
4D Gaussian Splatting in the Wild
with Uncertainty-Aware Regularization

Mijeong Kim1

mijeong.kim@snu.ac.kr
Jongwoo Lim2, 3

jongwoo.lim@snu.ac.kr
Bohyung Han1,3

bhhan@snu.ac.kr

1ECE, 2ME, and 3IPAI, Seoul National University, South Korea

Abstract

Novel view synthesis of dynamic scenes is becoming important in various applica-
tions, including augmented and virtual reality. We propose a novel 4D Gaussian
Splatting (4DGS) algorithm for dynamic scenes from casually recorded monocular
videos. To overcome the overfitting problem of existing work for these real-world
videos, we introduce an uncertainty-aware regularization that identifies uncertain
regions with few observations and selectively imposes additional priors based on
diffusion models and depth smoothness on such regions. This approach improves
both the performance of novel view synthesis and the quality of training image
reconstruction. We also identify the initialization problem of 4DGS in fast-moving
dynamic regions, where the Structure from Motion (SfM) algorithm fails to provide
reliable 3D landmarks. To initialize Gaussian primitives in such regions, we present
a dynamic region densification method using the estimated depth maps and scene
flow. Our experiments show that the proposed method improves the performance
of 4DGS reconstruction from a video captured by a handheld monocular camera
and also exhibits promising results in few-shot static scene reconstruction.

1 Introduction

Dynamic novel View Synthesis (DVS) aims to reconstruct dynamic scenes from captured videos
and generate photorealistic frames for an arbitrary new combination of a viewpoint and a time step.
This task has emerged as a vital research area in the 3D vision community with rapid advancements
in augmented reality and virtual reality. Early DVS research primarily relied on neural radiance
fields [29, 69, 10, 13, 11, 38, 39, 41, 5, 12, 50]. In contrast, more recent methods [61, 18, 31] extend
3D Gaussian Splatting [23] to account for the additional time dimension in dynamic scenes, and these
techniques are referred to as 4D Gaussian Splatting.

Despite the recent success of 4D Gaussian Splatting models [61, 18, 31, 68], their applicability
remains largely limited to controlled and purpose-built environments. Most existing models are
developed and tested with multi-view video setups [29, 41]. While there are several methods tackling
monocular video settings, these setups are still controlled and fall short of in-the-wild scenarios. For
instance, [38, 69] maintain multi-view characteristics, where the camera captures a broad arc around
a slow-moving object. Also, HyperNeRF [39] relies on unrealistic train-test splits, with both sets
sampled from the same video trajectory, which renders the task closer to video interpolation than
genuine novel view synthesis. In this paper, we focus for the first time on more natural, real-world
monocular videos [14], where a single handheld camera moves around fast-moving objects.

In casually recorded monocular videos, which often lack sufficient multi-view information, 4D
Gaussian Splatting algorithms tend to overfit the training frames in real-world scenarios. To address
overfitting, recent regularization techniques [26, 7, 58, 67, 25, 36, 20] can be applied to provide

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

certain

Rendered imageUncertainty map

Uncertain region

Diffusion

Gaussian primitives

: needing additional priors

Depth smoothness

Certain region: preserved

Figure 1: Concept of uncertainty-aware regularization. Existing models often use regularization
techniques to introduce additional priors for unseen views, aiming to enhance novel view synthesis
performance. However, these methods tend to over-regularize accurately reconstructed pixels, which
degrades the reconstruction quality of training images. To address this issue, our uncertainty-aware
regularization selectively focuses on uncertain regions in unseen views, preserving the quality of
well-reconstructed pixels with low uncertainty.

additional priors for unseen views. However, these regularization techniques often involve a balancing
issue: while they effectively improve novel view synthesis performance during testing, they inherently
sacrifice the reconstruction accuracy of training images. Since both the reconstruction accuracy and
the novel view synthesis quality are equally important in our target task, the trade-off caused by the
naïve application of the regularization techniques is not desirable.

In this paper, we address this balancing issue with a simple yet effective solution: uncertainty-aware
regularization. First, we quantify the uncertainty of each Gaussian primitive based on its contribution
to rendering for training images. Then, a 2D uncertainty map is constructed for unseen views using an
α-blending method. Regularization is selectively applied to uncertain regions, guided by the diffusion
and depth smoothness priors, while low-uncertainty regions, where training data already provide
sufficient reconstruction detail, are left unregularized, as illustrated in Figure 1. This approach results
in a better balance between training and test performance, achieving good performance.

In real-world scenarios involving fast motions, especially in casually recorded videos, 4D Gaussian
Splatting additionally faces considerable challenges with initialization. The algorithms based on
Gaussian Splatting initialize Gaussian primitives using point clouds obtained by Structure from
Motion (SfM) [47]. However, SfM struggles to reconstruct dynamic regions, particularly those with
fast motion, often treating them as noise and leaving these areas without initialized primitives. Such
an incomplete initialization disrupts training, causing primitives in static regions to be repeatedly
cloned and split in an attempt to fill the dynamic areas. This can lead to an excessive number
of primitives and, in some cases, out-of-memory issues. To address this limitation, we propose a
dynamic region densification technique that initializes additional Gaussian primitives in dynamic
regions.

We address the challenging problem of 4D reconstruction from an in-the-wild monocular video
recorded casually with a handheld camera—a scenario that has been rarely explored. The main
contributions of this paper are summarized as follows:

• We propose an uncertainty quantification technique based on contribution to training image
rendering and introduce adaptive regularization techniques based on the uncertainty map,
which balances between novel view synthesis performance and training image reconstruction
quality.

• We address the issue of incomplete initialization in dynamic regions, emphasizing the
importance of proper initialization in the training process of 4D Gaussian Splatting.

• We demonstrate the effectiveness of our algorithm on casually recorded monocular videos,
showing improvements over baselines. Additionally, we validate the applicability of our
method in few-shot static scene reconstruction.

The rest of this paper is organized as follows. Section 2 reviews related work and Section 3 discusses
the basic concepts of 4D Gaussian splatting, which builds upon 3D Gaussian Splatting by integrating

2

deformation strategies. The details of our approach are described in Section 4, followed by the
presentation of experimental results in Section 5. Finally, we conclude this paper in Section 6.

2 Related Work

2.1 Dynamic Novel View Synthesis

In recent years, significant advances have been made in novel view synthesis [34, 6, 15, 60, 35, 23].
Initially focused on static scenes, novel view synthesis has shifted towards dynamic scenes through
the integration of motion modeling, now referred to as Dynamic novel View Synthesis (DVS). Early
approaches [13, 10, 38, 5, 12, 50, 11] are largely driven by Neural Radiance Fields (NeRF). Some
studies [13, 10] capture dynamics implicitly through temporal inputs or latent codes, and other
approaches [38, 5, 12, 50, 11] focus on training the canonical NeRF and its deformation fields.

The introduction of 3D Gaussian Splatting (3DGS) [23] has marked a paradigm shift in novel
view synthesis, leading to the development of 4D Gaussian Splatting (4DGS) [68, 18, 61, 31] for
DVS. These 4DGS methods deform canonical 3D Gaussian primitives over time using additional
deformation networks, which can be based on MLPs, learnable control points, Hexplane [5, 61],
or polynomial functions. While these models excel at reconstructing dynamic scenes in controlled
environments [38, 69, 29, 41, 39], they face significant challenges when applied to casually recorded
monocular videos, posing substantial hurdles for real-world applications.

2.2 Regularization Techniques in Sparse Reconstruction

Casually recorded monocular videos typically provide limited multi-view information, as they are
typically captured with a single handheld camera that only exhibits gentle motion. Consequently,
reconstructing dynamic scenes from these videos is often regarded as a form of sparse reconstruction
due to the lack of multi-view data.

In the context of sparse reconstruction, various regularization techniques have been proposed to
mitigate overfitting on limited training images [36, 25, 20, 48, 22, 4, 49, 53, 24, 63, 43, 8, 59, 55,
16, 65, 62, 2, 17, 16]. These approaches generally involve rendering images or depth maps for
unseen views to provide additional priors. For instance, some methods leverage depth priors based on
estimated depths for novel views [43, 8, 59, 55, 16, 72], while others incorporate color smoothness
constraints to enhance these views [25, 36]. Building on the success of diffusion models [44],
recent approach [62] starts to incorporate diffusion priors to produce more realistic images of novel
views. While these methods effectively enhance novel view synthesis performance at test time, they
inherently compromise the quality of training image reconstructions. Since both the reconstruction
accuracy and the novel view synthesis quality are equality important in our target task, the trade-off
caused by the naïve application of the regularization techniques is not desirable.

2.3 Uncertainty Quantifications in Novel View Synthesis

Uncertainty estimation in novel view synthesis has primarily been explored with Neural Radiance
Fields (NeRF) [29]. Pioneering approaches [37, 51, 52] re-parameterize MLP networks in NeRF
using Bayesian models to compute the uncertainty of network predictions. Inspired by InfoNeRF [25],
which considers entropy along rays for few-shot NeRFs, some studies [70, 66, 27] quantify uncertainty
using the entropy of density along rays from a novel view. Additionally, Density-aware NeRF
Ensembles [56] measures uncertainty by examining the variance in RGB images produced by an
ensemble of models.

In contrast, uncertainty quantification in Gaussian Splatting [23] remains largely underexplored,
with only a few works addressing this issue. Savant et al. [46] incorporate variational inference into
the rendering pipeline, but this approach increases learnable parameters. Similarly, FisherRF [21]
quantifies the uncertainty of Gaussian primitives by aggregating the diagonal of the Hessian matrix of
the log-likelihood function; however, it is not straightforward to obtain a scalar value of uncertainty
from the Hessian matrix for each Gaussian primitive. Our approach, on the other hand, directly
quantifies the observed information of each Gaussian primitive by aggregating their contributions to
the reconstruction of training images.

3

Most existing works that utilize estimated uncertainty primarily focus on quantifying model predic-
tions after training [46] or on active learning for next-view selection [21]. In contrast, our approach
leverages estimated uncertainty for adaptive regularization during training, specifically targeting
Gaussian Splatting in sparse reconstruction.

3 Preliminary: 4D Gaussian Splatting

This section briefly overviews 3D Gaussian splatting (3DGS) [23] and explains the deformation
modeling in 4D Gaussian Splatting (4DGS) [68, 18, 61, 31] for dynamic scenes.

3.1 3D Gaussian Splatting

Gaussian primitive 3D Gaussian splatting has demonstrated real-time, state-of-the-art rendering
quality on static scenes. It uses an explicit 3D scene representation consisting of a set of 3D Gaussian
ellipsoids, denoted by Γ = {γ1, ..., γK}. Each Gaussian primitive, γk, is based on an unnormalized
3D Gaussian kernel, Gk(x), parameterized by µk and Σk as follows:

Gk(x;µk,Σk) := exp

(
−1

2
(x− µk)>Σ−1

k (x− µk)

)
, (1)

where µk ∈ R3 is the center position, Σk ∈ R3×3 is an anisotropic covariance matrix, and x ∈ R3 is
an arbitrary location in 3D space. The covariance matrix Σk is valid only when positive semi-definite,
which is challenging to enforce during optimization. To ensure this condition, we learn Σk by
decomposing it into two learnable components, a rotation matrix Rk and a scaling matrix Sk as
follows:

Σk := RkSkS
>
k R

>
k . (2)

In addition to the standard Gaussian parameters such as µk,Rk, and Sk, the Gaussian primitive
requires additional learnable parameters for its opacity, αk ∈ [0, 1], and feature, fk ∈ Rd, which is
typically represented by RGB colors or spherical harmonic (SH) coefficients. Thus, each Gaussian
primitive is represented as γk := (µk,Rk,Sk, αk,fk).

Differentiable rasterization Before rendering with the Gaussian primitives Γ on an image space,
each 3D Gaussian kernel, Gk(x;µk,Σk), is projected onto a 2D image space and forms a 2D
Gaussian kernel, Gπk (r;µπk ,Σ

π
k), where π : R3 → R2 denotes a projection from the world coordinate

to an image space. In the projected Gaussian representation, r ∈ R2 indicates a pixel location in an
image, and the 2D mean µπk ∈ R2 and covariance Σπ

k ∈ R2 are given by

µπk := π(µk) and Σπ
k := JWΣkW

>J>, (3)
where J denotes the Jacobian of the affine approximation of the projective transformation, andW is
the world-to-camera transform matrix. When rendering the primitives in Γ to a target camera, they
are sorted by their depths with respect to the camera center. The color of a pixel r is then obtained by
α-blending, which is given by

Î(r) :=

K∑
k=1

ωπk (r)c(fk, r), (4)

where ωπk (r) represents a relative contribution of each Gaussian primitive to pixel r and c(fk, r) is
the color of a pixel r measured along the view direction. If a feature vector fk is based on spherical
harmonics coefficients, the color is decoded from fk using the view direction associated with pixel
r; otherwise, the feature vector fk can be identical to the RGB color of the primitive. For more
details, please refer to the original Gaussian Splatting paper [23]. Note that, following the α-blending
procedure in 3DGS [23], ωπk (r) is given by

ωπk (r) := αkGπk (r;µπk ,Σ
π
k)

k−1∏
j=1

(
1− αjGπj (r;µπk ,Σ

π
k)
)
, (5)

where αkGπk (r;µπk ,Σ
π
k) is the opacity of the kth projected primitive at the junction with a ray

corresponding to pixel r and
∏k−1
j=1 (·) is the transmittance at the primitive γk on pixel r, which

measure how much light penetrates the preceding primitives along the ray.

4

3.2 Deformation Modeling in 4D Gaussian Splatting

To represent 4D scenes using Gaussian splatting, recent algorithms [68, 18, 61, 31] deform the 3D
Gaussian primitives from their canonical states to a target state over time. The transformed position
µt, rotationRt, and scale St at time t are given by

(µtk,R
t
k,S

t
k) = (µk + φµ(µk, t),Rk + φr(Rk, t),Sk + φs(Sk, t)), (6)

where the deformation functions φµ(·), φr(·), and φs(·) can be various forms, including MLPs,
learnable control points [18], Hexplane [5, 61], or polynomial functions. A deformed 3D Gaussian
primitive at time t is represented as γk(t) := (µtk,R

t
k,S

t
k, αk,fk). The projection onto a 2D space

follows the same procedure as the static 3D Gaussian splatting, presented in Equation (4). Our
approach adopts the Hexplane structure for deformation, similar to [61].

4 Uncertanty-Aware 4D Gaussian Splatting

4.1 Uncertainty-Aware Regularization

We now discuss the proposed uncertainty-aware regularization technique designed for the balance
between reconstruction quality on training images and generalization to unseen views.

Uncertainty quantification We first estimate how informative each Gaussian primitive is for
reconstruction, based on its visibility from all pixels in training images and its opacity, which is given
by

Ck =
∑
I∈T

∑
r

ωπk (r), (7)

where r is a pixel in a training image I ∈ T , and ωπk (r) is the contribution of each Gaussian primitive
γk to pixel r during α-blending, as described in Equation (5). For the computation of this value, we
customize the CUDA kernel to modify the backward process of the 3DGS [23].

The parameters of an informative Gaussian primitive are typically estimated accurately with high
confidence. Conversely, a Gaussian primitive that is not properly supported by training images
struggles with low accuracy and high uncertainty of its parameter estimation. Based on these
observations, the uncertainty of each Gaussian primitive, Uk, is defined as

Uk = 1− Sigmoid(Ck; c0, c1), (8)

where the sigmoid function is used to bound and normalize Ck and {c0, c1} control the inflection
point shift and the slope of the sigmoid function, respectively. Given an arbitrary unseen viewpoint, a
2D uncertainty map U is constructed using α-blending as follows:

U(r) =

K∑
k=1

ωπk (r)Uk, (9)

where r is a pixel in the uncertainty map U. We employ the estimated uncertainty map for the
adaptive regularization to unseen views. Specifically, we adopt a diffusion prior as well as a depth
smoothing prior and the details of these two priors are discussed next.

Uncertainty-aware diffusion-based regularization To render natural-looking images for novel
views and times, we incorporate Stable Diffusion [44] into our pipeline. We begin by generating text
prompts from the training frames using the vision-language model BLIP [28]. These prompts guide
fine-tuning of the diffusion model via DreamBooth [45] with the training images, which aligns the
model’s understanding to the specific content in the training images as discussed in the image-to-3D
reconstruction algorithm [42]. Using this fine-tuned model, we produce a refined image, IDDIM from
the rendered image Î for novel views or times. Specifically, we first encode Î into the latent space
using the latent diffusion encoder Enc, then perturb it into a noisy latent representation as follows:

xt =
√
ᾱtEnc(̂I) +

√
1− ᾱtε, where ε ∼ N (0, I) and t ∈ [0, T], (10)

5

where ᾱt is a scalar value that controls the noise level and t is a diffusion time step. Similar to
SDEdit [32], we generate IDDIM by performing the DDIM sampling [54] over k = b50 · tT c steps and
running the diffusion decoder Dec as follows:

IDDIM = Dec(DDIM(xt,v)), (11)

where v is the text embedding of the prompt from BLIP. Applying a reconstruction loss between Î and
IDDIM is helpful for generating natural-looking images for unseen views; however, it may compromise
reconstruction quality because IDDIM sometimes contains misaligned context with the actual 3D scene
inherent in the training images. To achieve accurate and realistic reconstruction by balancing the
two properties, we propose uncertainty-aware diffusion loss, LUA-diff. This loss applies the estimated
uncertainty to the computation of the reconstruction error between the synthesized image, Î and
the corresponding DDIM-sampled image, IDDIM, where uncertain regions are more regularized than
low-uncertainty regions—where the training data already provide sufficient reconstruction detail—as
follows:

LUA-diff =
|U · (̂I− IDDIM)|2

|U|2
+
|U · (̂I− IDDIM)|1

|U|1
, (12)

where U is the uncertainty map of the unseen view and · denotes element-wise product. Since the
DDIM sampling for generating IDDIM is time-consuming, performing it every iteration could slow
down the training process, which is not desirable. To avoid the computational burden for training, we
randomly sample 200 images at the beginning of every 2,000 iterations, refine them by DDIM, and
store them in memory. During the next 2,000 iterations, we utilize the stored images to compute the
diffusion-based regularization term, LUA-diff.

Uncertainty-aware depth smoothing regularization We introduce an additional regularization
term to encourage smooth depth predictions in uncertain regions. To this end, we first generate a
depth map D for unseen views using an α-blending method as follows:

D̂(r) =

K∑
k=1

ωπk (r)dk, (13)

where r ∈ R2 is a pixel coordinate in the depth map D̂, and dk denotes the depth at the center
of the kth Gaussian with respect to the camera center. We employ the total variation to regularize
the estimated depth map D̂, which promotes smooth depth transitions between neighboring pixels.
However, the uniform total variation loss over all pixels produces blur artifacts on accurately predicted
regions, resulting in large reconstruction error. To address this drawback, we propose an uncertainty-
aware total variation loss, LUA-TV, which applies stronger smoothing to high-uncertainty regions
for noise reduction in the depth map, while leaving low-uncertainty areas unregularized to preserve
details. Our uncertainty-aware total variation loss is given by

LUA-TV =
1

ur

∑
i,j

Ui,j + Ui+1,j

2
· |D̂i,j − D̂i+1,j |+

1

uc

∑
i,j

Ui,j + Ui,j+1

2
· |D̂i,j − D̂i,j+1|,

(14)

where D̂i,j is the estimated depth at pixel (i, j) and ur and uc respectively denote the sums of the aver-
age uncertainties of vertically and horizontally adjacent pixels, in other words, ur =

∑
i,j

Ui,j+Ui+1,j

2

and uc =
∑
i,j

Ui,j+Ui,j+1

2 .

4.2 Dynamic Region Densification

Existing 4D Gaussian Splattings initialize Gaussian primitives using point clouds obtained from
Structure from Motion (SfM) [47]. However, since SfM assumes static scenes, it is fundamentally
unable to reconstruct dynamic regions, particularly those involving rapid motion, as shown in
Figure 2c. This failure occurs because the algorithm treats dynamic regions as noise, leaving these
areas without initialized primitives. Such incomplete initialization disrupts the training process,
causing primitives in static regions to be repeatedly cloned and split in an attempt to fill the dynamic
areas. This leads to an excessive number of primitives and, in some case, out-of-memory issues.

6

(a) Training image (b) Scene flow (c) Initialization from SfM (d) Dynamic region densification

Figure 2: Visualization of the dynamic region densification on the Backpack scene. Since SfM [47]
is designed for static scenes, it fails to properly initialize Gaussian primitives in dynamic regions.
Our dynamic region densification module initializes additional Gaussian primitives in the identified
dynamic regions using scene flow and depth map.

To address this limitation, we propose a dynamic region densification that initializes additional
Gaussian primitives Γ′ = {γ′1, ..., γ′K} in dynamic regions. To this end, we first identify dynamic
pixels in the training images using scene flows [71] and randomly select a subset of the pixels. For
each selected pixel r, the corresponding Gaussian primitive γ′k is initialized with position µk and
feature vector fk as:

µk = π−1 (r,D(r)) and
[
f

(0)
k ,f

(1)
k ,f

(2)
k

]
= I(r), (15)

where D(r) is the depth value of pixel r estimated from [71], and π−1 is the inverse projection
function that reprojects r into 3D space. The feature vector fk encodes the information of the kth

Gaussian primitive, where its first three components are set to the RGB colors of pixel r in an image I
and the rest of dimensions, which are optional for the spherical harmonics representation, are padded
to zeros. This method provides reasonable placements of Gaussian primitives in dynamic regions as
shown in Figure 2d.

4.3 Data-Driven Losses

Since the dynamic scene reconstruction from casually recorded monocular video is a highly ill-posed
problem, we apply the additional data-driven losses based on depth and flow maps. The depth-driven
loss is defined by the difference between the depth maps D̂ and D, which are respectively obtained
via the α-blending shown in Equation (13) and the algorithm proposed in [71], as shown in the
following equation:

Ldepth = |D̂−D|1. (16)

The flow-driven loss is analogously defined. Given two frames Π and Π′, the flow of a pixel r is
estimated using α-blending, which is expressed by

F̂Π→Π′
(r) =

K∑
k=1

ωπk (r)FΠ→Π′

k , where FΠ→Π′

k = π′(µt
′

k)− π(µtk), (17)

where FΠ→Π′

k represents the deformation of the kth Gaussian primitive from frame Π to frame Π′ in
the projected image space, where (π, t) and (π′, t′) denote the projection function and timestamp
associated with frames Π and Π′, respectively. Similar to Ldepth, the data-driven loss for flow is
defined by

Lflow = |F̂
Π→Π′

− F
Π→Π′

|1, (18)

where F
Π→Π′

is an optical flow map obtained from RAFT [57].

The final data-driven loss, Ldata, is defined as the sum of the two data-driven loss terms, as shown in
the following equation:

Ldata = Ldepth + Lflow. (19)

7

4.4 Total Loss

To train our uncertainty-award 4D Gaussian splatting models, the total loss function is given by
L = Lrecon + λgridLgrid + λdataLdata + λUA-diffLUA-diff + +λUA-TVLUA-TV, (20)

whereLrecon is the standard reconstruction loss based on training images, Lgrid is a loss term associated
with the Hexplane-based deformation adopted in our baseline [61], and {λgrid, λdata, λUA-diff, λUA-TV}
are balancing hyperparameters for individual loss terms.

5 Experiments

This section compares the proposed method, referred to as UA-4DGS, with existing 4D Gaussian
splatting algorithms including D-3DGS [68], Zhan et al. [31], and 4DGS [61]. Our method is
implemented based on the official code of 4DGS [61] and tested on a single RTX A5000 GPU.

5.1 Settings

Dataset Our primary goal is to reconstruct dynamic scenes from casually recorded monocular
videos, for which we use DyCheck [14] as our main dataset. This dataset consists of monocular
videos captured with a single handheld camera, featuring scenes with fast motion to provide a
challenging and realistic scenario for dynamic scene reconstruction. The DyCheck dataset includes
14 videos; however, only the half of scenes—apple, block, paper-windmill, teddy, space-out, spin,
and wheel—are suitable for evaluation due to the availability of held-out views.

Evaluation protocol To evaluate novel view rendering quality, we use three metrics: peak signal-
to-noise ratio (PSNR), structural similarity (SSIM), and a perceptual metric called learned perceptual
image patch similarity (LPIPS). Additionally, since our target dataset provides a co-visibility mask, we
also compute masked versions of these metrics, mPSNR, mSSIM, and mLPIPS, focusing on co-visible
regions. For masked evaluations, we employ the JAX implementation provided by DyCheck [14].

5.2 Experimental Results

Table 1 presents the quantitative comparison of our algorithm against existing methods based on
4D Gaussian Splatting [68, 61, 31] and MLPs [39] on the DyCheck dataset [14]. Our approach,
UA-4DGS, surpasses the performance of all other 4D Gaussian Splatting algorithms across all metrics.
Figure 3 shows qualitative results on the space-out, paper-windmill, teddy, and spin scenes, where
UA-4DGS synthesizes more realistic images, clearly outperforming existing 4D Gaussian Splatting
algorithms.

Although Gaussian Splatting generally outperforms MLP-based approaches on multi-view or less
challenging datasets, our experiments show that they fall behind MLP-based methods in our target
setting based on casually recorded videos with a monocular handheld camera as presented in Table 1.
This is probably because the methods based on Gaussian Splatting focus more on local optimization
with respect to individual Gaussian primitives and, consequently, are prone to overfitting to training
images in in-the-wild monocular scenarios.

5.3 Analysis

Generalization to static scenes To demonstrate the generality of our method in static scene
reconstruction, we incorporate the proposed uncertainty-aware regularization to FSGS [72], a few-
shot Gaussian Splatting algorithm for static scenes, and refer to this version of our model as UA-FSGS.
We test both FSGS and UA-3DGS on the LLFF dataset [33] using three training images with five
different runs. Table 2 presents quantitative comparisons where UA-3DGS outperforms existing
methods, including both the original results and our reproduced ones of FSGS.

Ablation study Table 3 shows the results of the ablation study on each proposed component.
Dynamic region densification improves performance compared to the data-driven loss alone, implying
that better alignment of primitives with scene geometry enhances the effectiveness of the loss term.
Moreover, uncertainty-aware regularization yields further improvements, where LUA-diff provides
substantial benefits, and adding LUA-TV results in additional gains.

8

Table 1: Quantitative comparisons on a challenging dataset, DyCheck. Our approach shows the best
performance among 4D Gaussian Splatting-based methods. However, Gaussian Splatting is generally
worse than MLP-based methods in more challenging settings with casually recorded videos using a
monocular handheld camera.

Representation Method FPS mPSNR ↑ PSNR ↑ mSSIM ↑ SSIM ↑ mLPIPS↓ LPIPS ↓
T-NeRF [14] <1 16.96 16.23 0.577 0.420 0.379 0.453
NSFF [30] <1 16.45 15.79 0.570 0.415 0.339 0.409
Nerfies [38] <1 16.81 16.43 0.569 0.417 0.332 0.399MLP

HyperNeRF [39] <1 15.46 15.20 0.551 0.399 0.396 0.464
D-3DGS [68] 65 12.98 12.72 0.444 0.280 0.470 0.583

Zhan et al. [31] 111 13.47 13.15 0.456 0.289 0.448 0.522
4DGS [61] 73 14.14 13.90 0.465 0.297 0.430 0.508Gaussian Splatting

UA-4DGS (ours) 75 15.25 14.89 0.488 0.325 0.390 0.476

Table 2: Few-shot novel view synthesis results with three views for static scenes, tested on the
LLFF [33] dataset. Our method significantly outperforms existing methods across all metrics. FSGS†
and UA-3DGS were tested over five runs, with (†) indicating reproduced results. Results for other
methods are taken from [72] and [7].

Representation Method FPS PSNR ↑ SSIM ↑ LPIPS ↓
MipNeRF [3] 0.21 16.11 0.401 0.46

DietNeRF [20] 0.14 14.94 0.370 0.496
RegNeRF [36] 0.21 19.08 0.587 0.336
FreeNeRF [67] 0.21 19.63 0.612 0.308

MLP

SparseNeRF [58] 0.21 19.86 0.624 0.328
3DGS [23] 385 17.83 0.582 0.321

Chung et al. [7] – 17.17 0.497 0.337
FSGS [72] 458 20.43 0.682 0.248
FSGS† [72] 461 19.82 0.672 0.238

Gaussian Splatting

UA-3DGS (Ours) 461 20.89 0.716 0.217

Impact of uncertainty consideration To evaluate the impact of incorporating uncertainty, we test
regularization methods without uncertainty consideration, where we refer to this version as Ldiff
and LTV, respectively. Table 4 shows both train and test performance; while Ldiff and LTV are still
effective for test performance, they exhibit underfitting on training images with lower reconstruction
performance. In contrast, by integrating uncertainty through LUA-diff and LUA-TV, we can enhance the
balance between training reconstruction quality and test performance in novel view synthesis.

6 Conclusions

We proposed a novel training framework for 4D Gaussian Splatting, targeting dynamic scenes captured
from casually recorded monocular cameras. Our uncertainty-aware regularizations, which incorporate
diffusion and depth-smoothness priors, effectively improve novel view synthesis performance while
preserving reconstruction quality on training images. Additionally, we addressed the initialization
challenges of Gaussian primitives in fast-moving scenes by introducing dynamic region densification.
Our method demonstrated performance gains over baseline approaches, both in dynamic scene
reconstructions and few-shot static scene reconstructions. We conducted a detailed analysis through
extensive experiments, and we believe this work initiates research on an important, emerging problem
in 4D Gaussian Splatting, offering valuable insights to the field.

Limitations and future work Novel view synthesis performance on casually recorded monocu-
lar videos still lags behind that on multi-view or simpler datasets, highlighting potential areas for
improvement in future research. Currently, our regularization techniques rely on image-level regular-
ization using 2D uncertainty maps; future work could enhance this by incorporating regularization
in the Gaussian primitive level [64, 19] to directly leverage each Gaussian primitive’s uncertainty.
Additionally, our dynamic region densification does not consider temporal consistency for primitive
initialization, but this issue may be addressed by integrating long-term tracking algorithms [9].

9

Table 3: Ablation test results of our training schemes on the spin scene in the DyCheck [14] dataset.
Dynamic Dens. refers to dynamic region densification.

Method Ldata Dynamic Dens. LUA-diff LUA-TV mPSNR mSSIM mLPIPS

4DGS [61] – – – 15.25 0.424 0.419

Ours

X 15.74 0.444 0.373
X X 17.04 0.463 0.375
X X X 17.32 0.474 0.355
X X X X 17.37 0.481 0.342

Table 4: Quantitative comparison of regularization methods with and without uncertainty estimation
on the static room scene in the LLFF dataset, where FSGS [72] are used as the baseline. Incorporating
uncertainty into the regularization improves novel view synthesis by enhancing the balance between
reconstruction quality on training images and performance on novel views.

Method Uncertainty Train (Reconstruction) Test (Novel View Synthesis)
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

FSGS [72] – 42.38 0.981 0.029 20.60 0.822 0.184

FSGS w/ Ldiff 38.40 0.986 0.035 20.40 0.811 0.198
FSGS w/ LUA-diff (Ours) X 41.28 0.989 0.029 20.98 0.835 0.174
FSGS w/ LTV 38.25 0.985 0.042 20.77 0.827 0.186
FSGS w/ LUA-TV (Ours) X 38.26 0.985 0.038 21.08 0.831 0.184

(a) Ground Truth (b) D-3DGS (c) Zhan et al. (d) 4DGS (e) UA-4DGS (f) Depth (Ours)

Figure 3: Qualitative results on the space-out, paper-windmill, teddy, and spin scenes in the DyCheck
dataset. UA-4DGS (Ours) shows outstanding quality of rendered images compared to existing
methods, including D-3DGS [68], Zhan et al. [31], and 4DGS [61]

10

Acknowledgments and Disclosure of Funding

This work was partly supported by Samsung Advanced Institute of Technology (SAIT), and by
the Institute of Information & Communications Technology Planning & Evaluation (IITP) [No.RS-
2022-II220959 (No.2022-0-00959), No.RS-2021-II211343, No.RS-2021-II212068] and the National
Research Foundation (NRF) [No.RS-2021-NR056445 (No.2021M3A9E408078222)] funded by the
Korea government (MSIT).

References
[1] J. An. Model development with vessl, 2023. URL https://www.vessl.ai/. Software

available from vessl.ai.

[2] J. Bai, L. Huang, W. Gong, J. Guo, and Y. Guo. Self-nerf: A self-training pipeline for few-shot
neural radiance fields. arXiv:2303.05775, 2023.

[3] J. T. Barron, B. Mildenhall, M. Tancik, P. Hedman, R. Martin-Brualla, and P. P. Srinivasan.
Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields. In ICCV, 2021.

[4] M. Bonotto, L. Sarrocco, D. Evangelista, M. Imperoli, and A. Pretto. Combinerf: A combination
of regularization techniques for few-shot neural radiance field view synthesis. arXiv:2403.14412,
2024.

[5] A. Cao and J. Johnson. Hexplane: A fast representation for dynamic scenes. In CVPR, 2023.

[6] A. Chen, Z. Xu, A. Geiger, J. Yu, and H. Su. Tensorf: Tensorial radiance fields. In ECCV, 2022.

[7] J. Chung, J. Oh, and K. M. Lee. Depth-regularized optimization for 3d gaussian splatting in
few-shot images. arXiv:2311.13398, 2023.

[8] K. Deng, A. Liu, J.-Y. Zhu, and D. Ramanan. Depth-supervised nerf: Fewer views and faster
training for free. In CVPR, 2022.

[9] C. Doersch, Y. Yang, M. Vecerik, D. Gokay, A. Gupta, Y. Aytar, J. Carreira, and A. Zisserman.
Tapir: Tracking any point with per-frame initialization and temporal refinement. In ICCV, 2023.

[10] Y. Du, Y. Zhang, H.-X. Yu, J. B. Tenenbaum, and J. Wu. Neural radiance flow for 4d view
synthesis and video processing. In ICCV, 2021.

[11] J. Fang, T. Yi, X. Wang, L. Xie, X. Zhang, W. Liu, M. Nießner, and Q. Tian. Fast dynamic
radiance fields with time-aware neural voxels. In SIGGRAPH Asia, 2022.

[12] S. Fridovich-Keil, G. Meanti, F. R. Warburg, B. Recht, and A. Kanazawa. K-planes: Explicit
radiance fields in space, time, and appearance. In CVPR, 2023.

[13] C. Gao, A. Saraf, J. Kopf, and J.-B. Huang. Dynamic view synthesis from dynamic monocular
video. In ICCV, 2021.

[14] H. Gao, R. Li, S. Tulsiani, B. Russell, and A. Kanazawa. Monocular dynamic view synthesis:
A reality check. In NeurIPS, 2022.

[15] S. J. Garbin, M. Kowalski, M. Johnson, J. Shotton, and J. Valentin. Fastnerf: High-fidelity
neural rendering at 200fps. In ICCV, 2021.

[16] S. Guo, Q. Wang, Y. Gao, R. Xie, and L. Song. Depth-guided robust and fast point cloud fusion
nerf for sparse input views. In AAAI, 2024.

[17] S. Hu, K. Zhou, K. Li, L. Yu, L. Hong, T. Hu, Z. Li, G. H. Lee, and Z. Liu. Consistentnerf: En-
hancing neural radiance fields with 3d consistency for sparse view synthesis. arXiv:2305.11031,
2023.

[18] Y.-H. Huang, Y.-T. Sun, Z. Yang, X. Lyu, Y.-P. Cao, and X. Qi. Sc-gs: Sparse-controlled
gaussian splatting for editable dynamic scenes. In CVPR, 2024.

11

https://www.vessl.ai/

[19] J. Hyung, S. Hong, S. Hwang, J. Lee, J. Choo, and J.-H. Kim. Effective rank analysis and
regularization for enhanced 3d gaussian splatting. arXiv preprint arXiv:2406.11672, 2024.

[20] A. Jain, M. Tancik, and P. Abbeel. Putting nerf on a diet: Semantically consistent few-shot view
synthesis. In ICCV, 2021.

[21] W. Jiang, B. Lei, and K. Daniilidis. Fisherrf: Active view selection and uncertainty quantification
for radiance fields using fisher information. In ECCV, 2024.

[22] D. Kanaoka, M. Sonogashira, H. Tamukoh, and Y. Kawanishi. Manifoldnerf: View-dependent
image feature supervision for few-shot neural radiance fields. arXiv:2310.13670, 2023.

[23] B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis. 3d gaussian splatting for real-time
radiance field rendering. In ACM ToG, 2023.

[24] I. Kim, M. Choi, and H. J. Kim. Up-nerf: Unconstrained pose prior-free neural radiance field.
In NeurIPS, 2023.

[25] M. Kim, S. Seo, and B. Han. Infonerf: Ray entropy minimization for few-shot neural volume
rendering. In CVPR, 2022.

[26] M.-S. Kwak, J. Song, and S. Kim. Geconerf: Few-shot neural radiance fields via geometric
consistency. In ICML, 2023.

[27] S. Lee, L. Chen, J. Wang, A. Liniger, S. Kumar, and F. Yu. Uncertainty guided policy for active
robotic 3d reconstruction using neural radiance fields. IEEE Robotics and Automation Letters,
2022.

[28] J. Li, D. Li, C. Xiong, and S. Hoi. Blip: Bootstrapping language-image pre-training for unified
vision-language understanding and generation. In ICML, 2022.

[29] T. Li, M. Slavcheva, M. Zollhoefer, S. Green, C. Lassner, C. Kim, T. Schmidt, S. Lovegrove,
M. Goesele, R. Newcombe, et al. Neural 3d video synthesis from multi-view video. In CVPR,
2022.

[30] Z. Li, S. Niklaus, N. Snavely, and O. Wang. Neural scene flow fields for space-time view
synthesis of dynamic scenes. In CVPR, 2021.

[31] Z. Li, Z. Chen, Z. Li, and Y. Xu. Spacetime gaussian feature splatting for real-time dynamic
view synthesis. In CVPR, 2024.

[32] C. Meng, Y. He, Y. Song, J. Song, J. Wu, J.-Y. Zhu, and S. Ermon. Sdedit: Guided image
synthesis and editing with stochastic differential equations. In ICLR, 2022.

[33] B. Mildenhall, P. P. Srinivasan, R. Ortiz-Cayon, N. K. Kalantari, R. Ramamoorthi, R. Ng, and
A. Kar. Local light field fusion: Practical view synthesis with prescriptive sampling guidelines.
In SIGGRAPH, 2019.

[34] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng. Nerf:
Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.

[35] T. Müller, A. Evans, C. Schied, and A. Keller. Instant neural graphics primitives with a
multiresolution hash encoding. ACM TOG, 2022.

[36] M. Niemeyer, J. T. Barron, B. Mildenhall, M. S. Sajjadi, A. Geiger, and N. Radwan. Regnerf:
Regularizing neural radiance fields for view synthesis from sparse inputs. In CVPR, 2022.

[37] X. Pan, Z. Lai, S. Song, and G. Huang. Activenerf: Learning where to see with uncertainty
estimation. In ECCV, 2022.

[38] K. Park, U. Sinha, J. T. Barron, S. Bouaziz, D. B. Goldman, S. M. Seitz, and R. Martin-Brualla.
Nerfies: Deformable neural radiance fields. ICCV, 2021.

[39] K. Park, U. Sinha, P. Hedman, J. T. Barron, S. Bouaziz, D. B. Goldman, R. Martin-Brualla, and
S. M. Seitz. Hypernerf: A higher-dimensional representation for topologically varying neural
radiance fields. ACM Trans. Graph., 2021.

12

[40] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance deep learning
library, 2019.

[41] A. Pumarola, E. Corona, G. Pons-Moll, and F. Moreno-Noguer. D-nerf: Neural radiance fields
for dynamic scenes. In CVPR, 2021.

[42] G. Qian, J. Mai, A. Hamdi, J. Ren, A. Siarohin, B. Li, H.-Y. Lee, I. Skorokhodov, P. Wonka,
S. Tulyakov, et al. Magic123: One image to high-quality 3d object generation using both 2d
and 3d diffusion priors. In ICLR, 2024.

[43] B. Roessle, J. T. Barron, B. Mildenhall, P. P. Srinivasan, and M. Nießner. Dense depth priors for
neural radiance fields from sparse input views. In CVPR, 2022.

[44] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis
with latent diffusion models. In CVPR, 2022.

[45] N. Ruiz, Y. Li, V. Jampani, Y. Pritch, M. Rubinstein, and K. Aberman. Dreambooth: Fine
tuning text-to-image diffusion models for subject-driven generation. In CVPR, 2023.

[46] L. Savant, D. Valsesia, and E. Magli. Modeling uncertainty for gaussian splatting. arXiv
preprint arXiv:2403.18476, 2024.

[47] J. L. Schonberger and J.-M. Frahm. Structure-from-motion revisited. In CVPR, 2016.

[48] S. Seo, Y. Chang, and N. Kwak. Flipnerf: Flipped reflection rays for few-shot novel view
synthesis. In ICCV, 2023.

[49] S. Seo, D. Han, Y. Chang, and N. Kwak. Mixnerf: Modeling a ray with mixture density for
novel view synthesis from sparse inputs. In CVPR, 2023.

[50] R. Shao, Z. Zheng, H. Tu, B. Liu, H. Zhang, and Y. Liu. Tensor4d: Efficient neural 4d
decomposition for high-fidelity dynamic reconstruction and rendering. In CVPR, 2023.

[51] J. Shen, A. Ruiz, A. Agudo, and F. Moreno-Noguer. Stochastic neural radiance fields: Quantify-
ing uncertainty in implicit 3d representations. In 3DV, 2021.

[52] J. Shen, A. Agudo, F. Moreno-Noguer, and A. Ruiz. Conditional-flow nerf: Accurate 3d
modelling with reliable uncertainty quantification. In ECCV, 2022.

[53] N. Somraj and R. Soundararajan. Vip-nerf: Visibility prior for sparse input neural radiance
fields. In SIGGRAPH Conference, 2023.

[54] J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. arXiv:2010.02502, 2020.

[55] J. Song, S. Park, H. An, S. Cho, M.-S. Kwak, S. Cho, and S. Kim. Därf: Boosting radiance
fields from sparse input views with monocular depth adaptation. In NeurIPs, 2023.

[56] N. Sünderhauf, J. Abou-Chakra, and D. Miller. Density-aware nerf ensembles: Quantifying
predictive uncertainty in neural radiance fields. In ICRA, 2023.

[57] Z. Teed and J. Deng. Raft: Recurrent all-pairs field transforms for optical flow. In ECCV, 2020.

[58] P. Truong, M.-J. Rakotosaona, F. Manhardt, and F. Tombari. Sparf: Neural radiance fields from
sparse and noisy poses. In CVPR, 2023.

[59] G. Wang, Z. Chen, C. C. Loy, and Z. Liu. Sparsenerf: Distilling depth ranking for few-shot
novel view synthesis. In CVPR, 2023.

[60] L. Wang, J. Zhang, X. Liu, F. Zhao, Y. Zhang, Y. Zhang, M. Wu, J. Yu, and L. Xu. Fourier
plenoctrees for dynamic radiance field rendering in real-time. In CVPR, 2022.

[61] G. Wu, T. Yi, J. Fang, L. Xie, X. Zhang, W. Wei, W. Liu, Q. Tian, and X. Wang. 4d gaussian
splatting for real-time dynamic scene rendering. In CVPR, 2024.

13

[62] J. Wynn and D. Turmukhambetov. Diffusionerf: Regularizing neural radiance fields with
denoising diffusion models. In CVPR, 2023.

[63] Y. Xiao, X. Liu, D. Zhai, K. Jiang, J. Jiang, and X. Ji. Sgcnerf: Few-shot neural rendering via
sparse geometric consistency guidance. arXiv:2404.00992, 2024.

[64] T. Xie, Z. Zong, Y. Qiu, X. Li, Y. Feng, Y. Yang, and C. Jiang. Physgaussian: Physics-integrated
3d gaussians for generative dynamics. In CVPR, 2024.

[65] D. Xu, Y. Jiang, P. Wang, Z. Fan, H. Shi, and Z. Wang. Sinnerf: Training neural radiance fields
on complex scenes from a single image. In ECCV, 2022.

[66] D. Yan, J. Liu, F. Quan, H. Chen, and M. Fu. Active implicit object reconstruction using
uncertainty-guided next-best-view optimization. IEEE Robotics and Automation Letters, 2023.

[67] J. Yang, M. Pavone, and Y. Wang. Freenerf: Improving few-shot neural rendering with free
frequency regularization. In CVPR, 2023.

[68] Z. Yang, X. Gao, W. Zhou, S. Jiao, Y. Zhang, and X. Jin. Deformable 3d gaussians for
high-fidelity monocular dynamic scene reconstruction. In CVPR, 2024.

[69] J. S. Yoon, K. Kim, O. Gallo, H. S. Park, and J. Kautz. Novel view synthesis of dynamic scenes
with globally coherent depths from a monocular camera. In CVPR, 2020.

[70] H. Zhan, J. Zheng, Y. Xu, I. Reid, and H. Rezatofighi. Activermap: Radiance field for active
mapping and planning. arXiv:2211.12656, 2022.

[71] Z. Zhang, F. Cole, R. Tucker, W. T. Freeman, and T. Dekel. Consistent depth of moving objects
in video. ACM TOG, 2021.

[72] Z. Zhu, Z. Fan, Y. Jiang, and Z. Wang. Fsgs: Real-time few-shot view synthesis using gaussian
splatting. 2024.

14

A Appendix

A.1 Per-Scene Breakdown

DyCheck dataset Supplementing Table 1 of the main paper, we show the experimental results from
individual scenes in terms of mPSNR (PSNR), mSSIM (SSIM), and mLPIPS (LPIPS) in Table 5 As
shown in the table, UA-4DGS achieves consistent improvement over its baselines across all metrics.

Table 5: Breakdown results on the DyCheck dataset. The value in (·) represents the non-masked
version of the corresponding evaluation measure.

Method Apple Block
mPSNR ↑ mSSIM ↑ mLPIPS ↓ mPSNR ↑ mSSIM ↑ mLPIPS ↓

D-3DGS [68] 16.62 (15.69) 0.711 (0.342) 0.391 (0.512) 12.59 (12.78) 0.456 (0.287) 0.553 (0.639)
Zhan et al. [31] 15.84 (14.78) 0.653 (0.275) 0.436 (0.543) 13.74 (13.65) 0.528 (0.385) 0.482 (0.558)

4DGS [61] 16.38 (15.35) 0.691 (0.300) 0.434 (0.536) 13.89 (14.11) 0.548 (0.377) 0.487 (0.595)
UA-4DGS (Ours) 17.00 (15.66) 0.692 (0.313) 0.375 (0.510) 15.84 (15.70) 0.588 (0.423) 0.430 (0.547)

Method Paper-windmill teddy
mPSNR ↑ mSSIM ↑ mLPIPS ↓ mPSNR ↑ mSSIM ↑ mLPIPS ↓

D-3DGS [68] 11.399 (11.45) 0.198 (0.177) 0.519 (0.656) 12.42 (12.69) 0.499 (0.299) 0.491 (0.645)
Zhan et al. [31] 13.40 (13.45) 0.208 (0.187) 0.417 (0.456) 11.54 (12.05) 0.487 (0.259) 0.519 (0.668)

4DGS [61] 14.48 (14.52) 0.208 (0.188) 0.375 (0.385) 12.39 (12.64) 0.509 (0.275) 0.486 (0.636)
UA-4DGS (Ours) 14.62 (14.67) 0.207 (0.186) 0.343 (0.351) 12.89 (13.02) 0.520 (0.291) 0.476 (0.624)

Method Space-out Spin
mPSNR ↑ mSSIM ↑ mLPIPS ↓ mPSNR ↑ mSSIM ↑ mLPIPS ↓

D-3DGS [68] 13.10 (14.11) 0.499 (0.431) 0.391 (0.455) 13.30 (12.00) 0.410 (0.211) 0.477 (0.681)
Zhan et al. [31] 13.94 (14.20) 0.518 (0.464) 0.352 (0.424) 14.04 (13.32) 0.413 (0.226) 0.475 (0.552)

4DGS [61] 14.40 (14.68) 0.513 (0.447) 0.365 (0.422) 15.25 (14.77) 0.424 (0.281) 0.419 (0.511)
UA-4DGS (Ours) 16.24 (16.48) 0.546 (0.481) 0.368 (0.423) 17.37 (16.92) 0.481 (0.351) 0.342 (0.422)

Method Wheel Average
mPSNR ↑ mSSIM ↑ mLPIPS ↓ mPSNR ↑ mSSIM ↑ mLPIPS ↓

D-3DGS [68] 11.40 (10.31) 0.334 (0.214) 0.466 (0.492) 12.98 (12.72) 0.444 (0.280) 0.470 (0.583)
Zhan et al. [31] 11.79 (10.56) 0.385 (0.231) 0.459 (0.453) 13.47 (13.15) 0.456 (0.289) 0.448 (0.522)

4DGS [61] 12.21 (11.24) 0.363 (0.211) 0.445 (0.471) 14.14 (13.90) 0.465 (0.297) 0.430 (0.508)
UA-4DGS (Ours) 12.81 (11.75) 0.385 (0.233) 0.394 (0.454) 15.25 (14.89) 0.488 (0.325) 0.390 (0.476)

LLFF dataset Supplementing Table 2 of the main paper, we show the experimental results from
individual scenes in terms of PSNR, SSIM, and LPIPS in Table 6. As shown in the table, UA-3DGS
achieves consistent improvement over its baselines across all metrics.

Table 6: Breakdown results on the LLFF dataset.

Method Fern Flower Fortress
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

FSGS [72] 21.80 0.719 0.216 20.20 0.620 0.257 23.23 0.711 0.18
UA-3DGS (Ours) 21.04 0.832 0.178 21.40 0.705 0.222 23.27 0.709 0.181

Method Horn Leaves Orchids
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

FSGS [72] 19.75 0.683 0.262 16.92 0.581 0.263 16.43 0.487 0.310
UA-3DGS (Ours) 21.40 0.705 0.222 23.22 0.713 0.180 16.47 0.547 0.307

Method Room Trex Average
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

FSGS [72] 20.60 0.822 0.184 19.65 0.755 0.225 19.82 0.672 0.238
UA-3DGS (Ours) 21.21 0.833 0.178 19.11 0.685 0.264 20.89 0.716 0.217

15

A.2 Implementation Details

Our method is implemented based on the publicly available official code 1 of 4D Gaussian Splatting
(4DGS) [61], using PyTorch [40]. Following our baseline, we utilize the Adam optimizer and set
the resolution of the Hexplane grid to (64, 64, 64, 150). For grid smoothness in the Hexplane, we
follow the default value of 4DGS. We use the DyCheck dataset 2 as our primary dataset, containing
causally captured monocular videos. For diffusion finetuning, we manually select a single prompt
from training frames that best represents the overall content of the video. We train our model for
40,000 iterations, where uncertainty-aware regularization is applied starting from iteration 20,000, as
the refined images from diffusion model and uncertainty maps become more reliable at this stage.
The coefficients (c0, c1) for the sigmoid function are set as 0.25 and 20/L, respectively, where L is
the number of training images. We set the balance weights for λdata, λUA-diff, and λUA-TV as 0.5, 0.2,
and 0.01, respectively. To measure the quality of generated images, we compute mPSNR, mSSIM,
and mLPIPS, leveraging visibility masks provided by the DyCheck.

For experiments on the LLFF dataset, our method is implemented based on the publicly available
official code 3 of FSGS [72]. We set the balance weights for λUA-diff, and λUA-TV as 0.1 and 0.001,
respectively, for optimal performance, applying the same hyperparameters across all scenes. All
experiments are conducted in the Vessl environment [1].

A.3 Additional Qualitative Results

(a) Ground Truth (b) D-3DGS (c) Zhan et al. (d) 4DGS (e) UA-4DGS (f) Depth (Ours)

Figure 4: Qualitative comparison between UA-4DGS and other methods tested on the DyCheck
dataset. Ours achieves the outstanding quality of rendered images.

1https://github.com/hustvl/4DGaussians
2https://github.com/KAIR-BAIR/dycheck
3https://github.com/VITA-Group/FSGS

16

https://github.com/hustvl/4DGaussians
https://github.com/KAIR-BAIR/dycheck
https://github.com/VITA-Group/FSGS

(a) Ground Truth (b) D-3DGS (c) Zhan et al. (d) 4DGS (e) UA-4DGS (f) Depth (Ours)

Figure 5: Qualitative comparison between UA-4DGS and other methods tested on the DyCheck
dataset. Ours achieves the outstanding quality of rendered images.

17

NeurIPS Paper Checklist

1. Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

2. Does the paper discuss the limitations of the work performed by the authors? [Yes]
3. For each theoretical result, does the paper provide the full set of assumptions and a complete

(and correct) proof? [Yes]
4. Does the paper fully disclose all the information needed to reproduce the main experimental

results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)? [Yes]

5. Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
[Yes]

6. Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results? [Yes]

7. Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments? [Yes]

8. For each experiment, does the paper provide sufficient information on the computer resources
(type of compute workers, memory, time of execution) needed to reproduce the experiments?
[Yes]

9. Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?[Yes]

10. Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed? [NA]

11. Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)? [NA]

12. Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly
respected? [Yes]

13. Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets? [NA]

14. For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)? [NA]

15. Does the paper describe potential risks incurred by study participants, whether such risks
were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution)
were obtained? [NA]

18

https://neurips.cc/public/EthicsGuidelines

	Introduction
	Related Work
	Dynamic Novel View Synthesis
	Regularization Techniques in Sparse Reconstruction
	Uncertainty Quantifications in Novel View Synthesis

	Preliminary: 4D Gaussian Splatting
	3D Gaussian Splatting
	Deformation Modeling in 4D Gaussian Splatting

	Uncertanty-Aware 4D Gaussian Splatting
	Uncertainty-Aware Regularization
	Dynamic Region Densification
	Data-Driven Losses
	Total Loss

	Experiments
	Settings
	Experimental Results
	Analysis

	Conclusions
	Appendix
	Per-Scene Breakdown
	Implementation Details
	Additional Qualitative Results

