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Abstract

Randomized smoothing is a popular certified defense against adversarial attacks.
In its essence, we need to solve a problem of statistical estimation which is usually
very time-consuming since we need to perform numerous (usually 105) forward
passes of the classifier for every point to be certified. In this paper, we review
the statistical estimation problems for randomized smoothing to find out if the
computational burden is necessary. In particular, we consider the (standard)
task of adversarial robustness where we need to decide if a point is robust at a
certain radius or not using as few samples as possible while maintaining statistical
guarantees. We present estimation procedures employing confidence sequences
enjoying the same statistical guarantees as the standard methods, with the optimal
sample complexities for the estimation task and empirically demonstrate their good
performance. Additionally, we provide a randomized version of Clopper-Pearson
confidence intervals resulting in strictly stronger certificates. The code can be
found at https://github.com/vvoracek/RS_conf_seq.

We encourage the readers only interested in statistics to start at Subsection 2.1.

1 Introduction

Adversarial robustness: It is well known that a tiny, adversarial, perturbation of the input can
change the output of basically any undefended machine learning model (Biggio et al., 2013; Szegedy
et al., 2014); this is unpleasant and we continue in the mitigation of the problem. There are two main
lines of work tackling this problem: (1) Empirical: the standard approach here is to use adversarial
training (Madry et al., 2018; Goodfellow et al., 2014) where the model is trained on adversarial
examples. This approach does not provide guarantees, only empirical evidence suggesting that the
model may be robust. With stronger attacks, we might (yet again) realize it is not the case. (2)
Certified: with formal robustness guarantees for the model. We will focus on this, and in particular on
randomized smoothing (Lecuyer et al., 2019) which is currently the strongest certification method1.
We will not cover other certification methods and we refer the reader to the survey Li et al. (2023)
instead. We consider the standard task of certified robustness; the goal is to decide if the decision of a
classifier F at a particular input x is robust against additive perturbations δ such that ∥δ∥ ≤ r for
some norm ∥·∥. Formally, we ask if F (x) = F (x′) whenever ∥x− x′∥ ≤ r.

Randomized smoothing is a framework providing state of the art formal guarantees on the adver-
sarial robustness for many datasets. One of its benefits lies in the fact that there are no assumptions on
the model, making it possible to readily transfer the methods from defending image classifiers against
sparse pixel changes to different modalities; e.g., defending large language models against change of

1see leaderboard https://sokcertifiedrobustness.github.io/leaderboard/

38th Conference on Neural Information Processing Systems (NeurIPS 2024).
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some letters/words/tokens. Randomized smoothing transforms any undefended classifier F : Rd → Y
by a smoothing distribution φ into a smoothed classifier Hφ(x) = argmaxy∈Y Pδ∼φJF (x+δ) = yK
for which robustness guarantees exist. We postpone the details for later. During the certification
process, we need to estimate the maximum probability of a multinomial distribution from samples as
the exact computation is intractable. This statistical estimation problem is the focus of this paper.

Speed issues: The main weakness of randomized smoothing is the extensive time required for both
prediction and certification, making it troublesome for real-world applications. There is an inherent
trade-off between the allowed probability of incorrectly claiming robustness2 (type-1 error, α), the
probability of incorrectly claiming non-robustness (type-2 error, β), and the number of samples used
n. The standard practice is to set α = 0.001, n = 100 000 and the value of β is then implicit. it
might not be the most practically relevant setting since the implicitly set value of β is exponentially
small in n when the sample is not close to the threshold. The claim is made precise in Example A.1.

The arguably more relevant setting is to set the values of α and β and leave n implicit. This is much
more challenging since it is no longer possible to draw the predetermined number of samples and
use a favourite concentration inequality. We propose a new certification procedure using confidence
sequences to adaptively (and optimally) deciding how many samples to draw addressing the problem.

Contributions:

• We introduce a new, strictly better version of Clopper-Pearson confidence intervals for
estimating the class probabilities in Subsection 2.1. The presented interval is optimal, and
thus is the ultimate solution to the canonical statistical estimation of randomized smoothing.

• We propose new methods for the certification utilizing confidence sequences (instead of
confidence intervals) in Subsection 2.2. This allows us to draw just enough samples to
certify robustness of a point; greatly decreasing the number of samples needed.

• We provide a complete theoretical analysis of the proposed certification procedures. In
particular, we provide matching (up to a constant factor) lower-bounds and upper-bounds
for the width of the respective confidence intervals. We invert the bound and show that the
certification procedure has the optimal sample-complexity in an adaptive estimation task.

• We provide empirical validation of the proposed methods confirming the theory.

Notation: Bernoulli random variable with mean p is denoted as B(p) and binomial random variable
is B(n, p). Random variables are in capitals (X) and the realizations are lowercase (x). We type
sequences in bold and denote x:t first t elements of x. We write a ≲ b if there exists a universal
constant C > 0 such that a ≤ Cb. If a ≲ b and b ≲ a, then we write a ≍ b. Iverson bracket JΦK
evaluates to 1 if Φ is true and to 0 otherwise.

1.1 Paper organization

First, in Section 2 we introduce randomized smoothing, then, in Subsection 2.1, we introduce
Clopper-Pearson confidence intervals, show that they are conservative and propose their improved
(optimal) randomized version. In Subsection 2.2 we discuss shortcomings of confidence intervals and
introduce confidence sequences and provide lower and upper bounds for their performance. We use
the confidence sequences in Section 3 and benchmark them on a sequential estimation task.

2 Randomized Smoothing

As outlined in Introduction, consider a classifier F : Rd → Y and let the class probabilities under
additive noise φ be hφ(x)y = Pδ∼φ[F (x+ δ) = y]. Denote the highest probability (breaking ties
arbitrarily) class in the original point A = argmaxy∈Y hφ(x)y and the second-highest probability
class B = argmaxy∈Y\A hφ(x)y. Let the corresponding probabilities be pA and pB respectively.
Recalling that Hφ(x) = argmaxy∈Y hφ(x)y , then for a certain function r : [0, 1]2 → R+ we have

∥x− x′∥ ≤ r(pA, pB) =⇒ Hφ(x) = Hφ(x
′).

2of an input for a model at a certain radius
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This r depends on the smoothing distribution φ and the considered norm. For example, if the
considered norm is ℓ2 and φ is isotropic Gaussian with standard deviation σ, then r(pA, pB) =
σ
2 (Φ

−1(pA)− Φ−1(pB)) where Φ−1 is Gaussian quantile function Cohen et al. (2019). Note that in
general, r(·, ·) is increasing in the first coordinate and decreasing in the second one. The intuition is
that the larger the value of pA at x, the larger it will be also in the neighborhood of x; similarly for
pB . It is common in the literature to use the bound pB ≤ 1− pA and thus certify r(pA, 1− pA). We
stick to the convention in the paper and discuss the topic in more details in Appendix B.

Statistical estimation: The crux of the paper lies in the statistical estimation problems for random-
ized smoothing. We consider the abstract framework for randomized smoothing, so the proposed
techniques can be used as a drop-in replacement in all randomized smoothing works with a statistical-
estimation component (i.e., not in the de-randomized ones such as Levine & Feizi (2021)). We do not
only propose methods that work good empirically, we also provide theoretical analysis suggesting
that we solve the problems optimally in a certain strong sense. The main focus is on the following
two constructs.

1. Confidence intervals: A standard component of randomized smoothing pipelines is the
Clopper-Pearsons confidence interval. It is known to be conservative3; thus, the certification
procedures are unnecessarily underestimating the certified robustness. We provide the
optimal confidence interval for binomial random variables, resolving this issue completely.

2. Confidence sequences: In the standard randomized smoothing practice, we draw a certain,
predetermined, number of samples and then we compute the certified radius on a confidence
level 1− α. We improve on this by allowing for adaptive estimation procedures employing
confidence sequences; We demonstrate the performance in the standard task of adversarial
robustness, where we want to decide if a point is robust at radius r with type-1 (resp. 2)
error rates α (resp. β) using as few samples as possible.

Literature review of randomized smoothing: The most relevant related works are Horváth et al.
(2022); Chen et al. (2022) and they are discussed in Section 3. Here we briefly summarize literature
relevant to randomized smoothing in general. The choice of the smoothing distribution φ is a crucial
decision determined mainly by the threat model with respect to which we want to be robust. For
example, if we are after certifying ℓ1 robustness, we choose a uniform distribution in a d−dimensional
ℓ∞ ball (Lee et al., 2019; Yang et al., 2020), or better, splitting noise (Levine & Feizi, 2021), but we do
not go into details here. Alternatively, for p−norms, p ≥ 2 one would usually use a d−dimensional
normal distribution Lecuyer et al. (2019); Cohen et al. (2019). The variance of the distribution
based on how large perturbations do we allow in our threat model. We refer the reader to Yang
et al. (2020) for a broader discussion on the smoothing distributions. It is possible to use methods
in the spirit of randomized smoothing to certify other threat models, such as patch attacks Levine
& Feizi (2020) and sparse attack Bojchevski et al. (2020), which can be readily extended to other
modalities. Sometimes, the "smoothing" distribution can be made supported on a small, discrete set
and then we can evaluate the expectation exactly, yielding deterministic certification (often called
de-randomized smoothing (Levine & Feizi, 2021)). See also Kumari et al. (2023) for a survey on
randomized smoothing containing examples of when the certification is beyond additive ℓp-norm
threat model; even such techniques use the Bernoulli estimation subroutine.

2.1 Confidence Intervals

We do not have access to the class A probability pA and only have to estimate it from binomial
samples; hence, the name randomized smoothing. Because of the randomness, we can only provide
probabilistic statements about the robustness of a classifier in the following spirit "with probability
at least 1 − α, robust radius is at least r" for a small α, usually 0.001. This failure probability
corresponds to the event of overestimating pA and we control it with the help of confidence intervals.

The standard choice for calculating the upper confidence interval is the Clopper-Pearson interval,
sometimes called exact. Regardless of this pseudonym, it is in reality conservative. In this subsection,
we introduce the Clopper-Pearson confidence interval for the mean of binomial random variables,
demonstrate its limitations and introduce its (better) randomized version.

3See https://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval.
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Definition 2.1 (Confidence interval for binomials). Let u, v map sample to a real number. They
form a (possibly randomized) confidence interval I(x) = [u(x), v(x)] with coverage 1− α if for any
p ∈ [0, 1] it holds that

PX∼B(n,p),I (p ∈ I(X)) ≥ 1− α.

We will mainly use one-sided confidence intervals; that is, u(·) = 0 (lower confidence interval) or
v(·) = 1 (upper confidence interval). When we will talk about probability of confidence interval
containing the parameter, it will be in the frequentist sense, keeping in mind that confidence intervals
provide no guarantees post-hoc for any individual estimation.

Clearly, if I(x) = [0, 1] regardless of x, it will be a valid confidence interval but rather useless; thus
we aim for short intervals. Ideally it would hold for every p that PX(p ̸∈ I(X)) = α, otherwise,
some values are included in the confidence intervals unnecessarily often they can be shortened. In the
following we introduce the standard Clopper-Pearson confidence intervals Clopper & Pearson (1934).

Definition 2.2 (Clopper-Pearson intervals). One sided upper interval is defined as v(x) = 1 and

u(x) = inf{p |P(B(n, p) ≥ x) > α}.

The lower one is defined as u(x) = 0 and

v(x) = sup{p |P(B(n, p) ≤ x) > α}.

Amongst the deterministic confidence intervals, they are the shortest possible; however, they are in
general conservative. In the binomial case B(n, p), there are only n+ 1 possible outcomes; and thus
only n+ 1 possible confidence intervals suggesting that the actual coverage can be 1− α only for at
most n+1 values of p. The problem strikingly arises for upper confidence interval for large values of
p. When we sample from B(n, p), regardless of the outcome, all values larger than n

√
α are contained

in the confidence interval. This is a usual problem in the context of randomized smoothing, leading to
sharp drops towards the end of robustness curves. We demonstrate this sub-optimality in the first part
of Example A.2. We mitigate this problem by introducing randomness into the confidence intervals.
They will still have the desired coverage level 1 − α, but will be shorter. Intuitively, we do so by
“interpolating" between the deterministic confidence intervals in the spirit of Stevens (1950).

Definition 2.3 (Randomized Clopper-Pearson intervals). Let W be uniform on the interval [0, 1].
The randomized one sided upper interval is defined as vr(x) = 1 ur(x) = u′

r(x,W ) where

u′
r(x,w) = inf{p |P(B(n, p) > x) + wP(B(n, p) = x) > α}.

The lower one is defined as ur(x) = 0 and vr(x) = v′r(x,W ) where

v′r(x,w) = sup{p |P(B(n, p) < x) + wP(B(n, p) = x) > α}.

Proposition 2.4. Randomized Clopper-Pearson interval (IrCP) have coverage exactly 1− α. Fur-
thermore, for any confidence interval I at level 1− α, and any p ≥ q ∈ [0, 1] it holds that

PX∼B(n,p)(q ∈ I(X)) ≥ PX∼B(n,p)(q ∈ IrCP(X)).

The proof is in the Appendix D and we remark that the interval can be efficiently found by binary
search. Proposition 2.4 implies that the randomized Clopper-Pearson bounds are optimal and all
the other confidence intervals for binomial random variables are more conservative. It remains to
demonstrate the advantage of the randomized confidence intervals. We refer to Figure 1 for the
comparison of the randomized and deterministic Clopper-Pearson confidence intervals and how they
affect the robustness. We note that the most significant difference is towards the high values of p
and for certification functions r such that limp→1 r(p) =∞, such as when smoothing with normal
distribution. This explains the common sharp drop by the end of the robustness curve.

Width of confidence intervals: For the simplicity of exposition, let the width of a confidence
interval at level 1−α with n samples be≍

√
log(1/α)/n. This way, we hide the dependency on p into

≍. In the full generality, the width of the confidence intervals exhibits many decay regimes between
the rates

√
p(1− p) log(1/α)/n (when np(1−p)≫ 1) and log(1/α)/n (when np(1−p) ≍ 1). Our

algorithms capture the correct scaling of the confidence intervals. See Boucheron et al. (2013) and the
discussion on Bennett’s inequality which captures the correct rates for Bernoulli mean estimation.
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Figure 1: left: Comparison of coverages of confidence intervals for the mean estimation of B(100, p)
when α := 0.001. Note that for p > n

√
α ∼ 0.93, the coverage is 1. right: Comparison of ℓ2-

robustness curves with the standard (dashed) or the randomized (solid) Clopper-Pearson bounds on a
CIFAR-10 dataset under the standard setting. The experimental details are in Appendix C.

2.2 Confidence Sequences

Limitations of confidence intervals: In order to compute the confidence intervals presented in the
previous subsection, we need to collect samples and then run an estimation procedure once which
brings certain limitations. Consider the following two scenarios: (1) It might be the case that we
do not need all 100 000 samples and after only 10 it would be enough for our purposes because we
could already conclude that the point cannot be certified here; thus, we wasted 99 990 samples. (2)
Alternatively, we could see that even 105 samples are not enough, and we need to draw more samples.
However, we have already spent our failure budget α, so we cannot even carry another test at all.

This motivates the introduction of confidence sequences. They generalize confidence intervals in
the way that they provide a confidence interval after every received sample such that we control the
probability that the underlying parameter is contained in all the confidence intervals simultaneously.

Definition 2.5 (Confidence sequence). Let {ut, vt}∞t=1 be mappings from a sequence of observations
to a real number. They form a confidence sequence It(x:t) = [ut(x:t), vt(x:t)] for all t ≥ 1 with
confidence level 1− α if

P (p ∈ It(X:t),∀t > 1) ≥ 1− α

for any p ∈ [0, 1], where X is an infinite sequence of Bernoulli random variables B(p).
Remark 2.6. Since we want the estimated parameter to be contained in all the confidence intervals
simultaneously, we will have by convention that It+1(x:t+1) ⊆ It(x:t).

To simplify presentation, we would consider the symmetric ones; i.e., those where we consider the
two possible failures - when we overestimate or underestimate the mean - to be equal. However, they
will be constructed from two one-sided bounds, so the generalization is straightforward and will not
be discussed.

Related work: The construction of confidence sequences based on union bound employs the
doubling trick which is widely used in online learning to convert fixed-horizon algorithms to anytime
algorithms. In this direction, we refer to Mnih et al. (2008) as the direct predecessor of this work,
where they used similar techniques but did not explicitly construct confidence sequences. In the
confidence sequence literature, this technique is similar to stitching of Howard et al. (2020). The
stitched confidence intervals of Howard et al. (2020) are generally shorter by a small constant factor,
but the analysis and generalization become complicated, contrasting with our approach.

The construction based on betting is in the spirit of Orabona & Jun (2023) (the reference contains
an excellent survey on the topic). The difference mainly lies in the fact that we are interested in
Bernoulli random variables, which allows us to use specialized tools at places, as opposed to the
referred work, which considers bounded random variables. As an analogy to confidence intervals, the
previous work constructed Bernstein-type inequalities, while we constructed Clopper-Pearson-like
bounds. In Ryu & Bhatt (2024), the authors improved over Orabona & Jun (2023) in certain aspects
in the case of [0, 1]-valued random variables. Notably, in Section 3, they considered the special case -
{0, 1}-valued random variables and their results are greatly overlapping those in Section 2.4.
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2.3 Union bound confidence sequence

A natural way how to extend the confidence intervals to confidence sequences is to construct a
confidence interval at every time step and use a union bound to control the total failure probability. In
the following, we first show that a naive application of this approach is asymptotically suboptimal,
and then we provide a way how to construct optimal confidence intervals in a certain strong sense.

Intuition on the width of confidence sequences: For any random variable with finite variance,
the optimal width of the confidence interval for the mean parameter scales as

√
log(1/α)/t with

the increasing number of samples t at confidence level 1 − α Lugosi & Mendelson (2019). On
the other hand, it is well known that the width of the optimal confidence sequence scales as√
(log(1/α) + log log t)/t as t increases due to the law of iterated logarithms Ledoux & Talagrand

(1991). A naive use of union bound, computing a confidence interval using failure probability at time
step t, αt =

αc
tγ for some c and γ > 1 such that

∑∞
i=1 αt = α yields a confidence sequence whose

width scales as
√
log(1/αt)/t ≈

√
(log(t) + log(1/α))/t. We cannot choose any monotonous αt

schedule decaying slower because even for γ = 1 we still keep the log factor while the sum
∑∞

i=1 δt
diverges.

Now consider non-monotonous schedules of αt, two key ideas follows. (1) In order to have the
optimal rate log(1/αt) ≈ log(1/α) + log log t, we need αt ≍ α/ log t. Clearly, if this holds for all t,
then

∑∞
t=1 αt diverges. (2) A confidence interval at time t is also a valid confidence interval for all

t′ > t. Furthermore, if t′ is not much larger than t, then it may still asymptotically have the optimal
width up to a multiplicative constant. Thus, updating the confidence sequence when t is a power of
(say) 2 result in the optimal width. This reasoning is formalized in the following theorem.

Theorem 2.7. Fix α > 0. Consider a sequence

αt =

{
α

k(k+1) if t = 2k for integer k,
0 otherwise.

Then Algorithm 1 produces a confidence sequence at level 1 − α of the following width which is
attained in the worst case

εt ≲

√
log(1/α) + log log(t)

t

where εt is U − L at time t, and the confidence intervals are randomized Clopper-Pearson intervals.

The proof is in Appendix E. We remark that the statement of Theorem 2.7 prioritizes simplicity
over its full generality. The generalization to other schedules of αt from the second bullet point as
described in the previous paragraph is routine and described in detail in Appendix C.2.

Corollary 2.8. The asymptotic rate of 2.7 is optimal due to law-of-iterated-logarithm (Ledoux &
Talagrand, 1991) and even in the finite sample regime due to Balsubramani (2014)[Theorem 2].

2.4 Confidence sequences based on betting

A recent alternative approach to confidence sequences is based on a hypothetical betting game. For
the illustration, consider a fair sequential game; e.g., sequentially betting on outcomes of a coin. If
we guess the outcome correctly, we win the staked amount, otherwise we lose it. If the coin is fair,
in expectation, our wealth stays the same. On the other hand, if the game is not fair and the coin is
biased, we can win money. For example, if the true head-probability is 0.51, we start increasing our
wealth in an exponential fashion, see Example A.3; thus, if we win lots of money, we can conclude
that the game is not fair. We instantiate a betting game for every possible mean 0 ≤ p ≤ 1 that would
be fair if the true mean is p. Then we observe samples of the random variable and as soon as we win
enough money, we drop that particular p from the confidence sequence. To make things formal, we
introduce the necessary concepts from probability theory. The evolution of our wealth throughout a
fair game is modeled by martingales4, sequences of random variables for which, independently of the
past, the expected value stays the same.

4It would be historically accurate to say that martingales actually model fair games.
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Definition 2.9 (Martingale). A sequence of random variables W1,W2, . . . is called a martingale
if for any integer n > 0, we have E(|Wn|) < ∞ and E(Wn+1|W1, . . . ,Wn) = Wn. If we instead
have E(Wn+1|W1, . . . ,Wn) ≤Wn, then the sequence is called a supermartingale.

Algorithm 1 Union-Bound Confidence Sequence

t,H,K,L, U ← 0, 0, 0, 0, 1
loop

Obtain random x
H ← H + x
t← t+ 1
if t = 2K then
K ← K + 1
αt ← α/(K(K + 1))
L← max{L,LowConfInt(H, t, αt)}
U ← min{U,UppConfInt(H, t, αt)}

end if
end loop

Algorithm 2 Betting Confidence Sequence

LOGQ, t,H, L, U ← 0, 0, 0, 0, 1
loop
q̂ ← (H + 1/2)/(t+ 1)
Obtain random x
H ← H + x
t← t+ 1
LOGQ ← LOGQ+x log(q̂)+(1−x) log(1−q̂)
LOGP(p) := H log(p) + (t−H) log(1− p)
Ip ← {p|LOGQ − LOGP(p) ≤ log(1/α)}
L← max{L,min Ip}
U ← min{U,max Ip}

end loop

In the coin-betting example, W1,W2, . . . is a martingale where Wn represents our wealth after
playing the game for n rounds. We stress that Wt ≥ 0 for all t > 0. By convention, we will also have
W1 = 1. We further need a time-uniform generalization of Markov’s inequality.
Proposition 2.10 (Ville’s inequality Durrett (2010)). Let W1,W2, . . . be a non-negative supermartin-
gale. then for any real a > 0

P

[
sup
n≥1

Wn ≥ a

]
≤ E [W1]

a
.

Thus, whenever we play a game and earn a lot, we can — with high probability — rule out the
possibility that the game is fair. So far, this is still an abstract framework. We have yet to design the
betting game and the betting strategy and describe how to run the infinite number of games.

Betting game: Let5 0 < p < 1. Consider a coin-betting game where we win 1/p (resp. 1/(1− p))
multiple of the staked amount if we correctly predicted heads (resp. tails). If the underlying heads
probability is p, then regardless of our bet - in expectation - we still have the same amount of money;
thus, this game is fair. We identify heads and tails with outcomes 1, 0 respectively.

Betting strategy: We deconstruct the betting strategy into the two sub-tasks: (1) If we know the
underlying heads probability, we can design the optimal betting strategy for any criterion. (2) Estimate
the heads probability. First sub-task: Let p define the betting game from the previous paragraph and
q be the true heads probability; Optimally, bet q-fraction of wealth to heads and 1− q fraction to tails.
It maximizes the expected log-wealth, or equivalently, the expected growth-rate of our wealth and
is also known as the Kelly Criterion. This is known to be optimal for the adaptive estimation task,
see Wald (1947) under the name sequential-probability-ratio-test (SPRT). One might have expected
the optimal criterion to optimize to be the expected wealth; however, the betting strategy maximizing
the expected wealth suggest to bet all the money on one of the outcomes. This strategy, however,
leads to an eventual bankruptcy almost surely and is not recommended in this context. Second
sub-task: A natural choice is to use the running sample mean of the observations as the estimator of
q. Unfortunately, this estimator would be either 0 or 1 after the first observations, so we go bankrupt
whenever the observed sequence contains both outcomes. Thus, we use a “regularized" sample mean
and after observing H times heads in a sequence of length t, we estimate q̂ = (H+0.5)/(t+1). This
is the MAP estimate of the mean with Beta(1/2, 1/2) prior and is known as Krichevsky–Trofimov
estimator (Cesa-Bianchi & Lugosi (2006) Section 9.7), Krichevsky & Trofimov (1981) and is proven
to be successful for building confidence sequences beyond the Bernoulli case Orabona & Jun (2023).

Parallel betting games: We have described a betting game for a certain p and a betting strategy.
Employing Ville’s inequality we can possibly reject the hypothesis that the true sampling distribution

5For simplicity of exposition, similar arguments hold when p ∈ {0, 1}.
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follows p. However, we need to run the game for all values of p ∈ [0, 1] and after every observation
report the smallest interval containing all the values of p that were not rejected so far. This is clearly
impossible to do explicitly, but it turns out that the non-rejected values of p form an interval and
we can use binary search twice to find the end-points of the interval. This is a non-trivial result
and generally does not need to hold for confidence intervals constructed by betting. The first key
observations is that the betting strategy does not depend on p, so we can “play the game" just once.
The second observation is that the resulting wealth is convex in p. To see why, let q̂τ (resp. xτ ) be
our estimate of q (resp. the coin-toss outcome, for brevity 1/0 corresponds to heads/tails respectively
and H =

∑t
τ=1 xτ ), then our log-wealth at time t can be written as a function of p.

logWt(p) = log

t∏

τ=1

((
q̂τ
p

)xτ
(
1− q̂τ
1− p

)1−xτ
)

=

t∑

τ=1

xτ log(q̂τ ) + (1− xτ ) log(1− q̂τ )

︸ ︷︷ ︸
LOGQ

−H log(p)− (t−H) log(1− p)

︸ ︷︷ ︸
LOGP(p)

.

Therefore, at every time-step, we can compute the interval of values of p for which the betting game
has not concluded yet and thus form the current confidence interval. The proof is in Appendix F.
Theorem 2.11. Algorithm 2 produces a valid confidence sequence at confidence level 1− α, where
we interpret the interval [L,U ] at iteration T of the algorithm as the confidence interval at time t
with width ε at most (which is attained in the worst case):

εt ≲

√
log(1/α) + log(t)

t
.

This is not asymptotically optimal; still, empirically it performs well, and the same techniques can be
used to obtain a confidence sequence that follows law-of-iterated-logarithms Orabona & Jun (2023).
We present a comparison of the confidence sequences in Figure 2 and conclude this subsection by an
implementation remark.
Remark 2.12. Wealth W (x:t) does not depend on the order of x:t, so we write it as W (h, t), meaning
wealth after observing h heads in the first t tosses. Now, for every time t, we can compute what is
the minimal number of observed 1 (heads) (call it H(t)) so that p is outside of the lower-confidence
interval. H(t) is clearly non-decreasing in t; also, W (h, t)) can be easily computed from W (h−1, t)
and from W (h, t−1) in constant time. The whole dynamic programming approach can be summarized
in the following scheme which is repeatedly executed starting from h = 0, t = 0.

• If W (h, t) ≥ 1
α : H(t) := h, t := t+ 1, compute W (h, t+ 1)

• Else: h := h+ 1, compute W (h+ 1, t).

Both lines are executed in constant time. Also, we start from W (0, 0) and h, t < N + 1. Executing a
line, either h or t increases and thus to compute the thresholds for sequence of length up to N , we
need to execute at most 2N lines of the scheme. We note that for the simplicity, we did not handle
the case when W (h, t) < 1/α. In that case we would just set H(t) = t+ 1 and increase t.

3 Experiments

Now we shall provide experimental evidence for the performance of the proposed methods. We
benchmark the confidence sequences on the Sequential decision making task, where we try to certify
a certain radius at given confidence level with as few samples as possible; the definition that follows
is general beyond randomized smoothing. We emphasize that this setting of certifying a certain
radius is by far the most common one in the robustness literature. We stress that the comparison of
the robustness curves (e.g., as in Figure 1) is vacuous, since in the adaptive task, we do not spend
samples to improve the robustness curves, beyond the certified level.
Definition 3.1 (Sequential decision making task). Let 1

2 ≤ p, q ≤ 1 and only p being known. Receive
samples from B(q). After every sample, either halt and declare that p > q, p < q, or request another
sample. The task is to minimize the number of samples while being wrong with frequency at-most α.
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Figure 2: left: Comparison of widths of confidence sequences for the mean of Bernoulli B(0.1) with
α = 0.001. The width is on top and the actual confidence sequence on the bottom. In the notation of
Algorithms 1 and 2, the sequence of U − L is in the top figure, while both sequences U and L are in
the bottom figure. Note the log-scale for t (and width on top). right : Instantiation of Task 3.1. The
goal is to decide if p = 0.91 (vertical magenta line) or not with α = 0.001. On top are the numbers
of samples requested for the individual methods averaged over 1000 trials for 51 equally spaced
values of p ∈ [0, 1]; on the bottom is the relative suboptimality of the individual methods; i.e., how
many times more samples did they request compared to the ideal method. Note log scales on the
y−axis. methods: UBnd-CS and Betting-CS are from Algorithm 1 and 2 respectively. Adaptive is
from Horváth et al. (2022). The ideal is the unattainable lower-bound for the two tasks. On the LHS,
it is a confidence interval on level 1− α computed independently at every time step. On the RHS, it
is SPRT knowing both p, q which is optimal due to Wald (1947).

3.1 Related work

We identified Horváth et al. (2022) as the most relevant work. They distinguish between samples
for which a predetermined radius r can be certified, and the samples for which it cannot. They use s
values n1 < · · · < ns ([102, 103, 104, 1.2 · 105]) sequentially as the number of samples. They try to
certify radius r with n1 samples; if it fails, then they try n2 samples etc. They employ Bonferroni
correction (union bound) and every sub-certification is allowed to fail with probability only α

s . The
key differences (details in Appendix C.2.1) to our method are that (1) It always abstains for hard tasks.
(2) Splitting the α budget evenly degrades performance for small n. (3) method is only a heuristics.
See Figure 5 and Tables 1, 3, 4. For the empirical comparison.

Another relevant work is Chen et al. (2022). Here, the certification is split in two phases. (1) Mean is
crudely estimated. (2) The crude estimate selects the number of samples drawn so that the decrease
(either multiplicative or absolute) in the certified radius is heuristically approximately at most a
predetermined constant. We note that this heuristic for distributing samples can be made rigorous in a
certain sense (see Dagum et al. (1995)). This is trivial for confidence sequences, as one can stop the
estimation only as soon as they short enough and solve the task of Chen et al. (2022) with guarantees
(instead of just heuristic). In this sense, we see our methods to be more general. We benchmark this
in Table 2.

The works Seferis et al. (2023); Ugare et al. (2024) also address the speed issues of randomized
smoothing, however, they are orthogonal to our directions. In particular, Ugare et al. (2024) uses
an auxiliary network for which the certification is faster and transfer the certificates to the original
model. Seferis et al. (2023) observes that few samples are sufficient for non-trivial certificates.

4 Conclusion

In this paper, we investigated the statistical estimation procedures related to randomized smoothing
and improved them in the following two ways: (1) We have provided a strictly stronger version of
confidence intervals than the Clopper-Pearson confidence interval. (2) We have developed confidence
sequences for sequential estimation in the framework of randomized smoothing, which will greatly
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r=0.5 r=1.25 , r=2
Adaptive Horváth et al. (2022) 1976± 41 3593± 574 4623± 47
Betting CS 2 531± 157 2169± 257 2130± 339
Union bound CS 1 635± 157 2557± 234 2670± 271
Adaptive Horváth et al. (2022) 0.13± 0.006s 0.23± 0.036s 0.3± 0.003s
Betting CS 2 0.05± 0.012s 0.17± 0.019s 0.17± 0.02s
Union bound CS 1 0.05± 0.006s 0.19± 0.018s 0.21± 0.02s

Table 1: Comparison of the average number of samples (resp. time) needed to decide if a point is
certifiably robust with given radius. Cifar10, ℓ2, details are in Appendix C.2.1

ε 0.01 0.02 0.03

UB-CS 197 628 49 198 21 513
Betting-CS 199 771 47 215 20 918

Horvath 768 560 94 900 81 080
Table 2: We run the confidence sequences until the width is smaller than ε on a (both sided) confidence
level 0.999. That way we can certify certain radius knowing that the true probability is at most ε
larger. We used the same network as for the ℓ2 experiment in Table 1 (WideResnet-40 on CIFAR10,
σ = 1). We report the average number of samples required over 500 images.

reduce the number of samples needed for adaptive estimation tasks. Additionally, we provided
matching algorithmic upper bounds with problem lower bounds for the relevant statistical estimation
task.

5 Broader Impact Statement

We hope that this paper enlarges the interest in statistical estimation within the ML community.
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Figure 3: Actual coverages for (randomized) Clopper-Pearson confidence intervals for B(2, p).

A Deferred examples

Example A.1. [implicit type-2 error is exponentially small] Let us sample from X ∼ B(p) to decide
if the mean is smaller or larger than p− ε using n = 100 000 samples. We use Hoeffdings’ inequality
to bound the probability that p is incorrectly estimated to be lower than p− ε, i.e.,

P

[
1

n

n∑

i=1

Xi ≤ E[X]− ε

]
≤ e−2nε2 .

Considering ε to be a constant, we see that this probability scales as e−n. For example, when the true
probability is 0.5 and we want to decide if it is smaller or larger than 0.4, already 1000 samples make
the probability of incorrectly decision to be roughly 2 · 10−9.
Example A.2. [suboptimality of Clopper-Pearson confidence interval and optimality of the random-
ized one] Recall that the coverage for p is the probability that p is included in the confidence interval
when it is the true parameter and α is the allowed type-1 error and 1−α should be the coverage. Con-
sider samples from X ∼ B(2, p) and α = 0.05. By definition, the Clopper-Pearson upper intervals
are [0, 1], [0.025, 1], [0.224, 1] for observations x = 0, 1, 2 respectively. Coverage for p = 0.224 is
0.95 because the event that p is outside of the confidence interval is P(X ∈ {0, 1}) = 1− p2 ≈ 0.95.
On the other hand, coverage for p = 0.1 is P(X ∈ {0, 1}) = 1− p2 = 0.99 and for all p > 0.224 it
is 1; see Figure A for the coverages. Now we turn on to the randomized Clopper-Pearson interval for
p = 0.5. Recall the definition of the upper interval,

u′
r(x,w) = inf{p |P(B(n, p) > x) + wP(B(n, p) = x) > α}.

The randomized confidence interval for some value x interpolates between the confidence intervals
for x and x+ 1 when x < n. Thus, when x ̸= 2, p > 0.224 is always in the confidence interval (this
happens with probability 1− p2 = 0.75. Otherwise, we solve the following for w (because we set
n = 2, x = 2):

P(B(2, p) > 2) + wP(B(2, p) = 2) = α,

0 + p2w = α,

v = α/p2.

Thus, p > 0.224 is not contained in the randomized confidence interval iff W ≤ α/p2 and X = 2.
Since these random variables are independent, the resulting probability is P(W ≤ 0.2)P(X = 2) =
α/p2 · p2 = α, as desired.

Example A.3 (Exponential increase of wealth for a biased coin). For simplicity of exposition we
assume that the coin falls on head 51 times from 100 tosses. To get a high probability statement
is straightforward. Let us always bet 0.51 fraction of our money to to heads and 0.49 to tails
(equivalently, just bet 0.02 of the money to the heads). If we win, we win 2% of our money, otherwise
we lose 2%. Then, our wealth after 100 tosses will be 1.0251 · 1.02−49 ∼ 1.04. Thus, every 100
tosses we multiply our wealth by the factor of 1.04 which is the desired exponential function.

B Binary or multiclass certification

Although all the standard benchmarking datasets for randomized smoothing are multiclass (cifar10
and imagenet), the commonly used randomized smoothing certification protocol is for the binary
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Figure 4: Comparison of the robustness curves for binary and multiclass certification. In the binary
case, all the failure budget α = 0.001 was spent on controlling the top-1 class probability. In the
multiclass setting, we spend λ fraction of the budget in bounding pA and the remaining 1− λ part
on bounding pB . Note that this has no significant effect. The average certified radius for binary
certification is 0.50, while for the multiclass it is 0.61. The experimental details are in Appendix C.
The only difference is that now σ = 1.

setting, where we certify class A against all the other classes merged in a super class. In that case, the
certification is done using the formula r(p̂A, 1− p̂A), where we have to guarantee that pA ≥ p̂A at
confidence level at least 1− α. The alternative is to use multiclass certification; here, the certification
is done via formula r(p̂A, p̂B) ensuring that pA ≥ p̂A and pB ≤ p̂B at the same time at confidence
level at least 1 − α. The difference between these two bounds naturally manifests in the regime
when pA is small. Strikingly, when pA < 0.5, the binary certification approach cannot certify any
robustness, while the multiclass one possible can. The cost for the multiclass procedure is only that
we have to divide the failure budget between the the two estimation procedures. This is usually
insignificant. In the ℓ2 (and thus ℓ∞ case), the role of α is rather minor, see Cohen et al. (2019) Figure
8. This is even more pronounced in the ℓ1 case. Here α plays an absolutely negligible role in the
resulting certified radius, see Voracek & Hein (2023), Subsection 2.7 for the discussion and Figures
4, 6. While this might be known to many, we believe that some readers may benefit from reading
this argument. We demonstrate the difference in certification power in Figure 4. This multiclass
certification fits in our setting effortlessly. We can run one confidence sequence for pA, and another
for pB . We do not even need to know pB and we can run it for all of them at the same time. This
means, that we run it only for the second most observed class. This second most observed class does
not need to be the actual runner-up class, but since it was possibly observed more times than the
actual runner-up class, it will also provide a wider confidence interval, so the statistical estimation is
still correct.

C Experimental details

C.1 Figure 1

The model in Figure 1 is the pretrained cifar10 model (Exactly the same model/setting from
the example in README) of Salman et al. (2019), https://github.com/Hadisalman/
smoothing-adversarial; in particular, it was ResNet-110 smoothed with Gaussian noise σ = 0.12
for ℓ2 robustness. We set α = 0.001 as usual and skip every 20 images of the test dataset (using 500
images, as is the standard practice).

C.2 Parameters of union bound confidence sequences

We were enlarging the sample size by a factor of β = 1.1 between estimations (that is, the condition
T = 2K is replaced by T > βK = 1.1K and our schedule is αk = 5α/((t+ 4)(t+ 5)) The method
is not sensitive to the choice of hyperparameters, see 5. In fact, the hyperparameters β, γ should be
selected based on what is the "interesting" regime. There is an inherent tradeoff between a good
asymptotical performance (β, γ ∼ 1) and low-sample performance (β, γ > 1). This is confirmed in
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Figure 5: Samples needed for the adaptive estimation task as in Figure 2 for different hyperparameters.
β is the factor by which we enlarge the sample size before computing new confidence interval, γ is
the scaling of α as described in the main text. I.e., k−th estimation will have αk = αc

kγ where c is the
normalization constant such that

∑∞
k=1 αk = α.

Figure 5. The width of the confidence interval scales as:
√

β(log(1/(γ − 1)) + log(1/α) + γ log logβ t)

t
.

This is because
∑∞

t=1
1
tγ ≍

1
γ−1 , αk ≍ α(γ−1)

kγ and t ≍ βk, then k ≍ logβ t. Plugging in these

identites in
√

log(αt)
t , and remembering that the confidence interval is recomputed only after elarging

the sample size by β factor, then for time t, the actual t we use in the formula can be as small as t/β.

C.2.1 Comparison with Horváth et al. (2022)

The method from Horváth et al. (2022) uses a finite collection of values of n = n1 < · · · < ns

for which the confidence intervals are computed. A direct consequence is that the hard examples
for which more than ns samples are needed cannot be certified. Additionally, due to Bonferroni
correction, with large s, the term log(s/α) appearing in the confidence interval becomes large
compared to t for small values of t (compare with the polynomial scaling that we propose where this
is not the case). Consider ni = ni

1, then the width of the confidence interval scales as (not considering
the regime when t > ns where the width is constant):

√
n1(log s+ log 1/α)

t
.

In particular, when we want to have confidence sequence up ns = N samples, then the width becomes
√

s
√
N(log s+ log 1/α)

t

and we either pay for the fact that we have large differences between the steps (
√
sN ), or for the fact

that we have lot of steps (log(s)) which is detrimental for small values of t.
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C.3 Details for 1, 3, 4

We had WideResNet-40-2 for CIFAR-10 trained for 120 epochs with SGD and learning rate 0.1,
Nesterov momentum 0.9, weight decay 0.0001 and cosine annealing. batch size 64. The loss was
the standard, noise-augmented training using the same noise as for the certification. We either used
Gaussian smoothing for ℓ2 robustness of uniform in ℓ∞ box for ℓ1 robustness.

For the certification we used batch size 100 (natural for Horváth et al. (2022)). For our method, we
had a mixed batch of data points so the data points for which we have the least amount of samples
and are not decided yet are put in the batch.

D Proof of Proposition 2.4

Proof. We show it for the upper interval, the lower is analogical. First, we note that f(p) =
P(B(n, p) ≥ a) is non-decreasing in p for any n, a; Thus, ur(X) ≤ p if and only if P(B(n, p) >
x) + wP(B(n, p) = x) > α. Now, we show that P(ur(X) ≤ p) = 1 − α for X ∼ B(n, p). To
shorten the notation, let α1 = P(X ≥ a) and α2 = P(X > a) for such a that α1 ≤ α ≤ α2. We
have

P(ur(X) ≤ p) = P(ur(X) ≤ p | X < a)P(X < a)

+ P(ur(X) ≤ p | X = a)P(X = a)

+ P(ur(X) ≤ p | X > a)P(X > a),

which we evaluate to P(ur(X) ≤ p) = (1 − α1) + (α1 − α2)P(ur(X) ≤ p | X = a) + 0.
We note that given the event X = a, it holds ur(X) ≤ p ⇐⇒ α2 + W (α1 − α2) > α, so
P(ur(X) ≤ p | X = a) = P(α2 + W (α1 − α2) > α) = P

(
W > α−α2

α1−α2

)
= α1−α

α1−α2
. Overall,

P(ur(X) ≤ p) = (1− α1) + (α1 − α2)
α1−α
α1−α2

= 1− α.

The second part of the statement follows from Neymann-Pearson lemma. Concretely, we consider the
following binary hypothesis testing problem from sample B(n, θ), and we decide if θ = p or θ = q.
Both confidence intervals has size α and can be interpreted as binary tests – just return the indicator
function of q ∈ I(x). Neymann-Pearson lemma states that the (unique) uniformly most powerful test
is the likelihood ratio test, which is implemented by the randomized Clopper-Pearson interval.

□

E Proof of Theorem 2.7

Proof of Theorem 2.7. First,
∑∞

i=1 αt =
∑∞

k=1
α

k(k+1) = α; thus, by union bound, all the computed
confidence intervals are simultaneously correct at confidence level 1 − α. Next we show that the
width is as claimed. When t = 2k, we directly have from Hoeffding’s inequality

ε ≲

√
log 1

αt

t
≍

√
log 1

α + log log t

t
.

Otherwise, we would use a confidence interval of some previous t′ such that t′ < t < 2t′ with width

ε ≲

√
log 1

α + log log t′

t′
≍

√
log 1

α + log log t

t
,

Noting that Clopper-Pearson’s confidence intreval is shorter than Hoeffding’s finishes the proof. □

F Proof of Theorem 2.11

Proof. First we verify that everything in the algorithm is well defined and the logarithms take positive
inputs. Now let Wt = exp

(
LOGQt

LOGPt

)
where subscript t denotes iteration of the algorithm. We show

that it is a martingale when X ∼ B(p) for 0 < p < 1. In that case,

EX [Wt] = Wt−1EX

[(
q̂t
p

)X (
1− q̂t
1− p

)1−X
]
= Wt−1

(
p
q̂

p
+ (1− p)

1− q̂

1− p

)
= Wt−1.
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r=0.5 r=1.25 , r=2
Adaptive Horváth et al. (2022) 1976± 41 3593± 574 4623± 47
Betting CS 2 531± 157 2169± 257 2130± 339
Union bound CS 1 635± 157 2557± 234 2670± 271
Adaptive Horváth et al. (2022) 0.13± 0.006s 0.23± 0.036s 0.3± 0.003s
Betting CS 2 0.05± 0.012s 0.17± 0.019s 0.17± 0.02s
Union bound CS 1 0.05± 0.006s 0.19± 0.018s 0.21± 0.02s

r=0.5 r=1.25 , r=2
Adaptive Horváth et al. (2022) 4150± 523 2266± 640 4760± 131
Betting CS 2 2206± 150 1665± 84 3932± 199
Union bound CS 1 2665± 78 1674± 37 3717± 361
Adaptive Horváth et al. (2022) 0.27± 0.04s 0.15± 0.04s 0.3± 0.009s
Betting CS 2 0.17± 0.011s 0.13± 0.006s 0.3± 0.014s
Union bound CS 1 0.2± 0.005s 0.13± 0.002s 0.28± 0.02s

Table 3: Comparison of the average number of sample needed to decide if the point is certifiably
robust with given radius in the top. The time needed is on the bottom. The upper table was in the
main paper, the bottom one is the exact same experiment but with a retrained model for ℓ2 robustness
robustness with σ = 1.

r=0.5 r=1 , r=1.5
Adaptive Horváth et al. (2022) 423± 38 3520± 82 3823± 127
Betting CS 2 138± 28 2680± 221 3007± 122
Union bound CS 1 150± 3 2926± 18 3144± 347
Adaptive Horváth et al. (2022) 0.04± 0.006s 0.23± 0.006s 0.25± 0.009s
Betting CS 2 0.19± 0.002s 0.21± 0.017s 0.23± 0.01s
Union bound CS 1 0.016± 0.006s 0.22± 0.009s 0.25± 0.03s

r=0.5 r=1 , r=1.5
Adaptive Horváth et al. (2022) 1370± 596 4790± 50 8463± 714
Betting CS 2 592± 94 4055± 459 5822± 81
Union bound CS 1 806± 113 4327± 106 5795± 321
Adaptive Horváth et al. (2022) 0.1± 0.04s 0.30± 0.003s 0.53± 0.05s
Betting CS 2 0.05± 0.007s 0.31± 0.03s 0.44± 0.005s
Union bound CS 1 0.06± 0.008s 0.33± 0.008s 0.44± 0.02s

Table 4: Comparison of the average number of samples needed to decide if the point is certifiably
robust with given radius in the top. The time needed is on the bottom. top and bottom are again the
exact same experiment but with a retrained model for ℓ1 robustness with σ = 1.

If p ∈ {0, 1}, then we would have a deterministic sequence and Wt ≤ Wt−1. Thus, Wt is a
supermartingale. It is also output of the exponential function and so is non-negative. Therefore, the
assumptions of Ville’s inequality are satisfied and can be applied. Whenever p is excluded from
the confidence interval, it happened that LOGQt − LOGPt ≥ log(1/α), or equivalently, Wt ≥ 1/α
which can only happen with probability α and it is thus a valid confidence sequence. We also recall
that in the main text we have shown that Ip is a sub-level set of a convex function and is thus convex
and can be efficiently found by binary search. The width of the confidence interval follows from
the standard regret bounds for the Krichevsky–Trofimov estimator Cesa-Bianchi & Lugosi (2006)
Section 9.7; Krichevsky & Trofimov (1981). The result then follows from Orabona (2019), Subsection
12.7. It was also derived in Ryu & Bhatt (2024); see Ryu & Wornell (2024) for generalization to
vector-valued random variables.

□
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We promised treatment of statistical estimation problems for randomized
smoothing and we delivered them.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We think we provided fair discussion of the results. For the provided theorems,
the assumptions are reasonable. The experiments seem convincing to us.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We provide proofs in the appendices although the main paper should be enough
to understand them.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide details in C. However, some of the experiments are heavily
dependent on random seed so they are unlikely to be reproduced. The important thing there
are not the absolute results, but the relative performance of the methods which should be
robust.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: In linked repo.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In C, also in the repository.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provided averages over runs and reported standard deviations where
appropriate.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The total compute is under a day on a single GPU.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: just yes
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: yes
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: no need.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the code we used, but not the datasets as it is standard (cifar)

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: na
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: na
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: na
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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