, and also the min and max of the value

column, for example [5,30]
• Aggregate Expression: ágroup_keyñ
• Summary Functions: Sum(value)

This is equivalent to SQL:
SELECT SUM(value) FROM relation GROUP BY group_key;

1. Clamp
3. Sample
5. Aggregation

6. Summarize
7. Noise
8. Filter

The aggregation function is a generic reduce function, and does not need any
information about differential privacy. Aggregation reducers are available in all
programming languages and data processing platforms.

Aggregate {
 Inputs:
 records : List[ákey, …, group_keyñ
 expr: <group_key, …>
 return List[ágroup_key1, List[ákey, …ñ, ákey, …ñ, …]ñ,

 ágroup_key2, List[ákey, …ñ, ákey, …ñ, …]ñ,
 …]

}

Instead of a single row, there will now be one row of output per distinct value of
group_key. All of the steps after aggregation (in this case, summarize, noise, and filter)
will now be performed on each partition of records. We now maintain internal
Count(key) per-partition, so the final filter step can drop partitions with insufficient
keys.

Predicates and Order

We next consider two more optional inputs.

• Records: a list of tuples with three columns ákey, value, group_keyñ
• Metadata: specifies the key column, and also the min and max of the value

column, for example [5,30]
• Predicates: (value > 10)
• Aggregate Expression: ágroup_keyñ
• Summary Functions: Sum(value)
• Order Expressions: ágroup_key descendingñ

In SQL, this would be:

SELECT Sum(value) FROM relation WHERE value > 10 GROUP BY group_key ORDER
BY group_key DESC;

To support these, we need to define two new functions.

1. Clamp
2. Filter
3. Sample
5. Aggregation
6. Summarize
7. Noise
8. Filter
10. Sort

The predicate selection step is a generic filter function, and the sort step is a generic
sort function. The predicates must be applied after clamping and before aggregation,
while the sort must be applied after all other steps. There is nothing specific to privacy
in either step, and implementations of both filter and sort are widely available, so we
will not consider these further.

Outer Transforms

For the remainder of this document, we will skip enumeration of the inputs defined at
the beginning of the document and use SQL syntax. Consider an example like this:

SELECT Sum(value) + 10 FROM relation;

1. Clamp
3. Sample
6. Summarize
7. Noise
8. Filter
9. Projection

This example is an “outer transform”, because the arithmetic expression applies to the
final sum. The outer transform is a map function, mapping noisy values to outputs.
Recall from earlier than the noise function requires sensitivity information to properly

protect privacy. Because differential privacy is immune to pos-processing, we can apply
arbitrary expressions to the noisy summaries without affecting privacy.

Inner Transforms

Now consider a SQL query like this:

SELECT SUM(value * value) FROM relation;

1. Clamp
3. Sample
4. Projection
6. Summarize
7. Noise
8. Filter

This projection represents a map function as well, but the values are mapped before
aggregation and summarization. Because these transformations occur before the noise
function, they may affect the sensitivity of the inputs to noise. Because of this, we can
only support inner transforms for which we know how to compute appropriate
sensitivity.

Translating Functions: Outer and Inner Transforms

In some cases, we will prefer to construct noisy summaries from outer expressions. For
example, if we want to compute:

SELECT AVG(value) FROM relation;

We will not compute the exact average and then add noise scaled to the range of value.
Instead, we might compute the exact sum and the exact count, and divide the two:

SELECT SUM(value) / COUNT(value) FROM relation;

As we discussed regarding outer transforms, the expression above is applied after noise
is added, and immunity to post-processing ensures that we maintain privacy.

Some functions may likewise be possible to translate to inner expressions, which are
applied before noise is added. In these cases, we must ensure that sensitivity is
calculated properly in order to scale noise at the aggregation step.

For example, consider a variance calculation:

SELECT VAR(value) FROM relation;

Rather than computing the exact variance and then adding noise scaled to the range of
variance, we want something that preserves privacy with better accuracy. The variance
is defined as the expected value of the squared difference between each value and the
mean. This can be translated to a combination of inner and outer expressions:

SELECT AVG(value * value) – (AVG(value) * AVG(value)) FROM relation;

with the Avg() computations in turn being translated into outer expressions.

Implementation Overview

To review, we have specified the 10 functions necessary to implement a limited subset of
SQL semantics with differential privacy:

clamped = relation.map(v => bounded(v))
filtered = clamped.filter(where predicates)
sampled = filtered.filter(reservoir sample)
projected = sampled.map(v => inner_expr(v))
aggregated = projected.reduce(group_by)
summarized = aggregated.summarize(by key)
noisy = summarized.map(v => noisy(v))
private = noisy.filter(key_count > thresh)
processed = private.map(v => outer_expr(v))
final = process.sort()

These are all very simple, and can be implemented reliably in a variety of languages. In
some cases, it may be desirable to split execution across implementations. For example,
modern database engines are very good at computing exact aggregates, so one approach
would be to run everything up to ‘aggregated’ as SQL, and then post-process ‘noisy’
through ‘final’ in the data access layer. In other cases, the entire process can be
implemented in the database engine, with user-defined functions to add noise.

Alternately, the entire process can be implemented outside the database engine; for
example using map/reduce/filter style processing over CSVs in JavaScript, Python, or
Scala; or perhaps using custom C++ implementations of all 10 operations running in a
secure SGX enclave.

Because the operations are fixed, and require only a limited number of parameters, it is
possible to encode operations as a simple tree structure with required parameters
attached, and easily emit execution plans for various backends, such as PostgreSQL or
SQL Server, or Spark.

SQL Parser

Completely independent of the intermediate representation and supported execution
backends, we want to support construction of queries using familiar SQL language
statements. This requires a parser that can safely parse SQL, validate that statements
adhere to the supported subset and source relation requirements, and perform any pre-
processing necessary to build the intermediate format; for example, converting AVG and
VAR to the equivalent outer and inner expressions.

Discussion of the SQL syntax parser is beyond the scope of this document. However,
the input system must handle the following basic steps:

1. Validate that source relation (everything in FROM clause) adheres to
requirements: includes private key at all subquery and join steps, and private key
never included in more than one partition.

2. Validate that query includes only one set of aggregate expressions.
3. Convert known summary functions to preferred alternates (e.g. AVG and VAR)
4. Validate that SELECT clause includes only summary functions or GROUP BY

keys.
5. Validate that all summary functions can safely compute sensitivity and bounds

are known.
6. Transform to intermediate representation

When converting back from intermediate representation to SQL, the system must:

1. Add key_count to support final filter step
2. Generate platform-specific sampling step
3. Generate appropriate join semantics, e.g. USING or ON

4. Use platform-specific handling for booleans, literals, escaped identifiers, etc.

Rewriting Queries

We now describe the transformation steps in more detail.

1. First, rewrite the original query to become the outer query, which will be
evaluated during post-processing.

a. Convert all expressions to use SUM and COUNT.
b. Push all group-by columns into select scope for child query. These may or

may not be used in the select statement. These are needed for the child
group by clause to work.

c. Push all column expressions anywhere in select statement which are not in
summary functions into child select scope. These column expressions may
be children of other expressions, such as arithmetic expressions or math
functions. Only the column expressions should be pushed to child scope,
because all outer expression evaluation happens at this layer. Column
expressions inside summary functions are not pushed separately here,
because the entire summary function will be pushed through.

d. Convert all SUM and COUNT to SUM, and push inner expression to read
from SUM or COUNT that was pushed to child scope. For example,
COUNT(Foo) becomes SUM(count_Foo), with the COUNT(Foo) pushed
to child scope. We use SUM in this stage, because the group by clause is
pushed to child scope. Throw error if any summary function has summary
function descendants. For example, if the original query has something
like COUNT(3 / SUM(Foo)), we cannot support this.

e. Keep order by. Push group by to child scope.
2. This is the aggregation subquery. All outer expressions have been dropped, and

will be evaluated in the parent. This query contains only aggregation columns
and summary functions, which may include complex inner expressions.

a. Select all columns which have been pushed through from parent scope, and
add a column for SELECT COUNT(key) AS key_count, to allow
thresholding during postprocessing.

b. The group by clause must not contain the key.
c. Convert COUNT and SUM to SUM again, and push through like before.

We use sums again, because counts are aggregated at a per-key level prior
to reservoir sampling, and we require keys to contribute to only one
partition, ensuring that sum of counts is the count.

3. Aggregate at same group by level, but include key.
a. Reservoir sample
b. Push through all Column expressions from inner expressions. Only

column expressions are pushed through, because inner expressions are
evaluated at this layer.

c. Push through aggregation columns and key to child scope so they are
available for aggregation in this layer.

4. Clamp all numeric columns directly from the table. Do not clamp key column.

