
VLM4Bio: A Benchmark Dataset to Evaluate
Pretrained Vision-Language Models for Trait

Discovery from Biological Images

M. Maruf1∗ Arka Daw2∗ Kazi Sajeed Mehrab1 Harish Babu Manogaran1

Abhilash Neog1 Medha Sawhney1 Mridul Khurana1 James P. Balhoff3
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Figure 1: Overview of our goals and contributions. We analyze the capabilities of 12 state-of-the-art (SOTA)
vision-language models (VLMs) in answering scientific questions using images from three groups of organisms:
fishes, birds, and butterflies, over five groups of biologically relevant tasks. We also explore the effectiveness of
these models for reasoning using various prompting techniques and tests for reasoning hallucination.

Abstract

Images are increasingly becoming the currency for documenting biodiversity on
the planet, providing novel opportunities for accelerating scientific discoveries in
the field of organismal biology, especially with the advent of large vision-language
models (VLMs). We ask if pre-trained VLMs can aid scientists in answering a range
of biologically relevant questions without any additional fine-tuning. In this paper,
we evaluate the effectiveness of 12 state-of-the-art (SOTA) VLMs in the field of
organismal biology using a novel dataset, VLM4Bio, consisting of 469K question-
answer pairs involving 30K images from three groups of organisms: fishes, birds,
and butterflies, covering five biologically relevant tasks. We also explore the effects
of applying prompting techniques and tests for reasoning hallucination on the
performance of VLMs, shedding new light on the capabilities of current SOTA
VLMs in answering biologically relevant questions using images. 1

1The code and datasets for running all the analyses reported in this paper can be found at https://github.
com/imageomics/VLM4Bio.
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1 Introduction

There is a growing deluge of images that are being collected, stored, and shared in organismal
biology—the branch of biology interested in the study of structure, ecology, and evolution of
organisms. In particular, images are increasingly becoming the currency for documenting the vast
array of biodiverse organisms on our planet, with repositories containing millions of images of
biological specimens collected by scientists in field museums or captured by drones, camera traps, or
tourists posting photos on social media. This growing wealth of biological images provides a unique
opportunity to understand the scientific mechanisms of how organisms evolve and adapt to their
environment directly from images. The traditional approach for advancing knowledge in organismal
biology is by discovering the observable characteristics of organisms or traits (e.g., beak color, stripe
pattern, and fin curvature) that serve a variety of biological tasks such as defining groups of organisms,
understanding their genetic and developmental underpinnings, and analyzing their interactions with
environmental selection pressures [1]. However, the measurement of traits is not straightforward and
often relies on expert visual attention involving labor-intensive operations and subjective definitions
[2], hindering rapid scientific advancement [3].

With the recent rise of large foundation models such as vision-language models (VLMs) (e.g., GPT-4,
GPT-4V(ision) [4, 5], Gemini [6], LLaMA 3.2 [7, 8], and LLaVA [9]) that can simultaneously solve
a diverse range of tasks involving text and images, it is pertinent to ask if pre-trained VLMs contain
the necessary scientific knowledge to aid biologists in answering a variety of questions pertinent to
the discovery of biological traits from images. Note that unlike mainstream tasks in computer vision,
understanding scientific images requires knowledge of domain-specific terminologies and reasoning
capabilities that are not fully represented in conventional image datasets used for training VLMs. In
particular, an important end-goal in scientific applications such as organismal biology is to explain the
process of visual reasoning used to arrive at a prediction, often involving the knowledge of biological
traits. Hence, to assess the usefulness of VLMs in accelerating discoveries in organismal biology, it is
important to test their ability to identify and reason about biological traits automatically from images.

In this work, we assess the zero-shot capabilities of 12 state-of-the-art (SOTA) VLMs, including the
proprietary GPT-4V(ision) and the recent GPT-4O(mni) along with other open-source VLMs, on five
scientifically relevant tasks in organismal biology, namely species classification, trait identification,
trait grounding, trait referring, and trait counting. These tasks are designed to test different facets of
VLM performance in organismal biology, ranging from measuring predictive accuracy to assessing
their ability to reason about their predictions using visual cues of known biological traits. For example,
the task of species classification tests the ability of VLMs to discriminate between species, while in
trait grounding and referring, we specifically test if VLMs are able to localize morphological traits
(e.g., the presence of fins or patterns and colors of birds) within the image. To perform this evaluation,
we present VLM4Bio, a benchmark dataset of ≈ 469K question-answer pairs based on 30k images
of three taxonomic groups of organisms: fishes, birds, and butterflies.

Main Contributions:

1. We present a novel dataset of scientific question-answer pairs to evaluate the effectiveness
of VLMs in answering scientific questions across a range of biologically relevant tasks in
the field of organismal biology.

2. We present novel benchmarking analyses of the zero-shot effectiveness of pre-trained SOTA
VLMs on our dataset, exposing their gaps in advancing scientific knowledge of organismal
biology.

3. We present novel comparisons studying the effects of prompting and tests for reasoning
hallucination on VLM performance, shedding new light on the reasoning capabilities of
SOTA VLMs in organismal biology.

2 Related Works

With the rise of SOTA VLMs such as GPT-4V(ision) [5], GPT-4O(mni) [10], and Gemini [6], there
has been a simultaneous growth in the number of benchmarking analyses published in the last few
years to evaluate different facets of VLM performance on a range of mainstream tasks in computer
vision. A majority of previous analyses [11, 12] involve evaluations on single tasks like Visual
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Species Classification

Question: What is the scientific name of the 
butterfly shown in the image?  

Correct Answer:
Heliconius timareta

Question type: Open Questions

Species Classification
Question: 
What is the scientific name of the bird shown in the 
image?

Options: 
A) Geothlypis philadelphia
B) Vireo atricapilla
C) Larus glaucescens
D) Coccothraustes vespertinus

Correct Answer: C) Larus glaucescens

Question type:  Multiple Choice Questions

Trait Identification

Question: Is there eye visible in the fish shown in 
the image? 

Options: 
A) Yes
B) No

Correct Answer: A) Yes

Question type: Multiple Choice Questions

Trait Grounding
Question:
What is the bounding box coordinates of the 
dorsal fin in the fish shown in the image? 

Options: 
A) [453, 620, 557, 724]
B) [2545, 335, 3510, 423]
C) [2012, 1001, 2404, 1350]
D) [3444, 350, 4730, 1114]

Correct Answer: B) [2545, 335, 3510, 423]

Question type:  Multiple Choice Questions 

Trait Referring

Question: What is the trait of the fish that correspond 
to the bounding box region [2545, 335, 3510, 423] in 
the image? 

Options: 
A) dorsal fin
B) caudal fin
C) adipose fin
D) pelvic fin

Correct Answer: A) dorsal fin

Question type: Multiple Choice Questions

Trait Counting

Question: How many unique fins are visible in 
the fish shown in the image? The fins that are 
normally present in a fish are dorsal fin, caudal 
fin, pectoral fin, pelvic fin, anal fin and adipose 
fin. 

Correct Answer:
5

Question type: Open Questions

Figure 2: Illustrative examples of VLM4Bio tasks with different question-types.

Question Answering (VQA), OK-VQA [13], MSCOCO [14], and GQA [15]. Other datasets such
as POPE [16], HaELM [8], LAMM [17], MMBench [18], MM-Vet [19], LVLM-eHub [20], SEED
[21], and GAIA [22] have also been developed to evaluate the capabilities of VLMs on complex tasks
such as reasoning and ability to handle multimodal data. There are also some recent domain-specific
benchmark datasets, such as MathVista [23], which includes a variety of challenging VQA problems
in the mathematical domain, MedQA(USMLE) [24] which is a collection of VQA problems from
medical exams, and the recent MMMU [12] dataset, which covers expert-level problems from diverse
fields such as business, arts, science, health, medicine, and engineering.

VLM4Bio dataset is different from existing benchmarks involving domain-specific datasets because
of the following reasons. (1) Focus on organismal biology: While previous works have focused on
benchmarking the performance of VLMs on other scientific domains (e.g., Arts and Design, Business,
Health, and Medicine in MMMU [12] or Mathematics in MathVista [23]), there exists no previous
VQA benchmark dataset in the domain of organismal biology to the best of our knowledge. Our
work thus fills a critical gap in evaluating the performance of VLMs in a field of biology that has
several societal implications such as monitoring biodiversity and understanding the impact of climate
change on species traits and populations. (2) Breadth of Evaluation Tasks: While previous works
are tailored to one or a few evaluation tasks, we consider a wide range of tasks motivated by the
needs of domain scientists in the field of organismal biology. They include predictive tasks such as
species classification and trait identification as well as tasks that require visual reasoning including
trait grounding and referring. We also provide novel comparisons about the performance of VLMs on
both open-ended and multiple-choice question (MCQ) formats and comparisons over predictive as
well as visual reasoning tasks, in contrast to prior works.

3 VLM4Bio Tasks

Figure 2 shows illustrative examples of the five VLM4Bio tasks relevant to biologists that we consider
in our study, described in detail in the following.

3.1 Species Classification

A common (and often the first) task that a biologist considers when examining an organism specimen
is to identify its scientific name (or species class). Hence, we consider asking a VLM to provide
the scientific name of the organism shown in a given image. There are two types of questions that
we consider for this task. First, we consider open-ended questions, where we do not provide any
answer choices (or options) to the VLM in the input prompt. The second type is multiple-choice
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(MC) questions, where we provide four choices of candidate species names for the VLM to choose
from (out of which only one is correct while the remaining three are randomly selected from the set
of all species classes).

3.2 Trait Identification

An important goal in organismal biology is to answer questions regarding the observable characteris-
tics of organisms, also known as traits. We thus consider asking VLMs to identify a particular trait of
an organism given its image for two taxonomic groups: fishes and birds. For fishes, we considered
10 binary (presence/absence) traits and generated MC questions for the presence of each trait in an
image (with two options: yes or no), whereas for birds, we considered 28 traits covering their color,
pattern, and measurements (size and shape of regions) in a multiple-choice format. We provide a
detailed list of all fish and bird traits in the Supplementary Section F.

3.3 Trait Grounding and Referring

To further understand the ability of VLMs to visually explain the reasoning behind their prediction of
a trait, it is important to evaluate if a VLM correctly identifies the region in the image containing
the trait. For this purpose, we consider two other tasks: trait grounding & trait referring, for the
taxonomic groups of fishes and birds. In the first task of trait grounding, we ask the VLM to locate a
given trait of an organism on its image (i.e., text to location). We consider MC question-format for
this task where we provide four options of bounding boxes in the image as candidate answer choices,
where one of the bounding boxes correctly contains the trait while the remaining three are randomly
sampled from the set of bounding boxes containing other traits of the organism. In the second task of
trait referring, we consider the opposite scenario where we provide a bounding box as input to the
VLM and ask it to identify the name of the trait present in the bounding box (i.e., location to text). We
again provide four answer choices in MC question-format, where only one of the options is correct
while the remaining three are randomly sampled from the names of other traits of the organism.

3.4 Trait Counting

We simply ask how many traits are present in an image of a fish specimen. This is biologically
relevant, for example, to understand the number of fins present in a fish organism. Similar to the
species classification task, we have open and MC question-types for this task.

4 VLM4Bio Dataset

Data Collection and Preprocessing: We collected images of three taxonomic groups of organisms:
fish, birds, and butterflies, each containing around 10K images. Images for fish (Fish-10K) were
curated from the larger image collection, FishAIR [25], which contains images from the Great Lakes
Invasive Network Project (GLIN) [26]. These images originate from various museum collections
such as INHS [27], FMNH [28], OSUM [29], JFBM [30], UMMZ [31] and UWZM [32]. We created
the Fish-10K dataset by randomly sampling 10K images and preprocessing the images to crop and
remove the background. For consistency, we leverage GroundingDINO [33] to crop the fish body
from the background and Segment Anything Model (SAM) [34] to remove the background. We
curated the images for butterflies (Butterfly-10K) from the Jiggins Heliconius Collection dataset
[35], which has images collected from various sources 2. We carefully sampled 10K images for
Butterfly-10K from the entire collection to ensure the images capture unique specimens and represent
a diverse set of species by adopting the following two steps. First, we filter out images with more
than one image from the same view (i.e., dorsal or ventral). Second, we ensure each species has
a minimum of 20 images and no more than 2, 000 images. The images for birds (Bird-10K) are
obtained from the CUB-200-2011 [61] dataset by taking 190 species for which the common name to
scientific name mapping is available. This results in a fairly balanced dataset with around 11K images
in total. Additional details on dataset preprocessing are provided in the Supplementary Section A.

Annotation: The scientific names for the images of Fish-10K and Butterfly-10K were obtained
directly from their respective sources. For Bird-10K, we obtained the scientific names from the

2Sources: [36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60]
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Statistics Fish-10K Bird-10K Butterfly-10K Fish-500 Bird-500
# Images 10,347 11,092 10,013 500 492
# Species 495 188 60 60 47
# Genera 178 114 27 18 33
# Traits 10 28 - 8 5

Table 1: Key statistics of the VLM4Bio dataset.

iNatLoc500 [62] dataset. We curated around 31K question-answer pairs in both open and multiple-
choice (MC) question formats for evaluating species classification tasks. The species-level trait
presence/absence matrix for Fish-10K was manually curated with the help of biological experts co-
authored in this paper. We leveraged the Phenoscape knowledge [63] base with manual annotations
to procure the presence-absence trait matrix. For Bird-10K, we obtained the trait matrix from the
attribute annotations provided along with CUB-200-2011. We constructed approximately 380K
question-answer pairs for trait identification tasks. For grounding and referring VQA tasks, the
ground truths were manually annotated with the help of expert biologists on our team. We manually
annotated bounding boxes corresponding to the traits of 500 fish specimens and 500 bird specimens,
which are subsets of the larger Fish-10K and Bird-10K datasets, respectively. In particular, we
considered 8 fish traits and 5 bird traits for annotating their bounding boxes, resulting in a total of
26K question-answer pairs. We also used the Fish-500 dataset for the task of trait counting, resulting
in a total of 1K question-answer pairs. Across all tasks, our dataset comprises approximately 469K
question-answer pairs for 30K biological images (see Table 1). Additional details on data distribution
and key statistics are provided in the Supplementary Section E.

Dataset Card: We provide the dataset card with a detailed description of the metadata, data instances,
annotation, and license information here (https://huggingface.co/datasets/imageomics/
VLM4Bio#dataset-card-for-vlm4bio).

VLM Baselines: We consider the following VLM baselines: GPT-4V(ision) [64]3, LLaVA-v1.5
(7B/13B) [65], COG-VLM [66], MiniGPT-4 (Vicuna 7B/13B) [67], BLIP-FLAN-T5-XL/XXL [68],
and INSTRUCT-BLIP (Vicuna 7B/13B) [69]. We used the latest checkpoints for each model available
to date. We used the same question prompt for all models to ensure consistent comparison of results
for a variety of open and multiple-choice (MC) questions across the five scientific tasks of our dataset.
All the experiments were conducted using NVIDIA A100 GPUs. See supplementary Section H for
more details of the VLM baselines.

Evaluation Metrics: We used micro-averaged accuracy as our evaluation metric for all experiments.
We designed a systematic rule-based evaluation pipeline to evaluate VLM responses against the
ground truths. For each question category, we provide the accuracy percentage of random choice as a
basic baseline, where each possible answer is considered equally likely (yielding an accuracy of 25%
for MC questions with four choices).

5 Results

Table 2 compares the accuracies of VLMs in percentages (ranging from 0 to 100) across the five tasks
and over multiple organism datasets. We make the following observations from this result.

All VLMs show poor accuracy on open questions but perform better on MC questions. The
zero-shot species classification accuracy of all VLMs on open-ended questions is notably weaker than
MC questions. Even the best-performing models, LLaVA-13B, GPT-4V, and Instruct-Vicuna-7B, only
achieve accuracies of 2.32%, 17.46%, and 3.62%, respectively, across the three organism datasets.
This indicates a significant gap in the ability of existing VLMs to capture the scientific knowledge
necessary to differentiate between species (often requiring subtle or nuanced features) without being
provided with candidate answer choices. Open-ended species classification is particularly hard
for pre-trained VLMs that are not typically trained to provide scientific names of organisms (e.g.,
Lepomis cyanellus) rather than providing their common names (e.g., green sunfish). However, the
inclusion of candidate answers (or options) in the question prompt serves as a helpful clue to VLMs

3We use gpt-4-1106-vision-preview model as GPT-4V in our experiments.
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Models

Dataset Question
type

gpt-4v
llava

v1.5-7b
llava

v1.5-13b
cogvlm

chat
BLIP
flan-xl

BLIP
flan-xxl

minigpt4
vicuna-7B

minigpt4
vicuna-13B

instruct
flant5xl

instruct
flant5xxl

instruct
vicuna7B

instruct
vicuna13B

Random
Choice

Species Classification

Fish-10k
Open 1.01 2.32 0.40 0.11 0.01 1.59 0.50 0.38 0.00 1.46 0.00 0.00 0.20

MC 35.91 40.20 32.27 31.72 29.76 33.36 29.02 27.45 30.86 31.70 27.27 26.57 25.00

Bird-10k
Open 17.40 1.45 2.06 0.86 0.00 0.57 2.80 2.56 0.00 0.50 0.07 0.00 0.53

MC 82.58 50.32 55.36 44.73 33.68 34.75 23.95 27.62 36.36 35.83 44.00 46.55 25.00

Butterfly-10k
Open 0.04 0.05 0.00 0.01 0.00 0.00 0.07 0.01 0.00 0.00 9.94 0.00 1.54

MC 28.91 50.24 44.58 36.45 25.14 28.88 33.06 28.90 25.28 36.67 41.70 34.48 25.00

Trait Identification

Fish-10k MC 82.18 56.84 45.15 46.92 68.36 39.33 55.08 51.87 64.34 39.26 81.95 20.69 50.0

Bird-10k MC 62.22 34.68 46.14 63.93 50.11 41.38 39.11 40.44 47.89 45.52 77.91 89.98 31.12

Trait Grounding

Fish-500 MC 29.41 24.87 17.98 23.42 23.32 25.14 22.18 25.58 7.20 27.09 33.51 26.90 25.00

Bird-500 MC 8.1 26.92 35.36 23.2 11.83 10.52 15.39 24.22 3.48 0.81 30.24 13.91 25.00

Trait Referring

Fish-500 MC 28.15 27.07 29.14 28.19 24.93 25.68 39.24 31.21 31.75 25.78 28.04 32.73 25.00

Bird-500 MC 42.28 30.5 29.64 18.45 35.16 40.59 26.04 35.88 27.52 41.69 23.03 22.69 25.00

Trait Counting

Fish-500
Open 16.4 47.4 52.0 14.8 37.6 63.4 13.6 31.53 50.2 61.4 61.4 0.0 25.00

MC 44.80 13.20 54.80 21.00 64.8 78.2 22.00 25.00 74.0 69.4 15.80 11.80 25.00

Overall 34.24 29.0 31.78 25.27 28.91 30.24 23.0 25.19 28.49 29.79 33.92 23.31 22.03

Table 2: Zero-shot accuracy comparison of VLM baselines (in % ranging from 0 to 100) for the five
scientific tasks. Results are color-coded as Best , Second best , Worst , Second worst .

for narrowing down the solution space and finding the correct answer potentially using elimination
strategies. While VLMs are able to utilize these additional hints and work their way through to the
correct answer in MC questions, note that open questions are practically more relevant to scientists
operating in real-world settings.

Bird dataset shows better accuracy than Fish or Butterfly datasets. Most VLMs show significantly
better performance on the Bird-10K dataset in comparison to the Fish-10K and Butterfly-10K datasets.
For example, the highest accuracy across all VLMs on the Bird-10K dataset is 82.58%, while it is
40.20% and 50.24% on the Fish-10K and Butterfly-10K datasets, respectively. A potential reason
is that while the bird dataset is a subset of the CUB dataset [70] that is commonly used in machine
learning literature and has images with natural in-the-wild backgrounds, the butterfly and fish datasets
contain images of specimens preserved in museum collections with artificial backgrounds and with
imaging artifacts that are not typical for large-scale computer vision datasets. We hypothesize that
many of the pre-trained VLM baselines may have seen images similar to those in the Bird dataset
during training, leading to their better performance.

Can VLMs effectively identify biological traits? The performance of most VLMs in trait identi-
fication appears significantly better than their performance in species classification, with GPT-4V
reaching 82.18% accuracy on the Fish-10K dataset and Instruct-Vicuna-13B achieving 89.98% on
Bird-10K. However, some traits such as “eye”, “head”, and “mouth” are almost always present in
every organism image, so simply answering “yes, the trait is present" can lead to high accuracy in
trait identification. In contrast to the fish dataset, the bird dataset poses more intricate questions
regarding a variety of multi-class traits that require a nuanced understanding of colors, patterns, and
physical trait dimensions, such as the color of the bill, wing patterns, and tail shapes.

VLMs struggle in localizing traits in images. While most VLMs perform well on the task of Trait
Identification, it is crucial to determine if they are focusing on the correct image regions to answer
trait-related questions. We thus analyze the performance of VLMs on the tasks of trait grounding
(i.e., text to location) and trait referring (i.e., location to text). We can see that there is a significant
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Figure 3: Examples of correct and incorrect predictions of GPT-4V for trait identification, trait
grounding, and trait-referring tasks related to the “eye”. For visualization assistance, a red-colored
bounding box is added around the “eye” in the image.

drop in the accuracy of trait grounding and referring tasks compared to the trait identification task.
This shows that while VLMs can potentially leverage knowledge of trait choices to identify traits,
they struggle in localizing the traits in the image and thus visually ground their reasoning. Figure 3
shows an illustrative example of GPT-4V prediction where it predicts the presence of the trait “eye”
correctly but fails to localize it in grounding and referring tasks.

Counting biological traits is difficult for VLMs. Recent studies [71, 72, 73] have explored the
gap in the ability of VLMs to count objects, which is aligned with our results in Table 2. All VLMs,
except for BLIP-flan-T5-XXL, show lower performance in counting traits, despite performing well
on the trait identification task. The overall average accuracy for the VLMs is displayed in the last
block, with GPT-4V(ision) exhibiting the best performance.

We further analyze the errors of different VLMs to better understand their behavior. We find that
GPT-4V shows a reduced rate of incorrect responses but a higher incidence of “Other” responses,
which include apologetic expressions, admissions of inability to precisely visualize the organism, and
disclaimers regarding lack of expert guidance (see Supplementary Section J for more details).

5.1 Analyzing the Role of Answer Choices in MC Questions on VLM Performance

Table 2 showed that VLMs perform drastically better on MC questions compared to Open questions
for species classification. A potential hypothesis for this observation is that VLMs are able to avoid
incorrect answer choices (or options) that are too different from the correct option and thus are
easy to eliminate. To test this hypothesis, we create three variants of the MC questions for species
classification—easy, medium, and hard—-where species choices in each variant have varying degrees
of similarity determined by their taxonomic groupings. In particular, note that the scientific name
of an organism contains taxonomic information at three levels: <genus name> <species name>
<subspecies name>4. Since organisms that share taxonomic information have similar appearances,
it is hard to differentiate species choices if they are from the same taxonomic group. On the other hand,
it is easier to work with species choices from different taxonomic groups. Hence, for the easy set,
we selected 50 species from different genera, ensuring that all species choices appear quite different
from each other. For the medium set, we increased the complexity by constructing species choices
from the same genus but from 10 different species. The hard set presented the highest difficulty level
for the butterfly dataset, with the answer choices being from the same genus and species but from 10
subspecies. Each difficulty level consists of 200 images from each set of organisms.

Table 3 shows the accuracies of the baseline VLMs for the easy, medium, and hard organism datasets.
The pretrained VLMs generally perform best on the easy set and worst on the hard set for each
organism. Moreover, there is a gradual improvement in the VLM performance from hard to easy
questions. This suggests that the difficulty level of candidate answers (or options) in the question
prompt significantly impacts VLMs’ performance. Additionally, this outcome indicates that even
SOTA VLMs have limitations in handling fine-grained queries. Table 3 shows that GPT-4V and
OpenAI’s recent release GPT-4o do not perform well when tested on the medium and hard datasets for
Fish and Butterfly. Due to this, we further analyze the errors of different VLMs to better understand
their behavior. We provide the report in the Supplementary Section J.

4We only have subspecies level information for the Butterfly-10K dataset.
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Models

Dataset Difficulty gpt-4v gpt-4o
llava

v1.5-7b
llava

v1.5-13b
cogvlm

chat
BLIP
flan-xl

BLIP
flan-xxl

minigpt4
vicuna-7B

minigpt4
vicuna-13B

instruct
flant5xl

instruct
flant5xxl

instruct
vicuna7B

instruct
vicuna13B

CLIP BioCLIP

Fish
Easy 44.50 37.50 47.50 46.00 24.00 34.00 27.50 29.00 19.50 32.00 28.00 33.50 33.50 36.50 55.50

Medium 3.50 5.50 30.00 28.50 27.00 26.00 23.00 26.50 25.00 28.50 24.50 26.00 25.50 26.00 29.00

Bird
Easy 73.50 68.00 53.50 50.00 38.50 34.50 36.00 21.00 32.00 41.00 33.00 43.50 39.00 57.00 94.00

Medium 41.00 40.50 30.50 37.00 30.00 25.50 21.00 21.00 24.00 27.00 27.00 24.50 26.50 31.00 95.00

Butterfly
Easy 18.50 17.50 19.00 20.50 24.50 30.00 25.00 34.50 26.00 24.50 22.50 19.00 24.50 21.50 65.50

Medium 5.50 7.00 29.50 29.00 29.50 20.00 25.50 33.00 25.00 27.50 25.00 25.00 25.00 21.50 58.00

Hard 2.00 1.50 22.00 21.00 32.00 26.50 20.00 29.50 24.00 22.50 24.00 24.00 21.00 21.50 35.00

Table 3: Zero-Shot accuracy comparison for easy, medium, and hard datasets. Results are color-coded
as Best , Second best , Worst , Second worst .

5.2 Comparing Pre-trained VLMs with a Biologically Fine-tuned Model

We compare BioCLIP [74], a state-of-the-art foundation model for species classification fine-tuned
with biological images and taxonomic names (TreeOfLife-10M dataset), with the pretrained VLMs.
We observe that BioCLIP significantly outperforms large pretrained VLMs on the Bird-10k and
Butterfly datasets, suggesting that BioCLIP has been trained on images that are similar to the
organisms present in these datasets. By comparing BioCLIP with CLIP, we can also see that fine-
tuning foundation models with biological data provides large gains in classification performance. This
suggests that the performance of SOTA VLMs can be further improved by fine-tuning on VLM4Bio
Dataset. Further details comparing BioCLIP with SOTA VLMs are provided in the Supplementary
Section K.

5.3 Analyzing Effects of Prompting on VLM Performance

We considered three prompting techniques: Contextual Prompting, Dense Caption Prompting, and
zero-shot Chain of Thought Prompting. For Contextual prompting, we provided a single-line
description (context) of the tasks (e.g., we add “Each biological species has a unique scientific name
composed of two parts: the first for the genus and the second for the species within that genus.” before
the species classification question to give some additional context on the task). Dense Caption
prompting involves two stages: (1) first, we prompt the VLM to generate a dense caption of the
specimen image such that the caption contains all the necessary trait information of the specimen. (2)
We add the dense caption before the question and prompt “Use the above dense caption and the image
to answer the following question.” to generate responses from the VLM. Similarly, the Zero-Shot
Chain-of-Thought (CoT) happens in two stages: (1) first, we prompt the VLM to generate the
reasoning for a given VQA and multiple choices (options). Zero-shot CoT appends “Let’s think step
by step.” after the question and options to generate the reasoning. (2) We then add the reasoning
after the VQA and prompt “Please consider the following reasoning to formulate your answer” to
generate the VLM response. We curated a prompting dataset of 500 multiple-choice (MC) VQAs for
each set of organisms, which is a subset of the VLM4Bio dataset for species classification.

Table 4 compares best-performing VLMs on the prompting dataset. The CoT rows of the table
demonstrate that only GPT-4V and GPT-4o have reasoning capabilities that can significantly improve
their response to biological questions, while smaller models like LLaVa and BLIP do not show
much improvement. Furthermore, providing extra context and caption is more useful for GPT-4V
and GPT-4o than the smaller models. This resonates with the findings from [75] that the reasoning
abilities of VLMs only emerge after a certain model size. The success of Dense Caption Prompting
and CoT Prompting depends on how well they generate the dense caption or the reasoning in the first
stage. We report example prompts with VLM responses as case studies in the Supplementary Section
M.

5.4 Analyzing Tests for Reasoning Hallucination

To further understand whether pretrained VLMs can respond with logically coherent and factually
accurate reasoning, we evaluate VLMs on two sets of reasoning for hallucination tests - False
Confidence Test (FCT) and None of the Above (NOTA) Test - inspired by [76]. For the FCT, we
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Models

Dataset Prompting gpt-4v gpt-4o
llava

v1.5-7b
llava

v1.5-13b
cogvlm

chat
BLIP
flan-xl

BLIP
flan-xxl

Fish-Prompting
No Prompting 34.40 79.00 41.60 35.40 31.00 28.60 22.60

Contextual 30.00 77.20 40.20 35.60 25.60 27.20 26.60
Dense Caption 18.80 78.60 26.00 27.60 32.00 28.40 29.80

CoT 42.60 86.00 41.40 34.80 26.80 29.20 24.60

Bird-Prompting
No Prompting 78.80 97.60 44.20 49.80 45.40 35.60 35.80

Contextual 78.60 98.60 44.00 52.00 49.40 35.60 30.40
Dense Caption 87.40 97.00 33.40 41.00 44.00 25.60 22.80

CoT 62.60 98.60 37.40 47.80 42.20 30.60 31.00

Butterfly-Prompting
No Prompting 13.20 56.40 27.20 26.80 25.60 24.40 21.20

Contextual 9.20 56.20 26.00 24.60 27.20 23.60 24.60
Dense Caption 49.60 63.20 25.20 23.80 27.00 23.20 23.20

CoT 63.60 74.60 21.40 23.20 34.60 37.20 23.60

Table 4: Zero-shot accuracy comparison for different prompting techniques of seven VLMs (in %
ranging from 0 to 100). Results are color-coded as Best and Worst .

Models

Dataset Metrics gpt-4v gpt-4o llava
v1.5-7b

llava
v1.5-13b

cogvlm
chat

BLIP
flan-xl

BLIP
flan-xxl

False Confidence Test (FCT)

Fish-Prompting Accuracy 34.20 73.60 25.00 28.60 24.60 0.00 7.00
Agreement Score 4.40 16.60 99.80 19.20 74.40 0.00 28.4

Bird-Prompting Accuracy 73.40 99.00 25.40 35.80 19.80 0.00 20.20
Agreement Score 11.40 21.00 93.20 17.80 47.80 0.00 79.80

Butterfly-Prompting Accuracy 5.20 53.40 27.20 26.60 6.20 0.00 5.00
Agreement Score 2.60 12.40 95.40 5.60 13.80 0.00 19.00

None of the Above (NOTA) Test

Fish-Prompting Accuracy 81.40 44.80 3.40 3.80 0.00 4.00 0.00

Bird-Prompting Accuracy 75.00 91.40 1.00 1.20 0.00 31.40 0.00

Butterfly-Prompting Accuracy 50.40 4.60 1.00 4.60 0.00 51.00 0.00

Table 5: Performance of seven VLMs on the NOTA and FCT reasoning tests. Results are color-coded
as Best and Worst .

randomly select an option from the list of given choices and prompt it to the VLM as a “suggested
correct answer” along with the question and options. To evaluate VLMs on FCT, we use Accuracy as
well as the Agreement score, which is the percentage of times the VLM agrees with the suggested
answer, irrespective of whether that is right or wrong. A high agreement score with a low overall
accuracy indicates poor performance as it suggests that the model is simply following the suggestion
either because of a lack of knowledge or low confidence in its own response. On the other hand,
in the NOTA Test, we replace the correct option with “None of the Above”, requiring the model to
produce “None of the above” for all the questions. From Table 5, we can see that LLaVa-v1.5-7B
shows poor accuracy on both tests and a high agreement score on FCT. Out of all the VLMs, GPT-4V
and GPT-4o demonstrate the highest accuracy, i.e., the lowest false confidence. More details on the
prompts and examples of the responses have been provided in the Supplementary Section M.

6 Limitations

Our work has three main limitations. First, while no prior VQA benchmark dataset exists for
organismal biology to the best of our knowledge, we focused on only three organisms—fish, bird,
and butterfly—out of the many available due to resource constraints. Adding more organisms with
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manually annotated trait data will require additional resources and domain expertise, which could be
pursued in future work. Second, since it is not feasible to manually inspect all images to ensure that
they are free from label noise, we acknowledge that some noise may be present in the labels used
for evaluating models on our current dataset, which we plan to address in future iterations. Third,
due to resource constraints, certain proprietary VLMs that require purchasing APIs like Gemini-Pro
[6], Gemini-Ultra [6], and Claude Opus [77] were also not included in the evaluation. We anticipate
that their performance will be comparable to that of the proprietary GPT-4V [5] and GPT-4o [10]
considered in our evaluation.

7 Conclusion and Future Work

We presented VLM4Bio, a benchmark dataset to evaluate the zero-shot performance of pretrained
VLMs on biologically relevant questions involving biodiversity images, exposing gaps in SOTA
VLMs when applied to organismal biology. We observe that while VLMs are able to perform
reasonably well on simpler tasks, e.g., using questions with multiple-choice formats and images
with natural-looking backgrounds, they struggle in complex task settings that are practically more
relevant to biologists. Through our study on prompting and reasoning tests on the VLM4Bio dataset,
we observe that very large SOTA VLMs such as GPT-4V and GPT-4o have reasoning capabilities
that can significantly improve the response to biological questions. We did not explore Retrieval
Augmented Generation (RAG) [78] or knowledge-infused prompting [79] techniques since they
require additional knowledge bases, which could be developed in future work. Future works can also
focus on finetuning VLMs on the VLM4Bio dataset instead of comparing zero-shot performance.
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applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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A Dataset Preprocessing

We collected images of three taxonomic groups of organisms: fish, birds, and butterflies, each
containing around 10K images. Images for fish (Fish-10K) were curated from the larger image
collection, FishAIR [25], which contains images from the Great Lakes Invasive Network Project
(GLIN) [26]. These images originate from various museum collections such as INHS [27], FMNH
[28], OSUM [29], JFBM [30], UMMZ [31] and UWZM [32]. We created the Fish-10K dataset by
randomly sampling 10K images and preprocessing the images to crop and remove the background.

To ensure diversity within the Fish-10K dataset, we applied a targeted sampling strategy in the source
collection, FishAIR [25]. Specifically, we retained all images of species with fewer than 200 images,
considering these as minority or rare classes. Random sampling was applied only to the majority
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Randomly Sampled
Others

(a) Lepomis humilis

Randomly Sampled
Others

(b) Lepomis cyanellus

Randomly Sampled
Others

(c) Noturus gyrinus

Randomly Sampled
Others

(d) Lepomis megalotis

Randomly Sampled
Others

(e) Phenacobius mirabilis

Randomly Sampled
Others

(f) Lepomis macrochirus

Figure 4: t-SNE plots to illustrate the effectiveness of random sampling with the majority species in
the Fish-10K dataset. Randomly sampled images are shown as blue dots, while the remaining data
points are represented by red dots. Subcaptions display the scientific names of the corresponding
species. To generate the vector representation of the images, we leverage a VGG19 pretrained on the
ImageNet dataset.

species—those with more than 200 images per class. To assess the potential sampling bias among
the majority species, we generated feature vectors for each image in Fish-10K using a pretrained
VGG-19 model. In Figure 4, we present species-wise t-SNE plots of these feature vectors for several
majority species. Our analysis shows that the distribution of sampled images closely mirrors the
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distribution of images that were not included in the dataset (denoted as “others” in the plot). This
suggests that our random sampling approach provides a sufficiently accurate representation of the
original distribution for the majority species. For consistency, we leverage GroundingDINO [33] to
crop the fish body from the background and Segment Anything Model (SAM) [34] to remove the
background. The Fish-10K dataset contains images of specimens preserved in museum collections
with artificial backgrounds with imaging artifacts that are not typical for large-scale computer vision
datasets. Moreover, these backgrounds can introduce unexpected bias. Hence, we removed the
backgrounds using SAM to create a controlled environment for our experiments.

We curated the images for butterflies (Butterfly-10K) from the Jiggins Heliconius Collection dataset
[35], which has images collected from various sources 5. We carefully sampled 10K images for
Butterfly-10K from the entire collection to ensure the images capture unique specimens and represent
a diverse set of species by adopting the following two steps. First, the butterfly images show various
angles, including dorsal and ventral views, forewing dorsal and ventral views, and hindwing dorsal
and ventral views. To ensure consistency, we only selected images with dorsal view and removed all
images of hybrid species. Second, we further filtered the dataset based on the unique specimen ID
to ensure no specimen was repeated more than once. For species with more than 2000 images, we
performed random sampling (no sampling was performed for species with sizes less than 2000). We
ensure each species has a minimum of 20 images and no more than 2,000 images. The Butterfly-10K
dataset contains a significant number of images of Heliconius melpomene and Heliconius erato
species. We utilized the subspecies information of these two species to create a hard dataset for
analyzing the impact of answer choices on VLM performance, as described in Section 5.1.

The images for birds (Bird-10K) are obtained from the CUB-200-2011 [61] dataset by taking 190
species for which the common name to scientific name mapping is available. This results in a fairly
balanced dataset with around 11K images in total.

The scientific names for the images of Fish-10K and Butterfly-10K were obtained directly from their
respective sources. For Bird-10K, we obtained the scientific names from the iNatLoc500 [62] dataset.
We curated around 31K question-answer pairs in both open and multiple-choice (MC) question
formats for evaluating species classification tasks. The species-level trait presence/absence matrix for
Fish-10K was manually curated with the help of biological experts co-authored in this paper. We
leveraged the Phenoscape knowledge [63] base with manual annotations to procure the presence-
absence trait matrix. For Bird-10K, we obtained the trait matrix from the attribute annotations
provided along with CUB-200-2011. We constructed approximately 380K question-answer pairs for
trait identification tasks.

For grounding and referring VQA tasks, the ground truths were manually annotated with the help of
expert biologists on our team. We manually annotated bounding boxes corresponding to the traits of
500 fish specimens and 500 bird specimens, which are subsets of the larger Fish-10K and Bird-10K
datasets, respectively. We used the CVAT tool [80] for annotation. The task-specific question formats
with the default prompts are provided in Section I.

B Links to Access the Dataset and Its Metadata

We provide a GitHub link https://github.com/imageomics/VLM4Bio and an accessible
Hugging Face link https://huggingface.co/datasets/imageomics/VLM4Bio to access the
dataset and its metadata.

C Dataset Availability and Maintanance

The VLM4Bio dataset and metadata are available in a Hugging Face repository. To access the
VLM4Bio dataset, please visit https://huggingface.co/datasets/imageomics/VLM4Bio.
Long-term support and maintenance of the dataset will be provided by our team. We have
published a code repository for dataset preprocessing, including tasks such as downloading
the dataset, reading images and metadata, cropping images, and running the evaluation experi-
ments presented in the VLM4Bio paper. To access the VLM4Bio code repository, please visit
https://github.com/imageomics/VLM4Bio.

5Sources: [36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60]
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Datasets

Statistics Fish-10K Bird-10K Butterfly-10K Fish-500 Bird-500
Fish-
Easy

Fish-
Medium

Bird-
Easy

Bird-
Medium

Butterfly-
Easy

Butterfly-
Medium

Butterfly-
Hard

Fish-
Prompting

Bird-
Prompting

Butterfly-
Prompting

Images 10,347 11,092 10,013 500 492 200 200 200 200 200 200 200 500 500 500

Species 495 188 60 60 47 51 10 50 10 50 10 1 25 37 25

Genera 178 114 27 18 33 10 1 10 1 10 1 1 12 30 10

Traits 10 28 - 8 5 - - - - - - - - - -

Table 6: Statistics of the VLM4Bio dataset.

Figure 5: Dataset Distribution of Fish-10K, Bird-10K, and Butterfly-10K.

D Data Licenses

VLM4Bio dataset is licensed as Creative Commons Attribution 4.0 International. The images of the
corresponding organisms are licensed as follows:

1. Fish Dataset License: CC BY-NC.

2. All the bird images are sourced from the CUB-200-2011 dataset; CalTech indicates that they
do not own the copyrights to these images and that their use is restricted to non-commercial
research and educational purposes.

3. Butterfly Dataset License: Creative Commons Attribution 4.0 International.

We provide image-specific licenses in the dataset card https://huggingface.co/datasets/
imageomics/VLM4Bio#licensing-information. We have hosted the dataset on HuggingFace
(DOI: 10.57967/hf/3393).

E Data Distribution and Key Statistics

Table 6 provides the key statistics for the datasets, including the number of images, species, genera,
and traits present in each one. We are examining the Zero-shot accuracy of the VLMs on Fish-10K,
Bird-10K, and Butterfly-10K for Species Classification and Trait Identification tasks, Fish-500 and
Bird-500 for Trait Grounding, Trait Referring and Trait Counting, and easy, medium, hard, prompting
datasets for analyzing the role of answer choices, VLM reasoning and hallucination tests. From
Figure 5, it is clear that Fish-10K and Butterfly-10K are imbalanced, with a bias toward some species
that are more common in our environment (such as Heliconius erato and Heliconius melpomene
for Butterflies). The imbalance in Fish-10K and Butterfly-10K reflects the natural imbalance in the
occurrence and observation of species in museum collections. Due to the scarcity of images for the
rare species, it is difficult to increase their representation to avoid imbalance. As a result, we have
included many under-represented species in the Fish and Butterfly datasets to report performance
on the rare classes. In contrast, the Bird-10K dataset is well-balanced, with most species having
60 images. The easy, medium, hard, and prompting datasets are also balanced, which ensures a
comprehensive evaluation of the zero-shot performance of the competing VLMs.
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Bird Traits

. Bill-color

. Crown-color

. Eye-color

. Forehead-color

. Nape-color

. Primary-color

. Throat-color

. Back-color

. Head-pattern

. Back-pattern

. Breast-pattern

. Wing-pattern

. Tail-pattern

. Belly-pattern

. Bill-length 

. Bill-shape

. Shape

. Size

. Tail-shape

. Wing-shape

Color Pattern Measurements

. Belly-color

. Breast-color

. Leg-color

. Under-tail-color

. Underparts-color

. Upper-tail-color

. Upperparts-color

. Wing-color

Fish Traits

. Eye

. Head

. Mouth

. Barbel

. Dorsal fin

. Pectoral fin

. Pelvic fin

. Anal fin

. Two dorsal fins

. Adipose fin

Figure 6: Trait list for Trait Identification task.

F Traits Considered for the Task of Trait Identification

Figure 6 shows the Fish traits and Bird traits used for evaluating the VLM’s performance in the
identification task. For fishes, we considered 10 binary (presence/absence) traits which include the
eye, head, mouth, barrel, dorsal fin, pectoral fin, pelvic fin, anal fin, and adipose fin. We generated
MC questions for the presence of each trait in an image (with two options: yes or no). Whereas for
birds, we considered 28 traits covering their color, pattern, and measurements (size and shape of
regions) in a multiple-choice format.

G Traits Considered for the Tasks of Trait Grounding and Referring

To evaluate the VLM performance in Grounding and Referring, we identified 8 traits for fish and 5
traits for birds. Specifically, we manually annotated the dorsal fin, adipose fin, caudal fin, anal fin,
pelvic fin, pectoral fin, head, and eye of the 500 fish specimens. Similarly, for birds, we annotated
the beak, head, eye, wings, and tail. Trait grounding and referring tasks are carried out using the
Fish-500 and Bird-500 datasets.

H VLM Baselines

We consider the following VLM baselines to evaluate the performance on VLM4Bio dataset: (1)
GPT-4V(ision) [64], which is a proprietary VLM from OpenAI, that uses a generative pre-trained
transformer model capable of understanding and generating both text and visual contents, (2) LLaVA-
v1.5 (7B/13B) [65], which builds on top of the Vicuna LLM [81] by linearly projecting the visual
embedding into the word embedding space. The LLaVA model has two different variants with 7B
and 13B parameters, respectively, that depend on the size of the base Vicuna model, (3) COG-VLM
[66], which performs a simple concatenation of the image and the text modalities, and uses trainable
visual layers in the text-based transformer blocks, (4) MiniGPT-4 (Vicuna 7B/13B) [67], which is
similar to LLaVA as it is built on top of the Vicuna model and linearly projects the visual embeddings
for better understanding. Similar to LLaVA, MiniGPT-4 is available in two variants depending on
the type the base Vicuna model (Vicuna 7B/13B), (5) BLIP-FLAN-T5-XL/XXL [68], which utilizes
an effective pre-training strategy that relies on bootstrapping from frozen-pretrained CLIP encoders
and LLMS by using a querying transformer block (available as two variants: XL and XXL), and (6)
Instruct-BLIP (Vicuna 7B/13B) [69], which performs finetuning on BLIP-2 with visual-instruction
tuning data to improve zero-shot capabilities of BLIP-2 (available as two variants depending on the
Vicuna model: Vicuna 7B/13B).

I Prompts to Evaluate VLM performance

In order to ensure a fair comparison of the VLM responses to different types of questions in our
dataset, we used the same question prompt for all the models across the various scientific tasks. It’s
worth noting that each model may perform differently with different prompts. However, for the sake
of simplicity in our evaluation, we opted for a consistent prompt for all the models. The prompts
specific to each task are displayed in Figure 7.
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Species Classification <image> <organism>
<options>

Trait Identification <image> <trait> <organism>
<options>

Trait Grounding <image> <trait>
<options>

Trait Referring <image> <organism>
<coordinates> <options>

Trait Counting <image> <trait> <organism>
<options>

Contextual Prompting <image>

<organism> <options>

Dense Caption Prompting <image> <dense caption>. 
<organism>

<options>

Chain-of-Thought 
Prompting

<image> <organism> 
<options>
<reasoning>

False Confidence Test 
(FCT)

<image> <organism> 
<options> <suggested answer>

None of the Above Test 
(NOTA)

<image> <organism> 
<options: A) _ B) _ C) _ D) None of the above.> 

Task Prompt Format

Figure 7: Prompts Templates used for Evaluation. There will be no <options> for Open set
questions.

J Error Analyses for VLM Responses

We categorize the VLM responses into 3 categories: (1) Correct (%): where the scientific name is
accurately predicted, (2) Incorrect (%): where the scientific name is incorrect, and (3) Other (%): a
special category for instances where the model abstains from providing a scientific name.

Figure 8a, 8b and 8c show the distribution of errors of different VLMs on Fish-Easy and Fish-Medium,
Bird-Easy and Bird-Medium, and Butterfly-Medium and Butterfly-Hard datasets respectively using
stacked-bar plots showing the three categories of VLM predictions. GPT-4V, for instance, shows a
reduced rate of incorrect responses but a higher incidence of “Other” responses for these datasets,
which include apologetic expressions, admissions of inability to precisely visualize the organism, and
disclaimers regarding prediction without sufficient expert data and guidance.

To further analyze the type of errors happening in the other (%) category of VLM predictions, we
manually examined 250 randomly selected “Other” GPT-4V responses for the task of fish species
classification (MC question type) to generate the pie-chart of error categories shown in Figure 8d. We
can see that a majority of the “Other” responses belong to the category: Rejecting to Answer (59%),
where the GPT-4V states that it is unable to provide an answer, sometimes stating the reason that
it cannot answer based on a single image. We also observe a large fraction of Expertise Limitation
responses where GPT-4V states that an expert taxonomist is needed to answer the question and its
capabilities do not include recognizing or confirming species based on visual data. The next major
type of “Other” responses are Insufficient Data, where GPT-4V states that it requires additional data
to answer the question, e.g., taxonomic information or habitat information. The other error categories
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(a) Error Analysis for Fish-Easy and -Medium. (b) Error Analysis for Bird-Easy and -Medium.

(c) Error Analysis for Butterfly-Medium and -Hard.

Expertise Limitation
32%

Image Clarity

3%

Insufficient data

5%

Rejecting to Answer

59%

Option Unavailable

1%

(d) Categories for 250 annotated GPT-4V
“Other” responses.

Figure 8: Analysis of errors for the pretrained VLM responses.

include Image Clarity issues and Option Unavailable (i.e., GPT-4V could not find a suitable option
from the list of options provided in the prompt).

K Comparing Pre-trained VLMs with a Biologically Fine-tuned Model

Models

Dataset Question
type gpt-4v

llava
v1.5-7b

cogvlm
chat

CLIP BioCLIP

Species Classification

Fish-10K Open 1.01 2.32 0.11 0.57 1.24
MC 35.91 40.20 31.72 42.45 50.65

Bird-10K Open 17.40 1.45 0.86 7.74 67.12
MC 82.58 50.32 44.73 45.78 93.93

Butterfly-10K Open 0.04 0.05 0.01 5.33 15.95
MC 28.91 50.24 36.45 45.60 62.32

Table 7: Zero-shot accuracy comparison of VLM baselines (in % ranging from 0 to 100) with
BioCLIP for the species classification task. Results are color-coded as Best , and Worst .

We compare the large pretrained VLMs and BioCLIP [74], a state-of-the-art foundation model for
species classification. Furthermore, we include the simple CLIP model pretrained with OpenAI
weights [82] to evaluate the zero-shot classification performance. Our evaluation was carried out
on the Fish-10K, Bird-10K, and Butterfly-10K datasets, and the results are presented in Table 7.
We can see that BioCLIP significantly outperforms large pretrained VLMs on the Bird-10K and
Butterfly-10K datasets, suggesting that BioCLIP may have been trained on images that are similar to
the organisms present in these datasets. However, as noted in the paper, BioCLIP is not trained on fish
images, and hence, the performance of large VLMs is similar to that of BioCLIP on Fish-10K images.
We can also see that despite BioCLIP’s ability to effectively select the correct scientific name from
a smaller set of options in multiple-choice (MC) questions, its performance significantly declines
when asked to choose the scientific name from a larger set of open questions. From our observation,
it is noteworthy that fine-tuning biological images with scientific names can help improve the overall
accuracy of species classification, suggesting directions for future research in this area.
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(d) Bird-10K

Figure 9: Distribution of image resolutions for Fish-10K and Bird-10K are shown in Figures (a)
and (b), respectively. The average score over image resolution for the GPT-4V, LLaVA-v1.5-7B,
and LLaVA-v1.5-13B models on Fish-10K and Bird-10K are presented in Figures (c) and (d). We
conduct the experiment in the context of the Species Classification task with Multiple-Choice (MC)
questions.

L Analyzing Effects of Image Resolution on VLM Performance

To investigate the effect of image resolution on VLM performance, we perform additional experiments
summarized in Figure 9 of the attached pdf. In this Figure, we show distribution plots for the Fish-
10K and Bird-10K datasets with variations in the image resolutions and their impact on the species
classification performance (MC question format) for GPT-4V, LLaVA-1.5-7B, and LLaVA-1.5-13B.
All the images of the Butterfly-10K have the exact resolution (500 × 333); hence, they were not
included in the experiment. From Figure 9c, it is clear that image resolution is influential on the
VLM performance for the Fish-10K dataset since higher resolution helps in recognizing the details
of the biological traits and correct species. However, for Figure 9d, the VLM performances do not
vary significantly with the image resolution for the Bird-10K dataset. A potential reason is that the
bird dataset is a subset of the CUB dataset, and we hypothesize that the pre-trained VLMs may have
seen images with resolutions similar to those in the Bird-10K dataset during training, leading to this
behavior.

M Case Studies for Effects of Prompting on VLM Performance

M.1 No Prompting

1. No Prompting. GPT-4o Correct prediction. Refer to Figure 10.

2. No Prompting. GPT-4o Incorrect prediction. Refer to Figure 11.

3. No Prompting. COG-VLM Correct prediction. Refer to Figure 12.

4. No Prompting. COG-VLM Incorrect prediction. Refer to Figure 13.

M.2 Contextual Prompting

1. Contextual Prompting. GPT-4o Correct prediction. Refer to Figure 14.

2. Contextual Prompting. GPT-4o Incorrect prediction. Refer to Figure 15.

3. Contextual Prompting. LLaVa-13B Correct prediction. Refer to Figure 16.

4. Contextual Prompting. LLaVa-13B Incorrect prediction. Refer to Figure 17.

M.3 Dense Caption

1. Dense Captions in Prompts. GPT-4o Correct prediction. Refer to Figure 18.

2. Dense Captions in Prompts. GPT-4o Incorrect prediction. Refer to Figure 19.

3. Dense Captions in Prompts. LLaVa-7B Correct prediction. Refer to Figure 20.

4. Dense Captions in Prompts. LLaVa-7B Incorrect prediction. Refer to Figure 21.
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M.4 Chain-Of-Thought Prompting

1. Chain-Of-Thought Prompting. GPT-4o Correct prediction. Refer to Figure 22.
2. Chain-Of-Thought Prompting. GPT-4o Incorrect prediction. Refer to Figure 23.
3. Chain-Of-Thought Prompting. LLaVa-13B Correct prediction. Refer to Figure 24.
4. Chain-Of-Thought Prompting. LLaVa-13B Incorrect prediction. Refer to Figure 25.

N Case Studies for Reasoning Hallucination Tests

N.1 False Confidence Test (FCT)

1. FCT test on Fish dataset. GPT-4o Correct prediction. Refer to Figure 26.
2. FCT test on Fish dataset. LLaVa-13B Incorrect prediction. Refer to Figure 27.
3. FCT test on Bird dataset. GPT-4o Correct prediction. Refer to Figure 28.
4. FCT test on Bird dataset. LLaVa-13B Incorrect prediction. Refer to Figure 29.
5. FCT test on Butterfly dataset. GPT-4o Correct prediction. Refer to Figure 30.
6. FCT test on Butterfly dataset. LLaVa-13B Incorrect prediction. Refer to Figure 31.

N.2 None of The Above (NOTA) Test

1. NOTA test on Fish dataset. GPT-4o Correct prediction. Actual species name is Esox
Americanus. Refer to Figure 32.

2. NOTA test on Fish dataset. LLaVa-13B Incorrect prediction. Actual species name is Esox
Americanus. Refer to Figure 33.

3. NOTA test on Bird dataset. GPT-4o Correct prediction. Actual species name is Corvus
Albicollis. Refer to Figure 34.

4. NOTA test on Bird dataset. Blip-Flan-XL Incorrect prediction. Actual species name is
Corvus Albicollis. Refer to Figure 35.

5. NOTA test on Butterfly dataset. GPT-4o Incorrect prediction. Actual species name is Batesia
Hypochlora. Refer to Figure 36.

6. NOTA test on Butterfly dataset. Blip-Flan-XL Correct prediction. Actual species name is
Batesia Hypochlora. Refer to Figure 37.
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Answer:

The answer is: B) Phenacobius mirabilis

Question: What is the scientific name of the fish 

in the image?

Options: A) Cyprinella spiloptera, B) Phenacobius 

mirabilis, C) Notropis hudsonius, D) Notropis 

buccatus.

Write the answer after writing 'The answer is: '.

Ground Truth: Phenacobius mirabilis

Figure 10: No Prompting. GPT-4o Correct prediction. Section M.1.

Answer:

The answer is: C) Notropis hudsonius

Question: What is the scientific name of the fish 

in the image?

Options: A) Esox lucius, B) Perca flavescens, C) 

Notropis hudsonius, D) Phenacobius mirabilis.

Write the answer after writing 'The answer is: '.

Ground Truth: Phenacobius mirabilis

Figure 11: No Prompting. GPT-4o Incorrect prediction. Section M.1.

Answer:

The answer is: Notropis hudsonius

Question: What is the scientific name of the fish 

in the image?

Options: A) Notropis hudsonius, B) Notropis 

blennius, C) Noturus flavus

Write the answer after writing 'The answer is: '.

Ground Truth: Notropis hudsonius

Figure 12: No Prompting. COG-VLM Correct prediction. Section M.1.
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Answer:

The scientific name of the fish in the image is 
Notropis buccatus.

Question: What is the scientific name of the fish 

in the image?

Options: A) Notropis buccatus, B) Lepomis humilis, 

C) Notropis dorsalis, D) Esox lucius.

Write the answer after writing 'The answer is: '.

Ground Truth: Lepomis humilis

Figure 13: No Prompting. COG-VLM Incorrect prediction. Section M.1.

Answer:

The answer is: Esox lucius

Question: Each biological species has a unique 
scientific name composed of two parts: the first 
for the genus and the second for the species 
within that genus.
What is the scientific name of the fish in the 
image? 

Options: A) Lepomis cyanellus, B) Notropis 
blennius, C) Esox lucius, D) Gambusia affinis.

Write the answer after writing 'The answer is: '.

Ground Truth: Esox lucius

Figure 14: Contextual Prompting. GPT-4o Correct prediction. Section M.2.

Answer:

The answer is: Lepomis humilis.

Question: Each biological species has a unique 
scientific name composed of two parts: the first 
for the genus and the second for the species 
within that genus.
What is the scientific name of the fish in the 
image? 

Options: A) Phenacobius mirabilis, B) Notropis 
atherinoides, C) Lepomis humilis, D) Lepomis 
macrochirus.

Write the answer after writing 'The answer is: '.

Ground Truth: Lepomis macrochirus

Figure 15: Contextual Prompting. GPT-4o Incorrect prediction. Section M.2.
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Answer:

The answer is: C) Morone chrysops

Question: Each biological species has a unique 
scientific name composed of two parts: the first 
for the genus and the second for the species 
within that genus.
What is the scientific name of the fish in the 
image? 

Options: A) Esox americanus, B) Notropis 
atherinoides, C) Morone chrysops, D) Cyprinella 
spiloptera.

Write the answer after writing 'The answer is: '.

Ground Truth: Morone chrysops

Figure 16: Contextual Prompting. LLaVa-13B Correct prediction. Section M.2.

Answer:

The answer is: D) Noturus flavus

Question: Each biological species has a unique 
scientific name composed of two parts: the first 
for the genus and the second for the species 
within that genus.
What is the scientific name of the fish in the 
image? 

Options: A) Cottus bairdii, B) Notropis blennius, C) 
Fundulus catenatus, D) Noturus flavus.

Write the answer after writing 'The answer is: '.

Ground Truth: Fundulus catenatus

Figure 17: Contextual Prompting. LLaVa-13B Incorrect prediction. Section M.2.
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Dense Caption: 

Question: Use the above dense-caption and the image to answer the following question. What is the scientific name of the fish in the image?
Options:

Therefore, the answer is: 

Ground Truth:

Answer:

Figure 18: Dense Captions in Prompts. GPT-4o Correct prediction. Section M.3.

Dense Caption: The fish displayed has an elongated, cylindrical body adorned with a pattern of small, well-defined scales that are 
golden-brown on the dorsal side and a lighter, creamy hue on the ventral side. The head is slightly pointed with a terminal mouth, featuring a 
prominent, spherical eye located on either side. The dorsal fin, located slightly more than halfway down the back, is relatively small and 
rounded. The caudal fin at the tail is forked, matching the body’s light coloration and adorned with fine, subtle spots. 
Pectoral fins are positioned just behind the gill covers and are almost translucent, slightly broader at the base and tapering to a point. The 
pelvic fins are minute and situated abdominally, while the anal fin mirrors the size and shape of the dorsal fin but is placed closer to the caudal 
peduncle. A closer inspection of the body reveals faint horizontal striping along the lateral line, a key feature in taxonomic differentiation. The 
absence of specialized pigment patterns, such as vibrant or contrasting spots, suggests a species adapted for camouflage in its environment.
Distinctive anatomical features such as the body coloration pattern, shape, and position of fins, presence of lateral line markings, and general 
morphology are crucial for identifying the scientific classification of this fish species.

Question: Use the above dense-caption and the image to answer the following question. What is the scientific name of the fish in the image?
Options: A) Notropis dorsalis, B) Lepomis megalotis, C) Notropis stramineus, D) Gambusia affinis.

Therefore, the answer is: 

Ground Truth: Gambusia affinis

Answer:

Based on the dense-caption provided and the image, the 
description matches the characteristics of the fish 
known as Notropis stramineus.

Therefore, the answer is:  C) Notropis stramineus.

Figure 19: Dense Captions in Prompts. GPT-4o Incorrect prediction. Section M.3.
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Dense Caption: The image features a fish with a long, slender body, a pointed head, and a row of small, round fins along its length. The 
fins are located towards the back of the fish, and their positioning is consistent with the body shape. The fish has a yellowish-brown 
color, with a pattern of darker stripes running along its body. The fish's overall appearance is typical of a long, slender fish species, such 
as a snake fish or a similar species from the family Channidae. The presence of the fins and the body shape, along with the color pattern, 
can help identify the specific species within this family.

Question: Use the above dense-caption and the image to answer the following question. What is the scientific name of the fish in the 
image?
Options: A) Esox americanus, B) Perca flavescens, C) Esox lucius, D) Fundulus catenatus.

Therefore, the answer is: 

Ground Truth: Esox americanus

Answer:

A) Esox americanus

Figure 20: Dense Captions in Prompts. LLaVa-7B Correct prediction. Section M.3.

Dense Caption: The image features a small, long, and slender fish with a yellow body and a black stripe running along its length. The fish has a 
pointed head and a slightly curved tail. The fins are small and located towards the back of the fish, with a pair of dorsal fins and a pair of 
ventral fins. The fish's body is covered in a pattern of small, dark spots, which are a characteristic feature of the species. The fish's overall 
appearance suggests that it belongs to the family Cyprinidae, which includes species such as the common carp and the goldfish.

Question: Use the above dense-caption and the image to answer the following question. What is the scientific name of the fish in the 
image?
Options: A) Cottus bairdii, B) Notropis atherinoides, C) Gambusia affinis, D) Notropis buccatus.

Therefore, the answer is: 

Ground Truth: Gambusia affinis

Answer:

A) Cottus bairdii

Figure 21: Dense Captions in Prompts. LLaVa-7B Incorrect prediction. Section M.3.
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Answer:

The scientific name of the fish in the image is Notropis 

atherinoides (Option C), commonly known as Emerald Shiner. 

This identification follows the reasoning that the fish has a 

slender, elongated body with a silver-green coloration and a 

more translucent appearance. The absence of a prominent spot 

at the base of the tail fin, vertical bars along the body, and a 

broad, flattened head with a mottled appearance further support 

this conclusion.

Question: What is the scientific name of the fish in the image?

Options: A) Notropis hudsonius, B) Fundulus catenatus, C) Notropis 
atherinoides, D) Cottus bairdii. 

Please consider the following reasoning to formulate your 
answer:

Reasoning: To identify the fish in the image, we need to compare 
its physical characteristics with the descriptions of the four given 
options.
1. Notropis hudsonius (Spottail Shiner): 
 - Small freshwater fish  
 - Distinguished by a prominent spot at the base of the tail fin
2. Fundulus catenatus (Northern Studfish):
 - Commonly characterized by vertical bars along its body 
 - Known for its elongated body and thick caudal peduncle
3. Notropis atherinoides (Emerald Shiner): 
 - A slender, elongated body - Silver-green coloration with a more 
translucent appearance
4. Cottus bairdii (Mottled Sculpin):
 - Stocky body and broad, flattened head 
 - Usually mottled or blotchy in appearance
Looking at the image:
- The fish is small and slender with no prominent spots at the base 
of the tail fin, which excludes Notropis hudsonius.
- The fish does not have vertical bars along its body, nor does it 
have the elongated body typical of Fundulus catenatus.
- The fish does not have a broad, flattened head or a mottled 
appearance, ruling out Cottus bairdii.
- The fish is slender and elongated, fitting the description of 
Notropis atherinoides. 
Based on the physical characteristics visible Ground Truth: Notropis atherinoides

Figure 22: Chain-Of-Thought Prompting. GPT-4o Correct prediction. Section M.4.

Answer:

Based on the reasoning provided and the visual appearance of the 

fish in the image, the correct scientific name is:

Option D) Fundulus catenatus.

Question: What is the scientific name of the fish in the image?

Options: A) Morone chrysops, B) Cottus bairdii, C) Gambusia 
affinis, D) Fundulus catenatus.  

Please consider the following reasoning to formulate your 
answer:

Reasoning: To identify the fish in the image, let's examine the 
provided options and characteristics of each species:
A) Morone chrysops: Commonly known as the White Bass, 
Morone chrysops is a larger fish known for a deep body and silver 
coloration with black stripes running horizontally. The pictured 
fish does not exhibit these features.
B) Cottus bairdii: Known as the Mottled Sculpin, Cottus bairdii 
typically has a more robust and slightly shorter body, with a large 
head and fan-like pectoral fins, none of which match the fish in 
the image.
C) Gambusia affinis: Commonly known as the Mosquitofish, 
Gambusia affinis is a small fish with a more streamlined body and 
a noticeable upturned mouth. This could match the fish in the 
image, but the scale and body texture appear different.
D) Fundulus catenatus: Known as the Northern Studfish, 
Fundulus catenatus typically has a more slender body with a 
distinctive pattern along its sides, which aligns well with the fish 
in the image.
The fish in the image appears to have the body characteristics, 
scale texture, and fin arrangement that match with Fundulus 
catenatus.
Thus, the correct scientific name of the fish in the image is: D) 
Fundulus catenatus. Ground Truth: Gambusia affinis

Figure 23: Chain-Of-Thought Prompting. GPT-4o Incorrect prediction. Section M.4.
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Answer:

The scientific name of the fish in the image is A) Esox americanus.

Question: What is the scientific name of the fish in the 
image?

Options: A) Esox americanus, B) Gambusia affinis, C) Cottus 
bairdii, D) Notropis blennius.

Please consider the following reasoning to formulate your 
answer:

Reasoning: The scientific name of the fish in the image is A) 
Esox americanus.

Ground Truth: Esox americanus

Figure 24: Chain-Of-Thought Prompting. LLaVa-13B Correct prediction. Section M.4.

Answer:

B) Morone chrysops

Question: What is the scientific name of the fish in the 
image?

Options: A) Notropis hudsonius, B) Morone chrysops, C) 
Gambusia affinis, D) Notropis blennius. 

Please consider the following reasoning to formulate your 
answer:

Reasoning: The scientific name of the fish in the image is B) 
Morone chrysops.

Ground Truth: Gambusia affinis

Figure 25: Chain-Of-Thought Prompting. LLaVa-13B Incorrect prediction. Section M.4.

Question: What is the scientific name of the 
fish in the image? 

Options: A) Notropis blennius, B) Notropis 
dorsalis, C) Cottus bairdii, D) Phenacobius 
mirabilis. 

Chosen Answer: Notropis dorsalis.

Please provide: 1) Whether the chosen answer 
is correct (True/False). 2) The correct answer .

Ground Truth: Notropis blennius

Answer:

1) The chosen answer is correct (True/False): False 
2) The correct answer: Notropis blennius"

Figure 26: GPT-4o correct prediction. Section N.1.
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Question: What is the scientific name of the 
fish in the image? 

Options: A) Lepomis macrochirus, B) Perca 
flavescens, C) Notropis volucellus, D) Notropis 
blennius.

Chosen Answer: Notropis volucellus.

Please provide: 1) Whether the chosen answer 
is correct (True/False). 2) The correct answer .

Ground Truth: Notropis blennius

Answer:

The correct answer is Notropis volucellus. The fish in 
the image is a long, slender fish with a yellowish color. It 
is swimming in a body of water, possibly a river or a lake.

Figure 27: LLaVa-13B incorrect prediction. Section N.1.

Question: 

Options:

Chosen Answer:

Please provide:

Ground Truth:

Answer:

Figure 28: GPT-4o Correct prediction. Section N.1.
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Question: 

Options:

Chosen Answer:

Please provide:

Ground Truth:

Answer:

Figure 29: LLaVa-13B Incorrect prediction. Section N.1.

Question: What is the scientific 
name of the butterfly in the 
image?

Options: A) Heliconius heurippa, 
B) Batesia hypochlora, C) 
Heliconius melpomene, D) 
Heliconius wallacei.

Chosen Answer: Heliconius 
heurippa

Please provide: 1) Whether the 
chosen answer is correct 
(True/False). 2) The correct 
answer .

Ground Truth: Batesia hypochlora

Answer:

1) The chosen answer is incorrect (False).
2) The correct answer is B) Batesia hypochlora.

Figure 30: GPT-4o Correct prediction. Section N.1.

33



Question: What is the scientific 
name of the butterfly in the 
image?

Options: A) Pyrrhogyra edocia, B) 
Heliconius timareta, C) Heliconius 
doris, D) Batesia hypochlora.

Chosen Answer: Heliconius doris

Please provide: 1) Whether the 
chosen answer is correct 
(True/False). 2) The correct 
answer .

Ground Truth: Batesia hypochlora

Answer:

1. False
2. The correct answer is B) Heliconius timareta.

Figure 31: LLaVa-13B Incorrect prediction. Section N.1.

Question: What is the scientific name of the 
fish in the image? 

Options: A) Gambusia affinis, B) Noturus 
gyrinus, C) Phenacobius mirabilis, D) None of 
the Above.

Write the answer after writing 'The answer 
is: '

Ground Truth: None of the Above

Answer:

The answer is: D) None of the Above

Figure 32: GPT-4o Correct prediction. Actual species name is Esox Americanus. Section N.2.
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Question: What is the scientific name of the 
fish in the image? 

Options: A) Notropis volucellus, B) Notropis 
buccatus, C) Morone chrysops, D) None of the 
Above.

Write the answer after writing 'The answer 
is: '

Ground Truth: None of the Above

Answer:

The answer is: A) Notropis volucellus

Figure 33: LLaVa-13B Incorrect prediction. Actual species name is Esox Americanus. Section N.2.

Question: What is the scientific 
name of the bird in the image?

Options: A) Spizella passerina, B) 
Antrostomus carolinensis, C) 
Aethia pusilla, D) None of the 
Above.

Write the answer after writing 
'The answer is: '.

Ground Truth: None of the Above

Answer:

The answer is: D) None of the Above.

Figure 34: GPT-4o Correct prediction. Actual species name is Corvus Albicollis. Section N.2.
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Question: What is the scientific 
name of the bird in the image?

Options: A) Cardellina pusilla, B) 
Thryothorus ludovicianus, C) 
Passer domesticus, D) None of the 
Above.

Write the answer after writing 
'The answer is: '.

Ground Truth: None of the Above

Answer:

C

Figure 35: Blip-Flan-XL Incorrect prediction. Actual species name is Corvus Albicollis. Section N.2.

Question: What is the scientific 
name of the butterfly in the 
image?

Options: A) Temenis laothoe, B) 
Heliconius doris, C) Heliconius 
heurippa, D) None of the Above.

Write the answer after writing 
'The answer is: '.

Ground Truth: None of the Above

Answer:

The answer is: A) Temenis laothoe

Figure 36: GPT-4o Incorrect prediction. Actual species name is Batesia Hypochlora. Section N.2.
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Question: What is the scientific 
name of the butterfly in the 
image?

Options: A) Heliconius erato, B) 
Heliconius melpomene, C) 
Heliconius eleuchia, D) None of 
the Above.

Write the answer after writing 
'The answer is: '.

Ground Truth: None of the Above

Answer:

D

Figure 37: Blip-Flan-XL Correct prediction. Actual species name is Batesia Hypochlora. Section
N.2.
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