
Ultrafast classical phylogenetic method beats large
protein language models on variant effect prediction

Sebastian Prillo∗
University of California, Berkeley

sprillo@berkeley.edu

Wilson Wu∗

University of California, Berkeley
nosliw@berkeley.edu

Yun S. Song
University of California, Berkeley

yss@berkeley.edu

Abstract

Amino acid substitution rate matrices are fundamental to statistical phylogenetics
and evolutionary biology. Estimating them typically requires reconstructed trees
for massive amounts of aligned proteins, which poses a major computational
bottleneck. In this paper, we develop a near-linear time method to estimate these
rate matrices from multiple sequence alignments (MSAs) alone, thereby speeding
up computation by orders of magnitude. Our method relies on a near-linear time
cherry reconstruction algorithm which we call FastCherries and it can be easily
applied to MSAs with millions of sequences. On both simulated and real data, we
demonstrate the speed and accuracy of our method as applied to the classical model
of protein evolution. By leveraging the unprecedented scalability of our method,
we develop a new, rich phylogenetic model called SiteRM, which can estimate
a general site-specific rate matrix for each column of an MSA. Remarkably, in
variant effect prediction for both clinical and deep mutational scanning data in
ProteinGym, we show that despite being an independent-sites model, our SiteRM
model outperforms large protein language models that learn complex residue-
residue interactions between different sites. We attribute our increased performance
to conceptual advances in our probabilistic treatment of evolutionary data and our
ability to handle extremely large MSAs. We anticipate that our work will have a
lasting impact across both statistical phylogenetics and computational variant effect
prediction. FastCherries and SiteRM are implemented in the CherryML package
https://github.com/songlab-cal/CherryML.

1 Introduction

Amino acid substitution rate matrices are crucial to statistical phylogenetics and evolutionary biology.
Perhaps best known for their use in phylogenetic tree reconstruction [1, 2, 3, 4, 5], these transition-rate
matrices allow us to infer the evolutionary history of a protein family. This has given insights into
protein evolution, function, and fitness, which among other important applications, has informed the
development of vaccines during the COVID-19 pandemic [6]. Statistically speaking, transition-rate
matrices are parameters of continuous-time Markov chain models describing protein evolution. One
of the most popular such models to date is the seminal model of Le and Gascuel [7] (LG for short),
which posits that each site of a protein evolves independently following a continuous-time Markov
chain parameterized by a global transition-rate matrix Q ∈ R20×20 up to site-specific rates.

∗Equal contribution; authors listed alphabetically

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

sprillo@berkeley.edu
nosliw@berkeley.edu
mailto:yss@berkeley.edu
https://github.com/songlab-cal/CherryML

Unfortunately, estimating transition-rate matrices under the LG and related classical models from
a set of multiple sequence alignments (MSAs) is a challenging task. Indeed, one has to first
estimate phylogenetic trees and site-specific rates for each MSA, and then estimate the transition-rate
matrix (or matrices) Q which best explain the data. The procedures of tree plus site-rate estimation
and of transition-rate matrix estimation are usually performed in a coordinate-ascent fashion until
convergence. Both of these steps are computationally challenging: maximum likelihood estimation
(MLE) of trees is in general NP-hard [8], while MLE of a rate matrix Q given MSAs, trees and
site-rates has historically proven a computationally demanding task [9, 10].

Fortunately, recent work has made it possible to perform MLE of transition-rate matrices given
MSAs, trees and site-rates in a scalable fashion. The method, called CherryML [11], replaces
the full joint likelihood of the MSA data with a composite likelihood over cherries in the trees.
When applied to the LG model, CherryML is orders of magnitude faster than traditional MLE with
the Expectation-Maximization (EM), all while sacrificing a relatively small amount of statistical
efficiency, estimated to be around 50% on simulation studies. The method was also shown to perform
on-par with EM on real datasets when evaluated on held-out likelihood. While the work of CherryML
represents a significant advance, the method still requires expensive phylogenetic tree reconstruction
as a prerequisite step. This hinders the scalability of the method when applied to many MSAs, some
with millions of sequences. In fact, in the original CherryML work, MSAs were subsampled down to
a thousand sequences each to alleviate the burden of tree reconstruction.

In this work, we introduce a new methodology to significantly speed up the end-to-end estimation
of rate matrices under the LG model, and extend this methodology to estimate site-specific rate
matrices. Specifically, we speed up the phylogenetic tree plus site-rate estimation step required by
the CherryML method, using a method which we call FastCherries. The resulting end-to-end method
consisting of CherryML with FastCherries can, given a set of starting MSAs, estimate site-specific
rates and an accurate transition-rate matrix in nearly linear time in the input dataset size. The method
is thus essentially computationally optimal up to logarithmic factors and other constants. On a real
MSA with more than 450,000 sequences of length 364, FastCherries took just 1,000 seconds on 1
CPU core, and we can estimate site-specific rate matrices at an additional cost of one second per site.

Thanks to its unprecedented scalability, we applied CherryML with FastCherries to estimate site-
specific transition-rate matrices for MSAs with hundreds of thousands of sequences. This model,
which we call SiteRM for short, posits that each site i of a protein family f evolves independently
according to a family- and site-specific rate matrix Qf

i . Strikingly, we show that this independent-sites
model excels at variant effect prediction, outperforming the seminal EVmutation [12] model with
epistatic interactions as well as many large protein language models such as an ESM-1v ensemble
[13]. We attribute the increased performance of SiteRM to the principled probabilistic treatment of
the evolutionary process, which is absent in competing approaches. This opens up a new avenue to
variant effect prediction via the use of probabilistic models of protein evolution in time. FastCherries
and SiteRM are available at https://github.com/songlab-cal/CherryML.

2 Background and Related Work

2.1 Classical models of protein evolution

As time passes, proteins experience mutations, many of which are neutral, having no effect on
fitness. On the other hand, some mutations are deleterious, leading to decreased fitness and hence
negative selection, while other mutations confer increased fitness and thus are favored by natural
selection. This complex evolutionary process of mutation and selection leads to the vast biological
diversity observed today, and modeling it is the goal of statistical phylogenetics. Formally, a model
of protein evolution is a conditional distribution p(y|x, t, f) describing the probability of sequence y,
the evolved from sequence x after time t, in protein family f .

Standard probabilistic models of protein evolution. Early work on protein evolution relied on
counting-based heuristics, such as the seminal works of Dayhoff et al. [14] and JTT [15]. The first
probabilistic model of protein evolution was proposed by Whelan and Goldman [16]. It posits that
each site of any protein evolves i.i.d. following a time-reversible continuous-time Markov chain
parameterized by a global transition-rate matrix Q ∈ R20×20, normalized so that the expected number
of substitutions in a unit of time equals 1. Each protein family f may evolve at a different rate αf .
Letting lf be the number of columns of an MSA for protein family f , we have pWAG(y|x, t, f) =

2

https://github.com/songlab-cal/CherryML

∏lf
i=1 exp(αf tQ)[xi, yi], where exp(M)[a, b] denotes the (a, b) entry of the matrix exponential

exp(M). The seminal extension of the above model by Le and Gascuel [7] still uses a global,
normalized transition-rate matrix Q, but incorporates site-specific rates (αf

1 , α
f
2 , . . . , α

f
lf
), giving

pLG(y|x, t, f) =
lf∏
i=1

exp(αf
i tQ)[xi, yi].

This is one of the most popular models of protein evolution to date, used extensively in phylogenetic
tree reconstruction. The LG model has a total of 400 +

∑m
f=1 lf parameters, where m denotes the

number of protein families under study. The site-specific rates αf
i are typically constrained with a

model of site-rate variation, such as the Γ model [17] or the probability-distribution-free model.

Phylogenetic models. Unfortunately, estimating models of protein evolution is a challenging task.
Indeed, one does not have access to training data of the form (x, y, t, f). Instead, one has access
to MSAs. Formally, let D = (D1, . . . , Dm) be MSAs for m protein families. The data D are
modeled with a phylogenetic model [11], which is parameterized by (1) a model of protein evolution
p(y|x, t, f) (as described above), (2) phylogenetic trees T1, . . . , Tm (one tree per MSA), and (3) a
root state distribution πroot(x). The phylogenetic model posits that the MSA data were generated by
sampling the root state from each tree following πroot(x) and then running the evolutionary model
p(y|x, t, f) down each tree. We denote the phylogenetic model’s likelihood as pphylo(D|T). To
estimate a model of protein evolution p(y|x, t, f) with MLE from data from a phylogenetic model
pphylo(D|T), one thus has to deal with the nuisance parameters T = (T1, T2, . . . , Tm). Typically, this
is done with coordinate ascent, wherein one alternately optimizes the trees T plus site-rates αf

i given
the transition-rate matrix Q and then optimizes the transition-rate matrix Q given the tree estimates
T plus site-rates. Both of these steps have historically proven to be computationally demanding.

2.2 CherryML

Recently, the work of CherryML [11] introduced a scalable and accurate method for estimating the
transition-rate matrix (or matrices) Q given the trees T and site-rates αf

i . It is assumed, as is typical
in statistical phylogenetics, that Q is time-reversible. For the LG model, this method was shown to be
orders of magnitude faster than the traditional EM method. In fact, CherryML’s runtime for the LG
model is linear in the input data size up to logarithmic factors, making it essentially computationally
optimal. From a statistical point of view, CherryML is just ∼ 50% less efficient than full MLE.

Composite likelihoood. The key to CherryML lies in the use of a composite likelihood,
which generally leads to consistent parameter estimates under weak assumptions [18]. Adapt-
ing the notation of CherryML [11], for a generic phylogenetic model pphylo, the full joint like-
lihood of the data is ℓ = log pphylo(D|T) =

∑m
f=1 log pphylo(Df |Tf). CherryML replaces the

MSA’s log-likelihood log pphylo(Df |Tf) by a composite likelihood over cherries in the trees,
where cherries are iteratively picked until either 0 or 1 leaf remains. Specifically, letting
{(uf

j , v
f
j)}1≤j≤cf be the cf cherries in tree Tf , CherryML considers the composite likelihood ℓcomp =∑m

f=1

∑cf
j=1 log pphylo(Df [u

f
j] | Df [v

f
j], Tf), where Df [u

f
j] denotes the sequence in MSA Df cor-

responding to leaf uf
j . For a stationary time-reversible model, the term pphylo(Df [u

f
j]|Df [v

f
j], Tf)

is exactly equal to p(Df [u
f
j]|Df [v

f
j], t

f
j) where tfj is the distance between uf

j and vfj in tree Tf .
Therefore, the composite likelihood reduces to ℓcomp =

∑m
f=1

∑cf
j=1 log p(Df [u

f
j]|Df [v

f
j], t

f
j , f).

This way, CherryML reduces the problem of learning the transition-rate matrix (or matrices) Q given
the trees T , site-rates, and MSAs D to a supervised learning problem over the data (x, y, t, f) given
by (Df [u

f
j], Df [v

f
j], t

f
j , f). Cherries are considered in both directions when forming the composite

likelihood, so that if (x, y, t, f) is a training datapoint, then so is (y, x, t, f). Thus, CherryML can be
viewed as a modern, principled version of the JTT method [15] where sequences are paired and then
rate matrix estimation proceeds by MLE rather than via counting heuristics.

Time quantization. CherryML further simplifies the composite likelihood by quantizing (or dis-
cretizing) time into a finite number b of values τ1 < τ2 < · · · < τb. Letting q(t) be the quan-
tized value of t (which is chosen to minimize relative error), in the LG model with site-rates
rfk for site 1 ≤ k ≤ lf of family f , CherryML leads to the quantized composite likelihood
ℓcomp, quant =

∑m
f=1

∑cf
j=1

∑lf
i=1 log(exp(q(r

f
i t

f
j)Q)[Df [u

f
j]i, Df [v

f
j]i]). The terms in this expres-

3

sion can be grouped together by quantization time τk, leading to

ℓcomp, quant =

b∑
k=1

⟨Ck, log exp(τkQ)⟩ ,

where Ck is a 20 × 20 count matrix for the number of transitions between two amino acids at a
quantized distance of τk, and ⟨·, ·⟩ denotes the matrix inner product. This function can be evaluated
in time O(bs3) where s = 20 is the number of states, which is remarkable since this no longer
depends on the input dataset size. It can be optimized using automatic differentiation software such as
PyTorch [19] and Tensorflow [20]. CherryML leverages a differentiable implementation of the matrix
exponential operator based on robust Taylor expansions [21] and utilizes the Adam optimizer [22].

3 Method

3.1 The SiteRM model

In this work, we propose a richer model of protein evolution, which we call the SiteRM model:

pSiteRM(y|x, t, f) =
lf∏
i=1

exp(tQf
i)[xi, yi],

where Qf
1 , . . . , Q

f
lf

are site-specific transition-rate matrices. Unlike Q-matrix described above, Qf
i

are not normalized and they subsume site-specific rates. This model has 400×
∑m

f=1 lf parameters
and strictly generalizes the LG model. This is a particular case of the ‘partition model’ available in
IQTree [5], in which each site forms its own group in the partition.

3.2 Near-linear time end-to-end estimation of model parameters

Here, we present an algorithm for speeding up end-to-end estimation of model parameters. Related
work on speeding up the tree reconstruction step required for rate matrix estimation is described in
Appendix A.1. Although we focus on the LG model [7] for the sake of analyzing statistical efficiency,
our method will also enable fitting site-specific rate matrices under the richly parameterized SiteRM
model, as we illustrate on the task of variant effect prediction. For the LG model, our work speeds
up tree and site-rate estimation given the rate matrix Q and MSAs D. Together with CherryML’s
procedure for estimating a transition-rate matrix Q given trees, site-rates, and MSAs, this leads to a
full coordinate-ascent procedure with near-linear time updates, making it exceptionally scalable.

Method overview. The key idea of our method is that CherryML’s composite likelihood depends
on the trees T only through the cherries (uf

j , v
f
j) and their quantized distances tfj . In other words,

there is no point in estimating the full trees T if only their cherries will be used. Our method thus
proceeds by first grouping the sequences within each MSA Df into disjoint pairs using a near-linear
time divide-and-conquer approach which tries to minimize total Hamming distance across all pairs.
Letting nf be the number of sequences in MSA Df (so that MSA Df has size nf × lf), we obtain
cf = ⌊nf/2⌋ pairs (uf

1 , v
f
1), . . . , (u

f
cf
, vfcf). These pairs are the putative cherries of the tree Tf .

Next, the site-specific rates αf
1 , . . . , α

f
lf

and the quantized times tf1 , . . . , t
f
cf

separating each pair of
sequences are estimated using coordinate ascent. We call our method FastCherries. A schematic of
the FastCherries/SiteRM method is provided in Figure 1.

Divide-and-conquer. To pair up the set of sequences S, we use an almost-linear time distance-based
tree topology reconstruction algorithm based on divide-and-conquer. The general operation of the
algorithm is as follows. Let d be a dissimilarity function between protein sequences. We use the
normalized Hamming distance d ignoring gaps, but other dissimilarities may be used. Assuming
|S| ≥ 3, we first try to find the diameter of the set S (i.e., the two furthest away sequences) as
follows: (1) take a random sequence z0 ∈ S, (2) find the furthest sequence to z0 in S: z1 =
argmaxz∈S d(z, z0); (3) find the furthest sequences to z1 in S: z2 = argmaxz∈S d(z, z1). Our
putative diametrically opposite sequences are given by z1 and z2. Note that this is analogous to the
well-known linear-time algorithm used to find the diameter of a tree. We now use z1 and z2 as pivots
to split the set S into two subsets S1 and S2 based on distance to z1 and z2:

S1 = {z ∈ S : d(z, z1) ≤ d(z, z2)} and S2 = {z ∈ S : d(z, z1) > d(z, z2)}.

4

Figure 1: A schematic illustration of our FastCherries/SiteRM method. Rate matrix estimation
from a set of MSAs classically proceeds in two steps: tree estimation, followed by rate matrix
estimation. The recently proposed CherryML method [11] significantly speeds up the rate matrix
estimation step. Since CherryML only requires the cherries in the trees, we propose FastCherries, a
new near-linear method that estimates only the cherries in the tree (as well as the site rates) rather
than the whole tree. FastCherries proceeds in two steps: a divide-and-conquer pairing step based on
Hamming distance, followed by site rate and branch length estimation. Site rate and branch length
estimation alternate until convergence. CherryML’s speed allows estimating not only a single global
rate matrix, but also one rate matrix per site, which we call the SiteRM model. In this schematic,
computational complexities for each step of FastCherries is annotated at each step; n = number of
sequences in the MSA, l = number of sites in the MSA, s = number of states (e.g., 20 for amino
acids), r = number of site rate categories of the LG model (e.g., 4 or 20 is typical), b = number of
quantization points used to quantize time by CherryML. Precomputation of the matrix exponentials
— which is shared across all MSAs — is excluded from the schematic and costs O(rbs3). MSA
illustrations adapted from [23].

We recurse the above procedure on S1 and S2. The base case consists of a set S with either 1 or 2
sequences. If S has 2 sequences, we pair them. Otherwise, we return the lone sequence, which will
get paired with another lone sequence up in the recursive calls if both |S1| and |S2| are odd. This
way, all sequences except at most one (when |S| is odd) will be paired together. Assuming balanced
splits of size 0 < ϵ < |S1|/|S2| < 1/ϵ for some universal constant ϵ, the method has a near-linear
runtime of O(lfnf log nf). Further details can be found in Appendix A.2.

Categorical site-rate variation model. Having paired the sequences, we proceed to estimate
site-rates αf

i and quantized distances tfj between pairs. This is done with coordinate ascent until
convergence (no change in site-rates) or a maximum of 50 iterations; we find that convergence
usually happens after around 10 iterations. We adopt the CAT model of site-rate variation used
by FastTree [2], which poses that site-rate αf

i takes one of r (a hyperparameter) values from a

geometric grid between 1/r and r, i.e., R = {r−1+2
(r−i)
(r−1) : i = 1, . . . , r}, with a Γ(3, 1/3) prior.

We use this model of site-rate variation as it is the one used by FastTree, which is one of the fastest
phylogenetic tree reconstruction algorithms available and the one used in the original CherryML
work [11]; however, our method can be adapted to other models of site-rate variation.

Site-rate estimation. To estimate site-rates αf
i given quantized divergence time tfj for each cherry

j and the transition-rate matrix Q, we perform 0-th order optimization on CherryML’s composite
likelihood. Each site-rate αf

i can be optimized independently. To optimize site-rate αf
i , we simply

need to find which of the r rates in R maximizes that site’s composite likelihood under the Gamma

5

prior. In other words, letting ϕ(x) be the density of the Γ(3, 1/3) distribution, we optimize for:

αf
i = argmax

x∈R
log ϕ(x) +

cf∑
j=1

log(ext
f
j Q[Df [u

f
j]i, Df [v

f
j]i]) + log(ext

f
j Q[Df [v

f
j]i, Df [u

f
j]i]).

By precomputing all the matrix exponentials {exp(xτkQ) : x ∈ R, 1 ≤ k ≤ b} in time O(rbs3),
the above objective can be evaluated in time O(cf) = O(nf) and thus optimized by brute-force
search in time O(rnf). Since there are a total of lf sites, optimizing the site-rates this way takes time
O(lfrnf). This is equal to the size of the MSA Df , multiplied by the number of rate categories r.
We initialize the site-rates αf

i using a simple heuristic described in Appendix A.3.

Branch length estimation. To estimate the quantized divergence time tfj of each pair given the
site-rates αf

i and transition-rate matrix Q, we again perform 0-th order optimization on CherryML’s
composite likelihood. This means we optimize for

tfj = argmax
x∈{τk:1≤k≤b}

lf∑
i=1

log(eα
f
i xQ[Df [u

f
j]i, Df [v

f
j]i]) + log(eα

f
i xQ[Df [v

f
j]i, Df [u

f
j]i]).

By using precomputed matrix exponentials, this objective can be evaluated in time O(lf) and
optimized with brute-force search in time O(blf). We empirically find that the objective function
above is (quasi-)concave in x, so that we can optimize it with binary search in time O(log(b)lf),
which provides a significant speedup. (We could also have done this for optimizing site-rates, but
since r is already typically small for the CAT model, we found it an unnecessary optimization.) This
way, optimizing all quantized divergence times tfj within a given family takes O(nf log(b)lf) time.
This is equal to the size of the MSA Df , multiplied by log(b).

Runtime. As detailed in Appendix A.4, the above FastCherries algorithm is nearly linear in the size
of the MSA, and applying it to a real MSA with 453,819 sequences of length 364 took only about
1000 seconds on 1 CPU core. Furthermore, combined with CherryML to estimate a transition-rate
matrix, this leads to an end-to-end estimation procedure that is nearly linear in the dataset size.
Also, FastCherries uses linear space, and thus is memory-efficient (up to a constant), as detailed in
Appendix A.5.

3.3 Regularized estimation of site-specific transition-rate matrices under the SiteRM model

We can employ the above algorithm to derive a regularized procedure for estimation under the more
richly parameterized SiteRM model. Recall that the SiteRM model uses family- and site-specific
transition-rate matrices Qf

i . To estimate these matrices, we first apply our FastCherries algorithm
to estimate cherries, distances, and site-rates under the LG model. Given these, we simply apply
CherryML’s transition-rate matrix estimation procedure [11] at each site separately to obtain Qf

i .

Regularization. Of course, the model is over-parameterized in the sense that there is usually not
enough data to estimate the site-specific rate matrices accurately. Indeed, Qf

i has 400 parameters and
the only information to support its estimation are the ⌊nf/2⌋ pairs of amino acids at that site. Even
with nf in the millions, most pairs will not contain mutations at the site since pairs are by definition
close sequences, and thus small entries in the rate matrix will be susceptible to large errors. We
address this by mixing the empirical counts with pseudocounts from a prior. Specifically, let Q0 be
the transition-rate matrix used for regularizing the model – we use the LG transition-rate matrix in
applications. We mix the empirical count matrices Ck with pseudocounts from the LG model with
transition-rate matrix Q0 and site-rates αf

i . Mixing is performed with a regularization coefficient
λ ∈ [0, 1]. Formally, we take

C̃k = (1− λ)Ck + λ∥Ck∥1Pk,

where Pk is the 20 × 20 pseudocount matrix with ∥Pk∥1 = 1 given by Pk[x, y] =

πQ0
[x] exp(αf

i τkQ0)[x, y], where πQ0
is the stationary distribution of Q0. This choice has the

desirable property that when λ = 1, we recover the LG model: Qf
i = αf

i Q0 for all i, f . In contrast,
when λ = 0, the prior model is ignored completely. We find that λ = 0.5 works well in practice.

The runtime analysis of the above procedure is provided in Appendix A.4.3. Our method can thus
be thought of as fine-tuning the LG model to each site of each protein family. This fine-tuning is
achieved by mixing empirical counts with pseudocounts from the ‘global’ LG model.

6

4 Results

4.1 Scalable estimation under the LG model

We applied CherryML with FastCherries to the benchmarks from the CherryML paper [11]. These
are described in detail in Appendix A.6.

Figure 2a and Figure 2b respectively illustrate the total runtime and accuracy of the end-to-end
method for data simulated under the LG model, using a log-log plot. It is important to note that while
in the original CherryML paper the ground truth trees were used and thus only runtime and accuracy
of the rate matrix estimation step were assessed, we benchmarked the end-to-end procedure without
access to the ground truth trees. In particular, we iterated the process of tree estimation and rate
matrix estimation four times as is typical on real data, starting from the uniform rate matrix. Accuracy
is measured via the median relative error of all the off-diagonal entries in the estimated rate matrix.

Simulations results. As Figure 2b shows, CherryML with FastCherries is one to two orders of
magnitude faster than CherryML with FastTree [2]. Runtimes of the tree estimation step of CherryML
with FastCherries are so fast that total runtime for small dataset sizes is dominated by the PyTorch
first-order optimizer (whose runtime Θ(gbs3) is independent of input data size). Thus, only for larger
dataset sizes does the runtime of CherryML with FastCherries see any noticeable increase. In terms
of accuracy, Figure 2 (a) shows that CherryML with FastCherries shows a small asymptotic bias
of around 2% median relative error. Otherwise, the relative statistical efficiency of CherryML with
FastCherries compared to CherryML using ground truth trees or FastTree is around 50%, meaning
that CherryML with FastCherries requires approximately twice as much data to achieve the same
error. This is similar to the relative statistical efficiency of CherryML compared to MLE with EM.

Real data results. On real data benchmarks, we observed similar end-to-end speedups of one to two
orders of magnitude for CherryML with FastCherries compared to CherryML with FastTree, while
obtaining similar likelihoods on held-out data. This is both for the original LG paper’s Pfam dataset,
shown in Figure 2c,d, as well as for the QMaker [24] datasets, shown in Supplementary Figure S1.

4.2 Variant Effect Prediction with the SiteRM model

Here, we summarize the performance of our SiteRM model on the task of variant effect prediction.
Prior work on applying phylogenetic models to variant effect prediction is described in Appendix A.1.

Data. A notable resource for this purpose is ProteinGym [25], which features dozens of models
benchmarked across both deep mutational scanning (DMS) data and human clinical variants. The
DMS substitutions benchmark comprises 2.4M variants across 217 DMS assays, while the human clin-
ical substitutions benchmark contains 63k variants across 2,525 proteins. On the DMS substitutions
benchmark, model pathogenicity scores are evaluated against experimental measurements, and evalu-
ation is performed using diverse metrics including Spearman correlation, AUC, MCC, NDCG@10,
and top 10 recall. The metrics are aggregated over all 217 assays, in such a way to give equal
representation to different kinds of DMS assays, which include protein activity, binding, expression,
organismal fitness, and thermostability. The clinical benchmark contains binary pathogenic/benign
labels, so that performance is evaluated by averaging AUC across all 2,525 proteins.

Traditional scoring. Probabilistic models of proteins such as Potts models [12] and protein language
models (e.g., ESM [13]) have been used for the task of variant effect prediction. These models provide
either a likelihood function p(x) or, in the case of masked language models, a conditional probability
distribution p(xM |x−M) where M is the set of masked indices. These models can be used for variant
effect prediction by scoring via log-likelihood ratios, as follows. Letting xmut denote the mutant and
xwt the wild-type sequence, p(x) may be used to score mutants via score(xmut, xwt) = log p(xmut)

p(xwt) . In
the case of masked language models, conditional likelihoods p(xM |x−M) may be used to score the
substitution of xM by x′

M via score(xmut, xwt) = log
p(x′

M |x−M)
p(xM |x−M) .

Our new approach. We take a conceptually different approach to variant effect prediction by
leveraging probabilistic models of protein evolution p(y|x, t). We propose to score mutants via

score(xmut, xwt) = log
p(xmut|xwt, t)

p(xwt|xwt, t)
,

7

Figure 2: CherryML with FastCherries applied to the LG model. (a) End-to-end runtime and (b)
median estimation error as a function of sample size for CherryML with FastCherries vs CherryML
with FastTree (as well as an oracle with ground truth trees and site rates). Practically, the loss
of statistical efficiency for CherryML with FastCherries relative to FastTree or ground truth trees
(which perform similarly) is ≈ 50% with a small asymptotic bias of around 2%, yet CherryML
with FastCherries is two orders of magnitude faster when applied to 1,024 families. The bulk of the
end-to-end runtime is taken by rate matrix estimation. The simulation setup is the same as in the
CherryML paper [11]. (c) On the benchmark from the LG paper [7], CherryML with FastCherries
yields similar likelihood on held-out families compared to CherryML with FastTree, while (d) shows
that CherryML with FastCherries is approximately 20 times faster end-to-end than CherryLM with
FastTree, with the bottleneck now being rate matrix estimation.

where t is a hyperparameter that controls the size of the evolutionary neighborhood around the
wild-type. Our intuition for why this is a good approach is described below.

Consider how the predictions change as t varies. When t = 0, we obtain a Dirac delta at xwt, so that
all mutants get extremely bad scores. As t starts increasing, proteins which are evolutionarily close
to the wild-type will see an increase in probability. These are proteins that our model thinks would
have arisen from the process of mutation and natural selection, making our conditional probability an
excellent candidate for variant effect prediction. Finally, when t = +∞, the stationary distribution
of the evolutionary model is being used to make predictions. In this case, the wild-type is being
completely ignored, assuming we are comparing variants with respect to the same wild-type. For
classical phylogenetic models, t may be interpreted as the expected number of mutations per site.
We use t = 1 for variant effect prediction, which means we explore a neighborhood of one expected
mutation per site. Note that more conserved sites will have smaller site-rates, so they may not mutate
at all in 1 time unit, while other less conserved sites may mutate multiple times.

A key insight is that traditional scoring approaches with p(x) may be thought of as a particular
case of our approach with t = ∞. Indeed, given an arbitrary model of p(x) one may construct
a model of protein evolution pevo(y|x, t) whose stationary distribution is p(x) via, for example,
Metropolis-Hastings, or a continuous-time, discrete diffusion model. This insight has been observed
before, most notably the works of EvoVelocity [26] and John Ingraham’s Ph.D. thesis [27], which
use the energy landscape of protein language models and Potts models respectively to construct an
evolutionary model. Unfortunately, likelihoods under this evolutionary model pevo(y|x, t) will in
general be intractable. Nonetheless, the point is that traditional scoring using p(xmut) is then exactly

8

Table 1: Despite being an independent-sites model, SiteRM matches or outperforms many notable
models, including the large protein language model ESM-1v [13], the alignment-based epistatic
models EVmutation [12] and DeepSequence [28], and the inverse-folding model ESM-IF1 [29]. Best
performance among these models are shown in boldface.

Model name Spearman AUC MCC NDCG Recall
SiteRM 0.423 0.734 0.330 0.776 0.207
EVmutation 0.395 0.716 0.305 0.777 0.222
DeepSequence (ensemble) 0.419 0.729 0.328 0.776 0.226
ESM-1v (ensemble) 0.407 0.723 0.320 0.749 0.211
ESM-IF1 0.422 0.730 0.331 0.748 0.223

equivalent to scoring with pevo(x
mut|xwt, t = ∞). The analogy goes both ways: our approach can

be thought of as a particular case of scoring with models of p(x), but where p(x) is constructed by
conditioning an evolutionary model around the wild-type. Indeed, letting pevo(y|x, t) be a model
of protein evolution, one may define a model via p(x) = pevo(x|xwt, t). In this case, scoring with
pevo(x|xwt, t) is equivalent to scoring with p(x). This way, the key conceptual difference between
our approach and traditional approaches is the act of conditioning on the wild-type.

Example. We provide an illustrative example that underscores the power of conditioning on the
wild-type. Suppose a given site in the MSA for some protein family has four amino acids I, L,D,E,
each with frequency 25%. Note that I and L have similar biochemical properties (they are both non-
polar, uncharged, and branched-chain), while D and E are similar (both being negatively charged).
Suppose that mutations between I and L or between D and E at this site are tolerated, while other
mutations among these residues are deleterious. In this case, using log p(xmut) may not be able to tell
apart the benign mutations at this site from the two pathogenic ones. Indeed, in the extreme case of
the site-independent EVmutation model [12], all variants at this site will have exactly the same score.
In contrast, our SiteRM model, despite being an independent-sites model, will learn and predict that
only mutations that preserve the biochemical properties of the residue will be tolerated. Thus, despite
being trained on exactly the same data, our SiteRM model has the built-in capacity to make sensible
predictions of this kind whereas EVmutation may not. Although a highly expressive model might be
able to succeed at this toy example by leveraging the correlations between sites, it is evident that an
evolutionary model – even if site-independent – is better placed to leverage insights like this one.

Variant effect prediction results. In the case of the SiteRM model with t = 1, we use

score(xmut, xwt) = log p(xmut|xwt, t = 1) =

l∑
i=1

log(exp(Qf
i)[x

wt
i , xmut

i]) (1)

to score variants with respect to the same wild-type sequence xwt. Note that xmut may differ from xwt

at multiple sites, and (1) is an independent-sites model, which uses additive per-site effects.

We trained the SiteRM model on the MSAs provided by the ProteinGym benchmark. Duplicate
sequences were removed. We used FastCherries with the LG rate matrix and 20 rate categories to
estimate cherries and site rates. Then, we use CherryML to estimate site-specific rate matrices, with
the LG rate matrix as a prior and with regularization strength λ = 0.5 such that exactly half the data
comes from pseudocounts and the other half from empirical counts. We found that modeling the gap
as its own state improved performance, so that our best model uses 21× 21 site-specific rate matrices,
with the 21× 21 rate matrix learnt from the LG paper’s Pfam dataset as the prior.

Table 1 summarizes the DMS substitution benchmark results for some select notable models. Despite
being an independent-sites model, SiteRM outperforms the large protein language model ESM-
1v and its inverse-folding version ESM-IF1 on Spearman correlation, AUC, MCC and NDCG.
SiteRM also outperforms EVmutation [12], which is based on the seminal Potts model with pairwise
interactions, as well as the DeepSequence ensemble model [28]. Only on Recall@10 do we observe
less competitive results. We attribute the remarkable performance of our independent-sites model
to conditioning on the wild-type, which is absent from competing approaches, and to our ability
to estimate family- and site-specific rate matrices without overfitting. Full results with all models
reported in the ProteinGym paper [25] are provided in Supplementary Table S1. The table also shows
ablations for the SiteRM model where we reduce the size of the training dataset by subsampling
sequences in the MSA, or by using FastTree instead of FastCherries, or by excluding gaps. The

9

largest MSA processed by FastCherries had approximately 454K distinct sequences, each of length
364. FastCherries took approximately 1,000 seconds on a single CPU core to estimate cherries and
site rates for this MSA. Of these, 30 seconds were spent on the divide-and-conquer pairing step, and
970 seconds on distance and site rate estimation. Subsequently, ∼ 1 second was spent per site-specific
rate matrix estimation, meaning a total time of around 1,500 seconds. Extrapolating our estimates
shown in Supplementary Table S1, FastTree would have taken around 50 times longer.

Finally, on the human clinical benchmark, Supplementary Table S2 shows that SiteRM achieves an
AUC of 0.911, which is ∼ 0.02 higher than ESM-1b [13], and less than 0.01 below the state-of-the-art.

5 Discussion

We have introduced an end-to-end method to estimate amino acid substitution rate matrices from
MSAs alone. By combining CherryML [11] with our FastCherries algorithm, it achieves near-linear
runtime. Through simulations, we rigorously studied the computational and statistical efficiency
of the method, finding it to be around 10 to 100 times faster than CherryML with FastTree [2], all
while being only 50% less efficient and having a small asymptotic bias of around 2% median relative
error which we find negligible in practical applications. CherryML with FastCherries easily runs on
MSAs with hundreds of thousands of sequences. We plan to contribute to the open-source CherryML
package with our FastCherries method so that all researchers may use the end-to-end pipeline easily.

By leveraging FastCherries’ scalability, we performed regularized inference under the SiteRM model,
providing site-specific rate matrices for a given MSA. We applied this independent-sites model of
protein evolution to the task of variant effect prediction and found that it outperforms many well-
established models such as deep protein language models. We believe that this seemingly paradoxical
result that an independent-sites model outperforms epistatic models is largely explained by our new
conceptual approach, which conditions a model of protein evolution around the wild-type.

Future directions. Our work leaves several intriguing avenues for future research. First, although in
this work we focused on classical independent-sites models of protein evolution, the large amount of
data generated quickly by our FastCherries method may be used to train more complex models of
protein evolution that go beyond the independent-sites assumption, such as deep neural networks.
These may combine the best of both worlds: the power of modeling the evolutionary process in
time and the ability to take into account complex correlations between protein sites. Our work also
opens up a new avenue in statistical phylogenetics by enabling tree reconstruction with site-specific
rate matrices. Software such as IQTree [5] already allows phylogenetic tree reconstruction under a
‘partition model’, where sites may be grouped such that all sites in the same group evolve under the
same transition-rate matrix. Exploring extreme cases of the partition model where each site is its own
partition, as in our SiteRM model, is an exciting and new avenue of research that promises to improve
phylogenetic tree reconstruction, and find its way into other applications such as ancestral sequence
reconstruction. To this end, we plan to release the site-specific rate matrices we have estimated for
all 15,051 protein families in the TrRosetta dataset [30]. More broadly, our idea of bypassing tree
estimation through the lens of composite likelihood may enable further methodological developments
in other related models, such as mixture models [31]. All in all, we expect our work to have a lasting
impact in both statistical phylogenetics and computational variant effect prediction.

Limitations. One limitation of our current method is that it assumes – just like essentially all of
phylogenetics – that the model of protein evolution is time-reversible, thereby constraining the set of
possible rate matrices. This may be an important source of model misspecification in some cases, and
there is an emerging body of work extending phylogenetic methods to time-irreversible models [32].
Although we find that our method has outstanding performance on VEP, even when compared to
full tree reconstruction methods such as FastTree, our method does exhibit a small but non-zero
amount of asymptotic bias which may matter in some other downstream applications. For example,
the rate matrices estimated with CherryML using FastCherries may yield different, less accurate tree
topologies from those obtained with CherryML using FastTree or other tree reconstruction methods
(such as PhyML [4]). The extent to which this is true requires further investigation.

Acknowledgments and Disclosure of Funding

This research is supported in part by NIH grants R56-HG013117 and R01-HG013117. S.P. would
like to acknowledge Anastasia Ignatieva for early discussion about the project’s idea.

10

References
[1] Alexandros Stamatakis. RAxML version 8: a tool for phylogenetic analysis and post-analysis

of large phylogenies. Bioinformatics, 30(9):1312–1313, 01 2014.

[2] Morgan N. Price, Paramvir S. Dehal, and Adam P. Arkin. Fasttree 2 – approximately maximum-
likelihood trees for large alignments. PLoS ONE, 5(3):e9490, Mar 2010.

[3] Fredrik Ronquist and John P. Huelsenbeck. MrBayes 3: Bayesian phylogenetic inference under
mixed models. Bioinformatics, 19(12):1572–1574, 08 2003.

[4] Stéphane Guindon, Jean-François Dufayard, Vincent Lefort, Maria Anisimova, Wim Hordijk,
and Olivier Gascuel. New Algorithms and Methods to Estimate Maximum-Likelihood Phy-
logenies: Assessing the Performance of PhyML 3.0. Systematic Biology, 59(3):307–321, 05
2010.

[5] Bui Quang Minh, Heiko A Schmidt, Olga Chernomor, Dominik Schrempf, Michael D Wood-
hams, Arndt von Haeseler, and Robert Lanfear. IQ-TREE 2: New Models and Efficient
Methods for Phylogenetic Inference in the Genomic Era. Molecular Biology and Evolution,
37(5):1530–1534, 02 2020.

[6] Emma B. Hodcroft, Nicola De Maio, Rob Lanfear, Duncan R. MacCannell, Bui Quang Minh,
Heiko A. Schmidt, Alexandros Stamatakis, Nick Goldman, and Christophe Dessimoz. Want to
track pandemic variants faster? Fix the bioinformatics bottleneck. Nature, 591(7848):30–33,
March 2021.

[7] Si Quang Le and Olivier Gascuel. An Improved General Amino Acid Replacement Matrix.
Molecular Biology and Evolution, 25(7):1307–1320, 03 2008.

[8] S. Roch. A short proof that phylogenetic tree reconstruction by maximum likelihood is hard.
IEEE/ACM Transactions on Computational Biology and Bioinformatics, 3(01):92–94, jan 2006.

[9] Peter S. Klosterman, Andrew V. Uzilov, Yuri R. Bendaña, Robert K. Bradley, Sharon Chao,
Carolin Kosiol, Nick Goldman, and Ian Holmes. Xrate: a fast prototyping, training and
annotation tool for phylo-grammars. BMC Bioinformatics, 7(1):428, 2006.

[10] Ian H Holmes. Historian: accurate reconstruction of ancestral sequences and evolutionary rates.
Bioinformatics, 33(8):1227–1229, 01 2017.

[11] Sebastian Prillo, Yun Deng, Pierre Boyeau, Xingyu Li, Po-Yen Chen, and Yun S. Song. Cher-
ryML: scalable maximum likelihood estimation of phylogenetic models. Nature Methods,
20(8):1232–1236, August 2023.

[12] Thomas A. Hopf, John B. Ingraham, Frank J. Poelwijk, Charlotta P. I. Schärfe, Michael Springer,
Chris Sander, and Debora S. Marks. Mutation effects predicted from sequence co-variation.
Nature Biotechnology, 35(2):128–135, February 2017.

[13] Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu, and Alex Rives. Language
models enable zero-shot prediction of the effects of mutations on protein function. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances in Neural
Information Processing Systems, volume 34, pages 29287–29303. Curran Associates, Inc.,
2021.

[14] M. O. Dayhoff and R. M. Schwartz. Chapter 22: A model of evolutionary change in proteins.
In in Atlas of Protein Sequence and Structure, 1978.

[15] David T. Jones, William R. Taylor, and Janet M. Thornton. The rapid generation of mutation
data matrices from protein sequences. Comput. Appl. Biosci., 8(3):275–282, 1992.

[16] Simon Whelan and Nick Goldman. A General Empirical Model of Protein Evolution Derived
from Multiple Protein Families Using a Maximum-Likelihood Approach. Molecular Biology
and Evolution, 18(5):691–699, 05 2001.

[17] Ziheng Yang. Maximum likelihood phylogenetic estimation from dna sequences with variable
rates over sites: approximate methods. Journal of Molecular Evolution, 39(3):306–314, 1994.

11

[18] Cristiano Varin, Nancy Reid, and David Firth. An overview of composite likelihood methods.
Statistica Sinica, 21(1):5–42, 2011.

[19] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary Devito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In Advances in Neural Information Processing Systems 30, 2017.

[20] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow,
Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete
Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015. Software available from tensorflow.org.

[21] Philipp Bader, Sergio Blanes, and Fernando Casas. Computing the matrix exponential with an
optimized taylor polynomial approximation. Mathematics, 7(12), 2019.

[22] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings
of the 3rd International Conference on Learning Representations (ICLR), 2015.

[23] Nick Bhattacharya, Neil Thomas, Roshan Rao, Justas Daupras, Peter K Koo, David Baker,
Yun S. Song, and Sergey Ovchinnikov. Single layers of attention suffice to predict protein
contacts, 2021.

[24] Bui Quang Minh, Cuong Cao Dang, Le Sy Vinh, and Robert Lanfear. QMaker: Fast and
Accurate Method to Estimate Empirical Models of Protein Evolution. Systematic Biology,
70(5):1046–1060, 02 2021.

[25] Pascal Notin, Aaron Kollasch, Daniel Ritter, Lood van Niekerk, Steffanie Paul, Han Spinner,
Nathan Rollins, Ada Shaw, Rose Orenbuch, Ruben Weitzman, Jonathan Frazer, Mafalda Dias,
Dinko Franceschi, Yarin Gal, and Debora Marks. Proteingym: Large-scale benchmarks for
protein fitness prediction and design. In A. Oh, T. Neumann, A. Globerson, K. Saenko, M. Hardt,
and S. Levine, editors, Advances in Neural Information Processing Systems, volume 36, pages
64331–64379. Curran Associates, Inc., 2023.

[26] Brian L. Hie, Kevin K. Yang, and Peter S. Kim. Evolutionary velocity with protein language
models predicts evolutionary dynamics of diverse proteins. Cell Systems, 13(4):274–285.e6,
2022.

[27] Probabilistic Models of Structure in Biological Sequences - ProQuest.

[28] Adam J. Riesselman, John B. Ingraham, and Debora S. Marks. Deep generative models of
genetic variation capture the effects of mutations. Nature Methods, 15(10):816–822, October
2018.

[29] Chloe Hsu, Robert Verkuil, Jason Liu, Zeming Lin, Brian Hie, Tom Sercu, Adam Lerer,
and Alexander Rives. Learning inverse folding from millions of predicted structures. In
Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato,
editors, Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pages 8946–8970. PMLR, 17–23 Jul 2022.

[30] Jianyi Yang, Ivan Anishchenko, Hahnbeom Park, Zhenling Peng, Sergey Ovchinnikov, and
David Baker. Improved protein structure prediction using predicted interresidue orientations.
Proceedings of the National Academy of Sciences, 117(3):1496–1503, 2020.

[31] Si Quang Le, Cuong Cao Dang, and Olivier Gascuel. Modeling Protein Evolution with Several
Amino Acid Replacement Matrices Depending on Site Rates. Molecular Biology and Evolution,
29(10):2921–2936, 04 2012.

[32] Cuong Cao Dang, Bui Quang Minh, Hanon McShea, Joanna Masel, Jennifer Eleanor James,
Le Sy Vinh, and Robert Lanfear. nQMaker: Estimating Time Nonreversible Amino Acid
Substitution Models. Systematic Biology, 71(5):1110–1123, 02 2022.

12

[33] Cuong Dang, Le Vinh, Olivier Gascuel, Bart Hazes, and Quang Le. Fastmg: a simple, fast, and
accurate maximum likelihood procedure to estimate amino acid replacement rate matrices from
large data sets. BMC bioinformatics, 15:341, 10 2014.

[34] Naruya Saitou and Masatoshi Nei. The neighbor-joining method: a new method for reconstruct-
ing phylogenetic trees. Molecular biology and evolution, 4(4):406–425, 1987.

[35] Elodie Laine, Yasaman Karami, and Alessandra Carbone. GEMME: A Simple and Fast Global
Epistatic Model Predicting Mutational Effects. Molecular Biology and Evolution, 36(11):2604–
2619, 08 2019.

[36] Kazutaka Katoh and Hiroyuki Toh. PartTree: an algorithm to build an approximate tree from a
large number of unaligned sequences. Bioinformatics, 23(3):372–374, 11 2006.

[37] Jung-Eun Shin, Adam J. Riesselman, Aaron W. Kollasch, Conor McMahon, Elana Simon, Chris
Sander, Aashish Manglik, Andrew C. Kruse, and Debora S. Marks. Protein design and variant
prediction using autoregressive generative models. Nature Communications, 12(1):2403, April
2021.

[38] Jonathan Frazer, Pascal Notin, Mafalda Dias, Aidan Gomez, Joseph K. Min, Kelly Brock,
Yarin Gal, and Debora S. Marks. Disease variant prediction with deep generative models of
evolutionary data. Nature, 599(7883):91–95, November 2021.

[39] Ethan C. Alley, Grigory Khimulya, Surojit Biswas, Mohammed AlQuraishi, and George M.
Church. Unified rational protein engineering with sequence-based deep representation learning.
Nature Methods, 16(12):1315–1322, December 2019.

[40] Kevin K. Yang, Nicolo Fusi, and Alex X. Lu. Convolutions are competitive with transformers
for protein sequence pretraining. Cell systems, 15(3):286–294.e2, 2024.

[41] Daniel Hesslow, Niccoló Zanichelli, Pascal Notin, Iacopo Poli, and Debora Marks. Rita: a study
on scaling up generative protein sequence models. arXiv preprint arXiv:2205.05789, 2022.

[42] Erik Nijkamp, Jeffrey A. Ruffolo, Eli N. Weinstein, Nikhil Naik, and Ali Madani. Progen2:
Exploring the boundaries of protein language models. Cell systems, 14(11):968–978.e3, 2023.

[43] Céline Marquet, Michael Heinzinger, Tobias Olenyi, Christian Dallago, Kyra Erckert, Michael
Bernhofer, Dmitrii Nechaev, and Burkhard Rost. Embeddings from protein language models
predict conservation and variant effects. Human Genetics, 141(10):1629–1647, October 2022.

[44] Roshan M Rao, Jason Liu, Robert Verkuil, Joshua Meier, John Canny, Pieter Abbeel, Tom Sercu,
and Alexander Rives. Msa transformer. In Marina Meila and Tong Zhang, editors, Proceedings
of the 38th International Conference on Machine Learning, volume 139 of Proceedings of
Machine Learning Research, pages 8844–8856. PMLR, 18–24 Jul 2021.

[45] Pascal Notin, Mafalda Dias, Jonathan Frazer, Javier Marchena-Hurtado, Aidan Gomez, Debora S
Marks, and Yarin Gal. Tranception: protein fitness prediction with autoregressive transformers
and inference-time retrieval. arXiv (Cornell University), 2022.

[46] Pascal Notin, Lood Van Niekerk, Aaron W Kollasch, Daniel Ritter, Yarin Gal, and Debora Susan
Marks. TranceptEVE: Combining family-specific and family-agnostic models of protein
sequences for improved fitness prediction. In NeurIPS 2022 Workshop on Learning Meaningful
Representations of Life, 2022.

[47] Kevin K Yang, Niccolò Zanichelli, and Hugh Yeh. Masked inverse folding with sequence transfer
for protein representation learning. Protein Engineering, Design and Selection, 36:gzad015, 10
2022.

[48] J. Dauparas, I. Anishchenko, N. Bennett, H. Bai, R. J. Ragotte, L. F. Milles, B. I. M. Wicky,
A. Courbet, R. J. de Haas, N. Bethel, P. J. Y. Leung, T. F. Huddy, S. Pellock, D. Tischer, F. Chan,
B. Koepnick, H. Nguyen, A. Kang, B. Sankaran, A. K. Bera, N. P. King, and D. Baker. Robust
deep learning–based protein sequence design using proteinmpnn. Science, 378(6615):49–56,
2022.

13

A Appendix

A.1 Related Work

Speeding up the tree reconstruction step required by rate matrix estimation has been of interest in
recent years as genomic datasets have increased in size. In this direction, one work related to ours
is that of FastMG [33], which proposes naively splitting the input MSAs into sub-MSAs, and then
running an end-to-end estimation procedure using these MSAs. The MSA splitting procedure is
performed by using partial tree reconstruction with the Neighbor-Joining (NJ) algorithm [34] applied
to the Hamming distance. In this sense, their method has a similar flavor to ours, since we are
decomposing each MSA into pairs of sequences. However, there are a number of key differences
between our approach and that of FastMG. Firstly, because FastMG proposes to naively split the
MSAs into sub-MSAs and treat each independently, FastMG cannot split the MSA into sub-MSAs
that are too small. Indeed, it is statistically infeasible to estimate site-rates reliably from too few
sequences, since the site-rate at each position is only supported by the few observations at that site. In
particular, it is impossible to estimate the site-rates reliably with FastMG by splitting each MSA into
pairs of sequences, since only two amino acids would support the rate at that site. Therefore, FastMG
typically uses sub-MSAs of size 16. Because of this, FastMG still requires full phylogenetic tree
reconstruction (albeit on smaller trees of size 16). A major limitation is that FastMG does not estimate
site-rates for the original MSAs – it only does so for the sub-MSAs. This means that estimation under
the SiteRM model cannot be naturally performed, since the site-rates are required by the LG prior
we use as a regularizer. Our method can thus be thought of as a version of FastMG with parameter
sharing, wherein sub-MSAs of size 2 share the site-rate parameters, thus allowing us to capture rich
site-rate variation reliably and estimate site-rates for the original MSAs. Finally, FastMG uses NJ
to decompose the MSA, whose runtime is in general O(n3), while we propose to use a near-linear
time O(n log n) algorithm. Together, these ingredients lead to our near-linear time algorithm with
massive scalability.

The application of phylogenetic methods to variant effect prediction is not new. A notable method
in this space is GEMME [35], which uses phylogenetic trees and hand-crafted statistics for the
purpose of variant effect prediction. This method performs on-par with the state-of-the-art method
TranceptEVE for some metrics on the DMS and clinical substitutions benchmark. The main limitation
of GEMME is that it is based on hand-crafted features and lacks a probabilistic basis, limiting its
ability to scale to larger datasets in a seamless way. We expect that by training more sophisticated,
epistatic models of protein evolution on the millions of training pairs (x, y, t) generated by our
method, one may be able to scale up our approach and further improve on variant effect prediction.

A.2 Further details of the divide-and-conquer algorithm

Although the divide-and-conquer algorithm described in Section 3.2 does not automatically guarantee
balanced splits, they can be achieved by modifying the splitting procedure by first sorting the points
based on the ratio d(z, z1)/d(z, z2) ∈ [0,+∞], assigning the Θ(ϵ) ones with smallest ratio to S1 and
the Θ(ϵ) ones with greatest ratio to S2; the remaining points are assigned with the original procedure.
Moreover, this modified procedure only needs to be applied if the original split is unbalanced to
begin with. Empirically, enforcing theoretically balanced splits is completely unnecessary, and we
use the original simple splitting criteria, which empirically achieves near-linear runtime on real
data inputs. A similar algorithm called PartTree [36] has been proposed in the past for scalable
phylogenetic tree reconstruction, but it has seen little adoption due to its inferior topological accuracy
compared to methods [2]. It is important to note that we care about rate matrix estimation, not tree
estimation (since the trees T are nuisance parameters in our model), which is why such near-linear
time algorithm turns out to be profitable in our setting. As we demonstrate in the Results section, the
tree estimates (specifically, cherries) obtained this way are good enough for our purposes.

A.3 Site-rate initialization

To initialize the site-rates αf
i in our FastCherries method, we use the following heuristic that tries to

align the initial site-rates with the Γ(3, 1/3) prior. First, for each site i, we count the number of pairs

14

(x, y) supporting a mutation at that site:

mutsfi =
∑

1<j<k<nf

1{Df
ji ̸= Df

ki}

which can be easily computed in time O(nf lf + lfs) by just counting the number of occurrences of
each state at each site. Gaps are treated as missing data and are ignored when computing the above
quantity. Next, we sort the sites based on the number of such mutations in time O(lf log lf). Recall
that the site-rates in the CAT model with r rate categories are geometrically spaced between 1/r
and r. Furthermore, a Γ(3, 1/3) prior is used. Call these rates γ1, . . . , γr. Using our sorted order
for sites based on number of mutations, we assign a number of sites to rate category γi proportional
to the measure of the Γ(3, 1/3) distribution between

√
γi−1γi and

√
γiγi+1, where γ0 = 0 and

γr+1 = +∞.

A.4 Runtime

A.4.1 Runtime of the FastCherries algorithm

Letting a be the number of coordinate ascent steps used for optimizing site-rates and divergence
times, the runtime of our FastCherries algorithm described in Section 3.2 for family f is

O(lfnf log nf︸ ︷︷ ︸
Pairing

step

+ rbs3︸︷︷︸
Matrix

exponential
precomputation

+nf lf + lfs+ lf log lf︸ ︷︷ ︸
Site
rate

initialization

+ a︸︷︷︸
Coordinate

ascent

(lfrnf︸ ︷︷ ︸
Site
rate

estimation

+nf log(b)lf︸ ︷︷ ︸
Distance

estimation

)),

Which is nearly linear in nf lf , the size of the MSA Df . Large applications encountered in practice
have nf = 450, 000, lf = 300, r = 20, b = 100, a = 10, s = 20. For a real MSA with over 450,000
sequences of length 364, we find that our method takes around 1000 seconds on 1 CPU core.

A.4.2 End-to-end runtime

Finally, combined with CherryML’s procedure to estimate a transition-rate matrix Q given pairs
(uf

j , v
f
j), divergences tfj and site-rates αf

i , we obtain an end-to-end procedure for estimating a rate
matrix Q under the LG model. Assuming for simplicity as in CherryML’s analysis that all families
have the same number of sequences nf = n and lengths lf = l, denoting by g the number of
first-order gradient descent steps of CherryML (implemented in PyTorch using the Adam optimizer),
q the number of iterations of the whole process (outer coordinate ascent), and recalling that m is the
number of families, we obtain an end-to-end runtime of

O(q︸︷︷︸
Outer

coordinate
ascent

[mnl log n︸ ︷︷ ︸
Pairing

step

+ rbs3︸︷︷︸
Matrix

exponential
precomputation

+mnl +mls+ml log l︸ ︷︷ ︸
Site
rate

initialization

+

a︸︷︷︸
Inner

coordinate
ascent

(mnlr︸ ︷︷ ︸
Site
rate

estimation

+mnl log(b)︸ ︷︷ ︸
Distance

estimation

) +mnl log b︸ ︷︷ ︸
CherryML
counting

step

+ gbs3︸︷︷︸
CherryML
first-order
optimizer
(PyTorch)

]).

In practice, as in the CherryML work, q = 4, g = 2000. Thus, this end-to-end runtime is nearly
linear in the dataset size mnl up to a logarithmic factor q log n and a constant factor qa(r + log(b)).
The procedure is also embarrassingly parallel over families f .

A.4.3 Runtime for estimating site-specific transition-rate matrices

Empirically, on a large MSA with around 450,000 sequences of length 364, it takes around 1000
seconds to estimate branch length and site-rates, and thereafter, it takes around 1 second per site to
estimate a site-specific transition-rate matrix Qf

i using the method described in Section 3.3. Thus, for
an MSA with 450,000 sequences of length 364, it takes approximately 1500 seconds end-to-end to
estimate site-specific rate matrices. We should remark that unlike in the original CherryML procedure,
we (1) initialize the optimizer with αf

i Q0 instead of their JTT-IPW strategy [11], and (2) use only
100 steps of the Adam optimizer [22] instead of 2000. Indeed, since we are regularizing with αf

i Q0

this is a reasonable initialization, and further, we find that 2000 steps is unnecessarily large, with

15

convergence already happening at around 100 steps. This observation is helpful to further boost
scalability.

A.5 Note on space complexity

Our method FastCherries uses linear space. Briefly, the logarithmic factors in the computational
runtime come from divide-and-conquer and binary searches, which do not translate to the space
complexity. In more detail, the space complexity when processing the m MSAs in parallel using p
processes is O(ps2br+pnl+pls). Here, O(ps2br) is the cost of the precomputed matrix exponentials,
which is shared across all MSAs (and can also be shared across all processes, in which case the space
drops to O(s2br)). The second term O(pnl) is the cost to load the p MSAs into memory. For each
MSA, pairing takes O(n) space, since it takes O(n) space to store the distance between the pivot and
all other sequences. The space for computing the initial site rates for an MSA is O(ls+ r). Here, the
O(ls) term comes from the count matrix count[i, j] which tracks the number of times that character
j occurs at position i. Computing site rates given branch lengths for an MSA takes O(r) space, and
computing branch lengths given site rates takes O(l) space. In both cases, we only track the best rate
for the current site or best branch length for the current site. This way, our method FastCherries is
space efficient (up to a constant).

A.6 CherryML benchmark details

There are two kinds of benchmarks in the CherryML work [11] which we leverage: a simulated
data benchmark and a real data benchmark. In the simulated data benchmark, a ground truth rate
matrix (the LG rate matrix) is used to simulate MSAs from ground truth trees and site rates. Runtime
and accuracy of rate matrix estimation methods are evaluated as a function of the number of MSAs
simulated, thus providing insight into the computational runtime and the statistical efficiency of each
method. The real data benchmark is a compilation of benchmarks originally reported in the LG
paper [7] and in the QMaker paper [24]. In these benchmarks, real MSAs are used to estimate a
rate matrix. The quality of the estimated rate matrix is judged by the log-likelihood of MSAs from
held-out families, thus probing the quality of the method in real-life settings. Importantly, these real
data benchmarks contain MSAs from diverse areas of life (mammalian MSAs, bird MSAs, insect
MSAs, and plant MSAs), thus probing the generalization capabilities of the method to different real
biological settings.

A.7 QMaker datasets benchmark

The QMaker work [24] uses diverse datasets to highlight the importance of learning rate matrices
which are specific to different domains of life. The CherryML work [11] uses these datasets to
showcase the ability of the CherryML method to generalize to these diverse datasets. Here, we use
these datasets in the same way to highlight the ability of CherryML with FastCherries to achieve
comparable performance to CherryML with FastTree; in the CherryML paper, it was shown that
CherryML with FastTree matches the performance of EM with FastTree. Supplementary Figure S1
shows the results, with log-likelihoods on the left and runtimes on the right. We can see that indeed
CherryML with FastCherries achieves comparable performance to CherryML with FastTree, all while
being 10-100 times faster end-to-end.

The details for this benchmark are as follows: starting from the LG rate matrix, tree estimation (with
either FastTree or FastCherries) and rate matrix estimation with CherryML were iterated 4 times. The
number of rate categories used is 4 as in the CherryML paper and the original LG paper [7]. The
learnt rate matrices are then evaluated by computing the log-likelihood of the MLE trees fitted using
FastTree with 4 rate categories.

It should be noted that the ≈ 1000 MSAs in each of these datasets are relatively small, with less
than 100 sequences each, which is why FastCherries is so fast and the runtime is barely noticeable.
Most of the runtime is spent on CherryML’s rate matrix estimator which is implemented in PyTorch
[19] using 2000 epochs of the Adam [22] optimizer. In our experience, this is more than enough to
achieve convergence, and why we lower it to 100 epochs when training the SiteRM model.

16

Supplementary Figure S1: CherryML with FastCherries matches the performance of CherryML
with FastTree on diverse datasets. We reproduced the QMaker results from the CherryML paper
[11] and added our CherryML with FastCherries method. We observe similar held-out likelihood at a
fraction of end-to-end runtime, which is about 10-100 times faster.

17

A.8 Full DMS substitutions results table

Here we provide the full table of results containing all the models reported in the ProteinGym
benchmark [25], with our SiteRM model added.

Supplementary Table S1: ProteinGym DMS substitutions benchmark results, with our SiteRM
model and ablations added under the ‘Protein Evolution, Classical’ model type. The ablations explore
using less data by subsampling the MSAs, or using FastTree instead of FastCherries, or not treating
gaps as a state. We also benchmark the LG model, which uses a global matrix and does quite
well already. Despite being an independent-sites model, SiteRM outperforms all protein language
models expect VESPA, on all metrics except occasionally Recall@10. The approximate CPU time in
seconds required for tree/cherry estimation on the largest MSA is shown in the last column ‘slowest
tree’. Empirically, FastCherries is around 50 times faster than FastTree. Estimating site-specific rate
matrices takes around 1 additional second per site.

Model type Model name Spearman AUC MCC NDCG Recall Slowest tree

Protein LG, FastCherries 1M 0.377 0.710 0.297 0.763 0.185 1,000 sec
Evolution, SiteRM, FastTree 1K 0.397 0.721 0.311 0.774 0.203 350 sec
Classical SiteRM, FastCherries 1K 0.398 0.721 0.312 0.772 0.205 8 sec

SiteRM, FastTree 10K 0.404 0.724 0.315 0.776 0.204 3,100 sec
SiteRM, FastCherries 10K 0.408 0.726 0.319 0.777 0.206 60 sec
SiteRM, FastCherries 1M 0.412 0.728 0.321 0.777 0.207 1,000 sec
SiteRM, FastCherries 1M, w/gaps 0.423 0.734 0.330 0.776 0.207 1,000 sec

Alignment- Site-Independent [12] 0.359 0.696 0.286 0.747 0.201
based WaveNet [37] 0.373 0.707 0.294 0.761 0.203

EVmutation [12] 0.395 0.716 0.305 0.777 0.222
DeepSequence (ensemble) [28] 0.419 0.729 0.328 0.776 0.226
EVE (ensemble) [38] 0.439 0.741 0.342 0.783 0.230
GEMME [35] 0.455 0.749 0.352 0.777 0.211

Protein UniRep [39] 0.190 0.605 0.147 0.647 0.139
language CARP (640M) [40] 0.368 0.701 0.285 0.748 0.208

ESM-1b [13] 0.394 0.719 0.311 0.747 0.203
ESM-2 (15B) [13] 0.401 0.720 0.314 0.759 0.208
RITA XL [41] 0.372 0.707 0.293 0.751 0.193
ESM-1v (ensemble) [13] 0.407 0.723 0.320 0.749 0.211
ProGen2 XL [42] 0.391 0.717 0.306 0.767 0.199
VESPA [43] 0.436 0.742 0.346 0.775 0.201

Hybrid UniRep evotuned [39] 0.347 0.693 0.274 0.739 0.181
MSA Transformer (ensemble) [44] 0.434 0.738 0.340 0.779 0.224
Tranception L [45] 0.434 0.739 0.341 0.779 0.220
TranceptEVE L [46] 0.456 0.751 0.356 0.786 0.230

Inverse ESM-IF1 [29] 0.422 0.730 0.331 0.748 0.223
Folding MIF-ST [47] 0.401 0.718 0.311 0.766 0.226

ProteinMPNN [48] 0.258 0.639 0.196 0.713 0.186

18

A.9 Clinical substitutions results table

Supplementary Table S2: Our independent-sites SiteRM model outperforms the large protein
language model ESM-1b at human clinical substitutions variant effect prediction (VEP) by nearly
0.02 AUC points, and is less than 0.01 AUC points away from state-of-the-art methods. We again
find that modeling gaps as a state in SiteRM (thus learning 21× 21 transition matrices) helps.

Model name Mean AUC
TranceptEVE [46] 0.920
GEMME [35] 0.919
EVE [38] 0.917
SiteRM 0.911
SiteRM w/o gaps 0.903
ESM-1b [13] 0.892

A.10 Compute Resources

The experiments in section ‘Scalable estimation under the LG model’ were performed on a ‘MacBook
Pro’ model ‘MacBookPro18,2’ with a ‘Apple M1 Max’ chip with 10 CPU cores and 32 GB RAM.
The ProteinGym variant effect prediction benchmarks were performed on a machine with 32 CPU
cores, model ‘Intel Xeon Skylake 6230 @ 2.1 GHz’, and with 384 GB RAM; however, this is more
RAM than necessary and the experiments can likely be performed comfortably with much less RAM.
The total compute required by the project was not much larger than that of the experiments reported
in the paper, which was dominated by variant effect prediction on human clinical substitutions, which
took around 1 day when parallelized with 32 cores and was done last. The large runtime is due to the
large number (2525) of clinical MSAs.

19

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Extensive benchmarking on simulated and real data from prior work (Cher-
ryML) are used to demonstrate the speed and accuracy of the method, and benchmarks
on the extensive community resource ProteinGym support the variant effect prediction
results. The theoretical complexity of the algorithm is also analyzed to provide a proof of
the near-linear runtime.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Our paper contains a separate ‘Limitations’ section dedicated to the limitations,
such as the time-reversibility assumption that is standard in statistical phylogenetics.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

20

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: However trivial, we performed analysis of the runtime of our method in the
appendix and list the assumptions needed to guarantee near-linear runtime, such as balanced
splits. Note that our work is of an applied nature so the practical runtimes and accuracies are
more significant than the theoretical algorithm analysis itself, which is why the theoretical
analysis is deferred to the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all methodological details for our FastCherries method and SiteRM
model, including detailed time complexity analysis. For each experiment, details on how
to reproduce them are provided in either the main text or appendix as appropriate. All
of our experimental results build on benchmarks from prior works which are themselves
well-documented, such as the ProteinGym benchmark and the CherryML benchmarks.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

21

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have submitted all code to reproduce results alongside our submission.
The provided folder contains a README clear instructions to set up an environment, install
system requirements, and then reproduce all our results. Our work builds on the user-friendly
benchmarks from the ProteinGym and CherryML works, which we are very grateful for.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We built on top of the existing benchmarks from the ProteinGym and CherryML
works. The choice of our hyperparameters λ = 0.5 and t = 1.0 for variant effect prediction
is motivated in the main text.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

22

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Justification: Error bars are not reported because it would be too computationally expensive,
particularly for the slower CherryML + FastTree method. Note that our experiments are
all over large and diverse datasets, so although we do not provide error bars, statistical
significance is conveyed through a diversity of large benchmarks.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Computational resources used for all experiments are provided in the appendix
as a separate section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our work does not involve human subjects nor participants; all datasets used
are public and accessible, and all code used is open-source under a suitable license. The
primary application of our work is variant effect prediction, which is meant to aid doctors in
the clinical setting.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.

23

https://neurips.cc/public/EthicsGuidelines

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Our work is applied to variant effect prediction, an important problem with
positive societal impact. While our models could potentially be used in a harmful way, for
instance by computing and using polygenic risk scores against individuals, secure access to
genetic data is beyond our domain.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work poses no suck risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

24

Answer: [Yes]

Justification: All benchmarks and models used are cited in our work, and all code and
packages we used are open-source.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets are released. Our code will be contributed to the open-source
ProteinGym and CherryML packages upon publication.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

25

paperswithcode.com/datasets

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

26

	Introduction
	Background and Related Work
	Classical models of protein evolution
	CherryML

	Method
	The SiteRM model
	Near-linear time end-to-end estimation of model parameters
	Regularized estimation of site-specific transition-rate matrices under the SiteRM model

	Results
	Scalable estimation under the LG model
	Variant Effect Prediction with the SiteRM model

	Discussion
	Appendix
	Related Work
	Further details of the divide-and-conquer algorithm
	Site-rate initialization
	Runtime
	Runtime of the FastCherries algorithm
	End-to-end runtime
	Runtime for estimating site-specific transition-rate matrices

	Note on space complexity
	CherryML benchmark details
	QMaker datasets benchmark
	Full DMS substitutions results table
	Clinical substitutions results table
	Compute Resources

