
UV-free Texture Generation with
Denoising and Geodesic Heat Diffusions

Simone Foti Stefanos Zafeiriou Tolga Birdal
Department of Computing
Imperial College London

Figure 1: Random textures generated by our method, Uv3-TeD, on the surface of general objects
from the Amazon Berkeley Object dataset and of chairs from ShapeNet (miniatures on the shelves).

Abstract

Seams, distortions, wasted UVspace, vertex-duplication, and varying resolution
over the surface are the most prominent issues of the standard UV-based texturing
of meshes. These issues are particularly acute when automatic UV-unwrapping
techniques are used. For this reason, instead of generating textures in automatically
generated UV-planes like most state-of-the-art methods, we propose to represent
textures as coloured point-clouds whose colours are generated by a denoising
diffusion probabilistic model constrained to operate on the surface of 3D objects.
Our sampling and resolution agnostic generative model heavily relies on heat
diffusion over the surface of the meshes for spatial communication between points.
To enable processing of arbitrarily sampled point-cloud textures and ensure long-
distance texture consistency we introduce a fast re-sampling of the mesh spectral
properties used during the heat diffusion and introduce a novel heat-diffusion-
based self-attention mechanism. Our code and pre-trained models are available at
github.com/simofoti/UV3-TeD.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/simofoti/UV3-TeD

1 Introduction
Meshes are surface discretisations intentionally designed to represent the geometry of 3D objects.
Since real objects are more than just their geometry, meshes are frequently augmented with textures,
representing appearances. Currently, textures are mostly represented as images that can be wrapped
on the mesh via a UV-mapping procedure that maps every point on the surface of the mesh into a
point on the UV-image-plane where texture information are stored. Textures are therefore mostly
generated on images, but considering that UV-maps intrinsically suffer from distortions, seams,
wasted UV-space, vertex-duplication, and varying resolution [19], is UV-mapping really the best
approach? In this work, we wonder: what if instead of generating a texture on a plane and then
wrapping it onto a shape we could directly generate a texture on the curved surface of the object?

The capability of generating textures by avoiding UV-unwrapping and mapping altogether alleviates
the post-processing issues caused by the UV-mapping and can save time and resources for many
3D artists, while generally improving the realism of the textures by avoiding distortions, seams,
or stretching artefacts. In addition, it could enable the creation of priors for a variety of computer
vision tasks ranging from shape and appearance reconstruction to object detection, identification,
and tracking. More generally, a texture representation adhering to the actual geometry of the surface
could result in smaller memory footprints without compromising on the rendering quality.

While most state-of-the-art methods focus on generating textures in UV-space [23, 7, 62, 56, 13, 34,
12, 42, 41] and thus inherit all the drawbacks of UV-mapping (Fig. 2, left), we propose to represent
textures with unstructured point-clouds sampled on the surface of an object and devise a technique to
render them without going through UV-mapping (Fig. 2, right). We generate point-cloud textures
with a denoising diffusion probabilistic model operating exclusively on the surface of the meshes.
This is fundamentally different from generating coloured point-clouds [58] or triplane-based implicit
textures [8]: while our work respects the geodesic information provided by the meshes, they operate in
the Euclidean space and ignore the topology of the objects they seek to texturise. When compared to
methods like [49], which can generate textures directly on the surface, our method has the advantage
of not requiring any remeshing operation and being adaptable to different sampling resolutions. In
addition, unlike many other texture generation methods [7, 12, 42, 49], we generate albedo textures
that by not factoring in the environment can be rendered with different lighting conditions to achieve
more photorealistic results (Fig. 1). Finally, while most methods are class-specific, our method can
be trained on datasets containing objects of different classes (Fig. 1). Our key contributions are:

1. We create a denoising diffusion probabilistic model generating point-cloud textures by operating
only on the surface of the meshes,

2. We introduce a novel attention layer based on heat diffusion and farthest point sampling to improve
the recently proposed DiffusionNet blocks [48] by facilitating global communication across the
entire surface of the object,

3. We propose a mixed Laplacian operator to ensure that heat diffusion can spread even in the
presence of topological errors and disconnected components while still mostly relying on the
provided topological information,

4. We devise an online sampling strategy that allows us to sample point-clouds and their spectral
properties during training without requiring to recompute them from scratch.

2 Related Work
Texture Representations and Rendering. Textures are traditionally represented by images which
are mapped onto 3D shapes via a UV-mapping. Since manual UV-mapping is complex and labour-
intensive, many methods tried to perform it automatically while attempting to address some of
the most common artefacts: seams and distortion [44, 39]. Other texture representations such
as [19, 50, 2, 61] have been proposed without finding a level of adoption comparable to the one of
UV-textures, which are still the de facto standard for modelling the appearance of meshes. Although
arguably the most convenient shape representation for computer graphics applications, meshes are
not the only data structure used to represent 3D shapes. In fact, point-clouds are equally spread
and they can also be associated with appearance information, stored as colour values associated to
each point. Many techniques have tried to reduce their sparsity while rendering [46, 45, 10], but
when photo-realism is required, textured meshes are still a superior representation which can better
approximate continuous surfaces. Given the strengths and limitations of both representations, we
propose to adopt a hybrid approach where the geometry is represented by a mesh and its appearance

2

Figure 2: Qualitative comparison between point-cloud-textures (top-right halves) and automatically
wrapped UV-textures (bottom-left halves). All textures were generated by Point-UV Diffusion in
order to showcase some of the most common issues of UV-mapping. Although the method generated
good quality textures as point-clouds, projecting them in UV-space introduces significant artefacts.

by an unstructured point-cloud texture. This can prevent seams, distortions, unused UV-space, and
varying resolution while still enabling the rendering of continuous surfaces. Hybrid approaches
mixing meshes and point-clouds have also been proposed by [18] and [60, 59]. However, in [18] the
appearance was present in both representations, which were both rendered, and [60, 59] used highly
structured point-clouds with points regularly positioned on the mesh faces. The representation of
[60, 59] can be used only for high-resolution textures requiring significantly more points than the
number of vertices, thus making it incompatible with current geometric deep learning models. For
this reason, we use unstructured point-cloud textures arbitrarily sampled at any required resolution.

Texture Generation. Many texture generation techniques have been proposed, each relying on
a different representation. Considering the wide adoption of UV-textures, and the maturity of
deep-learning techniques operating on the image domain, it is not surprising that most methods
still rely on UV-mapping and generate UV-images to wrap on meshes [23, 7, 62, 56, 13], or
simultaneously optimise meshes and texture to achieve the desired result [34]. Alternatively, another
common approach consists in using a generative model to generate depth-conditioned images from
multiple viewpoints. These images are then projected onto a mesh, refined, and stored as UV-
textures [12, 42, 41]. Other methods try to map textures on UV-spheres [14], tri-planes [22, 53],
NeRFs [1, 32], or implicit functions [35], but they either fail to operate on the real geometry of
the object or they end up-projecting the textures on a UV-plane. Even Point-UV Diffusion [58],
whose coarse stage is conceptually similar to ours because it generates coloured point-clouds using
point-cloud operators, effectively projects points in UV-textures that are refined with image diffusion
models. Unfortunately, especially at the coarse stage, this often results in the visible artefacts that are
typical of this parametrisation (Fig. 2). A method capable of operating directly on the surface of the
objects is Texturify [49], which shows remarkable results adopting a shape-conditioned Style-GAN
convolving coloured quad-faces. The main limitation of this method is its need to uniformly re-mesh
the input shapes to a fixed resolution, potentially affecting the quality of the original mesh. Most of
these methods are trained on class-specific shapes suggesting their difficulties in dealing with multi-
class datasets. While our method can actually operate on datasets with shapes belonging to different
classes, some methods exacerbate the single-class limitation, focusing exclusively on training their
models on single shapes to then generate texture variations [54, 33]. Similarly, manifold diffusion
fields [20] are capable of generating continuous functions –such as textures– over Riemannian
manifolds. Unfortunately, they generate functions only on manifold meshes and they are always
trained on single-shape datasets with multiple function variations. It is unclear whether their method
would be capable of generalising to different geometries.

3 Notation and Background
We define a mesh as M = {V,F}, with V ∈ RV×3 representing the positions of the V vertices
sampled on the surface (S) of a shape, and F ∈ NF×3 the set of triangular faces describing the
connectivity of the vertices. Throughout this work, we assume that the vertex positions and the
mesh topology are given, but different for every shape we want to texturise. We think of textuers as
continuous functions x : S → X mapping points on S to a signal space X that, without any loss
of generality, corresponds to the albedo colours, i.e., X = R3. In practice, we operate on textures
defined as coloured point-clouds with colours X = x(P) ∈ RP×3, where P ∈ RP×3 represents the
P 3D coordinates of the points sampled on S . Note that, in general, we assume P ̸= V (and P ̸= V)
as the texture point-clouds do not necessarily need to follow the same vertex distribution.

3

Before introducing the main contributions of our work in Sec. 4, we formalise two pillars on which
we base our method: the denoising diffusion models and the Laplace Beltrami operator.

Denoinsing Diffusion Probabilistic Model. Denoising Diffusion Probabilistic Models [26] (DDPMs)
are now a well-established class of generative models that rapidly found adoption across different
fields[11, 31]. They are parameterised by a Markov chain trained using variational inference and
are essentially characterised by three steps: a forward noising procedure, a backward denoising,
and a sampling procedure that is used during inference. During the forward process, a training
sample X0 ∼ p(X0) corresponding to a point-cloud texture and coming from the original tex-
tures distribution at timestep 0 is iteratively perturbed to {Xt}Tt=1 by progressively adding a small
amount of isotropic Gaussian noise ϵ0 ∼ N (0, I). Being p(Xt|Xt−1) := N (Xt;

√
1− βtXt, βtI)

a single step in the discrete forward chain with noise schedule βt, we represent the full chain
as p(XT |X0) =

∏T
t=1 p(Xt|Xt−1). Similarly, a generic step in the chain can be obtained as

p(Xt|X0) := N (Xt;
√
ᾱtXt, (1− ᾱt)I), where I is the identity matrix, ᾱt =

∏t
s=1 αs, and αt =

1−βt. This implies that Xt =
√
ᾱtX0+

√
1− ᾱtϵ0. In DDPM models like ours, the reverse process is

parameterised by a neural network trained to predict the noise that needs to be progressively removed.
This process is formulated as pθ(Xt−1|Xt) := N

(
Xt−1;

1√
αt

(
Xt − 1−αt√

1−ᾱt
ϵθ(Xt, t)

)
, βtI

)
, where

the variance is empirically fixed and the mean is leveraging the noise prediction network ϵθ(Xt, t).
The variational inference objective can thus be simplified to L = EXt,t

[
∥ϵt − ϵθ(Xt, t)∥22

]
. Finally,

the sampling process follows the reverse process where the trained network transforms noise samples
coming from the terminal distribution XT ∼ p(XT) into the denoised X̂0 ∼ pθ(X0) ≈ p(X0).

Eigenproperties of Laplace Beltrami Operator. The Laplace Beltrami operator (LBO) plays an
essential role in geometry processing. For triangle meshes, the LBO is usually based on a cotangent
formulation [38, 63] derived from finite element analysis. The cotangent Laplacian L ∈ RV×V is
a sparse matrix with elements proportional to the cotangent of the angles subtended by the edges,
and it is associated to a diagonal mass matrix M ∈ RV×V whose diagonal elements are proportional
to the total area of the faces surrounding each vertex [47]. The eigendecomposition of the LBO,
LΦ = ΛMΦ, determines a set of orthonormal eigenvectors Φ := [ϕk]

K
k=1 ∈ RV×K corresponding

to the K smallest eigenvalues Λ := [λk]
K
k=1 ∈ RK of the weak Laplacian and its mass matrix. These

eigenvalues and eigenvectors have been intensively studied in spectral geometry because not only can
they be used as global and local shape descriptors, but they can also be used to formulate surface
operations such as heat diffusion [63]. As the name suggests, heat diffusion regulates the physical
heat dispersion. This phenomenon can be modelled on any discrete surface representation with a
Laplacian operator and it is resolution, sampling, and representation independent.

4 UV-free Texture Diffusion (UV3-TeD)
We now describe UV3-TeD, our generative model for learning point-cloud textures built upon heat-
diffusion-based operators specifically designed to operate on the surface of the input shapes (detailed
in Sec. 4.1 and depicted in Fig. 4). Our diffusion model UV3-TeD operates on a noised version of
the colours, Xt, and predicts a denoised Xt−1 through a U-Net [43] shaped architecture (Fig. 9),
backed by novel attention-enhanced heat diffusion blocks (Sec. 4.1). We represent every mesh, M,
by a novel mixed LBO, informed both by the geometry and the topology of M(Sec. 4.2). We further
introduce an online sampling, in order to obtain a point-cloud P with corresponding albedo colours
X and tailored spectral operators (Sec. 4.3). UV3-TeD is trained with a denoising objective described
in Sec. 3, using heterogeneous batching. Meshes with a point-cloud texture can finally be rendered
by the nearest-neighbour interpolation we detail in Sec. 4.4.

4.1 Attention-enhanced Heat Diffusion Blocks

Diffusion Blocks (DB). Our blocks are inspired by DiffusionNet [48], consisting of three separate
learnable parts: heat diffusion, spatial gradient features, and a vertex-wise multi-layer perceptron
(MLP). The heat diffusion process is used to disperse and aggregate information on a surface and it
has a closed-form solution leveraging the spectral properties of the LBO. Since we aim to operate
on point-cloud textures while leveraging topological and geometric information provided by the
mesh, we use our tailored versions of M and Φ later described in Sec. 4.3 and named Φp and Mp

4

PRECOMPUTE ONLINE SAMPLING

XT X0

Φp sihks

{V, F} LR
mix

Λ

Φ

{P, X}

Λ’

Mp

fps(P)

UV3-TeD

Figure 3: Framework of UV3-TeD. Given a mesh M = {V,F} we precompute the proposed mixed
Laplacian (LR

mix) and its eigendecomposition (Λ and Φ). During the online sampling we compute
a coloured point-cloud {P,X} alongside its spectral quantities and other information used by our
network (Fig. 9). In particular, eigenvalues Λ, sampled eigenvectors Φp, and approximate mass Mp

are used to compute the heat diffusion operations (Eq. (1)); the farthest point samples fps(P) are
used in the proposed diffused farthest-sampled attention layers (Fig. 4), and the scale invariant heat
kernel signatures sihks and slope-adjusted eigenvalues Λ′ are used as shape conditioning. UV3-TeD
leverages these information to generate coloured point-clouds (X0) from noise (XT).

respectively. Being Yp ∈ RP×Y a generic field defined on P, the heat diffusion layer is defined as:

diffuse(Yp, h) := Φp

e−λ1h

...
e−λKh

⊙ (ΦT
pMpY), (1)

where ⊙ is the Hadamard product, T is the transpose operator, and h is the channel-specific learnable
parameter indicating the heat diffusion time and effectively regulating the spatial support of the
operator, which can range from local (h → 0) to global (h → +∞). Since this block supports only
radially symmetric filters about each point, it is combined with a spatial gradients features block
that expands the space of possible filters by computing the inner product between pairs of feature
gradients undergoing a learnable per-vertex rotation and scaling transformation in the tangent bundle
(see [48] for more details). The spatial gradients are computed online on the sampled point-cloud
with our faster implementation (see App. A.1). Then, the input is concatenated with the output of
these two blocks and passed to a per-vertex MLP (see Fig. 4, bottom).

We further add a time embedding representing the denoising step of the DDPM and introduce a group
normalisation [55] to stabilise training after the time injection. We also add a linear layer on the skip
connection when input and output channels differ., e.g., when skip connections from the downstream
branch of the U-Net are concatenated with the features of the upstream branch.

Enhancing DB via Farthest-Sampled Attention. As depicted in Fig. 4, each of our Attention-
enhanced Heat Diffusion Blocks concatenate three Diffusion Blocks and combine them with our
diffused farthest-sampled attention layer. Even though with the Diffusion Blocks alone it is theo-
retically possible to achieve global support when h → +∞, the longer the heat diffusion time, the
closer the diffused features become to the average of the input over the domain. This can result
in less meaningful features causing texture inconsistencies between distant regions. To improve
long-range consistency we introduce attention layers in each network’s block alongside the other
operators. Since directly performing the scaled dot product operation characterising attention modules
on full-resolution point-cloud textures would be prohibitive, we build upon the heat diffusion concept
and define a more efficient attention operator (Fig. 4, top).

We start by heat-diffusing the Y
(i−1)
p features predicted by the previous layers over P to spread

information across the surface geodesically. Then, we collect the spread information (i.e.,
diffuse(Y

(i−1)
p , h)) on a subset of the diffused features, S ∈ RS×C , which is obtained by se-

lecting the diffused features with C channels corresponding to the S farthest samples [40] of P. S is
then fed to a multi-headed self-attention layer [51], where a set of linear layers first computes queries,
keys, and values for each head, then computes a scaled dot-product attention, concatenates the results
across the different heads and, after going through an additional linear layer, produces a new set of
features over the farthest samples. These features still reside on the farthest samples. To spread them

5

HEAT DIFFUSION
FARTHEST-SAMPLED

MULTI-HEADED
SELF-ATTENTION

HEAT DIFFUSION

HEAT
DIFFUSION

SPATIAL
GRADIENTS cat gn

te

Yp
(i-1) Yp

i

+

+ +

ca
tΛ’e

sihkse

Figure 4: Attention-enhanced Heat Diffusion block. Three consecutive Diffusion blocks (bottom)
inspired by [48] and conditioned with a denoising time embedding are combined with a diffused
farthest-sampled attention layer (top). The proposed attention, conditioned with local and global
shape embeddings (sihkse and Λ′

e), first spreads information to all the points on the surface, before
computing a multi-headed self-attention on the features of the farthest samples (red points), and
finally spreads them back to all the points with another heat diffusion.

across the entire surface, we set the features of the other points to zero and perform another heat
diffusion. The output of the diffused farthest-sampled attention is re-combined with the output of the
other blocks learning a per-channel weighting constant.

Conditioning. While other point-cloud networks require additional inputs to represent the positions
of the input points alongside their features, we just provide noised colours as inputs because the
diffusion process intrinsically operates on the surface of the shapes we want to texturise. Nevertheless,
we do provide geometric and positional conditioning to the diffused farthest-sampled attention layers,
which are otherwise unaware of the relative position of their inputs. Instead of using P to compute
the positional conditioning directly, we rely on the scale-invariant heat kernel signatures (sihks) [6],
intrinsic local shape descriptors that are not only sampling and format agnostic but also isometry and
scale-invariant. The geometry conditioning is obtained from the eigenvalues Λ, which, like in [24],
are normalised by Area(M) and deprived of their slope as:

Λ′ =
{
λ′
k

∣∣∣ λ′
k =

λk

Area(M)
− 4π ∗ k, for k = 1, . . . ,K

}
. (2)

Eigenvalues processed as in Eq. (2) can still be used as global shape descriptors that besides having
the advantage of being scale invariant also fluctuate over a straight line, becoming easier to process
for a neural network. Intuitively, sihks tell us the intrinsic coordinates of a point, while Λ′ whether
we are supposed to generate a texture on a chair, a sofa, a vase, or something else. Both are embedded
with a MLP and the resulting geometry embeddings are concatenated with the point features.

4.2 Mixed Robust Laplacian
To operate on real-world datasets we propose a mixed Laplacian operator which is robust to any
triangle mesh and can better diffuse heat in the presence of complex topological structures (see
Fig. 5, left). Our mixed robust LBO (LR

mix) is defined as:

LR
mix = (1− ϱ)LR

m + ϱLR
p , with ϱ ∈ R. (3)

Instead of using the cotan-LBO directly, we use the robust mesh Laplacian LR
m [47], computed on the

vertices of the mesh, as it provides robustness to non-orientable and non-manifold meshes. LR
m ensures

that heat is geodesically diffused, while LR
p , its point-cloud counterpart, enables communication

between distinct or disconnected components of a mesh. A small ϱ value leads to diffusing heat on
the surface while allowing for some heat transmission to neighbouring regions (see Fig. 5, right).

4.3 Online Sampling of Points, Colours, and Spectral Operators
Our sampling strategy is at the core of our method as it provides an efficient sampling strategy that
can be used online without hindering training speeds. In particular, Poisson Disk Sampling produces
a point-cloud with regularly-spaced points, enabling us to approximate the mass matrix quickly.

6

h
M

E
SH

 L
B

O

h

M
IX

E
D

 L
B

O

Figure 5: Heat diffusion on Ted sliced on the belly and on a topologically disconnected birdhouse.
Using the mesh LBO prevents heat from spreading to disconnected regions, this is particularly visible
on Ted as heat does not spread over the nose, mouth, and legs. Similarly, on the birdhouse heat
spreads only on the right-hand side of the roof. Using our mixed LBO formulation heat can spread
over the entire shape even in the presence of topological errors and disconnected components.

To avoid recomputing the eigendecomposition of our Laplacian operator (LR
mix) on the sampled

point-cloud, we recycle the spectral operators precomputed on the vertices of the meshes. Finally, we
describe how colours are sampled during training.

Poisson Disk Sampling (PSD) [5]. PDS produces a point-cloud P ∈ RP×3, by uniformly sampling
points on the surface of a mesh. This is achieved with a parallel dart-throwing algorithm that uses a
uniform radius r across the surface. The samples pi ∈ P are randomly distributed on the surface but
remain a minimum distance of r away from each other. Since PDS is designed to operate given a
radius rather than a desired number of points P ∗, the radius can be estimated from the ideal quality
measure expected from the radius statistics introduced in [5] (see also [4]) :

ρ =
r

2

(2
√
3P ∗

Area(M)

) 1
2 ≈ 0.7 (4)

Mass Matrix. Since the point-cloud textures have been sampled using PDS, we hypothesise that
the distance between neighbouring points will equal the radius r used by PDS. A triangulation of
such points would result in equilateral faces with area Area(Fijk) =

r2

2 sin(
π
3) =

r2
√
3

4 . Therefore,
said Q the number of faces incident to each vertex pi and computing the radius with Eq. (4) we can
approximate the mass matrix as:

Mii =
1

3

∑
ijk∈F

Area(Fijk) ≈
Q

3

√
3

4
r2 ≈ (0.7)2Q

6P ∗ Area(M), ∀i. (5)

Since we never explicitly compute a triangulation of the point-cloud texture, we estimate Q on M.
Also, considering that the mass matrix derived in Eq. (5) has the same value on the diagonal elements,
we represent it with a scalar, Mp.

Eigenvalues and Eigenvectors. The eigenvalues of LBO are considered global shape descriptors, as
such, they are sampling-independent. Eigenvectors are on the other hand defined on the vertices of
the mesh on which LBO was computed. However, as mentioned in Sec. 3, a mesh M is effectively
discretising a continuous surface S. Similarly, a signal on the vertices of the mesh can be thought
of as a discretisation of the continuous function defined on S. For this reason, eigenvectors can be
resampled by interpolating the values of the eigenvectors defined at the vertices of the mesh. We
indicate these with Φp ∈ RP×K .

Colour Sampling. Although we advocate for a new texture representation based on point-clouds, the
most widely adopted representation is still based on UV-mapping. Hence, for every point sampled
with PDS, we also query the colour stored in the UVimage plane at its corresponding UVcoordinates.
When UVtextures are not provided, we sample the base colour instead. Following this procedure, we
obtain coloured point-clouds {P,X} that we use as point-cloud textures during training.

When images have a significantly higher resolution than the desired point-cloud texture resolution,
we resize the image texture before sampling. We assume that properly textured meshes should
intentionally have big UVtriangles where a high texture resolution is required. Being △uv the N
biggest triangles in UVspace and △3D the corresponding triangles on the mesh, to estimate the
scaling factor (s) needed to obtain the desired image texture size, we compute the square root of the

7

ratio between the number of samples on △3D and the number of pixels in △uv:

s =
[1

N

∑N
n=1 Area(△3D)/Area(Fijk)

(W × H)
(

1
N

∑N
n=1 Area(△uv)

)
/12

] 1
2

. (6)

The number of samples in △3D is estimated dividing their average area by the approximate area
of the PD sampled point-cloud texture. The number of pixels in △uv by estimating the fraction of
UVspace occupied by the biggest triangles and multiplying it by the number of pixels in the image
plane, which is computed as the product between image width and height (W × H). In practice,
we set N = 250 to consider a significant number of triangles and use 3s instead of s to account for
non-perfectly textured meshes which retain useful high-resolution content in small UVtriangles.

4.4 Rendering Point-Cloud Textures

RAY

ZO
OM ON RAY-M

ESH
 INTERSECTION

Figure 6: Rendering a point-cloud tex-
tured cow [16]. When a ray intersects
the mesh, we interpolate the colours of
the three nearest texture points.

We rely on Mitsuba3 [27], a physically-based differentiable
renderer, and implement a new class of textures: the point-
cloud textures that we previously characterised with the
{P,X} pair. When a ray intersection occurs and the point-
cloud texture is queried, we compute the three nearest point-
cloud neighbours to the hit point and interpolate their colour
values. This is analogous to the standard texture querying
that would occur in UVspace. Note that the nearest neigh-
bours are computed using Euclidean rather than geodesic
distances. When enough points are sampled, this is a rea-
sonable assumption that keeps rendering times low.

5 Experiments
Datasets. We conduct experiments on two datasets, the chairs of ShapeNet [9] and the Amazon
Berkeley Objects (ABO) dataset [15]. The chair category of ShapeNet has often been used for texture
generation on 3D shapes because, compared to the other categories, it has a high number of samples
with relatively high texture resolutions. This motivated us to train UV3-TeD on these data. However,
driven by the objective of building a model capable of operating across multiple categories, we also
decided to leverage the less widely used ABO. Despite its more limited adoption, this dataset contains
multiple object categories with good-quality meshes and textures.

Since with UV3-TeD mesh and texture resolution are independent, we pre-filter data with more than
60, 000 vertices. This choice doesn’t hinder the quality of the generated point-cloud textures but
reduces the GPU memory consumption during training. As we are interested in generating textures,
we also discard meshes that have coloured parts, but no textures. In both cases, we operate a 90 : 5 : 5
split between train, test, and validation sets. The filtering and data split leave us with 4, 633 chairs for
training, 266 for validation, and 317 for testing. On ABO we have 6, 476 shapes for training, 364 for
validation, and 443 for testing.

Implementation Details. We implement our method using PyTorch [37], Pytorch Geometric [21] and
Diffusers [52]. We use 32 sihks, K = 128 eigenvalues, and a mixed-LBO weighting of ϱ = 0.05.
We train our models using the AdamW [30] optimiser for 400 epochs on chairs and 250 on ABO, with
a learning rate of 1e−4 and a cosine annealing with 500 warmup iteration steps. We use T = 1, 000
DDPM timesteps, S = 250 farthest point samples in the attention layers, and P ∗ = 5, 000 target PDS
samples. Since P ∗ is used to estimate the mesh-specific PDS radius r, our point-cloud textures often
have a slightly different amount of points P . Thus, we made all our layers suitable for heterogeneous
batching. Our batch size is set to 8 on ShapeNet chairs and to 6 on ABO.

Unconditional Texture Generation. In Fig. 7 top we showcase our texture generation results on
chairs from ShapeNet, in Fig. 8 we depict results on objects from ABO, and in Fig. 1 we combine
textured object from both datasets rendered with more advanced lighting (more textured samples are
provided in App. A.2). Then, we proceed to compare our method against the state-of-the-art.

Although we acknowledge that many state-of-the-art methods operating in UV-space have generated
impressive results, we want to highlight that they operate on images, a data type which has been
vastly explored by the Deep Learning community and where models are well-engineered, mature in

8

Figure 7: Qualitative comparison between PointUVDiff (pcl-texture) and UV3-TeD (ours). Our
textures are more diverse and more semantically meaningful. All shapes belonged to the test set.

terms of efficiency and quality, and trained on larger datasets. We find it important to note that we do
not aim to compete against UV techniques, but rather attempt to prompt a paradigm shift towards a
direction that will not require UV-mapping, with its many unsolved issues. As detailed in Sec. 2, we
consider the coarse stage of Point-UV Diffusion [58] and Texturify [49] to be the best non-UV-based
method currently available as well as the most relevant works to ours. The former already extensively
proved its superiority over Texturify and [35] on the chairs of ShapeNet. On the same data, Texturify
made additional comparisons against UV ([57] and a UV Baseline), Implicit [35], Tri-plane [8], and
sparse grid [17] methods, outperforming all of them across all metrics. For this reason, we focus
our comparison on Point-UV Diffusion, which does not have shadows baked in the texture and is
therefore better suited to be rendered with our pipeline (Sec. 4.4). Because we adopt physically-based
rendering techniques rather than rasterisation, we re-compute FID and KID scores [25, 36, 3] for
Point-UV Diffusion. Each shape is rendered from 5 random viewpoints with the camera pointing
at the object at an azimuth angle sampled from U [0, 2π] and an elevation sampled from U [0, π/3].
We also compute the LPIPS [64] metric, measuring the diversity of the generated textures. For this,
we generate 3 texture variations for each shape, render them, and compute the LPIPS values for all
the possible pairs of images with the same underlying shape. The results are then averaged for each
method. We also evaluate two different scenarios: one in which we emulate the original formulation
and render shapes whose point-cloud textures have been projected in UV-space, and one where we do
not project their point-clouds in UV-space using our rendering technique instead. As we can observe
from the quantitative results reported in Tab. 1, our method significantly outperforms Point-UV
Diffusion across all metrics. In addition, as we can observe from the samples reported in Fig. 1 and
Fig. 7, our method can generate more diverse samples, which are also more capable of capturing the
semantics of the different object parts. Interestingly, this is achieved without providing any semantic
segmentation. UV3-TeD also significantly outperforms a DiffusionNet DDPM in sample quality
while maintaining comparable diversity (Tab. 1). This baseline mimics UV3-TeD by leveraging
a DDPM model with a U-Net-like architecture having as many layers as ours, but without shape
conditioning and using the point operators of [48]. Therefore, not only there were no farthest-sampled
attention layers, but no online sampling strategy was used and the point-cloud Laplacian and mass
matrix were used instead. Colours were still sampled like for UV3-TeD. All the hyperparameters
matched ours.

Table 1: Quantitative comparison on the chairs of ShapeNet.

Method FID (↓) KID ×10−4 (↓) LPIPS (↑)

PointUVDiff [58] (uv) 63.35 83.19 0.08
PointUVDiff [58] (pcl-texture) 65.09 126.18 0.09
DiffusionNet [48] DDPM 116.58 468.09 0.24
UV3-TeD (ours) 54.20 42.17 0.21

Ablation Studies. We here perform multiple ablations to examine how much each model component,
conditioning, and choice contributes to the overall performance. The ablations are performed training
the model for 50 epochs on the ABO (multi-class) dataset. Ablations are quantitatively evaluated on
100 test shapes using the three main metrics previously used during the comparisons: the FID, KID,
and LPIPS scores. Results are reported in Tab. 2. Overall, our final model (UV3-TeD) reports the
best quality scores while maintaining good diversity scores. A detailed discussion of the different
ablations is provided in App. A.2.

9

Table 2: Ablation studies on our UV3-TeD on ABO. Models were trained for 50 epochs.

FID (↓) KID ×10−4 (↓) LPIPS (↑)

UV3-TeD (ours) 77.14 58.59 0.14
w/o farthest-sampled attention 83.16 103.42 0.10
w/o Λ′ 79.96 66.29 0.15
w/o sihks 78.46 70.90 0.14
Φp instead of sihks 79.62 65.17 0.14
ϱ = 0 (LR

m instead of LR
mix) 78.07 62.64 0.15

ϱ = 1 (LR
p instead of LR

mix) 78.47 64.53 0.14
w/o GT-texture resizing 83.72 97.00 0.16

6 Conclusion
We introduced UV3-TeD, a new method for representing and generating textures on sparse unstruc-
tured point-clouds constrained to lie on the surface of an input mesh. Our framework is based
upon denoising diffusion over surfaces, in which we introduce a new farthest-sampled multi-headed
attention layer diffusing and capturing features over distant regions, required for coherent texture
synthesis. To perform diffusion on meshes of arbitrary topologies, we proposed a mixed Laplacian,
fusing both geometric and topological cues. In addition, we proposed online sampling strategies
for efficiently working with different quantities related to the shape spectra. Acknowledging that
rendering is as equally important as the texture representation, we proposed a path-tracing renderer
tailored for our point-cloud textures living on shape surfaces.

Limitations & Future Work. Existing UV-based texturing pipelines are heavily engineered, leverag-
ing the recent advances in image generation. We expect that our approach will similarly benefit from
the advances in 3D foundation models. Learning high-frequency texture details requires significant
training effort, usually exceeding thousands of epochs. More efficient architectures, utilising pooling
are required to overcome the drawback and increase the resolution of the generated textures. To
enhance quality even further, we recommend extending our method to support BRDFs generation
and encourage additional research into sampling strategies capable of ensuring crisp texture borders
between parts. With UV3-TeD and its promising results, we invite the community to re-think efficient
texture representations, and pave the way to seam-free high-quality coding of appearances on surfaces.
As such, we believe our work opens up ample room for future studies in texture generation and other
applications requiring the generation of signals that reside on surfaces. For instance, our framework
could be easily adapted to applications ranging from HDRI environment map generation, shape
matching, and weather forecasting, to molecular shape analysis and generation.

Broader Impact. We believe our approach will have a predominantly positive impact, fostering
research in generating UV-free textures and ultimately improving creative processes across various
industries and empowering individuals with limited artistic skills to participate in content creation.
Also, we do not expect nor wish to replace artists due to advancements in the field. Instead, we aim
to make their work more efficient, allowing them to unlock their creativity faster.

Figure 8: Random samples generated by UV3-TeD (our method) on ABO test set.

10

Acknowledgments and Disclosure of Funding
This work was supported by the UK Engineering and Physical Sciences Research Council (EPSRC)
Project GNOMON (EP/X011364) for Imperial College London, Department of Computing.

References
[1] H. Baatz, J. Granskog, M. Papas, F. Rousselle, and J. Novák. Nerf-tex: Neural reflectance field

textures. Computer Graphics Forum, 41(6):287–301, 2022.

[2] D. Benson and J. Davis. Octree textures. ACM Transactions on Graphics (TOG), 21(3):785–790,
2002.

[3] M. Bińkowski, D. J. Sutherland, M. Arbel, and A. Gretton. Demystifying mmd gans. arXiv
preprint arXiv:1801.01401, 2018.

[4] T. Birdal and S. Ilic. A point sampling algorithm for 3d matching of irregular geometries. In
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
6871–6878. IEEE, 2017.

[5] J. Bowers, R. Wang, L.-Y. Wei, and D. Maletz. Parallel poisson disk sampling with spectrum
analysis on surfaces. ACM Transactions on Graphics (TOG), 29(6):1–10, 2010.

[6] M. M. Bronstein and I. Kokkinos. Scale-invariant heat kernel signatures for non-rigid shape
recognition. In 2010 IEEE computer society conference on computer vision and pattern
recognition, pages 1704–1711. IEEE, 2010.

[7] T. Cao, K. Kreis, S. Fidler, N. Sharp, and K. Yin. Texfusion: Synthesizing 3d textures with
text-guided image diffusion models. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 4169–4181, 2023.

[8] E. R. Chan, C. Z. Lin, M. A. Chan, K. Nagano, B. Pan, S. De Mello, O. Gallo, L. J. Guibas,
J. Tremblay, S. Khamis, et al. Efficient geometry-aware 3d generative adversarial networks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
16123–16133, 2022.

[9] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva,
S. Song, H. Su, J. Xiao, L. Yi, and F. Yu. ShapeNet: An Information-Rich 3D Model Repository.
Technical Report arXiv:1512.03012 [cs.GR], Stanford University — Princeton University —
Toyota Technological Institute at Chicago, 2015.

[10] J.-H. R. Chang, W.-Y. Chen, A. Ranjan, K. M. Yi, and O. Tuzel. Pointersect: Neural rendering
with cloud-ray intersection. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 8359–8369, 2023.

[11] Z. Chang, G. A. Koulieris, and H. P. Shum. On the design fundamentals of diffusion models: A
survey. arXiv preprint arXiv:2306.04542, 2023.

[12] D. Z. Chen, Y. Siddiqui, H.-Y. Lee, S. Tulyakov, and M. Nießner. Text2tex: Text-driven texture
synthesis via diffusion models. ICCV, 2023.

[13] Z. Chen, K. Yin, and S. Fidler. Auv-net: Learning aligned uv maps for texture transfer and
synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1465–1474, 2022.

[14] A.-C. Cheng, X. Li, S. Liu, and X. Wang. Tuvf: Learning generalizable texture uv radiance
fields. ICLR, 2024.

[15] J. Collins, S. Goel, K. Deng, A. Luthra, L. Xu, E. Gundogdu, X. Zhang, T. F. Yago Vicente,
T. Dideriksen, H. Arora, M. Guillaumin, and J. Malik. Abo: Dataset and benchmarks for
real-world 3d object understanding. CVPR, 2022.

[16] K. Crane, U. Pinkall, and P. Schröder. Robust fairing via conformal curvature flow. ACM
Transactions on Graphics (TOG), 32(4):1–10, 2013.

11

[17] A. Dai, Y. Siddiqui, J. Thies, J. Valentin, and M. Nießner. Spsg: Self-supervised photometric
scene generation from rgb-d scans. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 1747–1756, 2021.

[18] A. Devaux and M. Brédif. Realtime projective multi-texturing of pointclouds and meshes for a
realistic street-view web navigation. In Proceedings of the 21st International Conference on
Web3D Technology, pages 105–108, 2016.

[19] D. Dolonius, E. Sintorn, and U. Assarsson. Uv-free texturing using sparse voxel dags. Computer
Graphics Forum, 39(2):121–132, 2020.

[20] A. A. Elhag, J. M. Susskind, and M. A. Bautista. Manifold diffusion fields. In ICLR, 2024.

[21] M. Fey and J. E. Lenssen. Fast graph representation learning with PyTorch Geometric. In ICLR
Workshop on Representation Learning on Graphs and Manifolds, 2019.

[22] J. Gao, T. Shen, Z. Wang, W. Chen, K. Yin, D. Li, O. Litany, Z. Gojcic, and S. Fidler. Get3d: A
generative model of high quality 3d textured shapes learned from images. Advances In Neural
Information Processing Systems, 35:31841–31854, 2022.

[23] L. Gao, T. Wu, Y.-J. Yuan, M.-X. Lin, Y.-K. Lai, and H. Zhang. Tm-net: Deep generative
networks for textured meshes. ACM Transactions on Graphics (TOG), 40(6):1–15, 2021.

[24] Z. Gao, Z. Yu, and X. Pang. A compact shape descriptor for triangular surface meshes.
Computer-Aided Design, 53:62–69, 2014.

[25] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. Gans trained by a two
time-scale update rule converge to a local nash equilibrium. Advances in neural information
processing systems, 30, 2017.

[26] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840–6851, 2020.

[27] W. Jakob, S. Speierer, N. Roussel, and D. Vicini. Dr. jit: a just-in-time compiler for differentiable
rendering. ACM Transactions on Graphics (TOG), 41(4):1–19, 2022.

[28] A. Lacoste, A. Luccioni, V. Schmidt, and T. Dandres. Quantifying the carbon emissions of
machine learning. arXiv preprint arXiv:1910.09700, 2019.

[29] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the wild. In Proceedings
of International Conference on Computer Vision (ICCV), December 2015.

[30] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In International Conference
on Learning Representations, 2018.

[31] C. Luo. Understanding diffusion models: A unified perspective. arXiv preprint
arXiv:2208.11970, 2022.

[32] G. Metzer, E. Richardson, O. Patashnik, R. Giryes, and D. Cohen-Or. Latent-nerf for shape-
guided generation of 3d shapes and textures. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 12663–12673, 2023.

[33] T. W. Mitchel, C. Esteves, and A. Makadia. Single mesh diffusion models with field latents for
texture generation. arXiv preprint arXiv:2312.09250, 2023.

[34] N. Mohammad Khalid, T. Xie, E. Belilovsky, and T. Popa. Clip-mesh: Generating textured
meshes from text using pretrained image-text models. In SIGGRAPH Asia 2022 conference
papers, pages 1–8, 2022.

[35] M. Oechsle, L. Mescheder, M. Niemeyer, T. Strauss, and A. Geiger. Texture fields: Learning
texture representations in function space. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 4531–4540, 2019.

[36] G. Parmar, R. Zhang, and J.-Y. Zhu. On aliased resizing and surprising subtleties in gan
evaluation. In CVPR, 2022.

12

[37] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer. Automatic differentiation in pytorch. In NIPS 2017 Workshop Autodiff
Submission, 2017.

[38] U. Pinkall and K. Polthier. Computing discrete minimal surfaces and their conjugates. Experi-
mental mathematics, 2(1):15–36, 1993.

[39] R. Poranne, M. Tarini, S. Huber, D. Panozzo, and O. Sorkine-Hornung. Autocuts: simultaneous
distortion and cut optimization for uv mapping. ACM Transactions on Graphics (TOG), 36(6):
1–11, 2017.

[40] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. Advances in neural information processing systems, 30, 2017.

[41] A. Raj, C. Ham, C. Barnes, V. Kim, J. Lu, and J. Hays. Learning to generate textures on
3d meshes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 32–38, 2019.

[42] E. Richardson, G. Metzer, Y. Alaluf, R. Giryes, and D. Cohen-Or. Texture: Text-guided
texturing of 3d shapes. In ACM SIGGRAPH 2023 Conference Proceedings, SIGGRAPH ’23,
New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400701597. doi:
10.1145/3588432.3591503. URL https://doi.org/10.1145/3588432.3591503.

[43] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image
segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI
2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part
III 18, pages 234–241. Springer, 2015.

[44] N. Schertler, D. Panozzo, S. Gumhold, and M. Tarini. Generalized motorcycle graphs for
imperfect quad-dominant meshes. ACM Transactions on Graphics, 37(4), 2018.

[45] M. Schütz, K. Krösl, and M. Wimmer. Real-time continuous level of detail rendering of point
clouds. In 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pages
103–110. IEEE, 2019.

[46] M. Schütz, B. Kerbl, and M. Wimmer. Rendering point clouds with compute shaders and vertex
order optimization. Computer Graphics Forum, 40(4):115–126, 2021.

[47] N. Sharp and K. Crane. A laplacian for nonmanifold triangle meshes. In Computer Graphics
Forum, volume 39, pages 69–80. Wiley Online Library, 2020.

[48] N. Sharp, S. Attaiki, K. Crane, and M. Ovsjanikov. Diffusionnet: Discretization agnostic
learning on surfaces. ACM Transactions on Graphics (TOG), 41(3):1–16, 2022.

[49] Y. Siddiqui, J. Thies, F. Ma, Q. Shan, M. Nießner, and A. Dai. Texturify: Generating textures on
3d shape surfaces. In European Conference on Computer Vision, pages 72–88. Springer, 2022.

[50] M. Tarini, K. Hormann, P. Cignoni, and C. Montani. Polycube-maps. ACM transactions on
graphics (TOG), 23(3):853–860, 2004.

[51] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

[52] P. von Platen, S. Patil, A. Lozhkov, P. Cuenca, N. Lambert, K. Rasul, M. Davaadorj, D. Nair,
S. Paul, W. Berman, Y. Xu, S. Liu, and T. Wolf. Diffusers: State-of-the-art diffusion models.
https://github.com/huggingface/diffusers, 2022.

[53] J. Wei, H. Wang, J. Feng, G. Lin, and K.-H. Yap. Taps3d: Text-guided 3d textured shape
generation from pseudo supervision. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 16805–16815, 2023.

[54] R. Wu, R. Liu, C. Vondrick, and C. Zheng. Sin3dm: Learning a diffusion model from a single
3d textured shape. arXiv preprint arXiv:2305.15399, 2023.

13

https://doi.org/10.1145/3588432.3591503
https://github.com/huggingface/diffusers

[55] Y. Wu and K. He. Group normalization. In ECCV, pages 3–19, 2018.

[56] K. Yin, J. Gao, M. Shugrina, S. Khamis, and S. Fidler. 3dstylenet: Creating 3d shapes
with geometric and texture style variations. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 12456–12465, 2021.

[57] R. Yu, Y. Dong, P. Peers, and X. Tong. Learning texture generators for 3d shape collections
from internet photo sets. In British Machine Vision Conference, 2021.

[58] X. Yu, P. Dai, W. Li, L. Ma, Z. Liu, and X. Qi. Texture generation on 3d meshes with point-uv
diffusion. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 4206–4216, 2023.

[59] C. Yuksel. Mesh color textures. In Proceedings of High Performance Graphics, pages 1–11.
ACM New York, NY, USA, 2017.

[60] C. Yuksel, J. Keyser, and D. H. House. Mesh colors. ACM Transactions on Graphics (TOG),
29(2):1–11, 2010.

[61] C. Yuksel, S. Lefebvre, and M. Tarini. Rethinking texture mapping. In Computer graphics
forum, volume 38, pages 535–551. Wiley Online Library, 2019.

[62] X. Zeng. Paint3d: Paint anything 3d with lighting-less texture diffusion models. arXiv preprint
arXiv:2312.13913, 2023.

[63] H. Zhang, O. Van Kaick, and R. Dyer. Spectral mesh processing. In Computer graphics forum,
volume 29, pages 1865–1894. Wiley Online Library, 2010.

[64] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 586–595, 2018.

14

A Appendix

This document supplements our paper entitled UV-free Mesh Texture Generation with Denoising
and Geodesic Heat Diffusion by providing further information on our architecture and design
choices, additional experiments and ablations for our mesh diffusion framework as well as qualitative
results in the form of texture mesh renderings. We also provide the failure cases of UV3-TeD.

A.1 Additional Information on UV3-TeD

Xt ε
te

t

Λ’eΛ’
sihkse sihks

t-
E
M

B

ca
t

cat

ca
tENHANCED

DIFFUSION
BLOCK

ENHANCED
DIFFUSION

BLOCK

ENHANCED
DIFFUSION

BLOCK

ENHANCED
DIFFUSION

BLOCK

ENHANCED
DIFFUSION

BLOCK

Figure 9: Architecture of the proposed UV3-TeD. The noised input colours (Xt) go through a U-Net-
shaped network with multiple Attention-enhanced Heat Diffusion Blocks (detailed in Fig. 4). Blue
arrows depict how the blocks are connected in a U-Net fashion. Each Diffusion block is conditioned
on a time embedding obtained by embedding the timestep and processing it with an MLP and multiple
block-specific linear layers. The attention part of the attention-enhanced blocks is conditioned on the
signal obtained by processing Λ′ and sihs with two separate MLPs. All the conditioning is depicted
in pink arrows.

Architecture. As mentioned in Sec. 4, although we do not have pooling and unpooling operators,
the skip-connections of our UV3-TeD are inspired by U-Net. Therefore, the output of the first block
will be fed to the last block alongside the features coming from the previous layer, the output of the
second block will be fed to the penultimate block, et cetera. Given the resemblance to U-Net, we refer
to the first half of the network as the downstream branch and to the second half as the upstream one.
The block between these two branches is simply referred to as the middle block, which is the only one
just receiving a set of features from the previous block and passing its output features to the following
block. In our experiments, we use a single middle block as well as 5 blocks in both the down- and
up-stream branches (Fig. 9). Each block is built as an attention-enhanced heat diffusion block, which
was previously depicted in Fig. 4 and described in Sec. 4.1. Each attention-enhanced diffusion block
receives three conditioning signals: a DDPM timestep, a global shape descriptor and a local set of
intrinsic coordinates. Each timestep is first converted into a sinusoidal embedding [26], then it goes
through a MLP and a block-specific linear layer and it is used to condition the DiffusionNet block
part of our enhanced blocks (see Fig. 4). The global shape descriptor conditioning is obtained by
processing the normalised and straightened eigenvalues Λ′ (Eq. (2)) with a MLP, while the intrinsic
coordinate conditioning by passing the scale-invariant heat kernel signatures (sihks) through a
per-point MLP. These two geometric embeddings are concatenated and passed onto every Diffused
Farthest-Sampled Attention layer (Sec. 4.1). Point-wise linear layers are also used as first and last
layers of the whole architecture.

The noised input colours (Xt) and the predicted noise ϵ = ϵθ(Xt, t,Λ
′, sihks) have 3 colour channels

each (R,G,B). The first linear layer converts the 3 channels into 256 features, while the last one
does the opposite. All the MLPs in the attention-enhanced diffusion blocks have ReLU activation
functions and 3 layers of size 256. In the upstream branch, the linear layer in the skip connection
(Fig. 4) reduces the 512 incoming features to 256. This is not necessary for the downstream blocks as
they do not receive additional inputs. The farthest-sampled multi-headed self-attention layers have
8 heads with 64 channels each and operate on 250 farthest samples. The time embedding module
produces time embeddings of size 256 and goes through a MLP with SiLU activations and 3 layers of
size [256, 1024, 1024]. The MLPs for the geometric embeddings also use SiLU activations, but the
one processing Λ′ has 3 layers of size [128, 64, 16], while the one processing the sihks has 3 layers
of size [32, 64, 16].

15

ca
t

ca
t

ca
t

ca
t

Figure 10: Visual representation of the mean learned diffusion times for the heat diffusion operations
in each block of our Network. Conditioning information were omitted for sake of clarity. Refer to
Fig. 9 for a more detailed representation of the architecture and to Fig. 4 for the content of each block.
The orange part of each block illustrates the diffused farthest-sampled attention layer with its two heat
diffusions. The light-blue parts illustrate the three DiffusionNet blocks with their diffusion operations.
These mean diffusion times are referred to UV3-TeD trained on ABO and they are displayed by
diffusing heat always on the same shape.

Learned Diffusion Times. As mentioned in Sec. 3, each heat diffusion operation is performed
channel-wise with a learned diffusion time that controls the support of the neural operator. In
Fig. 10 we visualise the learned diffusion times of each heat diffusion. In particular, we average
the learned time across channels and diffuse heat using the mean time from 8 farthest sampled
sources. Interestingly, most Diffusion blocks have a similar support, with the exception of the last
two operators, which have a slightly bigger support. In addition, the first diffusion of each diffused
farthest-sampled attention layer has a support that is comparable to the Diffusion blocks, while
the second diffusion learns longer diffusion times. These longer diffusion times prove the correct
operation of the proposed diffused farthest-sampled attention layer (Sec. 4.1) which is supposed to
spread the output of the multi-headed self-attention from the farthest samples to all the neighbouring
points.

Fast Gradient Computation. As briefly mentioned in Sec. 4.1, we propose a fast gradient computa-
tion implementation leveraging batched tensor operations. Our efficient implementation, avoiding
the usage of multiple nested loops, is more suitable for online computation and does not require to
precompute gradients like in the original DiffusionNet [48].

With the objective of constructing a sparse matrix that represents the spatial gradients of the mesh,
we start by creating a batched tensor containing information about the neighbours of each vertex and
the tangent vectors of the edges connecting them. Since we operate on a point-cloud, the neighbours
are estimated with a kNN search with k = 30 (like in [48]). Having a fixed number of neighbours
facilitates the creation of a batched tensor.

Next, we construct the column and row indices for the sparse matrix. The column indices are created
by concatenating an array of vertex indices with the index of their neighbours retrieved from the
batched tensor previously computed. The row indices are created by repeating vertex indices k
times. We then calculate the values to be stored in the sparse matrix. This involves computing the
least squares solution of a linear system between the batched tensor and a matrix constructed by
concatenating a column vector of -1’s to an identity matrix. The result is split into two parts that are
stored as a sparse complex tensor representing the gradients of the mesh, where each row corresponds
to a vertex, each column corresponds to a neighbouring vertex, and the value at a specific row and
column represents the gradients of the edge connecting the two vertices.

The computational speedup with respect to the original implementation leveraging the multiple nested
loops is significant: with approximately 100k points our implementation is on average 35× faster,
while with approximately 25k points it is on average 38× faster.

Runtimes and Computational Resources. We run our models on a single Nvidia A100 with 40GB
of dedicated memory. The time required to generate a single point-cloud texture (P ∗ = 5, 000) is
approximately 1 minute and 30 seconds. One training epoch takes approximately 23 minutes with
the ABO dataset and 10 minutes with the chairs of ShapeNet. Note that in order to keep a constant
GPU utilisation and prevent data loading and processing bottlenecks during online sampling it is
advisable to use multiple workers. We use 12 workers on a computer with an AMD EPYC 7763
64-Core Processor, which has a max CPU frequency of 3.5 GHz.

16

Experiments were conducted using a private infrastructure, which has a carbon efficiency of 0.166
kgCO2eq/kWh. A cumulative of 2, 640 hours (110 GPU-days) of computation was performed on
hardware of type A100 PCIe 40GB (TDP of 250W). Total emissions are estimated to be 109.56
kgCO2eq of which 0 percent was directly offset. Estimations were conducted using the Machine-
Learning Impact calculator presented in [28] while the carbon efficiency was estimated using the
following electricity maps.

A.2 Additional Experiments

MESH LBO MIXED LBO PCL LBO

MESH LBO MIXED LBO PCL LBO

Figure 11: Top: heat diffusion on a chair whose legs are disconnected from the rest of the structure.
Diffusing heat with the mesh LBO, heat cannot spread beyond the leg where heat was applied. With
the point-cloud LBO heat diffuses also across the rest of the structure, but it quickly travels also
horizontally across the vertical bars. With our mixed LBO formulation heat correctly spread over
the rest of the structure and it appears to better follow geodesic paths. Bottom: Heat diffusion on
an object with thin structures using different LBO formulations. Using the proposed mixed LBO
heat diffuses geodesically, closely mimicking the behaviour of heat diffusion with the mesh LBO.
On the contrary, with the point-cloud LBO heat would be immediately transferred from the back of
the hanger to its front because of the Euclidean proximity of the two parts. This is an undesirable
behaviour not shown by our method.
More on Heat Diffusion with the Mixed Laplacian. As detailed in Sec. 4.2, we propose a hybrid
formulation of the Laplace Beltrami Operator that we call the Mixed LBO and which is obtained as
a convex combination of the mesh and point-cloud LBOs (computed on the vertices of the mesh).
As we already explained, by leveraging our LBO we can diffuse heat on surfaces with topological
errors and disconnected components (Fig. 5). Fig. 11 (top) shows another example where the legs
of a chair were not topologically connected to the rest of the structure. Unlike the mesh LBO, our
mixed LBO formulation allows heat to spread over the rest of the chair. In addition, when compared
to the point-cloud LBO, our formulation retains the topological information provided by the mesh
and lets the heat diffuse geodesically. This is particularly evident in Fig. 11 (bottom), where some
heat is diffused starting from the back-side of a coat hanger. With the mesh LBO heat diffuses mostly
on the back of the object, and partially starts to diffuse towards the front. On the contrary, with the
point-cloud LBO heat is equally diffused on the front and on the back of the object. Therefore, in the
presence of thin structures, it is clear that heat is not geodesically diffused. On the other hand, with
our formulation, we avoid spreading heat on the front of the object and we closely mimic the correct
behaviour of heat diffusion with the mesh LBO. It can also be noted that with our Mixed LBO some
small proportion of heat spreads over a screw placed close to the heat source. We consider this to
be an acceptable behaviour. Intuitively, this information-sharing may carry some useful insights on
how the screw may be coloured with respect to the surrounding material used to build the hanger.
Yet, the amount of heat is lower than in the portion of the hanger touching the screw, facilitating the
distinction between different structures.

Test Online Sampling Strategies. In Sec. 4.3 we introduced a set of sampling strategies to re-use
as much as possible pre-computed operators, make possible the online sampling of point-clouds,

17

https://mlco2.github.io/impact#compute
https://mlco2.github.io/impact#compute
https://app.electricitymaps.com/zone/GB

Φ
Figure 12: Comparison between the eigenvectors of the same shape with two different sampling
densities. The eigenvectors of the original mesh are represented as colours on the surface of the mesh,
while the eigenvectors of a mesh obtained subdividing the faces of the original mesh are reported on
a point-cloud. The point colours match those of the underlying mesh, suggesting that sampling the
eigenvectors of the mesh at the point locations would produce the same result.

and ensure that heat can be diffused following the known surface information of the mesh. After
computing and eigendecomposing our Mixed LBO, we store its eigenvectors, eigenvalues, and mass
matrix. The eigenvalues remain unchanged when sampling and therefore are re-used without any
modification. The mass matrix, being proportional to the distance between the sampled points, can be
approximated as described in Sec. 4.3 from the PDS radius. Finally, the eigenvectors are recomputed
by interpolating their values on the vertices of the mesh. In Fig. 12, we empirically show that this
interpolation operation is possible and produces the same results as recomputing the eigenvectors. In
particular, after computing the eigenvectors of a mesh, we subdivide it and compute the eigenvectors
of the subdivided mesh, which are displayed as a coloured point-cloud. As it can be observed in
Fig. 12, the values of the coloured point-cloud are in agreement with the colours on the surface of
the mesh, which are obtained as a linear interpolation between the vertex colours. For this reason,
it is not necessary to re-compute the eigenvectors for every point-cloud that we sample and we can
interpolate the mesh values instead.

Established that we can interpolate the eigenvectors, we still need to prove that diffusing heat on a
point-cloud sampled with PDS, whose eigenvectors have been interpolated and the mass has been
approximated from the PDS radius, produces the same results as diffusing heat on the surface of
the mesh. Therefore, we compare the heat diffused –from the same source– on a mesh and on an
online-sampled point-cloud. As we can observe from Fig. 13, the two diffusion processes produce
the same results.

Additional Samples. More textures generated on test shapes by our method are reported in Fig. 14
and Fig. 15 top. Fig. 16 shows more textures generated by UV3-TeD on ABO objects and rendered
from multiple viewpoints. This proves how, unlike methods relying on multi-view images for texture
generation, UV3-TeD generates textures directly on the surface of the objects, making them multi-
view consistent by construction. We also report more chairs generated by Point-UV Diffusion [58]
and rendered with our rendering method (Sec. 4.4) for fairness of comparison. Finally, Fig. 19 reports
some failure cases of our method.

h

Figure 13: Heat diffusion computed on the vertices of a mesh and with our online sampling on a
point-cloud. The heat depicted on the surface of the mesh is computed with the traditional method
using Eq. (1) and our Mixed LBO (Sec. 4.2). The heat depicted on the point-cloud was computed
using the online sampled operators like described in Sec. 4.3. Heat diffuses in the same way with
both techniques proving the correctness of our sampling strategy.

18

Figure 14: Additional random samples generated by our UV3-TeD trained on ABO.

19

UV3-TeDUV3-TeD
Point-UV DiffPoint-UV Diff

Figure 15: Additional random samples generated by our UV3-TeD (top), and Point-UV Diffusion
(bottom) trained on chairs from ShapeNet. The point-clouds generated by Point-UV Diffusion were
rendered with our method for a more fair comparison with no projection artefacts. Our method
generates more diverse textures and better distinguishes the different parts.

20

Figure 16: Multi-view consistency of ABO shapes textured with UV3-TeD

Figure 17: Plane perturbed by a rip-
ple effect and textured with point-
cloud textures generated by UV3-TeD
trained on CelebA for only 50 epochs.

Higher Frequency Point-cloud Textures on CelebA. The
low-frequency nature of the results on ShapeNet chairs and
ABO mostly stem from the datasets used. In fact, most
objects in ShapeNet have plain per-part colours and can
be considered mostly low-frequency textures. ABO on the
other hand has more detailed textures, but these textures are
much higher in frequency than our sampling resolution (e.g.
wood grain, rubber pours, etc.). To demonstrate the ability of
our method to handle more complex high-frequency details,
we have trained UV3-TeD on CelebA images [29] projected
on a plane deformed by a 3D ripple effect. UV3-TeD was
trained for 50 epochs, with a learning rate of 5e−4, and a
batch size of 4. The farthest point samples were reduced to
S = 200 and the channels in the farthest-sampled self-attention layers to 64. The target PDS samples
(P ∗ = 5, 000) as well as all the other hyperparameters were the same as those previously detailed in
the Implementation Details (Sec. 5) and Architecture (App. A.1) paragraphs. This experiment shows
promising results (Fig. 17) considering that it is capable of generating diverse CelebA textures even
prior to reaching full convergence.

Considering that our Diffusion Blocks resemble the original operators of [48], we believe our
results also prove the unproven claim of heat-diffusion-based operators being capable of operating at
high-frequencies.

Ablation Studies Detailed Discussion. In Sec. 5 we performed multiple ablations studies to examine
how much each model component, conditioning, and choice contributes to the overall performance.
Ablations were quantitatively evaluated using three main metrics: the FID, KID, and LPIPS scores.
The first two evaluate the visual quality of generated samples rendered from random viewpoints,
while LPIPS evaluates the perceptual dissimilarity between different objects consistently rendered
from the same viewpoint. Results were reported in Tab. 2.

Figure 18: ABO shapes textured by UV3-
TeD with and without the proposed farthest-
sampled attention layer.

We started by investigating the effects of the pro-
posed farthest-sampled attention layers, removing the
proposed attention causes the most significant drop
in performance across metrics, showing the positive
impact of our proposed attention mechanism. The
benefits provided by the attention mechanism can be
observed also in Fig. 18. It is clear that this mecha-
nism makes the generated textures more realistic and
uniform across different parts.

We then proceeded to remove the normalised and
straightened eigenvalue (Λ′) conditioning as well
as the scale-invariant heat kernel signatures (sihks)
conditioning. Both cause a drop in visual quality.

However, the absence of Λ′, which holds class-related information, appears to slightly improve the
diversity of the generated point-cloud textures at the expense of sample quality. We believe that this
result still signals the importance of providing both conditioning signals. Also directly using the
online-sampled eigenvectors Φp instead of sihks causes a small drop in performance. Note that

21

A
B

O

 S

ha
pN

et
 c

ha
ir

s

Figure 19: Failure cases of random samples generated by our UV3-TeD trained on ShapeNet chairs
(top) and ABO (bottom). Most failures exhibit issues in correctly recognising the different object
parts, long-range inconsistencies, uniform yet unreasonable colours, or blotchy patterns.

the diffused farthest-sampled attention layers contain a group normalisation layer after the first heat
diffusion. Since it expects a specific number of channels, when either sihks or Λ′ are removed, to
make the ablation more controllable, instead of modifying the group normalisation layer we duplicate
the remaining conditioning thus providing redundant information.

Although we have extensively proved the validity and the advantages of our mixed LBO operator
(e.g., Fig. 5 and Fig. 11), we compare the performance of our network with the model trained to
compute heat diffusions with our online sampling and using the mesh (LR

m) or point-cloud (LR
p)

LBOs. Our method performs slightly worse in terms of LPIPS when compared to using the mesh
Laplacian, but it also exhibits a far greater performance improvement in terms of FID and KID. This,
and the previous geometrical evaluations of the mixed LBO, make the adoption of our mixed operator
preferable. Similarly, we can reach the same conclusion by observing the results with the point-cloud
operator, which is also not improving over the final UV3-TeD model in terms of LPIPS score. It
is worth noting that ABO is a well curated dataset with a reduced number of topological defects.
Therefore, we expect performance to deteriorate even further on less curated datasets.

Finally, we evaluate the effects of our texture resizing Sec. 4.3. Although the LPIPS score improves,
showing an increased diversity of the generated samples, the blotchy patches depicted in some of the
failure cases on Fig. 19 become present on most generated point-cloud textures. This results in worse
FID and KID scores when compared to our full model.

As already mentioned in Sec. 5, our final model (UV3-TeD) reports the best quality scores while
maintaining good diversity scores.

Figure 20: Chair rendered with a
constant emitter (left) and an envi-
ronment map (right).

A Note on Photorealism. All the result images of this paper
except Fig. 1 were rendered with a constant emitter to better
showcase the generated albedos. Nevertheless, our generated
albedo textures are intrinsically relightable and can be photo-
realistically rendered. More photorealistic renderings can be
obtained by rendering objects with environment maps and train-
ing our model to generate full BRDFs. Fig. 20 shows how just
using an environment map can improve the realism of one of
our chairs.

22

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our contributions have been explicitly listed in Sec. 1, detailed in Sec. 4, and
proved in Sec. 5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: As its name suggests, the Limitations & Future Work paragraph of Sec. 6 is
dedicated to the limitations and the potential future directions.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

23

Answer: [NA]
Justification: Our paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We describe in detail our contributions in Sec. 4 and App. A.1 while all the
architectural choices and implementation details of our model are outlined in Sec. 5, which
is complemented by App. A.2. All the datasets used (Sec. 5) are open source. In addition,
code and pre-trained models will be made publicly available.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

24

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our code and the instructions to run it are provided following the submission
guidelines. The code of PointUVDiffusion [58] and the datasets [15, 9] used are available
from their respective project pages. In addition, code and pre-trained models will be made
publicly available.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the experimental settings are provided in Sec. 5. Additional details are
available in App. A.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Error bars are not reported because it would be too computationally expensive
given our available resources.

Guidelines:

• The answer NA means that the paper does not include experiments.

25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In the Runtimes and Computational Resources paragraph of App. A.1 we
detail our computational resources, training times, total GPU usage throughout the project
as well as an estimate of the total kgCO2eq emissions caused by our work.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research does not involve human subjects or participants. The datasets
used are all available to use and do not leverage data scraped from the internet without
the artists’ consent. We do not expect our research to have safety, security, discrimination,
surveillance, deception, harassment, human rights, bias, and fairness consequences. Further
research into this topic will cause further kgCO2eq emissions produced by GPU servers or
computers. We outlined such consumption, which is still limited compared to most state-of-
art generative models. All the information about the datasets and models was communicated
in the manuscript and in the README instructions. Upon public release, the code and the
essential elements for reproducibility will be licensed with CC BY-NC-ND license.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.

26

https://neurips.cc/public/EthicsGuidelines

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The impact of our work has been discussed in the Broader Impact paragraph
of Sec. 6.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]

27

Justification: All assets are open source and have been properly cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code attached to the submission includes detailed instructions for setup
and training. The code will be open-sourced with CC BY license.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

28

paperswithcode.com/datasets

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

29

	Introduction
	Related Work
	Notation and Background
	UV-free Texture Diffusion (UV3-TeD)
	Attention-enhanced Heat Diffusion Blocks
	Mixed Robust Laplacian
	Online Sampling of Points, Colours, and Spectral Operators
	Rendering Point-Cloud Textures

	Experiments
	Conclusion
	Appendix
	Additional Information on UV3-TeD
	Additional Experiments

