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We present the proof of our major results in section 1 and additional numerical experiments in section
2. In addition to the notations introduced in the main text, we add a few more in the supplement. The
bold symbol xa represents a length-a vector (either a row or column vector) with a constant value x.
In a similar fashion, we use xa×b to denote an a× b matrix with a constant value x.

1 Missing proofs

1.1 Proof of Theorem 1

One can easily see that I is dense in [0, 1] as M approaches infinity. Let x(t) be an Riemann
integrable function defined on [0, 1] and xM be the vector whose entries are x evaluated at points in
I, i.e.,

xM =

(
x(0), x

( 1

M − 1

)
, x

( 2

M − 1

)
, . . . , x(1)

)
.

For any positive number a ∈ [0, 1], define aM = min{z | a ≤ z/(M − 1), z ∈ Z+}. Since
aM/(M − 1) → a as M → ∞, we can verify that

lim
M→∞

[
cumsum

(
xM

M − 1

)]
aM

= lim
M→∞

1

M − 1

aM∑
i=1

x

(
i

M − 1

)
(1)

=

∫ a

0

x(t) dt, (2)

where (1) is the upper Riemann sum of x(·) on [0, aM ] and it becomes (2) since x(·) is Riemann
integrable. Hence, the cumsum operator becomes an integral operator as M → ∞. To complete the
proof, we remark that the integral of a continuous function is differentiable; thus, the imputation from
SAND is differentiable provided that T̃ is continuous. □

∗Correspondence to: Ju-Sheng Hong ¡jsdhong@ucdavis.edu¿.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



1.2 Proof of Theorem 2

Recall the definitions of T̃ , T̃c, T̃, and T̃c in section 3.2. By Lemma 1.1, for any hd, there exists a
SAND and a corresponding M -by-M matrix P such that the imputation is T̂i = (T̃i)1 + T̃i,cP for
subject i. Therefore,

∥dmask
i ⊙ (T̃i − T̂i)∥22 = ∥dmask

i ⊙ [T̃i − ((T̃i)1 + T̃i,cP)]∥22

= ∥dmask
i ⊙ (T̃i,c − T̃i,cP)∥22,

where u⊙ v is the element-wise product of u and v. To finish this proof, we first prove the inequality
in Theorem 2 by giving an explicit form of P and then show that this particular P can be learned
by SAND. Without loss of generality, we can assume that the first element in T̃i is 0 for all subjects.
Since dmask

i = (di1, . . . , diM ) and dij ∈ {0, 1} for all i ∈ A and j ∈ {1, . . . ,M}, we have∑
i∈A

∥dmask
i ⊙ (T̃i − T̃iP)∥22 ≤

∑
i∈A

∥T̃i − T̃iP∥22 (3)

=
∑
i∈A

T̃iPPTT̃ T

i −
∑
i∈A

T̃iPT̃ T

i −
∑
i∈A

T̃iP
TT̃ T

i +
∑
i∈A

T̃iT̃
T

i . (4)

To simplify our argument, we denote XT as
∑

i T̃
T
i T̃i and let tr(·) be the trace operator. Since tr(·)

is invariance under cyclic permutation, (4) becomes

tr(PPTXT )− tr(PXT )− tr(PTXT ) + tr(XT ). (5)

Suppose that P is a symmetric matrix and P = UPΣPU
T

P is the eigendecomposition, where
ΣP = diag(a1, . . . , aM ) and {aj}Mj=1 is the non-increasing eigenvalues. Then,

(5) = tr(UPΣ
2
PU

T

PXT )− 2tr(UPΣPU
T

PXT ) + tr(XT ). (6)

As XT is symmetric, it has the eigendecomposition, namely XT = UTΣU
T

T where Σ =
diag(λ1, . . . , λM ) and {λj}Mj=1 is the non-increasing eigenvalues. We pick UP = UT and de-
note the diagonal elements of UT

TXTUT as a1, . . . , aM . Using the property of trace where it is
invariant under cyclic permutation again, (6) becomes

M∑
j=1

a2jλj − 2ajλj + λj . (7)

Next, we want to minimize (7) over aj ∈ R for all j. First, we notice that λj ≥ 0 for all j since
XT = UTΣU

T

T is a semi-positive definite matrix. Then, we set the first derivative of (7) with respect
to aj as 0 and get aj = 1 for all j. However, when P is not full-rank, say rank(P) = dϵ, there
will be (M − dϵ) zeros in {aj}Mj=1. As a result, all aj must be in {0, 1} regardless of the rank of P.
Under the rank insufficient case, we need to decide which aj should be 0. To do this, we notice that

a2jλj − 2ajλj + λj =

{
0, when aj = 1;

λj , when aj = 0.
(8)

Consequently, if P is of rank dϵ, a1, . . . , adϵ must be 1 to minimize (7), as {λj}Mj=1 is non-increasing.
To sum up, the minimum of (3) over P being symmetric with rank dϵ is obtained when

P = UTdiag(1dϵ
,0M−dϵ

)UT

T . (9)

In addition, (8) implies that the minimum of (3) is
∑M

j=dϵ+1 λj . As dϵ satisfies
∑d

j=1 λj/
∑M

j=1 λj ≥
1− ϵ and

∑
i∈A ∥T̃i∥22 =

∑
i∈A T̃iT̃

T
i = tr(XT ) =

∑M
j=1 λj , we have

1

∥A∥0

∑
i∈A

∥dmask
i ⊙ (T̃i − T̂i)∥22 ≤ ϵ

∥A∥0

∑
i∈A

∥T̃i∥22

provided that T̂i can be written as T̃iP where P, described in (9), can be learned by a SAND.

To show that there exists a SAND which learns P, we let
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• UT,ϵ denote the truncated UT where only the first dϵ columns are preserved, i.e., UT,ϵ = UT [ :
, 1, . . . , dϵ],

• I be the positional encoding matrix for the output grid I,
• B as an M -by-M matrix where the elements of B satisfy

(B)ij =

{
1/(M − 1), if j ≥ i;

0, otherwise.

Then by Lemma 1.1 combined with (11) and (12), an imputation from such SAND becomes

T̃i

[(
WKT̃c

)T (
WQT̃c

)/√
hd

]
B (10)

and by taking WK =
√
hdU

T

T,ϵ(0 I−1) and WQ =
√
hdU

T

T,ϵB
−1(0 I−1), we have (10) =

T̃iUT,ϵU
T

T,ϵ = T̃iP. □

1.3 Supporting Lemmas for Theorem 2

Lemma 1.1. Suppose that SAND has a single-head structure. Then for any hd, there exists a
SAND with a corresponding matrix P such that, for any subject i, the imputation can be written as
(T̃i)1 + T̃i,cP, and it becomes T̃iP when (T̃i)1 = 0.

Proof. Recall that

SAND(T̃i) = (T̃i)1 + Intg(D̃i)

= (T̃i)1 + Intg[Diff(T̃i,c)],

where Diff(·) and Intg(·) are defined according to

D̃i = Diff(T̃i,c) = WO

(
WV T̃i,c

)[(
WKT̃i,c

)T (
WQT̃i,c

)/√
hd

]
,

Intg(D̃i) = cumsum
[
D̃i/(M − 1)

]
.

Define B as an M -by-M matrix where the elements of B satisfy

(B)ij =

{
1/(M − 1), if j ≥ i;

0, otherwise.

Then the output of SAND can be written as

SAND(T̃i) = (T̃i)1 + Intg[Diff(T̃i,c)]

= (T̃i)1 +WO

(
WV T̃i,c

)[(
WKT̃i,c

)T (
WQT̃i,c

)/√
hd

]
B. (11)

Define

Pi =

[(
WKT̃i,c

)T (
WQT̃i,c

)/√
hd

]
B.

Because Pi is an M -by-M matrix, by taking

WO = (1 01×d) and WV =

[
11×M

0d×M

]
, (12)

we obtain WO(WV T̃i,c) = T̃i,c. Also it is worth noticing that WO(WV T̃i,c) = T̃i when (T̃i)1 = 0.
To show that there exists a matrix P such that Pi ≡ P for all i, we denote I as the positional encoding

of the output grid I. For any subject i, we have T̃i,c =

[
T̃i,c

I

]
. Therefore, when the first columns in

WK and WQ are zeros, all Pi are the same.
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1.4 Proof of Corollary 1

Lemma 1.1 shows that there exists a P such that.
∥dmask

i ⊙ (T̃i − T̂i)∥22 = ∥dmask
i ⊙ [T̃i − ((T̃i)1 + T̃i,cP)]∥22

= ∥dmask
i ⊙ (T̃i,c − T̃i,cP)∥22.

When all elements in dmask
i = 1, the last expression becomes

∥(T̃i,c(IM −P)∥22.

Notice that the rank of P is determined by the minimum of rank(WK), rank(WQ) and rank(T̃c).
As d = M , rank(T̃c) = M and rank(P) = hd = dϵ. To see the minimum is attained at
ϵ/∥A∥0

∑
i∈A ∥T̃i,c∥22, we follow the proof of Theorem 2 and notice that in the settings of this

corollary, the inequality in (3) is actually an equality. Thus, the minimum is ϵ
∥A∥0

∑
i∈A ∥T̃i,c∥22. □

2 Additional experiment study

Code availability & reproducibility. The code, checkpoints, and real datasets are provided in a
separate .zip file.

Numerical analysis of Diff . In Figure S1, we illustrate the effectiveness of Diff in capturing the
overall trend of the true derivative (the black dashed curve) using simulated data where observations
(blue dots) are sampled from the underlying process (the green dashed curve). Despite lacking direct
access to the derivative and no explicit instruction to do so, Intg indirectly guides Diff to produce
outcomes (the orange curve) akin to derivatives. As illustrated in the right panel of Figure S1, Diff
adeptly captures the general trend of the true derivative, despite operating without this information.

Figure S1: The comparison between a Diff output (the orange curve) and the first derivative (the
black curve) of the corresponding underlying process (the green dashed curve).

2.1 Discussion of [3, 1, 2]’s methods

In this section, we provide additional details regarding the comparison of our method with [3, 1]’s
methods. [3] relies on the EM algorithm (computationally expensive), known to be unstable with
sparse data, as highlighted in [1]. [1] is later improved by [2] as disclosed in James’ website so we
only include [2]’s method in our analyses. [2]’s package is called FPCA in the R software; however, to
prevent confusion with the established functional principal component analysis (FPCA), we denote
their method as mFPCA. Here, the ’m’ signifies its maximum likelihood foundation, distinguishing it
as a likelihood-based approach.

2.2 Additional Simulation Results

Our experiments involve six scenarios which differ in terms of the distribution of the scores (aik
and bik) and the complexity (i.e. number of eigen-components K) of the underlying data-generating
processes. Specifically, we consider three different generating distributions:
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• E : the exponential distribution with rate 1, which reflects a heavy-tailed process;

• T : the t-distribution with 5 degrees of freedom;

• G : the standard Gaussian distribution.

Beyond different generating distributions, we also study how the data dimension K affects various
imputation methods, considering a:

• low dimensional case (LowDim) where: K = 5

• high dimensional case (HighDim) where: K = 20

Table S1 categorizes the experiment outcomes according to their setup and provides links to the tables
containing the details of each experiment. Except for Table 1 in the main text, the remaining tables
are presented in this supplement (indicated by the prefix S).

Table S1: Correspondence between experimental setups and tables of results.

HighDim LowDim

E T G E T G
Tables 1, S2, S3, S4 & S5 S7 S9 S6 S8 S10

Result. In Table S2, we look at the same scenario as in Table 1 and use transformers with ReLU
activation (RT) to report the Mean Squared Errors (MSE) and Total Variations (TV). We find that
RT and GT (GeLU-activated transformers) perform similarly. Figure 1 reveals that both RT and GT
models face a problem with smoothness in their imputations. Next, we assume the signal-to-noise
ratio is 0 and investigate the performance of SAND under the error-free case. In Table S3, there is an
overall decrease in MSE and TV among most methods, and SAND demonstrates the best performance.
Given the similar performance between RT and GT, we focus on GT results for subsequent scenarios.
In Tables S4 & S5, we deal with a scenario similar to Tables S2 & S3, except that the time points tij
are now dependent within each subject i. In this scenario, Transformer-based models outperform
all other basic methods. Among transformers, SAND has the smallest MSE in every case and it
effectively reduces TV, demonstrating its ability to create smooth imputations. Tables S6, S7, S8,
S9, S10 report the performance of eight imputation methods: PACE, FACE, mFPCA, MICE, CNP,
GAIN, 1DS and SAND. Among these methods, either PACE or SAND consistently outperforms the
other six methods.

When the underlying process is a Gaussian process, Tables S9 and S10 show that PACE performs
the best (as expected in this setting where its assumptions are perfectly met). This can be explained
partly by equation E(ξik | Ỹi) = λkϕ

T

ikΣ
−1
Yi

(Yi − µi), which holds under the Gaussian assumption.
While SAND does not reach the same level of performance as PACE for Gaussian scores, it still
significantly outperforms the other methods. Interestingly, the performance gap between PACE and
SAND narrows as the number of basis functions used in the data-generating process increases.

For all other scenarios with asymmetric distributions, Tables S2, S3, S4, S5 and S6 illustrate that
SAND takes the lead over PACE in all situations, except for very simple scenarios where the data is
densely observed and the number of basis functions is low.

For score distributions following a t-distribution, as shown in Tables S7 and S8, SAND tends to
deliver better results than PACE as the number of basis functions used in the data-generating process
increases. In general, when the scores are non-Gaussian and the number of basis functions used in the
data-generating process is high, SAND consistently outperforms PACE irrespective of the sparsity of
observations, as depicted in Tables S2, S3, S4, S5 and S7.

In summary, while PACE excels in handling simple scenarios like Gaussian processes with a low
number of basis functions, SAND offers more robust imputation performance across a broader range
of data-generating processes, including asymmetric or t-distributions, and those involving a large
number of basis functions.
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2.3 Limitations of SAND

While SAND demonstrates superior performance across various complex scenarios and asymmetric
score distributions, it has limitations when applied to simpler data structures, particularly when the
underlying process is generated by a low number of basis functions and the score distribution is
symmetric. In these cases, SAND does not outperform PACE, which is specifically designed to excel
under symmetric distribution assumptions.

PACE’s exceptional performance in these simpler scenarios is due to the fact that the setting perfectly
fits its model assumptions. This gives PACE a distinct advantage, making it the optimal choice under
such conditions. However, despite this specific advantage of PACE, SAND still maintains competitive
performance, often ranking as the second-best method among ten competing techniques. In addition,
as the number of basis functions increases, the performance gap between PACE and SAND narrows.
The Mean Squared Errors (MSE) of SAND are comparable to those of PACE, indicating that while
PACE may have a slight edge, SAND remains a viable method.

The primary reason for SAND’s comparatively lower performance in the non-complex scenarios lies
in its neural network architecture. Neural networks generally exhibit their strengths when handling
complex data structures. Therefore, when faced with simpler data, SAND’s advantages are less
pronounced.

In summary, SAND’s limitations are most evident in scenarios where both the data-generating process
is simple and the score distribution is symmetric that are ideally suited for PACE. In such cases,
PACE outperforms SAND. However, SAND still delivers strong results, showcasing its robustness
and flexibility across a broad range of scenarios.

2.4 Additional Data Application Results

In this section, we alter our approach by sampling time points tij in a dependent manner within
each subject in the UK electricity dataset and present the results in Table S11. Once again, SAND
maintains its superior performance in terms of MSE. A direct comparison between rows representing
by GT and SAND suggests its ability to generate smooth imputations. This observation aligns with
the evidence presented in Figure S2.

Figure S2: An imputation by SAND from the UK electricity testing set. The green curve represents
the underlying electricity usage where three observations (blue dots) are sampled. The black line
(‘GT’) refers to the imputation from a vanilla transformer and the red line is the output of SAND.
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Table S2: Full Tables 1 from the main paper. The eigenvalues follow an exponential with rate 1, the
number of bases is 40 (K = 20), the time points within any subject are independently sampled, and
the signal-to-noise ratio is 4. Bold values indicate the top 2 performing methods.

ni = 30 ni = 8 to 12 ni = 3, 4, 5

MSE(SE) TV(SE) MSE(SE) TV(SE) MSE(SE) TV(SE)

PACE 189.9(4.3) 187.1(2.0) 450.0(15) 201.9(2.1) 795.5(33) 209.5(2.2)
FACE 284.6(8.8) 198.9(2.1) 488.2(16) 204.5(2.2) 807.1(32) 209.5(2.2)

mFPCA 224.7(5.8) 192.0(2.1) 480.3(16) 204.0(2.2) 787.1(31) 209.3(2.2)
MICE 176.7(3.7) 233.1(1.7) 721.6(27) 318.4(3.0) 1416(57) 332.7(2.8)
CNP 290.4(11) 198.9(2.0) 551.3(21) 207.6(2.1) 920.3(52) 211.9(2.2)

GAIN 261.9(6.8) 350.0(3.4) 1454(52) 413.1(5.1) 1862(51) 385.4(4.3)
1DS 262.9(6.0) 273.8(2.4) 735.3(22) 305.7(3.7) 1157(43) 263.3(3.1)

ReLU-activated transformers with penalties

RT1 172.1(3.2) 213.2(1.8) 439.2(15) 225.0(2.2) 802.1(35) 232.0(2.5)
RT1P 170.6(3.4) 192.6(1.9) 426.5(14) 202.9(2.1) 781.5(34) 212.9(2.3)
RT1S 172.0(3.2) 213.2(1.8) 439.1(15) 225.0(2.2) 801.3(35) 232.0(2.5)

RT2 172.6(3.4) 225.2(1.7) 432.4(14) 216.1(2.3) 801.7(39) 224.8(2.2)
RT2P 174.2(3.9) 181.9(2.0) 425.1(13) 198.7(2.3) 791.2(39) 213.9(1.9)
RT2S 165.3(3.2) 177.3(1.6) 429.9(13) 206.7(2.3) 801.7(39) 224.8(2.2)

GeLU-activated transformers with penalties

GT1 169.8(3.2) 218.2(1.7) 436.7(15) 227.0(2.2) 798.6(35) 230.6(2.6)
GT1P 169.0(3.5) 179.9(2.0) 425.3(14) 199.4(2.1) 777.4(34) 210.2(2.2)
GT1S 169.8(3.2) 218.1(1.7) 436.7(15) 227.0(2.2) 796.5(35) 227.6(2.6)

GT2 174.8(3.5) 223.0(1.7) 433.8(14) 221.9(2.1) 804.5(39) 226.1(2.4)
GT2P 179.9(3.9) 182.1(2.0) 422.6(13) 199.4(2.1) 788.9(39) 210.0(2.2)
GT2S 160.8(3.4) 168.5(1.5) 427.7(13) 208.8(2.1) 804.5(39) 226.1(2.4)

GeLU-activated transformers with augmented modules

ATT 185.1(3.8) 220.0(1.7) 446.9(14) 220.6(2.1) 852.0(42) 224.0(2.5)
SAND 146.5(2.7) 164.6(1.8) 410.9(13) 196.8(2.0) 758.1(43) 206.8(2.2)

Figure S3: Imputations from the top 4 performing methods in the Framingham Heart Study dataset.
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Table S3: The setting is similar to the one used in Table S2: the eigenvalues follow an exponential with
rate 1, the number of bases is 40 (K = 20) and the time points within any subject are independently
sampled; except that the signal-to-noise ratio is 0. Bold values indicate the top 2 performing methods.

ni = 30 ni = 8 to 12 ni = 3, 4, 5

MSE(SE) TV(SE) MSE(SE) TV(SE) MSE(SE) TV(SE)

PACE 155.8(4.3) 183.8(2.1) 400.4(14) 200.3(2.2) 744.4(31) 208.9(2.2)
FACE 264.4(8.8) 198.0(2.1) 449.6(16) 203.6(2.2) 757.5(30) 208.9(2.2)

mFPCA 196.8(5.7) 190.0(2.1) 438.4(15) 203.2(2.2) 860.1(43) 211.6(2.2)
MICE 112.4(3.6) 145.2(1.6) 689.7(26) 299.4(3.0) 1403(57) 323.2(2.8)
CNP 261.2(10) 197.0(2.1) 542.0(27) 206.9(2.2) 845.7(43) 210.9(2.2)

GAIN 169.9(4.4) 229.8(2.4) 1179(43) 383.0(3.9) 1951(54) 423.7(2.6)
1DS 157.4(5.4) 193.1(2.2) 648.6(21) 283.6(3.7) 1082(43) 253.6(2.8)

ReLU-activated transformers with penalties

RT1 96.22(2.3) 152.8(1.6) 373.8(14) 209.9(2.2) 730.5(35) 225.7(2.5)
RT1P 125.5(2.9) 179.6(2.0) 374.4(13) 199.0(2.3) 714.1(34) 207.2(2.2)
RT1S 97.11(2.4) 151.2(1.5) 372.3(15) 196.1(2.1) 726.0(34) 219.3(2.3)

RT2 99.79(2.4) 151.5(1.6) 373.5(14) 221.4(2.2) 733.8(37) 223.5(2.5)
RT2P 132.3(3.0) 183.3(1.9) 370.2(14) 204.6(2.1) 718.2(35) 210.1(2.1)
RT2S 102.5(2.4) 156.6(1.6) 368.4(13) 213.3(2.1) 736.7(37) 225.9(2.5)

GeLU-activated transformers with penalties

GT1 98.22(2.3) 153.3(1.6) 371.8(13) 207.6(2.2) 735.9(35) 226.4(2.4)
GT1P 131.5(3.0) 182.7(2.0) 372.5(13) 197.1(2.1) 719.5(34) 208.8(2.2)
GT1S 101.0(2.4) 156.8(1.5) 368.2(13) 198.2(2.1) 731.0(35) 219.0(2.3)

GT2 100.9(2.4) 152.4(1.6) 376.1(14) 211.2(2.2) 736.8(37) 224.8(2.5)
GT2P 133.0(3.0) 183.0(2.0) 372.4(13) 196.7(2.1) 720.1(36) 208.8(2.2)
GT2S 105.7(2.5) 156.1(1.6) 371.7(13) 200.2(2.1) 736.8(37) 224.8(2.5)

GeLU-activated transformers with augmented modules

ATT 122.6(3.2) 170.6(1.7) 416.3(13) 211.4(2.2) 808.4(34) 221.1(2.4)
SAND 90.88(2.3) 147.7(1.6) 347.3(13) 190.8(2.1) 688.4(32) 208.2(2.2)

Table S4: The eigenvalues follow an exponential with rate 1, the number of bases is 40 (K = 20),
the time points within any subject are dependently sampled, and the signal-to-noise ratio is 4. Bold
values indicate the top 2 performing methods.

ni = 30 ni = 8 to 12 ni = 3, 4, 5

MSE(SE) TV(SE) MSE(SE) TV(SE) MSE(SE) TV(SE)

PACE 325.9(10) 193.7(2.1) 567.1(19) 204.5(2.2) 839.3(37) 210.6(2.2)
FACE 419.7(15) 203.1(2.2) 659.5(24) 207.0(2.2) 842.7(34) 210.4(2.2)

mFPCA 354.6(11) 199.4(2.1) 588.9(21) 206.2(2.2) 859.2(34) 212.0(2.2)
MICE 395.1(17) 235.4(1.7) 815.3(29) 276.9(2.5) 1401(56) 321.3(2.8)
CNP 709.2(35) 211.2(2.2) 696.3(33) 210.2(2.2) 1007(45) 212.4(2.2)

GAIN 676.7(31) 379.1(3.9) 1564(57) 431.1(4.3) 1955(56) 420.4(2.7)
1DS 567.8(21) 266.2(2.1) 904.1(32) 276.0(3.1) 1157(42) 255.0(2.8)

GeLU-activated transformers with penalties

GT1 307.2(9.2) 246.9(1.8) 575.7(18) 250.8(2.5) 842.1(40) 255.8(2.4)
GT1P 304.0(9.2) 189.2(2.0) 553.8(18) 203.1(2.1) 828.2(40) 209.3(2.4)
GT1S 286.1(9.1) 179.7(1.7) 575.7(18) 250.8(2.5) 841.7(40) 255.8(2.3)

GT2 324.3(11) 248.8(1.8) 573.7(20) 254.9(2.5) 845.6(43) 259.2(2.1)
GT2P 319.7(10) 190.2(2.0) 551.0(19) 203.4(2.2) 830.1(43) 210.3(2.0)
GT2S 302.0(11) 181.0(1.7) 573.7(20) 254.9(2.5) 845.6(43) 259.2(2.1)

GeLU-activated transformers with augmented modules

ATT 307.2(9.8) 224.1(1.8) 583.3(18) 228.5(2.4) 902.3(45) 227.0(2.4)
SAND 280.2(8.1) 174.5(1.8) 531.3(18) 201.6(2.1) 823.1(46) 207.6(2.2)
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Table S5: The setting is similar to the one used in Table S4: the eigenvalues follow an exponential
with rate 1, the number of bases is 40 (K = 20) and the time points within any subject are dependently
sampled; except that the signal-to-noise ratio is 0. Bold values indicate the top 2 performing methods.

ni = 30 ni = 8 to 12 ni = 3, 4, 5

MSE(SE) TV(SE) MSE(SE) TV(SE) MSE(SE) TV(SE)

PACE 306.6(11) 191.7(2.1) 528.5(19) 203.5(2.2) 804.8(38) 210.1(2.2)
FACE 415.1(16) 202.9(2.2) 631.9(23) 206.6(2.2) 804.4(34) 210.0(2.2)

mFPCA 312.2(11) 196.1(2.1) 562.4(21) 206.0(2.2) 832.4(35) 212.1(2.2)
MICE 363.4(17) 137.4(1.6) 784.7(28) 253.7(2.4) 1385(56) 314.0(2.8)
CNP 765.3(39) 210.8(2.2) 707.0(33) 210.2(2.2) 953.4(47) 212.2(2.2)

GAIN 644.0(30) 307.8(3.8) 1563(57) 410.2(4.4) 1919(56) 431.4(2.6)
1DS 496.6(21) 179.5(2.1) 837.3(31) 254.1(3.0) 1120(43) 252.2(3.0)

GeLU-activated transformers with penalties

GT1 249.6(9.4) 163.3(1.7) 506.7(17) 221.8(2.3) 799.0(45) 229.4(2.3)
GT1P 273.5(9.3) 185.9(2.1) 499.7(17) 201.3(2.1) 780.4(44) 210.6(2.2)
GT1S 249.6(9.4) 163.4(1.7) 506.7(17) 221.8(2.3) 797.3(45) 223.1(2.3)

GT2 251.8(9.9) 166.2(1.8) 511.1(17) 221.2(2.3) 800.7(48) 225.5(2.3)
GT2P 273.7(9.6) 186.1(2.1) 503.9(17) 201.1(2.2) 787.2(47) 210.5(2.5)
GT2S 251.8(9.9) 166.2(1.8) 511.1(17) 221.2(2.3) 800.7(48) 225.5(2.4)

GeLU-activated transformers with augmented modules

ATT 251.5(9.1) 160.5(1.7) 508.5(17) 220.1(2.3) 853.6(42) 224.3(2.5)
SAND 231.9(8.5) 159.1(1.9) 482.9(17) 196.2(2.1) 766.3(40) 210.1(2.2)

Table S6: MSE (SE) and TV (SE) on the testing set. The eigenvalues follow an exponential
distribution, the number of bases is 10 (K = 5) and the time points are sampled independently within
any subject. Bold values indicate the top 2 performing methods.

with measurement errors without measurement errors

ni = 30 ni = 8 to 12 ni = 30 ni = 8 to 12

MSE(SE) TV(SE) MSE(SE) TV(SE) MSE(SE) TV(SE) MSE(SE) TV(SE)

PACE 37.85(1.0) 34.53(0.5) 254.2(16) 69.40(1.6) 2.889(0.2) 17.54(0.4) 173.9(16) 58.14(1.6)
FACE 127.6(8.5) 64.87(1.6) 309.0(18) 77.78(1.7) 103.3(8.3) 61.52(1.6) 256.6(19) 73.09(1.8)

mFPCA 108.7(7.9) 61.66(1.6) 273.5(17) 72.94(1.7) 84.32(7.9) 57.86(1.7) 226.6(19) 67.21(1.8)
MICE 70.31(2.4) 153.5(1.1) 568.4(25) 223.7(2.8) 14.15(1.5) 30.71(0.6) 527.3(23) 202.5(2.7)
CNP 105.8(5.0) 65.8(0.88) 354.4(17) 85.58(1.7) 66.29(4.1) 56.93(0.8) 302.9(16) 82.01(1.6)

GAIN 86.37(2.6) 166.6(1.4) 906.4(37) 321.1(3.4) 43.13(2.3) 83.98(1.2) 883.5(37) 276.5(3.4)
1DS 115.0(7.6) 55.48(1.1) 524.7(22) 203.7(3.5) 25.61(4.5) 43.92(1.0) 452.4(21) 185.3(3.8)

Transformers

GT 65.82(1.5) 132.9(0.92) 255.4(12) 110.3(1.6) 5.417(0.37) 30.75(0.6) 173.9(11) 86.54(1.5)
SAND 36.32(1.2) 34.41(0.46) 218.4(12) 72.85(1.3) 2.685(0.2) 9.678(0.25) 149.7(10) 54.03(1.3)
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Table S7: MSE (SE) and TV (SE) on the testing set. The eigenvalues follow a t-distribution, the
number of bases is 40 (K = 20) and the time points are sampled independently within any subject.
Bold values indicate the top 2 performing methods.

with measurement errors without measurement errors

ni = 30 ni = 8 to 12 ni = 30 ni = 8 to 12

MSE(SE) TV(SE) MSE(SE) TV(SE) MSE(SE) TV(SE) MSE(SE) TV(SE)

PACE 317.4(7.2) 244.1(2.3) 744.9(20) 265.2(2.4) 254.2(6.8) 239.1(2.3) 671.3(20) 263.7(2.4)
FACE 472.9(11) 260.8(2.3) 796.3(22) 267.6(2.4) 434.3(11) 259.9(2.3) 729.2(22) 266.5(2.4)

mFPCA 440.3(11) 258.5(2.3) 762.5(21) 265.6(2.4) 401.0(10) 257.4(2.3) 695.3(21) 264.2(2.4)
MICE 304.9(5.8) 300.6(1.9) 1258(40) 419.6(3.4) 188.9(4.9) 190.6(1.7) 1200(39) 395.7(3.4)
CNP 519.1(12) 262.7(2.3) 984.1(30) 273.5(2.3) 410.4(12) 257.7(2.3) 920.1(27) 273.4(2.3)

GAIN 376.1(7.7) 377.6(2.8) 2019(68) 511.5(4.6) 299.7(7.6) 303.4(2.9) 1893(63) 488.9(4.5)
1DS 437.8(8.2) 351.6(2.7) 1229(34) 398.3(3.9) 265.2(6.9) 252.1(2.4) 1093(35) 374.8(4.0)

Transformers

GT 297.5(6.0) 284.5(1.9) 776.2(21) 289.0(2.3) 171.6(4.6) 201.7(1.8) 666.1(19) 271.1(2.3)
SAND 264.0(5.4) 215.7(1.9) 731.1(20) 259.5(2.2) 174.5(4.5) 197.6(2.1) 637.2(18) 253.7(2.3)

Table S8: MSE (SE) and TV (SE) on the testing set. The eigenvalues follow a t-distribution, the
number of bases is 10 (K = 5) and the time points are sampled independently within any subject.
Bold values indicate the top 2 performing methods.

with measurement errors without measurement errors

ni = 30 ni = 8 to 12 ni = 30 ni = 8 to 12

MSE(SE) TV(SE) MSE(SE) TV(SE) MSE(SE) TV(SE) MSE(SE) TV(SE)

PACE 64.88(1.6) 45.28(0.6) 397.4(14) 93.13(1.6) 3.352(0.2) 21.43(0.3) 278.3(13) 82.98(1.7)
FACE 206.6(7.3) 87.41(1.6) 503.2(22) 103.0(1.7) 168.9(7.2) 83.67(1.7) 414.1(20) 98.21(1.8)

mFPCA 175.6(6.5) 83.99(1.6) 435.3(15) 98.08(1.7) 136.4(6.4) 79.65(1.7) 366.4(17) 92.31(1.9)
MICE 131.9(13) 203.8(2.6) 1074(68) 306.1(3.6) 40.22(13) 43.93(2.5) 1015(66) 278.2(3.7)
CNP 272.0(62) 92.32(1.2) 767.0(76) 117.7(1.7) 242.3(100) 81.27(1.3) 684.0(51) 115.5(1.8)

GAIN 171.1(15) 225.0(3.8) 2166(140) 417.2(5.7) 97.85(13) 121.5(3.6) 1663(110) 361.6(4.7)
1DS 184.9(6.9) 73.09(1.2) 981.2(71) 270.0(4.4) 42.20(3.1) 59.30(1.1) 854.7(70) 239.8(4.5)

Transformers

GT 126.6(4.1) 176.3(1.1) 480.7(22) 146.3(1.9) 13.98(4.2) 40.30(0.8) 336.7(19) 121.0(1.9)
SAND 80.58(2.8) 53.6(0.65) 424.2(18) 96.35(1.4) 9.181(4.0) 13.00(0.5) 295.0(17) 74.47(1.5)

Table S9: MSE (SE) and TV (SE) on the testing set. The eigenvalues follow a standard Gaussian, the
number of bases is 40 (K = 20) and the time points are sampled independently within any subject.
Bold values indicate the top 2 performing methods.

with measurement errors without measurement errors

ni = 30 ni = 8 to 12 ni = 30 ni = 8 to 12

MSE(SE) TV(SE) MSE(SE) TV(SE) MSE(SE) TV(SE) MSE(SE) TV(SE)

PACE 183.4(2.6) 186.9(1.1) 451.0(10) 203.3(1.1) 145.3(2.3) 183.2(1.1) 397.8(10) 201.7(1.1)
FACE 276.6(4.3) 199.9(1.1) 496.9(11) 205.9(1.1) 255.6(4.2) 199.3(1.1) 451.3(11) 205.0(1.1)

mFPCA 258.9(4.2) 198.2(1.1) 466.9(11) 204.3(1.1) 236.9(4.2) 197.7(1.1) 422.8(11) 203.1(1.2)
MICE 189.2(2.7) 231.0(0.4) 816.5(20) 327.5(0.6) 112.1(2.6) 145.5(0.3) 773.7(19) 308.3(0.6)
CNP 308.1(21) 201.0(1.2) 636.4(24) 210.6(1.2) 247.9(7.1) 198.2(1.2) 570.5(17) 209.5(1.1)

GAIN 241.4(4.2) 288.4(1.5) 1535(45) 392.8(3.9) 159.1(2.9) 221.3(1.4) 1525(45) 383.5(3.9)
1DS 255.3(4.1) 271.3(1.7) 797.6(19) 313.4(2.9) 157.7(3.4) 196.7(1.4) 705.4(18) 291.9(2.7)

Transformers

GT 174.3(2.7) 222.6(1.1) 485.4(12) 220.4(1.2) 99.32(2.1) 150.8(1.0) 418.6(11) 209.9(1.2)
SAND 154.9(2.6) 167.1(1.1) 456.5(11) 199.6(1.1) 103.4(2.1) 153.3(1.1) 397.4(10) 194.1(1.2)
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Table S10: MSE (SE) and TV (SE) on the testing set. The eigenvalues follow a standard Gaussian,
the number of bases is 10 (K = 5) and the time points are sampled independently within any subject.
Bold values indicate the top 2 performing methods.

with measurement errors without measurement errors

ni = 30 ni = 8 to 12 ni = 30 ni = 8 to 12

MSE(SE) TV(SE) MSE(SE) TV(SE) MSE(SE) TV(SE) MSE(SE) TV(SE)

PACE 39.01(0.9) 34.55(0.4) 227.6(7.2) 70.66(1.0) 1.351(0.1) 15.56(0.2) 142.6(6.0) 58.14(1.0)
FACE 124.6(3.6) 68.74(1.1) 314.7(9.6) 81.39(1.1) 101.8(3.5) 66.12(1.1) 269.3(9.5) 77.74(1.2)

mFPCA 106.5(3.3) 65.76(1.0) 262.1(8.3) 77.37(1.1) 82.07(3.2) 62.51(1.1) 222.7(9.1) 73.06(1.3)
MICE 70.44(1.6) 153.2(0.9) 618.3(17) 234.3(2.0) 13.26(1.0) 29.73(0.5) 576.0(16) 212.8(1.9)
CNP 102.4(5.0) 68.37(0.6) 398.7(12) 91.43(1.0) 69.82(4.5) 62.35(0.7) 346.1(11) 90.15(1.1)

GAIN 80.49(1.9) 160.9(1.1) 1355(42) 309.0(4.1) 31.63(1.4) 68.36(1.0) 1019(26) 293.9(2.9)
1DS 123.4(10) 57.93(0.8) 549.4(16) 213.0(2.8) 25.58(2.2) 46.79(0.7) 470.3(16) 190.0(2.7)

Transformers

GT 75.86(1.2) 140.9(0.9) 283.3(8.6) 111.1(1.0) 6.418(0.4) 34.13(0.4) 191.8(7.4) 91.76(1.0)
SAND 50.08(1.1) 42.87(0.5) 253.8(8.3) 77.01(0.9) 3.413(0.3) 11.71(0.2) 168.4(7.2) 58.12(0.9)

Table S11: MSE(SE) and TV(SE) on the UK electricity dataset when tij are sampled dependently.
Bold values indicate the top 2 performing methods.

UK electricity

ni = 30 ni = 8 to 12 ni = 3, 4, 5

MSE(SE) TV(SE) MSE(SE) TV(SE) MSE(SE) TV(SE)

PACE 18.24(2.9) 19.36(1.1) 30.17(4.0) 21.15(1.2) 46.34(5.8) 22.25(1.2)
FACE 27.52(4.2) 21.93(1.2) 38.61(5.4) 22.78(1.2) 48.19(6.2) 23.47(1.2)

mFPCA 20.67(3.1) 22.70(1.2) 32.45(4.3) 24.39(1.2) 46.26(6.1) 23.63(1.2)
MICE 24.49(3.2) 59.05(2.6) 44.39(5.9) 57.18(2.3) 74.86(8.5) 68.06(1.7)
CNP 26.06(3.8) 21.43(1.2) 36.73(4.7) 22.17(1.2) 65.11(12) 22.80(1.2)

GAIN 35.70(4.9) 84.94(4.1) 56.27(7.8) 82.33(3.3) 124.9(16) 52.43(2.7)
1DS 58.51(7.7) 49.53(2.6) 83.27(11) 38.81(2.2) 108.4(13) 36.54(2.2)

GT 16.17(2.8) 22.04(1.2) 25.77(3.5) 25.41(1.4) 49.69(7.0) 40.92(2.7)
SAND 15.69(2.8) 17.85(1.1) 24.09(3.4) 20.54(1.2) 45.50(6.4) 29.40(1.9)
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