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Abstract

Many causal discovery methods typically rely on the assumption of independent
noise, yet real-life situations often involve deterministic relationships. In these
cases, observed variables are represented as deterministic functions of their parental
variables without noise. When determinism is present, constraint-based methods
encounter challenges due to the violation of the faithfulness assumption. In this
paper, we find, supported by both theoretical analysis and empirical evidence,
that score-based methods with exact search can naturally address the issues of
deterministic relations under rather mild assumptions. Nonetheless, exact score-
based methods can be computationally expensive. To enhance the efficiency and
scalability, we develop a novel framework for causal discovery that can detect
and handle deterministic relations, called Determinism-aware Greedy Equivalent
Search (DGES). DGES comprises three phases: (1) identify minimal deterministic
clusters (i.e., a minimal set of variables with deterministic relationships), (2) run
modified Greedy Equivalent Search (GES) to obtain an initial graph, and (3)
perform exact search exclusively on the deterministic cluster and its neighbors.
The proposed DGES accommodates both linear and nonlinear causal relationships,
as well as both continuous and discrete data types. Furthermore, we investigate the
identifiability conditions of DGES. We conducted extensive experiments on both
simulated and real-world datasets to show the efficacy of our proposed method.
The code is available at https://github.com/lokali/DGES.git.

1 Introduction

Causal discovery from observational data has attracted considerable attention in recent decades and
has been widely applied in various fields such as machine learning [1], healthcare [2], manufacturing
[3] and neuroscience [4]. Most causal discovery methods operate under the assumption of independent
noises in the probabilistic system. However, real-world scenarios frequently encounter deterministic
relationships. For example, the body mass index (BMI) is defined as the weight divided by the square
of the body height, composing a deterministic relation among weight, height, and BMI.

Constraint-based and score-based methods are two primary categories in causal discovery. Constraint-
based methods, such as PC [5] and FCI [6], leverage conditional independence tests (CIT) to estimate
the graph skeleton and then determine the orientation. Under the Markov and faithfulness assumptions
[7], these methods are guaranteed to asymptotically output the true Markov equivalence class (MEC).
However, the faithfulness assumption is sensitive to many factors, such as the statistical errors with
finite samples. Moreover, in the presence of deterministic relations, the faithfulness assumption is
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always violated. Take the chain structure X → Y → Z for example where Y = f(X). In this case,
faithfulness is violated due to the conditional independence Z ⊥⊥ Y |X , i.e., when X is given, Y
degenerates to a constant that is independent to any variables. Several variants of constraint-based
methods [8, 9] have been proposed to accommodate certain types of unfaithfulness. However, they
generally provide practical flexibility but do not guarantee the identification to the true MEC.

For score-based methods, the approach can vary based on the search strategy, which may involve
greedy search, exact search, or continuous optimization. One typical score-based method with
greedy search is Greedy Equivalent Search (GES) [10], which searches in the space of MECs
greedily by maximizing a well-defined score, such as Bayesian information criterion (BIC) score
[11]. Specifically, GES starts with an empty graph and consists of two phases. In the forward phase,
it incrementally adds one edge at a time if it yields the maximum score improvement, continuing
until no further edge can be added to enhance the score. In the backward phase, it checks all edges to
eliminate some if removal further improves the score. Similar to the aforementioned constraint-based
methods, GES converges to the true MEC in the large sample limit.

Some exact score-based methods aim at weakening the faithfulness assumption required for asymp-
totic correctness of the search results, such as dynamic programming (DP) [12, 13], A* [14, 15], and
integer programming [16, 17]. The DAGs estimated by these methods can be converted to their MECs
for causal interpretation [18]. Lu et al. [19] demonstrated that these exact methods may produce
correct results in cases where methods relying on faithfulness fail. Furthermore, Ng et al. [20] proved
that exact score-based search with BIC can asymptotically outputs the true MEC when the sparsest
Markov representation (SMR) assumption [21] is satisfied. Note that the SMR assumption is strictly
weaker than the faithfulness assumption.

Deterministic relations have been considered in a few works of causal discovery. D-separation
condition [7] is proposed for graphically determining conditional independence. Glymour [22]
proposed a heuristic procedure to learn the causal graph in a deterministic system, called DPC, where
only a subset of variables will be conditioned in testing conditional independence. Daniusis et al.
[23] and Janzing et al. [24] considered a deterministic system with only two variables, and presented
the idea of independent changes to infer the causal direction. Luo [25] and [26] incorporated the
classical PC algorithm and utilized additional independence tests to handle determinism. Mabrouk
et al. [27] combined a constraint-based approach with a greedy search that included specific rules to
deterministic nodes and significantly reduce the incorrect learning. However, there is no identifiability
guarantee in those related works. Moreover, Zeng et al. [28] assumes nonlinear additive noise model
under high-dimensional deterministic data while Yang et al. [29] assumes linear non-Gaussian model.
Different from them, this paper aims to provide a principled framework to handle deterministic
relations for arbitrary functional models. More related works are given in Appendix A2.

Contributions. Firstly, we find that exact score-based methods can naturally be used to address
the issues of deterministic relations when mild assumptions are fulfilled. Secondly, due to the large
search space of the possible DAGs, the exact score-based methods are feasible only for small graphs
and can be inefficient for large graphs. To enhance the efficiency and scalability, we propose a novel
framework called Determinism-aware Greedy Equivalent Search (DGES), aimed at enhancing the
efficiency and scalability to handle deterministic relations. Importantly, DGES is a general three-
phase method, with no restricted assumption on the underlying functional causal models, i.e., it can
accommodate both linear and nonlinear relationships, Gaussian and non-Gaussian data distributions,
as well as continuous and discrete data types. Thirdly, we provide the identifiability conditions of
DGES under general functional models. Last but not least, we conducted extensive experiments on
both simulated and real-world datasets to validate our theoretical findings and show the efficacy of
our proposed method.

Paper organization. In Section 2, we review the common assumptions, provide a motivating
example why PC fails in dealing with deterministic relations, then present our intuitive solution
using exact score-based method. In Section 3, we present our proposed DGES with three phases in
details. Furthermore, we provide the identifiability conditions for DGES presented in a general form
in Section 4. The empirical studies in Section 5 validate our theoretical results and show the efficacy
of our method. Finally, we conclude our work with further discussions in Section 6.
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2 Causal Discovery with Deterministic Relations
In this section, we first review the preliminaries of causal discovery, especially with deterministic
relations, and then we provide some common assumptions that are related to our further analysis, as
presented in section 2.1. Furthermore, we display two scenarios with deterministic relations where
faithfulness can be violated in section 2.2, explaining why using constraint-based methods such as the
PC algorithm can be problematic in addressing deterministic issues. Lastly, we provide an intuitive
solution to handle the deterministic issues by exact score-based methods, as shown in section 2.3.

2.1 Causal Discovery and Common Assumptions

Let G = (V ,E) be a DAG with the vertex set V and edge set E. Consider d observable variables
denoted by V = (V1, V2, ..., Vd), and denote P as its probability distribution. From a statistical view,
X ⊥⊥ Y |Z denotes that X and Y are conditionally independent given Z. Moreover, from a graph
view, X ⊥⊥d Y |Z denotes that X and Y are d-separated by Z. Given n data samples, the task of
causal discovery aims at recovering the causal graph G from the data matrix V ∈ Rn×d. Usually,
each variable Vi ∈ V with random noises can be represented by the following structural causal model
(SCM): Vi = fi(PAi, ϵi), where PAi is the set of all direct causes of Vi, and ϵi is the random noise
with non-zero variance related to Vi, and we assume that ϵi’s are mutually independent. For variables
with deterministic relations, the SCM becomes: Vi = fi(PAi), where there is no extra noise. The
relation can also be denoted as PAi 7→Vi, where 7→ is the deterministic function mapping, showing
PAi determines Vi. Throughout this paper, we assume causal sufficiency, i.e., no latent confounder.

Terminologies. Consider Figure 1(a) as an example, where V3 has deterministic relation with V1 and
V2, i.e., V3 = V1 + V2, and V4 is a non-deterministic variable. Here we call the set of deterministic
variables as a deterministic cluster (DC), e.g., {V1, V2, V3}. Accordingly, all the non-deterministic
variables make up a non-deterministic cluster (NDC), e.g., {V4}. Meanwhile, the edges connecting
between DC and NDC compose a bridge set (BS), e.g., {V2→V4, V3→V4}.

Assumption 1 (Markov) Given a DAG G and the distribution P over the variable set V , each
variable is probabilistically independent of its non-descendants given its parents in G.

There are many DAGs that induce the same conditional independence relations with the distribution
P, and it is said to be Markov equivalent. The Markov equivalent class (MEC) contains all the DAGs
which entail the same conditional independence relations as G does.
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Figure 1: Two examples of causal graphs
where faithfulness is violated. The gray nodes
are deterministic variables. (a) {V1, V2} 7→
V3. Violation reason is V4 ⊥⊥ V3|{V1, V2} but
V4 ̸⊥⊥d V3|{V1, V2}. (b) V1 7→ V2. Violation
reason is V3⊥⊥V4|V1 but V3 ̸⊥⊥d V4|V1.

Another widely used assumption is faithfulness [7].
It states that any conditional independence that holds
in the probability distribution must correspond to a d-
separation in the causal graph. When the Markov and
faithfulness assumptions hold true, constraint-based
methods, such as PC, have been proven to output the
correct MEC asymptotically. However, in the finite
sample regime, the faithfulness assumption is sensi-
tive to statistical testing errors when inferring the CI
relations, and the violations might occur often. When
there are deterministic relations, faithfulness also
fails. Glymour [22] proposes the non-deterministic
faithfulness regarding only non-deterministic vari-
ables. Moreover, relaxations of faithfulness have
been proposed, such as adjacency-faithfulness [8]
and triangle-faithfulness [9]. Another strictly weaker
assumption is called Sparsest Markov Representation
(SMR) [21], which is also known as the unique-frugality assumption [30, 31].

Assumption 2 (Sparsest Markov Representation (SMR) [21]) Given a DAG G and the distribu-
tion P over the variable set V , the MEC of G is the unique sparsest MEC which satisfies the Markov
assumption.

The idea behind SMR is to find the sparsest graphical representation that captures the essential
conditional independence relationships in the data. The term “sparsest" refers to the minimal number
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of edges in the graphical model. Under the SMR assumption, the exact score-based methods, such as
A* [15] and DP [13], can produce asymptotically correct results for learning the true MEC.

2.2 Faithfulness Violation by Deterministic Relations

Glymour [22] pointed out two and only two scenarios in the presence of deterministic relations where
faithfulness can be violated. We summarize the two conditions and present the following assumption.

Assumption 3 (Non-deterministic Faithfulness [22]) Define a DAG G and the distribution P over
the variable set V . ∀X,Y and S in V , if X ⊥⊥ Y |S in P and none of the following conditions holds:

i. S 7→ X or S 7→ Y ,

ii. ∃S′ s.t. X ⊥⊥d Y |S′ and S 7→ S′,

then X ⊥⊥d Y |S in G.

Remarks: It assumes there is no other coincidental independence besides the two conditions. In other
words, the two conditions are the only two cases leading to faithfulness violation due to deterministic
relations. In fact, this assumption is equivalent to the completeness of D-separation criteria in Spirtes
et al. [7]. We will use two graph examples, as shown in Figure 1, to explain the above two conditions.

Firstly, given condition (i) and Figure 1(a), we can assign S = {V1, V2} and X = V3, where S 7→ X .
Given {V1, V2}, V3 will always be conditionally independent from V4, because V3 can be determined
by {V1, V2}with no extra noise term, the estimated residue for regressing V3 on {V1, V2}will be close
to 0. Therefore, V4 ⊥⊥ V3|{V1, V2} holds true from a statistical view. However, V4 ̸⊥⊥d V3|{V1, V2}
from a graph view. Therefore, in this case, faithfulness is violated.

The key rule of constraint-based method (e.g., PC algorithm) is that if we find at least one conditional
set or an empty set so that two variables are conditionally independent, then the edge between these
two variables in the graph will be removed. Therefore, we can conclude that using constraint-based
methods which rely on faithfulness to deal with deterministic relations can be problematic.

Secondly, given condition (ii) and Figure 1(b), we can assign S = V1, S′ = V2, X = V3 and
Y = V4, where S 7→ S′. From the graph, we can see that V3 ⊥⊥d V4|V2 and V3 ̸⊥⊥d V4|V1. However,
from a statistical view V3 ⊥⊥ V4|V2, since V2 = V1, we also have V3 ⊥⊥ V4|V1. Here, conditional
independence does not imply d-separation. Therefore, faithfulness is also violated.

2.3 Intuitive Solution: Exact Search

Benefiting from the recent theoretical progress on exact score-based methods, which do not explicitly
rely on faithfulness assumption, it enables us to deal with deterministic relations from an intuitive
view. Here, we are inspired by the lemma as follows.

Lemma 1 (Linear Identifiability of Exact Search [20]) Exact score-based search with BIC score
asymptotically outputs a DAG that belongs to the MEC of the true DAG G if and only if the DAG G
and distribution P satisfy the SMR assumption.

According to Lemma 1, in the linear case, as long as the SMR assumption is satisfied, the exact
score-based method with BIC score [11] can asymptotically obtain the true MEC. Then, we can
extend the theoretical result from linear to nonlinear scenarios. The exact score-based method with
generalized score [32] can also asymptotically output the true MEC.

Theorem 2 (General Identifiability of Exact Search) Exact score-based search with generalized
score asymptotically outputs a DAG that belongs to the MEC of the true DAG G if and only if the
DAG G and distribution P satisfy the SMR assumption and some mild conditions are satisfied.

Remarks: The complete proof is given in Appendix A4.1. Based on the theoretical findings in Lemma
1 and Theorem 2, the exact score-based methods, which do not specifically require faithfulness but
SMR, pave a promising way to deal with the deterministic relations for causal discovery. However, one
critical disadvantage of the exact methods is their low computational efficiency and poor scalability.
To that end, we propose a novel framework, called DGES, which is demonstrated in section 3. The
identifiability conditions for DGES are provided in section 4.

4



Algorithm 1 DGES: Determinism-aware Greedy Equivalent Search
Input: data matrix D ∈ Rn×d

Output: a causal graph G
1: (Phase 1: Detect Minimal Deterministic Clusters) Detect the minimal deterministic clusters, by

checking whether one variable can be minimally determined by some other variables.
2: (Phase 2: Run Modified Greedy Search Globally) Run modified greedy equivalent search on the

whole set of variables to obtain an initial graph.
3: (Phase 3: Run Exact Search Partially) Perform the exact search exclusively on the deterministic

clusters and their neighboring variables, as post-processing.

3 Determinism-aware Greedy Equivalent Search (DGES)

In this section, we will introduce our proposed DGES in detail. Throughout this paper, we consider
the general case without assuming any functional causal models. In general, DGES contains three
phases: Firstly, we need to detect all the minimal deterministic clusters. If one variable can be
deterministically represented by some other variables, we may conclude that it is a deterministic
variable. Secondly, based on the DC information, we run modified GES to get the initial causal graph.
Thirdly we perform the exact search exclusively on the DC and their neighbors, as post-processing.
The general framework is given in Algorithm 1. The contents are organized as follows. The details of
deterministic cluster detection in Phase 1 are discussed in section 3.1. More information about our
modified GES in Phase 2 is introduced in section 3.2. Finally, we discuss exact search in section 3.3.

3.1 Minimal Deterministic Clusters Detection

A minimal deterministic cluster (MinDC) refers to a minimal set of variables involved in a determin-
istic relation. A DC can be seen as a union of all MinDCs in the graph. For example, V1 7→ V2 and
V1 7→ V3, then {V1, V2} and {V1, V3} are two MinDCs, while {V1, V2, V3} composes a DC.

First of all, we need to obtain the DC, which contains all the deterministic variables. For each variable
Vi, i ∈ {1, ..., d}, if this variable can be deterministically represented by all the other variables, i.e.,
{V \Vi} 7→ Vi, then this variable must be in DC. After traversing all d variables, we obtain the DC.

However, within the DC, there may be multiple deterministic relations, even some overlapping
deterministic variables. Therefore, out of the DC, we need to get a set of MinDCs. For each variable
Vi, we try to detect whether there exists a minimal set S such that S 7→ Vi, where Vi ∈ DC, S ⊂ DC
and Vi /∈ S. Here, we need to traverse all the possible combination sets of DC, and see whether
one deterministic variable can be minimally represented by some other variables. If so, then those
variables compose a MinDC. In the end, we can obtain a list of MinDCs. More details about DC
detection, MinDC detection, and how to check S 7→ Vi, are given in Appendix A3.1.

3.2 Modified Greedy Equivalent Search

The modified GES is based on the standard GES [10]. We add some extra constraints during the
forward and backward steps and adjust the score functions due to the deterministic relations. When
using score functions for causal discovery, we aim for the underlying causal graph or its equivalent
class to give the optimal score. Specifically, we desire that the score of a DAG model (1) increases as
the result of adding any edge that eliminates an independence constraint that does not hold in the
generative distribution, and (2) decreases as a result of adding any edge that does not eliminate such a
constraint. More formally, we have the following definition of score local consistency.

Definition 1 (Score Local Consistency [10]) Let G be any DAG, and let G′ be the DAG that results
from adding the edge Vi → Vj on G. Let D be the dataset from the distribution P. A score function
S(G;D) is locally consistent if the following two properties hold as the sample size n→∞:

1. If Vi ̸⊥⊥ Vj |PAG
j , then S(G′;D) > S(G;D).

2. If Vi ⊥⊥ Vj |PAG
j , then S(G′;D) < S(G;D).
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Figure 2: An example graph where V1 = f(V2, V3, V4). (a) the true graph where DC =
{V1, V2, V3, V4}, NDC = {V5, V6, V7}, and BS = {V2→V5, V3→V6, V4→V6}. (b) one possible
DAG from the estimated CPDAG by GES, where BS’ = {V2→V5, V1→V6, V2→V6, V4→V6}

Modification 1: Edge Adding and Deleting. During the forward phase, at each step with a DAG
G in the equivalence class, an edge Vi → Vj is added when 1) Vi ̸⊥⊥ Vj |PAG

j , and 2) PAG
j does not

determine any of Vi, Vj , until no edge can be added. However, when PAG
j determines Vi or Vj , we

always have Vi ⊥⊥ Vj |PAG
j . In this case, we always ignore such independence, directly regard it as

dependent, and add such an edge to the graph. The motivation behind the modification is to ensure
that no false independence due to deterministic relations is introduced, and in the end, the output
graph is guaranteed to be Markovian.

During the backward phase, at each step with a DAG G in the equivalence class, an edge Vi → Vj is
removed when both 1) Vi ⊥⊥ Vj |PAG

j , and 2) PAG
j does not determine any of Vi, Vj , until no edge

can be removed. Similar to the modification in the forward phase, when PAG
j determines Vi or Vj ,

we still trust the dependency and keep the edge Vi → Vj . Although the resulting equivalence class
will be Markovian to the ground truth, redundant edges will exist.

Fortunately, we have Phase 3 exact search as post-processing, which will be introduced next in
Section 3.3. Under the SMR assumption, we can obtain a more sparse graph. In the end, the exact
search will remove all those redundant edges. A motivating example showing the advantages of our
modified forward and backward phases is provided in Appendix A3.2 and Figure A2.

Modification 2: Score Function. During the phase 1 with greedy search and phase 3 with exact
search, a proper score function is inevitably needed. For any scoring criterion S(G,D), we say that
a score is decomposable if it can be written as a sum of local scores, where each local score is a
function of only one variable and its parents. Following the property, the score of a DAG G can be
represented as

S(G;D) =
d∑

i=1

S(Vi,PAG
i ). (1)

Under the linear Gaussian model, the BIC score [11] is preferred, which is given as

SBIC(Vi,PA
G
i ) = − logL+ λ′k log n,

and logL ∝ −n
2
(1 + log |Σ|),

(2)

where L is the maximized value of the likelihood function of the model based on the observed data D
related to Vi and PAi, k denotes the number of edges between Vi and PAi in G, n is the number of
data samples in D, λ′ is the penalty parameter, Σ is the variance of the noise term.

However, in the deterministic scenarios, the estimated noise variance Σ̂ will asymptotically get closer
to 0, which leads to numerical error because of the term log |Σ̂|. To deal with such an issue, we
provide the adjusted BIC score, formulated as

S ′BIC(Vi,PA
G
i ) = − logL′ + λ′k log n,

and logL′ ∝ −n
2
(1 + log |Σ+ ξ|),

(3)

where ξ is a small constant, and ξ > 0.

6



Under the general nonlinear model, the generalized score (GS) [32] which is in a non-parametric
form is favored. There are two types of likelihoods as introduced in the paper, for computational
efficiency, we choose the generalized score with cross-validated (CV) likelihood.

SGS(Vi,PA
G
i ) =

1

Q

Q∑
q=1

ℓ(F
(q)
i |D

(q)
0,i ), and

ℓ( ˆ̃F
(q)
i |D

(q)
0,i ) = −

n20
2

log(2π)− n0
2

log
∣∣n1λ2K̃1(q)

Vi
(K̃

1(q)

PAG
i

+ n1λI)
−2K̃

0(q)
Vi

∣∣
−1

2
trace

{ 1
λ
K̃

0(q)
Vi

K̃
0(q)
Vi

+
1

λ
K̃

0,1(q)

PAG
i

AT
iAiK̃

1,0(q)

PAG
i

− n1K̃0,1(q)

PAG
i

AT
iBiAiK̃

1,0(q)

PAG
i

+2n1K̃
0(q)
Vi

BiAiK̃
1,0(q)

PAG
i

− 2

λ
K̃

0(q)
Vi

AiK̃
1,0(q)

PAG
i

− n1K̃0(q)
Vi

BiK̃
0(q)
Vi

}
,

(4)

where Ai = K̃
1(q)
Vi

(K̃
1(q)

PAG
i

+ n1λI)
−1, Bi = Ai

(
I + n1λA

T
iAi

)−1
AT

i , λ is the regularization
parameter, n1 is the sample size of each training set, n0 is the sample size of each test set, n = n1+n0,
D

(q)
1,i and D(q)

0,i are the corresponding data of variable Vi and its parents, K̃1(q)
Vi

denotes the centralized

kernel matrix of the q-th training set of Vi, K̃
0(q)
Vi

denotes that of the q-th test set of Vi, and similar
notations are used for other kernel matrices.

3.3 Exact Search as Post-processing

As demonstrated by Lu et al. [19], GES may get sub-optimal results when the faithfulness assumption
is violated, e.g., when there are deterministic relations. An example is given in Figure 2. In this
example, the DC is {V1, V2, V3, V4}. The true incoming edges to V6 should be {V3, V4}, however,
the estimated graph by GES may have {V1, V2, V4} pointing to V6. We need to partially conduct
an exact search based on the GES result to identify BS, under the SMR assumption. Therefore, in
Phase 3, we perform the exact search exclusively on the DC and their neighbors. Benefiting from the
recent theoretical progress on exact score-based methods, which do not explicitly rely on faithfulness
assumption, it enables us to deal with deterministic relations from an intuitive view.

4 Identifiability Conditions

In this section, we provide the identifiability conditions of DGES. The conditions are presented in
a general form, applicable to both linear and nonlinear causal models. As mentioned above, in a
general deterministic system, the whole causal graph mainly can be divided into three parts: DC,
NDC, and BS. In this paper, we focus on the identifiability for the BS and NDC parts.

Theorem 3 (Partial Identifiability) Denote a causal graph G with deterministic relations. Let Vi
be any non-deterministic variable in G, and PAi be the set of direct causes or undirected neighbors
of Vi in one MinDC. Suppose the following conditions hold

i. Assumptions 1, 2, and 3 hold,

ii. |PAi | < |MinDC | − 1,

where | · | denotes the cardinality of a set. Then, when the sample size n→∞, we can identify the
BS and NDC parts of the causal graph G to their true Markov equivalent class.

5 Experiments

To validate our theoretical findings and show the efficacy of our method, we conducted extensive
experiments on simulated and real-world datasets. Specifically, for simulated datasets, we evaluate
both linear and general nonlinear functional models.
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(a) Linear Gaussian model, varying number of variables d.

(b) Linear Gaussian model, varying number of samples n.  

(c) General nonlinear model with mixed functions, varying number of variables d.  

(d) General nonlinear model with mixed functions, varying number of samples n.  

1DC

(e) General nonlinear model with MLP, varying number of variables d.  

Figure 3: Results on the simulated datasets with one MinDC. We evaluate different functional causal
models on varying number of variables and samples, respectively. For each setting, we consider SHD
(↓), F1 score (↑), precision (↑), recall (↑) and runtime (↓) as evaluation criteria.

Simulated Datasets. The true DAGs are simulated using the Erdös–Rényi model [33] with the
number of edges equal to the number of variables. We evaluate linear Gaussian model and general
nonlinear model with mixed functions, each with varying number of variables and samples. Moreover,
we also evaluate general nonlinear model generated by MLP on varying number of variables. For
each setting, we randomly choose one MinDC or two MinDCs where each MinDC has at least three
variables. For the exact method in Phase 3, we choose A* [15] without the heuristic tricks. We
compare our DGES with other baselines, including DPC [22], GES [10], and A* [15]. We compare
the MEC of the output by all methods. Note that we only evaluate the BS part which we aim to
identify. We consider the structural Hamming distance (SHD), the F1 score, the precision, the recall,
and the computational time as evaluation criteria. For each setting, we run 10 different random seeds
and report the mean and standard deviation. More implementation details are in Appendix A5.1.

The simulated results about graphs with only one DC has been shown in Figure 3, and the results with
two DCs (which may have overlapping variables) are given in Figure A4 of Appendix. Clearly, when
there are more deterministic variables in the system, the runtime of our DGES will obviously increase.
The reason is because there are more deterministic variables to be detected and fed into Phase 3 for
exact search. According to the results, the general performance of DGES is competitive compared to
other baselines. We observe that the exact method A* and our proposed DGES generally outperform
the other baselines such as GES and DPC across different criteria and settings. Meanwhile, score-
based method GES presents better performance than constraint-based method DPC in a deterministic
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24Nonlinear, DGES
Figure 4: Results on the real-world dataset with deterministic relations by DGES with Generalized
score.

system. As the number of variable increases, the runtime of A* will increase rapidly. Compared to A*,
the increasing of runtime for DGES is much more steady, both in linear and nonlinear models. More
results about two MinDCs, non-deterministic scenarios, and relaxed exact search such as GRaSP
[31], are provided in Appendix A5.

Real-world Datasets. We also evaluate our method and the baselines on two real-world datasets.
One is the pharmacokinetics dataset [34], which is an open database for pharmacokinetics information
from clinical trials. It provides curated information mainly in two categories: the characteristics of the
studied individuals (e.g., age, height) and the measurement records (e.g., the clearance, Tmax, Cmax

when one certain individual takes one certain drug), and we name the two categories of variables
as class “I" (individual) and “M" (measurement), respectively. Out of more than 200 variables and
more than 200000 data samples containing missing values, we cleaned the data and finally obtained
32 important variables with 4194 data samples which may contain deterministic relations. The 32
variables contains 18 and 14 variables from the class “I" and “M", respectively. We prepend the
class label to each variable name as a prefix. We use linear BIC score and nonlinear generalized
score to conduct the search. Figure 4 gives the DGES result with generalized score, where we can
successfully detect at least three MinDCs: {height, weight, BMI}, {kel, Vd, Clearance}, {kel, Thalf}.
Compared with the linear DGES result with BIC score, we can see more reasonable edges existing in
the nonlinear DGES result with the generalized score, for example, {age − medication, healthy→
disease, healthy − BMI}. More results and analysis are provided in Appendix A6.

The other one is the US census Public Use Microdata Sample (PUMS). We follow the data preprocess-
ing procedure outlined in [35], which is a modern version of the UCI Adult data set [36]. Datasets
based on census data are widely considered in the algorithmic fairness literature [37–41]. Here we
choose 5 important variables, i.e., Age, Occupation, Sex, Annual income (AI), and Adjusted annual
income (AAI), in total there are 3000 samples. Because of the potentially different timeframe of the
survey cycle, AAI (= AI * Adjusted factor) are the adjusted dollar amounts that they have earned
entirely during the calendar year. Within one calendar year, this adjusted factor is a constant. Here,
we choose the data in 2021. Therefore, AAI and AI have a deterministic relation. The result of DGES
is: {Sex→ Occupation← AI, AI← AAI, Sex→ AAI← Age}, 5 edges. The result of GES is: {Sex
← Occupation – AAI, AI – AAI – Age, AI→ Sex← AAI}, 6 edges. The result of PC is: {Sex→
Occupation← Age, AI – AAI}, 3 edges. Compared with GES, the result of DGES is more sparse.
Particularly, we can detect that AI and AAI have a deterministic relation, and GES gives redundant
edges by {AI→ Sex← AAI} while our DGES only keeps one edge {Sex→ AAI}. Moreover, the
result of PC is totally different from the other two. Clearly, in our DGES result, AI and AAI are still
connected, and we can still see the BS, i.e., {AI→ Occupation, AAI – Sex, AAI–Age}. However,
as a result of PC with FisherZ test, the BS becomes empty, which is exactly due to the violation of
faithfulness.
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6 Discussions and Conclusion

Limitations. While presenting a versatile framework, our paper does have certain limitations. Firstly,
in some cases, e.g., with overlapping deterministic variables, our method cannot identify the skeleton
and directions in the DC part so far. We display two graphs that we can identify up to MEC and
the other two that we cannot identify in Figure A1. More discussion is in Appendix A1. Secondly,
inherited from the disadvantages of exact methods, our method can be somewhat computationally
expensive in Phase 3 when there are a large number of MinDCs. Fortunately, each MinDC is usually
not too large, and we may execute the exact search for different MinDCs simultaneously.

Broader Impacts. The overarching aim of our proposed method is to learn the causal structures from
any general functional causal models in the presence of deterministic relations. This is a fundamental
and critical task with wide-ranging applications in practical life, and we firmly believe that our
method will serve beneficial purposes without engendering negative societal impacts.

Conclusion. This paper dives into the challenges of causal discovery in the presence of deterministic
relations. Notably, we make a compelling discovery that exact score-based methods can elegantly
address the deterministic issues, provided the SMR assumption is met. In an effort to bolster efficiency
and scalability in a deterministic system, we propose the novel and versatile framework called DGES,
encompassing both linear and nonlinear models, as well as both continuous and discrete data types.
Furthermore, we establish the partial identifiability conditions for DGES. Hopefully, our method can
help to construct a holistic view to see the deterministic relations. The extensive experiments on
simulated and real-world datasets, validate our theoretical findings and the efficacy of our method.
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A1 More Discussions

Q1: Why current method cannot identify the skeleton and directions in the DC part?

A1: To achieve that goal, we usually need strong assumptions on the underlying functional causal
model, i.e., Yang et al. [29] assumed linear non-Gaussian model. However, those assumptions are not
in alignment with our goal of a general method, i.e., with no restricted assumption on the underlying
functional causal model. That is why currently our method cannot identify the skeleton and directions
in the DC part. However, fortunately, we can exactly find out which set of variables are in the
DC/MinDCs using some DC detection strategies, as shown in Section 3.1.

Figure A1 gives three example graphs where two of them can be identified up to the true MEC while
the other one cannot. In graph (a), V1 7→ V2, after DGES, we can capture the dependence between
V1 and V2, therefore, we can identify in this case. Similarly, in the graph (b), {V1, V3} 7→ V2, since
V1 and V3 are independent, GES can still capture this v-structure. Therefore, we can identify in this
case. However, things are different in the two examples at right. In graph (c), V1 7→ V2, V2 7→ V3,
after running GES, we may get a fully-connected graph. Obviously, this fully-connected graph has
different skeleton and directions than the true one.
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Figure A1: Some graphs where DGES can (Left) or cannot (Right) identify the MEC: (a) V1 7→ V2,
(b) {V1, V3} 7→ V2, (c) V1 7→ V2, V2 7→ V3.

Q2: Why GES can be problematic in the cases where DC variables cause NDC variables?

A2: Take Figure 2 as an example, where the true edges related to V6 include V3 → V6 and V4 → V6.
However, during the forward phase of GES, it is very likely that the edge V1 → V6 can be added in
the beginning. Then the edges V2 → V6 and V4 → V6 are added subsequently. During the backward
phase of GES, the edge V1 → V6 will not be deleted, because V1 also contains information from
V3, in other words, V6 is represented by V1, V2 and V4 by GES, which contains more edges than the
ground-true. Therefore, in this case GES can be problematic, and we need exact search under the
SMR assumption for post-processing, in order to correctly identify the BS part.

Q3: How GES performs in the cases where NDC variables cause DC variables?

A3: Let’s consider this example. Three variables compose a DC (V1, V2, V3, and V1 = V2 + V3),
and denote another variable from NDC as V4. In this case, there must not be an edge from V4 to
V1, because V4 will be in DC rather than NDC, if so. Then, if V4 causes V2, there will definitely be
an edge between them by GES because V4 is clearly dependent on V2, and theoretically, GES can
capture this dependence based on the local consistency.

Q4: What the characterization of Markov equivalence class is in the context with deterministic
relations?

A4: Regarding only the variables involved in BS and NDC (that is how Theorem 4 claimed), the
characterization of Markov equivalence class (MEC) with deterministic relations is still the same as
the context of not having deterministic relations.

However, if we consider the whole graph, i.e., all of the variables in DCs are also involved, the
characterization of the Markov equivalence class should be different. As shown in the condition (i)
of Assumption 3 and Figure 1, there will be “constant independence” caused by the deterministic
relations. Therefore, we need to remove those “constant independence” for the new characterization
of MEC.

A2 Related Works

In this part, we will introduce more related works in causal discovery [42]. As we mentioned in the
main paper, constraint-based and score-based methods are two primary categories in causal discovery.
Constraint-based methods utilize the conditional independence test (CIT) to learn a skeleton of the
directed acyclic graph (DAG), and then orient the edges upon the skeleton. Such methods contain
Peter-Clark (PC) algorithm [42] and Fast Causal Inference (FCI) algorithm [43]. Some typical
CIT methods include kernel-based independent conditional test [44] and approximate kernel-based
conditional independent test [45, 46].
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Algorithm A1 Detecting Deterministic Cluster (DC)
Input: variable set V ∈ Rd

Output: DC
1: DC← ∅
2: for i = 1 to d do
3: if {V \Vi} 7→ Vi then
4: DC← DC ∪ {Vi}
5: end if
6: end for

Score-based methods normally use a score function and rely on a particular search strategy to look
for the intended graph. The search strategy usually involve greedy search, exact search, or continuous
optimization. The first continuous-optimization based method is NOTEARS [47], which casts the
Bayesian network structure learning task into a continuous constrained optimization problem with
the least squares objective, using an algebraic characterization of directed acyclic graph (DAG) [48].
Subsequent work GOLEM [49] adopts a continuous unconstrained optimization formulation with
a likelihood-based objective. NOTEARS is designed under the assumption of the linear relations
between variables, therefore, another subsequent works have extended NOTEARS to handle nonlinear
cases via deep neural networks, such as DAG-GNN [50] and DAG-NoCurl [51]. Moreover, ENCO
[52] presents an efficient DAG discovery method for directed acyclic causal graphs utilizing both
observational and interventional data. AVCI [53] infers causal structure by performing amortized
variational inference over an arbitrary data-generating distribution. These methods might suffer from
various optimization issues, including convergence [54], sensitivity to data standardization [55], and
nonconvexity [56]. Since they are only guaranteed to find a local optimum, therefore the quality of
the solution can not be guaranteed, even in the asymptotic cases.

Besides the constrain-based and score-based methods, another major category of causal discovery
methods is function causal model based methods. Those methods rely on the causal asymmetry
property, such as the linear non-Gaussian model (LiNGAM) [57], the additive noise model [58], and
the post-nonlinear causal model [59]. Apart from those methods, there are also some hybrid methods,
such as neural conditional dependence (NCD) method, which reframes the GES algorithm to be more
flexible than the standard score-based version and readily lends itself to the nonparametric setting
with a general measure of conditional dependence.

deterministic relations and faithfulness violation. It is interesting to discuss the relationships
between deterministic relations and faithfulness violation. These faithfulness relaxation methods
such as [60] work on general faithfulness violation and propose some weaker faithfulness assump-
tions. They usually focus on certain types of structure, such as canceling path, XOR-type, triangle
faithfulness, etc. However, to the best of our knowledge, deterministic relations will break all those
relaxed faithfulness assumptions, as the distribution is even not a graphoid. Therefore, we need to
develop specific algorithms to handle determinism.

A3 Method Details

A3.1 Phase 1: Minimal Deterministic Clusters Detection

DC Detection. In order to detect the DC, which contains all the deterministic variables, we need to
traverse all d variables. If {V \Vi} 7→ Vi holds true, then this variable Vi must be in DC. The general
pseudocode is stated in Algorithm A1.

MinDCs Detection. We aim to get a set of MinDCs from the DC obtained above. Given the DC, for
each variable Vi, we try to detect whether there exists a minimal set S such that S 7→ Vi, S ⊂ DC. As
shown in the Algorithm A2, we need to traverse all the possible sets for S with increasing cardinality
k, |S| = k (| · | means the cardinality of a set). If we find that S 7→ Vi and meanwhile {S ∪ Vi} is
not a superset of any MinDC in current MinDCs, then we can conclude that S ∪ Vi composes one
MinDC. Otherwise, if we find that {S ∪ Vi} is a superset of one MinDC M in current MinDCs, we
may conclude that {S ∪ Vi} is not a minimal DC because |S ∪ Vi| > |M |.
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Algorithm A2 Detecting Minimal Deterministic Clusters (MinDCs)
Input: DC
Output: MinDCs

1: MinDCs← ∅
2: for k = 1 to |DC |−1 do
3: for i = 1 to |DC | do
4: for each S in Combination(DC \Vi, k) do
5: if S 7→ Vi then
6: MinDC← S ∪ {Vi}
7: if ∀M ∈MinDCs s.t. M ̸⊂MinDC then
8: MinDCs←MinDCs ∪ {MinDC}
9: end if

10: end if
11: end for
12: end for
13: end for

How to Evaluate S 7→ X? Here we use regression and evaluate the variance term of residue to
decide whether there is a deterministic relation or not. Please note that DGES does not assume any
functional causal model. Therefore, we also evaluate it in a general form. Specifically, we provide
two versions: one assumes a linear model and is based on linear regression as shown in Lemma 4,
and another is based on a general non-linear model as exhibited in Lemma 5.

Lemma 4 (Representation in Linear Model) LetX be a random variable and S be a set of random
variables, where X /∈ S. Define X and S are with domain X and S, respectively. Consider a linear
regression framework: X (X) = a ∗ S + u, where a and u represent the regression coefficient and
residue, respectively.

X can be represented by S if and only if

Var(u) = 0, (5)

where Var(u) is the variance of the residue u.

Lemma 5 (Representation in General Nonlinear Model) Let X be a random variable and S be
a set of random variables, where X /∈ S. Define X and S are with domain X and S, respectively.
Define a RKHSHX on X with continuous feature mapping ϕX : X → HX . Consider a regression
framework in the RKHS: ϕX (X) = FS(S) + u, where FS : S → HX and u represents the regression
residue.

X can be represented by S if and only if

∥Σu∥2HS = 0, (6)

where Σu is the variance matrix of the residue, Σu = RT
uRu, Ru = ε(KS + εI)−1ϕ(X), ε is a

small positive regularization parameter for kernel ridge regression, and KS is the centralized kernel
matrix of S.

Discussion: Why consider kernel regression in Lemma 5?

Because we are considering the general functional causal form. Particularly, this Lemma can be used
for both linear and nonlinear functional relationships, Gaussian and non-Gaussian data distributions,
which is in alignment with the general goal of our proposed method. For more details, inspired by
[44], the functions ϕX and F (·) that we use are all in the infinite Hilbert spaces, and we evaluate the
representation with the Hilbert-Schmidt norm of the variance operator Σu in infinite dimension. In
this case, we can exhibit a general functional causal form.

Proof of Lemma 5:

Assume there is a MECM, which contains both directed edges and undirected edges. Let X be a
random variable inM and S be the set of all non-descendant neighbors, including direct causes and
undirected neighbors of X . Suppose the random variables X and S are over measurable spaces X
and S, respectively.
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Without assuming a particular functional causal form, we usually exploit a regression framework in
the RKHS, to encode general dependence relations between two random variables. Define a RKHS
HX on X with continuous feature mapping ϕX : X → HX . Here, we consider

ϕX (X) = F (S) + u, (7)

where F : S → HX and u represents the regression residue or noise. When applying the kernel ridge
regression, we can obtain the estimated residue

û = ε(KZ + εI)−1ϕ(X), (8)

where ε is a small positive regularization parameter for kernel ridge regression, and KZ is the
centralized kernel matrix of Z. To evaluate whether such a residue exists, one may consider the
Hilbert-Schmidt norm of the variance matrix

∥Σu∥2HS = ∥ûT û∥2HS = 0, (9)

If the above equation holds true, then we may conclude that there is no noise term in the relationship
between X and S, in other words, X can be represented by S (without extra noise term).

Vice versa.

A3.2 Phase 2: Modified Greedy Equivalent Search

Figure A2 presents an example comparing our modified GES with traditional GES. From this example,
we can see that: in the backward phase, if we use the “constant independence” information C ⊥⊥ A|D,
then the result graph will become totally wrong where A and B will be connected. In our modifies
GES, we indifferently ignore such “constant independence” information. In the end, some other
information will be considered as a priority. For example, as shown on the right side, B ⊥⊥ A and the
edge between A and B will be removed first. In the end, we can obtain a more correct graph than the
one on the left side.

However, the result of the modified GES is still not perfect; we can see there are redundant edges
existing, such as A→ D. Therefore, we need the Phase 3 exact search for post-processing. Under
the SMR assumption, we can obtain a more sparse graph, where either edge A→ C or edge A→ D
will be deleted.

A4 Proofs

In this section, we provide the proofs of Theorem 2 and Theorem 3 in the main paper.

A4.1 Proof of Theorem 2

Proof: As suggested by the generalized score [32], with proper score functions and search procedures,
asymptotically, the resulting Markov equivalence class has the same independence constraints as the
data generative distribution.

(i) First of all, we would like to discuss the local consistency of the generalized score.

For the regression problem, one can define the effective dimension of the kernel space and the
complexity of the regression function according to [61]. Then under mild conditions, the CV-
likelihood score is locally consistent.

Lemma 6 Suppose that the sample size of each test set n0 satisfies

n0 →∞,
n0
n
→ 0 as n→∞,

and suppose that the regularization parameter λ satisfies

λ = O(n−
b

bc+1 ),
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Figure A2: An Example: Original GES vs. Modified GES.

where n is the total sample size, b is a parameter of the effective dimension of the kernel space with
b > 1, and c indicates the complexity of the regression function with 1 < c ≤ 2.

Lemma 7 Assume that all conditions given in Lemma 6 hold. With the CV likelihood under the
regression framework in RKHS as a score function and with the GES search procedure, it guaran-
tees to find the Markov equivalence class which is consistent to the data generative distribution
asymptotically.

Lemma 7 ensures that, with proper score functions and search procedures, asymptotically, the
resulting Markov equivalence class has the same independence constraints as the data generative
distribution. For the complete proofs, please refer to the Appendix A5 of paper [32].

(ii) Then, We will provide the proof by contra-positive in both directions based on the consistency of
the generalized score as shown above.
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Figure A3: An example graph with determinisic relation where V3 = f(V1, V2). (a) A non-
deterministic variable V4 connects to {V1, V2, V3}. (b) A non-deterministic variable V4 connects to
{V2, V3}. (c) A non-deterministic variable V4 connects to {V3}. Here among the three graphs, only
the graph (c) can be partially identified.

1) “If" direction: Suppose that an exact score-based search asymptotically outputs a DAGH
(having the highest generalized score) that does not belong to the MEC of the true DAG
G. Since the generalized score is known to be consistent, (H,P) must satisfy the Markov
assumption because otherwise, its generalized score is lower than that of the true DAG G
and exact search would not have output H. By assumption, the generalized score of H is
higher than that of G, which, by the consistency of generalized, implies that |H| ≤ |G|, and
therefore, (G,P) does not satisfy the SMR assumption.

2) “Only if" direction:
Suppose that (G,P) does not satisfy the SMR assumption. Then there exists a DAGH not
in the MEC of G such that |H| ≤ |G|, and (H,P) satisfies the Markov assumption. Without
loss of generality, we chooseH with the least number of edges. We first consider the case in
which |H| < |G|. Since both H and G satisfy the Markov assumption, by the consistency
of generalized, the generalized score of H is higher than that of G, which implies that
exact score-based search will not output any DAG from the MEC of G. For the case with
|H| = |G|, since they are both Markov with distribution P, they have the same generalized
score. Therefore, an exact search will output a DAG that belongs to the MEC of eitherH or
G and is not guaranteed to output a DAG from the MEC of the true DAG G.

Proof ends.

A4.2 Proof of Theorem 3

Proof:

First, we will explain why we need the three assumptions listed. Secondly, we will explain why we
need to have constraint on |PAi | < |MinDC | − 1. Thirdly, we will give the complete proof based
on the conditions.

(i) Why do we need the listed three assumptions?

As mentioned in our main paper, there are three phases of our proposed DGES. During the second
phase, we need to run GES. To ensure the accuracy of output (particularly on the NDC part), we need
the assumptions of Markov and non-deterministic faithfulness (See Assumptions 1 and 3). Then in
the third phase, we need to perform the exact search exclusively on the EDC, where the Sparsest
Markov Representation (SMR) assumption (See Assumption 2) will be needed.

(ii) Why do we assume |PAi | < |MinDC | − 1?

As for why we need to condition on |PAi | < |MinDC | − 1, we can start with explaining why
|PAi | = |MinDC | and |PAi | = |MinDC | − 1 will fail the provided identifiability.

Let’s take an example with four variables, where three of them are deterministically related, as shown
in Figure A3. Here among the three graphs, only the graph (c) can be partially identified, and the
graph (a) and (b) cannot achieve partial identifiability.
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We further assume a linear functional causal model, then we can formulate the deterministic relation-
ship as

aV1 + bV2 + cV3 = 0, (10)

where a, b, c are any linear coefficients. Based on the above formulation, the causal equation of
variable V4 in Figure A3(a) can be represented as

V4 = dV1 + eV2 + fV3 + ϵ

= dV1 + eV2 + f
1

c
(aV1 + bV2) + ϵ

= dV1 + e
1

b
(aV1 + cV3) + fV3 + ϵ

= d
1

a
(bV2 + cV3) + eV2 + fV3 + ϵ,

(11)

where ϵ is the random noise injected into V4. Clearly, the above four equations are all valid, in other
words, V4 can be possibly represented by different sets of variables, meaning that this case is not
guaranteed to be identified.

Regarding the variable V4 in Figure A3(b), the causal equation can be represented as

V4 = eV2 + fV3 + ϵ

= eV2 + f
1

c
(aV1 + bV2) + ϵ

= e
1

b
(aV1 + cV3) + fV3 + ϵ.

(12)

Again, the above three equations are all valid, in other words, V4 can be possibly represented by
different sets of variables, meaning that this case is also not guaranteed to be identified.

However, in Figure A3(c), things are different. The causal equation of variable V4 can be represented
as

V4 = fV3 + ϵ

= f
1

c
(aV1 + bV2) + ϵ.

(13)

When the SMR assumption is satisfied, we can identify the only one case, which is V3 → V4.

Now, we extend the three-variable case to the general linear case where there is a MinDC with the
cardinality |MinDC |. And we can easily conclude the true conditions to be: |PAi | < |MinDC |−1.

Furthermore, we extend the linear to the nonlinear case, where we can also conclude that the listed
conditions ensure partial identifiability.

(iii) The complete proof:

Part I:

Benefiting from the local consistency of BIC score (See Lemma 7 of paper [10]) and generalized score
(See Proposition 1 of paper [32]), the NDC part is guaranteed to find the true Markov equivalence
class which is consistent to the data generative distribution asymptotically.

The proof contains two parts: the forward phase and the backward phase of GES. In the forward
phase, the resulting equivalence class Ef contains underlying distribution P; i.e., all independence
constraints holding in Ef hold in P. It has been proved by making use of local consistency of score
functions in [10]. Here we focus on showing that the backward phase is guaranteed to find a perfect
map of P.
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• Let Eb denote the equivalence class resulting from the backward phase of GES, and let E∗
be the perfect map of P; i.e., all independence constraints in E∗ are in P, and vice versa.
Here we aim to show that as the sample size n→∞, Eb = E∗.
1) First, we show that the equivalence class E results from each step in the backward phase
contains P. Consider a move from E to E−(E) by applying Delete(Xi, Xj ,H) (see the
definition in [10]), where E contains P and E−(E) does not contain P. Let G ∈ E and
G′ ∈ E−(E) with the difference in Xi → Xj . From the fact that the score functions are
locally consistent, the local score change ∆S < 0, so S(G;D) > S(G′;D). The attempted
move from E to E−(E) will be rejected.
2) Second, we show that the backward phase will not terminate with some suboptimal
equivalence class E ; that is, there are no independence constraints which containing in P are
not in E . Suppose that the backward phase terminates with some suboptimal equivalence
class E , and there is one more edge Xi → Xj or Xi −Xj in E than in E∗. According to
local consistency, and the calculation of local score change with Delete operator, ∆S from
E to E∗ is positive; that is, the score of E∗ is larger than that of E . Hence it will move to E∗.
It contradicts with the assumption that the backward phase terminates with some suboptimal
equivalence class. Therefore, the resulting equivalence class in the backward phase is a
perfect map of P.

Part II:

However, the BS part will not be guaranteed to find the true Markov equivalence class so far by GES.
Due to the deterministic relations, more dependent edges will be added during the forward phase,
e.g., {V1 → V6} in Figure 2(b) and {A→ D} in Figure A2. However, during the backward phase,
all “constant independencies” (i.e., Vi ⊥⊥ Vj |S with S 7→ Vi or S 7→ Vj) are ignored indifferently,
e.g., V1 ⊥⊥ V6|V2, V3, V4 in Figure 2(b) and C ⊥⊥ A|D in Figure A2. In the end, the edges V1 → V6
and C → A will be kept.

Lemma 8 (Sparsity [10]) Let G and H be any two DAGs that contain the generative distribution
and for which G has fewer parameters thanH, and let S be any consistent (DAG) scoring criterion.
If all DAGs in an equivalence class have the same number of parameters, then for every G′ ≈ G and
for everyH′ ≈ H, S(G′;D) > S(H′;D).

Fortunately, we have Phase 3 exact search as post-processing. Under the SMR assumption, we
perform the exact search exclusively on the DC and their neighbors. Benefiting from the Lemma
8, a more sparse graph with smaller BS will be selected out of all possible sets. For example,
{V3→V6, V4→V6} will be favoured over {V1→V6, V2→V6, V4→V6} in Figure 2, and {A → C}
will be favoured over {A→ C,A→ D} in Figure A2.

Given the condition |PAi | < |MinDC | − 1, the sparsest graph is unique. Therefore, we can identify
the BS in such a scenario, e.g., Figure 2. However, when the condition is violated, e.g., Figure A2,
we can not uniquely obtain the BS, because both {A → C} and {A → D} can be acceptable BS
after executing Phase 3 exact search.

In summary, when the two conditions are satisfied by our DGES, the BS and NDC parts of the causal
graph G are guaranteed to find their true Markov equivalent class, which is consistent with the data
generative distribution asymptotically.

Proof ends.

A5 More Details about the Simulated Experiments

A5.1 Implementation Details

We provide the implementation details of our method and other baseline methods for synthetic
datasets.

Datasets. The true DAGs are simulated using the Erdös–Rényi model [33] with the number of edges
equal to the number of variables. The data is generated according to the functional causal model
Vi=

∑
Vj∈PAi

bijfi(Vj)+ϵi, where Vj∈PAi is the j-th direct cause of Vi, ϵi is the random noise
related to variable Vi, and fi is causal function. For deterministic variables, the noise term is removed,
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then the model becomes Vi=
∑

Vj∈PAi
bijfi(Vj). We evaluate both linear and nonlinear models. For

the linear Gaussian model, we let fi(Vj) = Vj and ϵi follow Gaussian distribution whose mean is
zero and variance is uniformly sampled from U(1, 2).
For the general nonlinear model, we try two different types. One is by mixed functions, where fi
is randomly chosen from linear, square, sinc, and tanh functions, and ϵi is sampled from uniform
distribution U(−0.5, 0.5) or Gaussian distribution N (0, 1). The other is generated by MLP, where
we consider two hidden layers and each hidden layer has 100 hidden dimensions. We use Sigmiod
as the activation function. All the weights are randomly generated from the uniform distribution
U(0.5, 2). For each setting, we also run 10 different random seeds and report the mean and standard
deviation.

Hyperparameters. During the first phase, when we aim to detect the DC and MinDCs and
check whether a variable can be deterministically represented by some others, we set that if the
term ∥Σu∥2HS < 1e−3, although theoretically the value should exactly be zero. Meanwhile, the
regularization parameter for the kernel ridge regression is set to 1e−10. The second phase of our
method is to run modified GES, and the setting is by default. The penalty parameter for controlling
the sparsity is set to 1. The exact search in the third phase we incorporate is the A*. We run our
method and the other baseline methods in Ubuntu 20.04 LTS 64-bit System with Intel(R) Xeon(R)
Silver 4214 2.20GHz ×64 CPU. s

Baselines and Evaluations. We compare our DGES with other baselines, including DPC [22],
GES [10], and A* [15]. We compare the MEC of the output by all methods. For each method,
we consider the structural Hamming distance (SHD), the F1 score, the precision, the recall, and
the computational time as evaluation criteria. Note that we only evaluate the BS part which we
can identify in the graph under mild assumptions. We conduct the experiments on varying num-
ber of variables, varying number of samples, and some other hyperparameter studies. For linear
model, we evaluate variable d ∈ {8, 10, 12, 14, 16} while fixing sample size n = 500, and eval-
uate sample n ∈ {100, 250, 500, 1000, 2000} while fixing variable d = 8. For nonlinear model,
we evaluate variable d ∈ {6, 7, 8, 9, 10} while fixing sample size n = 100, and evaluate sample
n ∈ {50, 100, 150, 200, 250} while fixing variable d = 6. We run 10 instances with different random
seeds and report the means and standard deviations.

Furthermore, we provide more implementation details for the baseline methods.

• DPC [22]: The method is an extension for traditional PC algorithm [7], the key idea is that:
every time when we do the conditional independence test, we aim to remove the potential
deterministic variables from the conditioning set so that the faithfulness will not be violated.
Here we follow the paper, and use the covariance to measure the closeness of two variables.
If the covariance between two variables are greater than 0.9, we then remove the variable
from the conditioning set in conditional independence test. Meanwhile, for linear Gaussian
model, we choose FisherZ test, while for nonlinear model we choose kernel-based test [44],
and the significance level is set to α = 0.05 by default. We implement this method based on
the Causal-learn package https://github.com/py-why/causal-learn [62].

• GES [10]: This method is a classical score-based method with greedy search. Our im-
plementation is based on the code from https://github.com/juangamella/ges. For
linear Gaussian model, we use BIC score. And for general nonlinear model, we use general-
ized score with cross-validation likelihood [32]. The penalty parameter for controlling the
sparsity is set to 1.

• A* [15]: A* is one of the classical exact score-based methods. Actually, there are some
heuristic algorithms proposed to accelerate the search procedure. Considering in our
scenarios, we do not utilize any heuristic tricks for the experiments in order to ensure
the accuracy of solutions. Our experiments are based on the implementations on the
Causal-learn package https://github.com/py-why/causal-learn [62].

A5.2 Evaluation on Two MinDCs

Figure 3 in the main paper presents the simulated results focused on graphs containing just a single
deterministic constraint (DC). In contrast, Figure A4 in the Appendix offers insights into scenarios
involving two DCs, even allowing for the possibility of overlapping variables. An evident trend
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(a) Linear Gaussian model with varying number of variables d.

(b) Linear Gaussian model with varying number of samples n.  

(c) Nonlinear model with varying number of variables d.  

(d) Nonlinear model with varying number of samples n.  

2DC

Figure A4: Results on the simulated datasets with two MinDCs. We evaluate different functional
causal models on varying number of variables and samples, respectively. For each setting, we consider
SHD (↓), F1 score (↑), precision (↑), recall (↑) and runtime (↓) as evaluation criteria.

emerges: as the system incorporates more deterministic variables, the runtime of our proposed DGES
inevitably escalates. This phenomenon can be attributed to the increased number of deterministic
variables demanding detection and inclusion in Phase 3, where an exact search is performed.

It is worth noting that as the number of variables in the system increases, the runtime of A* experiences
a rapid surge. In stark contrast, DGES exhibits a more stable increase in runtime, demonstrating its
efficiency and suitability for both linear and nonlinear models.

The outcomes gleaned from these experiments collectively indicate that DGES exhibits competitive
performance compared to established baselines. Notably, the exact method A* and our proposed
DGES consistently outperform other baseline methods like Greedy Equivalence Search (GES) and
PC, across a spectrum of evaluation criteria and diverse settings. It is intriguing to note that in
deterministic systems, the score-based method GES consistently outperforms the constraint-based
method DPC. This observation suggests that score-based approaches maintain a comprehensive
perspective on causal discovery, which appears to be less susceptible to the challenges posed by
deterministic relationships, unlike constraint-based methods.

A5.3 Evaluation on Non-deterministic Scenario

We also conducted the experiments in a standard setting, where there is no deterministic relation at
all. We consider the linear Gaussian model with a varying number of variables. We evaluate the SHD,
the F1 score, the precision, the recall, and the runtime. We run 10 instances with different random
seeds and report the means and standard deviations.
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Figure A5: Results of non-deterministic scenarios on linear Gaussian model.
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Figure A6: Results of GRaSP [31] on linear Gaussian model.

The results have been shown in Figure A5. According to the results, we can see that GES and our
proposed DGES method present the same performance regarding the SHD, the F1 score, the precision,
and the recall. However, the runtime of DGES is a bit more than GES, because DGES runs 2 phases.
It is understandable that when there is no deterministic relation, DGES will be reduced to GES. In
Phase 1, DGES will not find any deterministic clusters, then it will terminate and output the result of
GES in Phase 2.

A5.4 Evaluation on Relaxed Exact Search

GRaSP [31] is a greedy relaxation of the sparsest permutation algorithm. We follow the same setting
as mentioned in Section 5. Here we consider the linear Gaussian model with a varying number of
variables, and within the generated dataset there is one MinDC. We evaluate the SHD, the F1 score,
the precision, the recall, and the runtime. In this case, we evaluate based on only the BS part.

The results have been shown in Figure A6. According to the results, we can see that: in general, A*
and our proposed DGES still outperform other baselines. GRaSP performs slightly better than GES
regarding the SHD, the F1 score, the precision, and the recall. However, according to our data record,
the runtime of GRaSP is a bit more than GES.

A6 More Details about the Real-world Experiments

Due to the comparative poor performance of DPC and the expensive computation of exact search
such as A*, here for the large real dataset, we mainly compare our DGES with GES, in both linear
(using BIC score) and nonlinear (generalized score) settings.

A6.1 Results of GES with BIC Score

In this case, we run GES with BIC score, assuming the model is following linear Gaussian. The
causal graph result is given in Figure A7. And in this graph, we can clearly see some deterministic
variables are reasonably connected, such as BMI→ weight→ height.

A6.2 Results of DGES with BIC Score

We run our proposed DGES with BIC score. The first phase is to identify all the MinDCs. Here, we
can detect some MinDCs, such as: {BMI, weight, height.}, {kel, Vd, Clearance}. The final result is
given in Figure A8.
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Linear, GESFigure A7: Results of real-world dataset with deterministic relations by GES with BIC Score.
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Linear, DGES

Figure A8: Results of real-world dataset with deterministic relations by DGES with BIC Score.

A6.3 Results of GES with Generalized Score

BIC score assumes a linear Gaussian model; here, using a generalized score can present general
functional models. The GES result with generalized score is given in Figure A9. In this graph, we
can still see some deterministic variables are reasonably connected, such as BMI→ weight→ height.

A6.4 Analysis of DGES with Generalized Score

This graph is presented in Figure 4 in the main paper. In phase 1, we can detect the following MinDCs:
{BMI, weight, height}, {kel, Thalf}, {kel, Vd, Clearance}, which are all correct.

Specifically, the ground-truth functions are

BMI =
weight

height2
, (14)
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Figure A9: Results of real-world dataset with deterministic relations by GES with Generalized Score.

kel =
ln2

Thalf
, (15)

kel =
Clearance

Vd
. (16)

Take this MinDC {height, weight, BMI} as an example for further analysis. As we all know, BMI is
defined as the body weight divided by the square of the body height, which composes a deterministic
relation among the three variables. By applying the GES method, the three variables are connected
like a cluster comprising a MinDC. At the same time, many other non-deterministic variables still
connect with at least one of the three deterministic variables, as usual. Imagine if we use a constraint-
based method to deal with it, there should be no edge connecting from the three variables to any
others. Furthermore, according to our common knowledge, the true arrows should be {weight→BMI,
height→BMI, height→weight}, but now our graph just presents {weight→BMI, weight→height}.
As discussed in Appendix A1 (Q1), because currently our method cannot identify the skeleton and
directions in a MinDC without further assumptions, and in this case, there are common causes behind
BMI and height, which are Healthy and Medication.

Compared with the GES result with the generalized score, we can see some edges are corrected in
the DGES result. For example, the MinDC {kel, Vd, Clearance} is clustered together.

Compared with the DGES result with BIC score, we can see more reasonable edges existing in
the nonlinear DGES result with the generalized score, for example, {age − medication, healthy→
disease, healthy − BMI}.
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and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide assumption 1,3,4 for the proof of Theorem 4. The complete proof
is given in Appendix [? ].
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Implementation details are presented in Appendix A5.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Our source code has been put in the supplementary files.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The general details of experiment setting are presented in Section 5. The rest
of the details are included in the Appendix A5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The standard deviation has been reported in Figure 3 and Figure A4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computation details are given in Appendix A5.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research follows the ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The discussion about broader impacts is given in Section 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The generated linear or nonlinear models are discussed in Appendix A5.1.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The data generation details for simulated datasets are given in Appendix A5.1.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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