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Abstract

Magnetic resonance imaging (MRI) is a widely used non-invasive imaging modality.
However, a persistent challenge lies in balancing image quality with imaging speed.
This trade-off is primarily constrained by k-space measurements, which traverse
specific trajectories in the spatial Fourier domain (k-space). These measurements
are often undersampled to shorten acquisition times, resulting in image artifacts and
compromised quality. Generative models learn image distributions and can be used
to reconstruct high-quality images from undersampled k-space data. In this work,
we present the autoregressive image diffusion (AID) model for image sequences
and use it to sample the posterior for accelerated MRI reconstruction. The algorithm
incorporates both undersampled k-space and pre-existing information. Models
trained with fastMRI dataset are evaluated comprehensively. The results show that
the AID model can robustly generate sequentially coherent image sequences. In
MRI applications, the AID can outperform the standard diffusion model and reduce
hallucinations, due to the learned inter-image dependencies. The project code is
available at https://github.com/mrirecon/aid.

1 Introduction

Magnetic resonance imaging (MRI) is a non-invasive imaging modality widely used in clinical
practice to visualize soft tissue. Despite its utility, a persistent challenge in MRI is the trade-off
between image quality and imaging speed. The trade-off is influenced by the k-space (spatial Fourier
domain) measurements, which traverse spatial frequency data points along given sampling trajectories.
To reduce acquisition time, the k-space measurements are often undersampled, resulting in image
artifacts and reduced image quality.

In recent years, deep learning-based methods have emerged to improve image reconstruction in MRI.
These methods are formulated as an inverse problem building upon compressed sensing techniques
[1, 2] and benefit from the learned prior information instead of hand-crafted priors [3–5]. Another
successful approach involves learning an image prior parameterized by a generative neural network
[6, 7], which is then used as the learned and decoupled regularization on the image. Generative
priors offer flexibility in handling changes in the forward model and perform well in reconstructing
high-quality images from undersampled data.

Diffusion models [8–10], a class of generative models, have gained attention in recent years and
are making an impact in many fields, including MRI reconstruction [11, 12]. These models learn
to reverse a diffusion process that transforms random noise into structured images, producing high-
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quality, detailed images. Various approaches, including denoising diffusion probabilistic models
(DDPMs) [10], denoising score matching [9], and continuous formulations based on stochastic
differential equations (SDEs) [13], have been proposed for deriving diffusion models.

Recent studies demonstrate the effectiveness of diffusion models in accelerated MRI and their
flexibility in handling various sampling patterns [11, 14–17]. For example, training score-based
generative models using Langevin dynamics yields competitive reconstruction results for both in-
distribution and out-of-distribution data [11]. Additionally, score-based diffusion models trained
solely on magnitude images can reconstruct complex-valued data [15]. Comprehensive approaches
using data-driven Markov chains facilitate efficient MRI reconstruction across variable sampling
schemes and enable the generation of uncertainty maps [16].

Autoregressive models are statistical models that predict the current value of a variable based on its
past values, capturing temporal dependencies and patterns within the data. They are widely used
in various fields such as time series analysis, signal processing, and sequence modeling. In natural
language processing, autoregressive models like generative pre-trained transform (GPT) [18, 19]
predict each token in a sequence based on previously generated tokens, enabling the generation
of coherent and contextually relevant text. Similarly, in image modeling, autoregressive models
like PixelCNN [20] and ImageGPT [21] generate images by predicting each pixel value based on
previously generated pixel values, often in a left-to-right, top-to-bottom order. Instead of directly
modeling pixels, which can be computationally expensive for high-resolution images, the study [22]
proposes to first compress the image into a smaller representation using vector quantized variational
autoencoder (VQVAE). This VQVAE learns a codebook of visually meaningful image components.
Then, a transformer is applied to model the autoregressive relationship between these components,
effectively capturing the global structure of the image. By predicting each image component based
on previous ones, the model generates high-resolution images in a sequential manner, maintaining
consistency and coherence across the entire image.

The clinical practice of MRI often involves acquiring volumetric image sequences to monitor disease
progression and treatment response; modeling and generating these image sequences is challenging.
Autoregressive models can be employed to model the joint distribution of image sequences and
extract the dependencies between images. The diffusion process is effective in modelling images
by treating each image independently. Therefore, we aim to combine these two models and propose
autoregressive image diffusion (AID) model to generate sequences of images.

The contributions of this work are the following aspects. We present how to derive the autoregressive
image diffusion training loss starting from a common diffusion loss and how to optimize loss in
parallel for efficient training. We present the algorithm to sample the posterior for accelerated
MRI reconstruction when using AID to facilitate the incorporation of pre-existing information. We
performed experiments to evaluate its ability in generating images when different the amount of initial
information is given and to validate its effectiveness in MRI reconstruction. The results show that
the AID model can stably generate highly coherent image sequences even without any pre-existing
information. When used as a generative prior in MRI reconstruction, the AID outperforms the
standard diffusion model and reduces the hallucinations in the reconstructed images, benefiting from
the learned prior knowledge about the relationship between images and pre-existing information.

2 Methods

2.1 Autoregressive image diffusion

Given a dataset X consisting of multiple sequences of images, each sequence represented as x =
{x1, x2, . . . , xN}, our goal is to model the joint distribution of these images. This joint distribution
is autoregressively factorized into the product of conditional probabilities:

p(x) = q(x1|x0)

N∏
t=2

q(xn|x<n), (1)
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Figure 1: The interaction between the images in conditioning sequence occurs in the DiTBlock,
which has a causal attention module to ensure xn is conditioned on previous images x<n. During
training, the net predicts the noise for each noisy image that is sampled from the target sequence
given the conditioning sequence in parallel. During generation, the net iteratively refines the noisy
input to produce a clean image, which is then appended to the conditioning sequence.

where x<n = {x1, x2, . . . , xn−1} and the image x0 is known. The model parameterized by θ is
trained by minimizing the negative log-likelihood of the data:

LAID = EX [− log pθ(x)] = EX

[
− log pθ(x1|x0)−

N∑
t=2

log pθ(xn|x<n)

]
. (2)

Sohl-Dickstein et al. (2015) and Ho et al. (2020) introduced the denoising diffusion probabilistic
model (DDPM). This model gradually introduces fixed Gaussian noise to an observed data point x0

using known scales βt, generating a series of progressively noisier values x1, x2, . . . , xT . The final
noisy output xT follows a Gaussian distribution with zero and identity covariance matrix I , containing
no information about the original data point. The series of positive noise scales β1, . . . , βT must be
increasing, ensuring that the first noisy output x1 closely resembles the original data x0, while the
final value xT represents pure noise. We apply this process to the conditional probability q(xn|x<n)
in Equation (2) by adding the noise to the image independent of the position in the sequence, i.e., xt

n
and x0

<n are conditionally independent given xt−1
n . Then the transition from xt−1

n to xt
n is defined as:

q(xt
n|xt−1

n , x0
<n) = q(xt

n|xt−1
n ) = N (xt

n;
√

1− βtx
t−1
n , βtI) (3)

Here, xt
n represents the image xn at time t, xt−1

n is the image at the previous time step, and x0
<n

denotes all images preceding xn at the initial time step. The parameter βt controls the drift and
diffusion of this process. The objective is to learn to reverse this process. The reverse process is
defined as:

pθ(x
t−1
n |xt

n, x
0
<n) = N (xt−1

n ;µθ(x
t
n, x

0
<n, t),Σθ(x

t
n, x

0
<n, t)), (4)

where µθ and Σθ are parameterized by a neural network θ, taking xt
n, x0

<n, and t as inputs. Using the
variational lower bound, the reverse process can be learned by minimizing the negative log-likelihood
of the data:

E[− log pθ(xn|x0
<n)] ≤ E

− log p(xT
n )−

∑
t≥1

log
pθ(x

t−1
n |xt

n, x
0
<n)

q(xt
n|xt−1

n , x0
<n)

 := LDn
, (5)
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Given the initial image x0
n and that xt

n and x0
<n are conditionally independent given x0

n, xt
n at an

arbitrary time step t is sampled from a Gaussian distribution:

q(xt
n|x0

n, x
0
<n) = N (xt

n;
√
ᾱtx

0
n, (1− ᾱt)I), (6)

using αt = 1 − βt and ᾱt =
∏t

s=1 αs. The posterior distribution xt−1
n given x0

n and xt
n is then

calculated as:
q(xt−1

n |xt
n, x

0
n, x

0
<n) = N (xt−1

n ; µ̃t(x
t
n, x

0
n), β̃tI), (7)

where µ̃t(x
t
n, x

0
n) :=

√
αt−1βt

1−ᾱt
x0
n +

√
αt(1−ᾱt−1)

1−ᾱt
xt
n and β̃t :=

1−α̃t−1

1−α̃t
βt.

The training objective Equation (5) is further written as minimizing the Kullback-Leibler (KL)
divergence between the forward and reverse processes in Equation (4) and Equation (7), as proposed
by Sohl-Dickstein et al. (2015). (See Appendix A for details.)

In practice, the approach proposed by Ho et al. (2020) involves reparameterizing µθ and predicting
the noise ϵ for xt

n. The expression for xt
n is given by xt

n(x
0
n, ϵ) =

√
ᾱtx

0
n +
√
1− ᾱtϵ, with

Σθ(x
t
n, x

0
<n, t) = βt fixed. We realized this with a neural network ϵθ(x

t
n, t, x

0
<n) shown in Figure 1,

which predicts the noise for xt
n at each time step given x0

<n. In the end, the objective function in
Equation (2) for training autoregressive image diffusion is written as

LAID ≥
N∑

n=1

LDn =

N∑
n=1

Et,ϵ|x0
n,x

0
<n

[∥∥ϵθ(√ᾱtx
0
n +
√
1− ᾱtϵ, x

0
<n, t)− ϵ

∥∥2
2

]
, (8)

where the expectation is taken over the noise ϵ ∼ N (0, I) and the time step t ∼ U(1, ..., T ). To
generate an image sequence, we begin with the noise xT

1 and update it iteratively using Equation (4)
with the given x0

0, following the sequence (xT
1 → xT−1 → . . .→ x0

1). This process yields a clean
sample x0

1. Subsequently, we can sample x0
2 in the same manner using the generated images x0

<2,
and continue this process iteratively to generate the entire sequence of images.

2.2 Architecture

To optimize the objective function in Equation (8) efficiently, ordered images are loaded as se-
quences of a certain length N + 1 during the training phase. We take the first N images xcon =
{x0, x1, ..., xN−1} as the conditioning sequence and the last N images xtarget = {x1, ...., xN} as
the target sequence, as shown in Figure 1. We adopt an architecture built on an Unet [23] with
capabilities of temporal-spatial conditioning (TSC), designed to process the conditioning sequence
and predict the noise for the target sequence. The term "temporal" refers to conditioning in previous
frames along the N dimensions, while the "spatial" refers to the conditioning in the previous frame
among the H ×W dimensions. Additionally, the TSC block is conditioned on the time steps t of the
diffusion process.

The only interaction between images in the conditioning sequence occurs during the attention
operation. To maintain proper conditioning with autoregressive property, we implemented a standard
upper triangular mask on the n× n matrix of attention logits. This causal attention module is used in
DiTBlock [18, 24]. The modified DiTBlock is followed by a ResNet block [25], which is a standard
building block in the Unet architecture. The features output by the TSC block are then passed to the
corresponding encoder block in the Unet, which process the target sequence. The change in tensor
dimensions inside TSC Block is handled by the einops library1 and illustrated in Figure 1.

During training, the net predicts the noise in parallel for each noisy image that is sampled from the
target sequence, given the conditioning sequence. During generation of sequence, the net iteratively
refines the noisy input to produce a clean image, which is then appended to the conditioning sequence.

2.3 Application in MRI inverse problem

Image reconstruction is formulated as a Bayesian problem where the posterior of image p(x|y) is
expressed as

p(x|y) = p(y|x) · p(x)
p(y)

. (9)

1https://github.com/arogozhnikov/einops
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Here, y represents the measured k-space data, x denotes the image, and p(x) is a generative prior.
The minimum mean square error (MMSE) estimator for the posterior minimizes the mean square
error, given by:

xMMSE = argmin
x̃

∫
∥x̃− x∥2p(x|y)dx = E[x|y] . (10)

2.4 Likelihood function for k-space

The image x ∈ Cn×n is represented as a complex matrix , where n × n is the image size, and
y ∈ Cm×mC is a vector of complex-valued k-space samples from mC receive coils. Assuming
circularly-symmetric normal noise η with zero mean and covariance matrix σ2

ηI, the likelihood p(y|x)
of observing y given x is formulated as a complex normal distribution:

p(y|x) = CN (y;Ax, σ2
ηI)

= (σ2
ηπ)

−Npe-∥σ−1
η ·(y−Ax)∥2

2 , (11)

where I is the identity matrix, ση is the standard deviation of the noise, Ax represents the mean, and
Np is the length of the k-space data vector. The operator A : Cn×n → Cm×mC maps the image x to
k-space and is composed of the coil sensitivity maps S, the two-dimensional Fourier transform F ,
and the k-space sampling mask P , defined as A = PFS . For more details and visual understanding
on the forward operator, please refer to Appendix C.

2.5 Sampling the posterior

Given a sequence of k-space y = {y1, . . . , yN}, each posterior in {pθ(xn|yn, x0
<n)|1 < n < N} is

expressed as

pθ(xn|yn, x0
<n) =

p(yn|xn, x
0
<n)pθ(xn|x0

<n)

p(yn|x0
<n)

=
p(yn|xn)pθ(xn|x0

<n)

p(yn)

∝ p(yn|xn)pθ(xn|x0
<n) , (12)

when the acquisition of yn is independent of the image x0
<n, yn and x0

<n are conditionally independent
given xn. Following the Reference [8], we have

pθ(x
t−1
n |xt

n, yn, x
0
<n) ∝ p(yn|xt

n)pθ(x
t−1
n |xt

<n, x
0
<n) . (13)

The details for Equation (13) is in Appendix B. To sample the above posterior, the learned reverse
process in Equation (4) is used, and the algorithm is constructed with two gradient updates using
the log of the prior and k-space likelihood: the DDIM (Denoising Diffusion Implicit Model) reverse
step proposed by Song et al. (2020), and a data fidelity step derived from the likelihood function
Equation (11), which are described as follows:

x̃t−1
n ← √αt−1

(
xt
n −
√
1− αtϵθ(x

t
n, x

0
<n, t)√

αt

)
+

√
1− αt−1ϵθ(x

t
n, x

0
<n, t) (14)

xt−1
n ← x̃t−1

n + λ · ∇xt−1
n

log p(yn|x̃t−1
n ) . (15)

where λ is the step size, and ∇xt−1
n

log p(yn|xt−1
n ) is the gradient of the log-likelihood of Equa-

tion (11). Then, the reconstruction of a sequence images from the undersampled k-space data is
achieved by sequentially sampling the posterior in {p(xn|yn, x0

<n)|1 < n < N} using autoregressive
diffusion model as prior. The algorithm is summarized in Algorithm 1.

3 Experiments and Results

3.1 Model training

Two autoregressive diffusion models were trained on separate datasets: one in image space and the
other in latent space. The image space model was trained on brain images that are from the fastMRI
training dataset, which includes T1-weighted (some with post-contrast), T2-weighted, and FLAIR
images [27]. These complex images were reconstructed from fully sampled multi-channel k-space
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Algorithm 1 Sample the posterior in {p(xn|yn, x0
<n)|1 < n < N} using autoregressive diffusion

model as prior.
1: Initial image sequence: x0

<n = x0; Time steps: T ; Step size: λ; Iterations for data fidelity step:
K; Number of samples: S;

2: for yn in y = {y1, y2, ..., yN} do
3: Initialize xT

n with Gaussian noise.
4: Construct the forward operator A with sampling pattern P and coil sensitivities S.
5: for t in {T − 1, . . . , 0} do
6: Run the DDIM reverse step in Equation (14) to get xt−1

n given xt
n and x0

<n.
7: Run the data fidelity step in Equation (15) to update xt−1

n for K step.
8: Add Gaussian noise scaled by

√
1− αt−1 to xt−1

n .
9: end for

10: Update x0
<n ← {x0

n, . . . , x
0
0}.

11: end for

volumes, with coil sensitivity maps computed using the BART toolbox [28]. The images were then
normalized to a maximum magnitude of 1, and the real and imaginary parts were treated as separate
channels when input into the neural network. The number of images in each volume ranged from 12
to 16. Images were loaded without reordering and resized to 320×320 pixels if they were not already
that size.

The latent space model is trained with the cardiac dataset that contains cine images reconstructed
by the SSA-FARY method [29]. Firstly, a VQVAE was trained on the cine images that were
preprocessed similarly to images in fastMRI dataset. The cine images have a size of 256×256 pixels.
Then, it generates latent space for the training AID. (See the details for configuration of VQVAE in
Appendix J). All the training was performed on 4 NVIDIA A100 GPUs with 80GB memory. The
models were trained using the Adam optimizer with a learning rate of 10−4 and a batch size of 1 for
image space model and 4 for latent space model. Two models were trained for 440,000 iterations. It
took around 2 hours to train brain model for 10k steps and 1.2 hours for cardiac model. The length of
conditioning sequence N for brain and cardiac models are 10 and 42. The network as illustrated in
Figure 1 was implemented based on OpenAI’s guided diffusion codebase2. We also trained a standard
diffusion model, Guide, on the brain dataset for comparison. The Guide model was trained using the
same hyperparameters as the AID model, except the batch size is 10. The Guide model uses the same
Unet blocks as AID.

3.2 Generating sequence of images

To test different aspects of the autoregressive diffusion models, we generate the sequence of images
using the following two approaches.

Retrospective sampling: This method generates a new sequence of images {x̃1, . . . , x̃N} based on
the given sequence {x0, . . . , xN−1}. x̃n is sampled from Equation (4) given {x0, . . . , xn−1}.
Prospective sampling: A fixed-length sliding window is initialized with the given sequence x<N =
{x0, . . . , xN−1}. xN is generated from Equation (4) with the current window as conditioning.
Subsequently, the window is updated by appending the newly generated xN and removing the earliest
image x0. This autoregressive sampling process is repeated until the stop condition is met. We
refer to this process as a warm start. In a cold start, the window is initialized with zeros, and each
element xn in it is updated with newly generated images from the beginning to the end, after which
the generation is warmed up.

In the retrospective sampling, the model generates a sequence of images that are sequentially coherent
and visually similar to the conditioning sequence, as shown in Figure 2 (a). The prospective sampling
generates a sequence of images that extends the initial images in the sliding window and constitutes
multiple volumes, as shown in Figure 2 (b). As for a cold start, Figure 3 demonstrates the model’s
ability to generate a sequence of images using black background as initial status. This shows the
model’s generative capabilities from a minimal initial condition, thereby proving its robustness and
flexibility. Due to the limit of space, the samples with similar quality from the model trained on

2https://github.com/openai/guided-diffusion
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(a)

(b)

Figure 2: (a): A sequence of images from dataset is shown in the first row and is used as conditioning
to generate retrospective samples that are shown in the second row. (b): With the given sequence in
(a) as a warm start, prospective samples extending it are shown.

Figure 3: Prospective samples with cold start. The initial images generated in the cold start are not
sequentially coherent, but as the sampling process continues, the model progressively generates more
sequentially coherent and realistic images.

the cardiac dataset are shown in Appendix D. We also implemented a boosted sampling technique
which use previous slice with added noise as the initial image for the current slice. This requires less
iterations to generate the sequence of images. Further details can be found in our codebase.

3.3 MRI reconstruction

The MMSE estimator in Equation (10) cannot be computed in a closed form, and numerical approxi-
mations are typically required. Once the samples from the posterior is obtained with Algorithm 1, a
consistent estimate of xnMMSE can be computed by averaging those samples, i.e. the empirical mean
of samples converges in probability to xnMMSE due to weak law of large numbers. The variance of
those samples provides a solution to the error assessment in the reconstruction assuming the trained
model is trusted. To highlight the regions with large uncertainty, we compute the pseudo-confidence
intervals based on the assumption that each pixel’s intensity is normally distributed. This involves
determining the standard error from the variance, then multiplying it by the t-score corresponding to
a 95% confidence level.
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Unfolding of aliased single-coil image: To investigate how the trained model, AID, reduces the
folding artifacts in the reconstruction, we designed the single coil unfolding experiment. The single-
channel k-space is simulated out of multichannel k-space data. The odd lines in k-space are retained,
y. Ten samples were drawn from the posterior p(x1|y, x0) using Algorithm 1 with parameters:
T = 1000, λ = 1,K = 5. The experiment was repeated using a standard diffusion model, Guide.
The results are shown in Figure 4. The AID model significantly reduces the errors in the region of
folding artifacts compared to the Guide model. The mean over samples, xMMSE, is highlighted with
a confidence interval computed from the variance of samples. The highlighted mean image shows the
reconstruction by AID is more trustworthy in the folding region. In general, the highlighted region
lies in the folding region, where large errors remains, as we expected.

(a) (b)
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Figure 4: (a): The folded single-coil image caused by two-times undersampling mask. (b): The
comparison of unfolding ability by the autoregressive and the standard diffusion model, i.e., AID (top)
and Guide (bottom). Reference image is reconstructed from k-space data without undersampling.
The error is the difference between the mean, xMMSE, and the reference image. The "Mean+std" is
the mean highlighted with confidence interval, which indicates the reconstruction by AID is more
trustworthy in the region of folding artifacts.

Reconstruction from undersampled data: To further investigate the model’s performance in
reconstruction, we conducted experiments on 20 volumes from the fastMRI validation dataset where
k-space data was retrospectively undersampled using various sampling masks. We created four types
of sampling masks: random with autocalibration signal (ACS), random without ACS, equispaced
with ACS, and equispaced without ACS. The undersampling factor is 12. Setting parameters:
T = 1000, λ = 1,K = 4 for Algorithm 1, the images were reconstructed from the undersampled
k-space data using the AID and Guide as prior, respectively. Another method proposed in Ref. [11] is
used as the baseline (CSGM), which uses a scored-based model (NCSNv2) from Ref. [30] trained
on the fastMRI dataset. All the reconstruction tasks are performed by sampling the posterior. The
likelihood p(y|x) is determined by forward model and the image prior is determined by the trained
models, such as NCSNv2, Guide, and AID. This means that when the sampling method remains
consistent, the performance of the reconstruction task is determined by the quality of the image prior.
Our algorithm treats p(y|x) in the same manner, and the key difference is the image prior.

We used peak-signal-noise-ratio (PSNR in dB) and normalized root-mean-square error (NRMSE) to
evaluate the reconstruction quality against the reference image that is reconstructed from full k-space.
The comparison of metrics across experimental conditions is illustrated in Figure 5. The proposed
AID model outperforms the Guide and NCSNv2 in terms of PSNR and NRMSE especially in the
absence of ACS, demonstrating its superior performance in image reconstruction from undersampled
k-space data. The results are consistent across different undersampling factors and sampling masks,
indicating the model’s robustness and flexibility in handling various types of undersampled k-space
data.

For the visual impression of the improvement by the AID model in reconstruction, we show the
reconstructed images in Figure 6 and more of them in Appendix E. The images reconstructed using
AID are more visually similar to the reference images than using Guide, even which also provides
aliased-free images. Furthermore, it is worth noting that more visually notable hallucinations were
introduced by the Guide model than the AID model, which means AID is more trustworthy.
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Figure 5: E: equispaced, R: random. (a): PSNR and (b): NRMSE of the images reconstructed
from the twelve-times undersampled k-space data using the autoregressive diffusion model (AID),
the standard diffusion model (Guide), and the baseline method CSGM. PSNR higher is better, and
NRMSE lower is better.

Figure 6: E: equispaced, R: random. The last column shows the reference and the random sampling
mask in k-space. The red lines are autocalibration signal (ACS) and equispaced mask is not shown.
Zero-filled images are computed by inverse Fourier transform of the zero-filled k-space data. The
hallucinations are pointed with red arrows.

3.4 Other models for image sequence generation

To further evaluate the model’s ability to generate image sequences, we further trained two AID
models on two datasets: one using brain images from autism studies called ABIDE [31, 32], and
the other using images from Unmanned Aerial Vehicle (UAV) view dataset [33]. We reported the
computation and model complexity in Appendix F for all AID models trained in this work. We
also implemented a two-stage training to improve the efficiency for training models on ABIDE and
presented correspondingly generated samples in Appendix G. We demonstrated the natural image
sequence generation in Appendix H and showed the sample consistency along the temporal axis in
Appendix I.

4 Discussion

In this work, we propose an autoregressive image diffusion model for generating image sequences,
with specific applications to accelerated MRI reconstruction. We conducted comprehensive evaluation
of its performance as an image prior in reconstruction algorithms, comparing it to a standard diffusion
model. Due to the learned prior information on inter-image dependencies, the proposed model
outperforms the standard diffusion model across various scenarios. Our model is particularly well-
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suited for medical applications where image sequences are often acquired (e.g., in volumetric format)
from patients in clinical practice. For instance, when different contrast images are acquired during an
examination session [34], our model is designed to capture the relationships between these images.
This enables more accurate and coherent reconstructions from undersampled k-space data using the
proposed Algorithm 1. Additionally, other medical imaging tasks like dynamic MRI, multi-contrast,
super-resolution, and denoising could benefit from our model’s ability by leveraging inter-image
dependencies [35]. Furthermore, the proposed algorithm holds great promise for facilitating the
incorporation pre-existing information from other imaging modalities into MRI image reconstruction.
This opens up a wide range of potential medical applications, with the potential to improve patient care
and reduce healthcare costs by enabling faster and more accurate image acquisition and diagnosis.

Privacy Issue: As this model has the capability to generate coherent image sequences, it is crucial
to consider the privacy implications associated with its use, particularly in clinical settings. The
generation of such images may inadvertently expose sensitive patient information, including identifi-
able features such as facial characteristics. Safeguarding patient privacy must be a top priority when
deploying it. We recommend that the model be used in a controlled environment where access to
the generated images is restricted to authorized personnel only. Additionally, it is essential to ensure
that the model is trained on anonymized data and that the generated images are not stored or shared
without proper consent.

Limitation and future work: We did not evaluate the model on a common image dataset such as
ImageNet or Cifar-10, nor did we compute metrics such as FID and Inception Score, which could be
a limitation of our work. We plan to address these limitations in future work by running the model on
a large dataset and comparing it with other state-of-the-art models. Additionally, given the model’s
suitability for modeling image sequences, it is worth exploring its potential for optimizing MRI
k-space acquisition strategies, as the acquisition process constitutes a sequence of operations.

5 Conclusion

The proposed autoregressive image diffusion model offers an approach to generating image sequences,
with significant potential as a trustworthy prior in accelerated MRI reconstruction. In various
experiments, it outperforms the standard diffusion model in terms of both image quality and robustness
by taking the advantage of the prior information on inter-image dependencies.
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A Loss function derivation

Below is a derivation of Equation (5), the reduced variance variational bound for diffusion models.
This adapted from Sohl-Dickstein et al. (2015) and Ho et al. (2020). We include it here only for
completeness. In the forward process, xt
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B Posterior derivation

When samples drawn from the posterior started from the standard Gaussian noise, with Equation (12)
we have
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p(yn) is a constant for evidence. Then with gradient based method, the posterior p(xt
n|xt+1

n , yn, x
0
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is sampled from the likelihood p(yn|xt
n) and the reverse process p(xt
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C Likelihood function for k-space

The autocalibration signal (ACS) region are lines through the center of k-space, however, are fully
sampled. The sensitivity of a coil is a spatial profile that describes the receiving field that induces
signals in the coil. The simultaneous data acquisition, with each coil’s sensitivity corresponding to a
different subregion, leads to a complete image without aliasing artifacts.

13



k-space, y ∈ Y
kmax
x

-kmax
x
-kmax

y kmax
y

∆ky

∆kx

Phase encoding

F
r
e
q
u
e
n
c
y

e
n
c
o
d
in

g

image, x ∈ X

Fourier Trans.

FOVy

F
O

V
x

∆y

∆x

Figure 7: The relationship between k-space and image. The Nyquist theorem states that the sampling
rate must be at least twice the highest frequency component in the signal.

Figure 8: The signal detected by a coil is weighted by its local coil profile, which is called sensitivities
and imposes weights on the signal intensity. Consequently, it causes dark and bright regions in coil
images. The ground truth image is the combination of all coil images.
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D Cardiac samples

Figure 9: Prospective samples from the model trained on cardiac dataset.

Figure 10: Retrospective samples from the model trained on cardiac dataset.
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E Reconstruction from undersampled data
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F Computation and model complexity

Table 1 presents the computation needed to train the AID models on four different datasets with
different model complexities.

• Dataset: the name of the dataset (fastMRI, cardiac, ABIDE, UAV).
• Length: the length of the image sequence.
• Image size: the dimensions of the images in the dataset.
• Latent: the latent space representation used for the model, with options like VQVAE, Autoencoder-

KL, or None.
• Two-stage: a boolean indicating whether a two-stage training process was used. Two-stage training

is explained in the following section.
• Parameters: the number of parameters in the model.
• Train steps/s: training speed in steps per second.
• Inference (it/s): inference speed in iterations per second.

Table 1: Datasets and computational resources used to train the four different AID models.

Dataset Length Image size Latent Two-stage Parameters Train steps/s Inference (it/s)
fastMRI 10 320 None False ~139M ~1.31 ~10.07
cardiac 42 256 VQVAE, 4x False ~26M ~1.27 ~20.20
ABIDE 46 128 None True ~36M ~0.89 ~4.10

UAV 70 256 Autoencoder-KL, 8x True ~83M ~1.05 ~39.60

G Two-stage training

We implemented a two-stage training process to improve training efficiency. In the first stage, we
trained the U-net model. In the second stage, we trained the temporal-spatial conditioning block with
the pre-trained U-net model frozen. By doing so, we are able to train an AID model on ABIDE dataset,
where the image sequence has a dimension of 46×128×128 after preprocessing. The generated image
squeence is shown in Figure 11.

H Natural image sequence generation

We trained an AID model on an UAV dataset in the latent space and generated images using the
trained model. The generated images are displayed in Figure 12. The generated images demonstrate
the effectiveness of the proposed method in learning sequentially coherent natural images generation.
Each frame in Figure 2 shows an aerial view of a rural landscape with roads and/or a water pond.
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Figure 11: The generated ABIDE image sequence captures the changes in the brain structure.

Figure 12: The light changes in the water surface are captured in the generated UAV image sequence.

I Sample consistency along the temporal axis

Figure 13 shows the sample consistency along the temporal (or z) axis. Columns 1 and 2: Show
sagittal and coronal views of a brain image sequence. These images appear to be medical scans
with clearly stretched anatomical structures. Column 3: Displays the x-t plane of a cardiac image
sequence. This displays the heart’s activity over time and shows the diastolic and systolic phases
from left to right. Columns 4 and 5: Show the x-t plane of a UAV image sequence, both generated
and real. These images show the change in aerial views of a landscape over time. The generated x-t
plane are generally consistent with the real x-t plane images but suffer from the striped artifacts.

sagittal, y-z coronal, x-z cardiac, x-t UAV gen., x-t UAV real, x-t

Figure 13: Temporal consistency of the images generated by AID models trained on different datasets.
The first two columns show the sagittal and coronal view of brain image sequence. The x-t plane of
cardiac image and UAV sequence are shown in the last three columns.
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J VQVAE configuration for cardiac dataset

The VQVAE is trained on the cardiac dataset to generate the latent space for the training of the
autoregressive diffusion model, using the official implementation3. The VQVAE is trained with the
following configuration:

base_learning_rate: 4.5e-06
params:

embed_dim: 3
n_embed: 8192
ddconfig:

double_z: false
z_channels: 3
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [1, 2, 4]
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0

lossconfig:
target: losses.vqperceptual.VQLPIPSWithDiscriminator
params:

disc_conditional: false
disc_in_channels: 3
disc_start: 30001
disc_weight: 0.8
codebook_weight: 1.0

K 3D volume generation

To further improve the model’s ability to generate 3D volumes, the position embedding is added to
the third dimension - z of the volume. This allows the model trained on the ABIDE dataset to have
better consistency along the z-axis.

Figure 14: The generated 3D volumes from the model trained on the ABIDE dataset. The diffusion
process is applied on the transverse plane (x-y) (c.f. the image on the left) and the autoregressive
process is applied on the z-axis.

3https://github.com/CompVis/taming-transformers.git
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: See the last paragraph of the introduction in Page 2.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See the last paragraph of discussion in Page 10.
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Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: See Appendix A and B
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides all the information needed to reproduce the main experi-
mental results, include data, training details, algorithm details, and evaluation metrics in the
section of experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is available at https://github.com/mrirecon/aid.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper provides all the necessary details to understand the results in the
section of experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper reports error bar in Figure 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Section 3.1
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: See Privacy Issue in the section of discussion.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See Privacy Issue in the section of discussion.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not release data or models that have a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators or original owners of assets are properly credited and the license
and terms of use are explicitly mentioned and properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not submit new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [No]
Justification: This work does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: This paper paper use publicly released fastMRI dataset and have been approved
by the local IRB.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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